

Copyright ©IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.3 (2024) pp. 461-469
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Comparative Analysis of Programming Languages Utilized in Artificial

Intelligence Applications: Features, Performance, and Suitability

Güzin TÜRKMEN1*, Arda SEZEN2, Gökhan ŞENGÜL3

1Atılım University, Engineering Faculty, Computer Engineering Department, 06830, Ankara-Turkiye

* Corresponding Author Email: guzin.turkmen@atilim.edu.tr - ORCID: 0000-0003-0884-4876

2Atılım University, Engineering Faculty, Computer Engineering Department, 06830, Ankara-Turkiye

Email: arda.sezen@atilim.edu.tr - ORCID: 0000-0002-7615-3623

3Atılım University, Engineering Faculty, Computer Engineering Department, 06830, Ankara-Turkiye

Email: gokhan.sengul@atilim.edu.tr - ORCID: 0000-0003-2273-4411

Article Info:

DOI: 10.22399/ijcesen.342

Received : 11 June 2024

Accepted : 03 September 2024

Keywords

AI

Programming Languages

Machine Learning Applications

Abstract:

This study presents a detailed comparative analysis of the foremost programming

languages employed in Artificial Intelligence (AI) applications: Python, R, Java, and

Julia. These languages are analysed for their performance, features, ease of use,

scalability, library support, and their applicability to various AI tasks such as machine

learning, data analysis, and scientific computing. Each