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Abstract:  
 

Software debugging remains one of the most time-consuming and cognitively 

demanding phases in the software development lifecycle. The paper considers the 

analytical capabilities of transformers transformer-based language models—specifically 

ChatGPT—in detecting and correcting semantic faults in multi-module Python projects. 

Ten synthetic Python programs (100–200 lines each), containing a total of 30 

deliberately injected faults (distributed among order faults, variable leakage, and edge-

case omissions), were submitted to ChatGPT under a standardized prompting scheme. 

Model responses were benchmarked against conventional static analysis tools (Pylint, 

MyPy) and a human expert baseline. Quantitatively, ChatGPT achieved an average 

error detection rate (EDR) of 76.7%, outperforming Pylint (23.3%) and MyPy (15%) 

across fault categories. In repair accuracy (RA), ChatGPT resolved 62–75% of the 

identified errors correctly, versus 10–25% for static tools. Statistical validation using a 

Chi-square test (χ² = 36.27, p < 0.001) and one-way ANOVA (F(3, 27) = 14.92, p < 

0.001) confirms the significance of these differences. Qualitative clarity was also 

assessed using ordinal metrics and validated via Kruskal-Wallis H tests (H = 11.56, p < 

0.01). These results suggest that ChatGPT possesses substantial semantic reasoning 

capabilities, particularly in contexts requiring non-local inference across modules. 

However, limitations persist in handling implicit dependencies and dynamic runtime 

conditions. The study concludes that such models can be meaningfully integrated into 

debugging pipelines as assistive agents, provided their outputs are cross-validated with 

expert oversight and static tools. Future research should explore hybrid frameworks that 

combine statistical inference with formal verification techniques. 

 

1. Introduction 

 

In modern software engineering, the complexity of 

codebases has grown significantly, often spanning 

hundreds of thousands of lines across multiple 

modules and services [1]. A 2024 industry survey 

reports that developers allocate on average 45% of 

their development time to debugging and error 

resolution [2], with logical and semantic faults 

constituting approximately 35% of all reported 

defects [3]. Manual debugging, while precise, is 

time-consuming and error-prone [4-6], particularly 

when faults arise from deep semantic interactions 

rather than simple syntactic mistakes. Static 

analysis tools such as Pylint and MyPy provide 

automated checks for syntax errors, type 

inconsistencies, and basic code smells [7-10], but 

tend to fall short in identifying logical flaws that 

emerge only when examining runtime behavior or 

inter-module dependencies.[11] 

Recent developments in large language models 

large-language models (LLMs) have demonstrated 

remarkable capabilities in code generation,[12] 

completion, and even basic debugging tasks 

[13,14]. Models trained on vast repositories of 

open-source code can leverage patterns and idioms 

to propose corrections or optimizations [15-17]. 

However, most evaluations of LLMs focus on 

isolated snippets—single functions or small 

scripts—without assessing their proficiency in 

navigating a complete project’s structure [18,19]. 

This limitation raises open questions about the 

practical viability of LLMs as comprehensive 

debugging assistants in professional workflows.[20] 

This study addresses this gap by evaluating 

ChatGPT’s semantic reasoning over multi-module 

Python projects—an area that has been 
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underexplored in prior work [21]. Our investigation 

centers on three challenging fault categories—order 

faults, variable leakage, and edge-case omissions—

that require contextual awareness beyond line-by-

line analysis [21]. By benchmarking the model 

against established static analyzers and expert 

human review, we provide a nuanced understanding 

of where LLMs can effectively contribute to 

debugging and where traditional tools remain 

essential [22,23]. 

2. Related Work 

The intersection of automated debugging and 

intelligent code analysis has undergone substantial 

evolution over the past two decades. Traditional 

static analysis tools such as Pylint and MyPy serve 

as foundational components in early error detection 

by checking for style violations, type 

inconsistencies, and syntactic issues [24,25]. 

However, these tools operate primarily on syntactic 

and structural rules and lack semantic awareness 

necessary for identifying deeper logical faults [26]. 

With the rise of machine learning in software 

engineering, attention has shifted toward learning-

based systems. Li et al. introduced a neural 

approach to program repair that leverages encoder-

decoder architectures to generate bug fixes from 

faulty input-output pairs [27]. While promising, 

these models typically struggle to generalize 

beyond narrow training domains. 

The emergence of large language models (LLMs) 

like Codex and GPT-3.5/4 has significantly 

expanded the potential for intelligent code 

reasoning [28]. Ahmad et al. proposed 

CodeXGLUE, a benchmark suite that evaluates 

LLMs across several code intelligence tasks 

including generation, summarization, and defect 

repair [29]. Their experiments showed LLMs 

performing competitively on function-level tasks 

but underperforming on more integrated code 

structures involving multi-file dependencies. 

Wang et al. explored the effectiveness of GPT-style 

models for debugging by submitting single-file 

programs with embedded logical faults [30]. Their 

study showed an accuracy of up to 85% in error 

detection, though performance dropped sharply 

when dealing with indirect function calls and 

context-spanning issues. 

Recent work by Liu et al. proposed the integration 

of LLMs into Integrated Development 

Environments (IDEs), allowing real-time contextual 

suggestions [31]. While this improved developer 

productivity in routine corrections, it lacked formal 

validation and suffered from occasional 

hallucinations in model outputs. 

Notably, no prior work has systematically 

compared LLM-based code correction across multi-

module projects, where functions and variables 

span across separate files and execution context is 

fragmented. Such scenarios introduce significant 

complexity, including indirect data dependencies, 

incomplete scope visibility, and non-local control 

flow, which often degrade the effectiveness of both 

traditional and neural models. Prior efforts such as 

those by Ahmad et al. [29], Wang et al. [30], and 

Liu et al. [31] primarily focused on single file 

debugging or loosely contextual assistance within 

IDEs, without establishing controlled benchmarks 

that emulate realistic multi-file projects. This 

research addresses this by constructing controlled 

test cases that explicitly incorporate these 

challenges, offering a benchmark for assessing 

model robustness in real-world debugging contexts. 

This study aims to address that gap by 

benchmarking ChatGPT against both static tools 

and human experts using a fault-injected corpus, 

and by applying quantitative and qualitative 

analyses validated through statistical tests. 

3. Methodology 

3.1 Overview 

This study evaluates ChatGPT's semantic reasoning 

capabilities using the OpenAI API with the model 

gpt-4o-code-2025-02-26. We collected all calls on 

June 5, 2025, using the openai-python library 

version 1.12.0, to debug context-related Python 

code across multiple modules. Flowchart 1 

summarizes the overall experimental process, while 

Flowchart 2 details the evaluation. Our script 

inject_faults.py reads the injection specifications 

from config/faults.json and modifies the files in 

benchmarks/ to three types of errors (Order, Var-

Leak, Edge-Case). Table 1. Show Fault injection 

components. 

3.2 Experimental Corpus 

Ten custom Python programs (each 100–200 lines) 

were constructed. These included: 

Table 1. Fault injection components 
Script                Purpose Location 

inject_faults.py      Reads 

faults.json, 

mutates 

benchmarks 

repo root 

config/faults.json Specifies fault 

types & 

injection sites 

repo/config 

benchmarks/*.py hree micro-

benchmarks for 

each fault   

epo/benchmarks 
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Flowchart 1. Experimental process for evaluating 

ChatGPT and baseline tools on contextual code 

correction.  

 

Flowchart 2. Details the evaluation 

 Utility scripts (e.g., CSV parsers) 

 Web crawlers 

 Multi-step data processing pipelines 

Each program was split into 2–4 interdependent 

modules. 

 

3.3 Error Injection 

Table 2. Three fault types were deliberately 

injected and Flowchart 3:  show Fault Injection 

Strategy 

Table 2. Three fault types were deliberately injected 

Fault Type Description 

Order Faults Functions called in the wrong sequence, 

affecting logic. 

Variable 

Leakage 

Variables unintentionally reused across 

modules. 

Edge-Case 

Omissions 

Missing boundary checks for inputs or 

loop exits. 

 

Flowchart 3. Strategy for injecting controlled faults into 

the experimental Python code corpus. 

3.4 Prompting Strategy 

Each program was submitted as a unified prompt: 

“Please review this Python project for logical or 

runtime errors affecting its functionality. If you find 

any, explain the issue and propose a fix.”No 

external hints or contextual aids were provided. 

3.5 Evaluation Criteria 

Table 3. ChatGPT’s responses were assessed using 

and Flowchart 4 show the Evaluation Flow 
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Table 3. ChatGPT’s responses were assessed using 
Metric Description 

EDR (Error Detection 

Rate) 

% of injected errors correctly 

identified. 

RA (Repair 

Accuracy) 

% of proposed fixes that resolved the 

issue without regressions. 

Explanation Clarity Rated on a 3-point scale: Clear, 

Adequate, Vague. 

 

 

Flowchart 4. of the evaluation process used to assess 

error detection, repair accuracy, and explanation 

clarity. 

These were benchmarked against: 

 Static analysis tools: Pylint and MyPy. 

 Human baseline: expert Python developer 

4. Results 

4.1 Quantitative Analysis 

The model was evaluated across three fault 

categories: order faults, variable leakage, and edge-

case omissions. The following table summarizes the 

Error Detection Rate (EDR) across all methods. 

Table 3. Error Detection Rate (EDR) by method 

and Figure 1 show Error Detection 

Table 4. Error Detection Rate 
Fault Type ChatGPT Pylint MyPy Human 

Reviewer 

Order Faults 70% 20% 15% 100% 

Variable 

Leakage 

60% 0% 5% 95% 

Edge-Case 

Omissions 

80% 30% 25% 100% 

Overall 76.7% 23.3% 15% 96.7% 

 

 
Figure 1. Error detection rates (EDR) by method across all fault types. 

A Chi-square test was conducted to validate the 

differences among tools: 

 χ² = 36.27, p < 0.001 → statistically 

significant. 

4.2 Repair Accuracy (RA) 

Repair Accuracy measures how often the model not 

only detects but correctly fixes the error without 

breaking the program. 

Table 5: Repair Accuracy (RA) by Tool 
Fault Type ChatGPT Pylint MyPy Human 

Reviewer 

Order Faults 65% 15% 10% 100% 

Variable 

Leakage 

55% 0% 5% 90% 

Edge-Case 

Omissions 

75% 25% 20% 100% 

Overall 62% 13.3% 11.7% 96.7% 

 

An ANOVA test confirmed the significance: 
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 F(3,27) = 14.92, p < 0.001 

4.3 Qualitative Analysis 

Each explanation was rated as: 

 Clear (direct, actionable), 

 Adequate (partially useful), 

 Vague (ambiguous or generic). 

Table 6: Explanation Clarity 

Rating Count Percentage 

Clear 18 60% 

Adequate 10 33.3% 

Vague 2 6.7% 

 
Figure 2. Distribution of explanation clarity ratings for 

ChatGPT responses. 

 

Statistical validation using Kruskal–Wallis H Test: 

 H = 11.56, p < 0.01 

4.4 Case Studies 

Case 1: Inter-module Order Fault 

 A data aggregation function was invoked 

before data cleansing. 

 ChatGPT identified the incorrect order and 

proposed a correct sequence of function 

calls. 

 The suggestion restored unit test 

correctness. 

Case 2: Edge-case Omission 

 A missing condition for empty inputs 

caused silent failure in a client module. 

 ChatGPT suggested adding a len(payload) 

== 0 check with proper error handling. 

 All integration tests passed after applying 

the fix 

5.1 Comparative Performance 

 Static tools were efficient in flagging type 

and syntax violations but missed nearly all 

semantic faults, especially variable leakage 

and inter-module order errors. 

 ChatGPT demonstrated contextual 

reasoning, e.g., identifying misplaced 

function calls by interpreting code intent 

rather than just structure. 

 Figure 1 and Table 1 clearly illustrate this 

gap in capability between statistical and 

semantic models. 

5.2 Explanation Clarity and Usability 

As shown in Table 3, 60% of ChatGPT’s 

explanations were marked as clear, aiding 

reproducibility of fixes. However: 

 33.3% were adequate, often correct but 

requiring expert interpretation. 

 6.7% were vague, indicating challenges in 

prompt grounding or context interpretation. 

This underlines the need for: 

 Prompt engineering best practices, 

 Session-level memory retention for multi-

step reasoning, 

 IDE-integrated feedback loops. 

5.3 Limitations Observed 

Despite the overall strong performance, several 

limitations were consistently observed: 

 The model failed to track cross-file 

dependencies in some complex cases where 

variables were passed indirectly between 

modules. 

 Overgeneralization occasionally led to 

hallucinated fixes—plausible but 

functionally irrelevant suggestions. 

These indicate that current LLMs are not yet fully 

dependable as autonomous debuggers, especially in 

critical systems where fault tolerance and safety are 

non-negotiable. 

5.4 Implications for Development Pipelines 

The results showed a hybrid debugging model, 

where: 
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Flowchart 5. Proposed hybrid debugging pipeline 

combining LLMs, static analysis tools, and expert 

validation. 

 LLMs handle semantic insight and 

prioritization, 

 Static tools enforce compliance and 

correctness, 

 Developers act as validators in the loop. 

5.5 Security and Trust Concerns 

Although not the focus of this study, it is vital to 

highlight that automatic code suggestions—

especially in backend or networked environments—

can introduce security vulnerabilities if not 

reviewed thoroughly. 

Future implementations should: 

 Log all auto-generated changes, 

 Require manual approval for high-risk 

fixes, 

 Integrate with static security scanners. 

5.6 Summary of Discussion 

Table 5. summary 
Dimension ChatGPT Static Tools Human Expert 

Detection Rate 

(avg) 

76.7% 23.3% 96.7% 

Repair 

Accuracy (avg) 

62% 13.3% 96.7% 

Explanation 

Clarity 

High Low (N/A) Very High 

Context 

Awareness 

Moderate–High Low High 

Risk of 

Hallucination 

Moderate None None 

The results demonstrate that ChatGPT’s semantic 

correction capabilities outperform traditional static 

analyzers like Pylint and MyPy across all fault 

categories. Notably, the model achieved an average 

error detection rate (EDR) of 76.7%, with a repair 

accuracy (RA) of 62%, both significantly higher 

than those of the baseline tools (RA < 15%).These 

findings suggest that LLMs, particularly 

transformer-based models like ChatGPT, have the 

potential to generalize across fault types and 

provide actionable debugging suggestions, even in 

modular systems. 
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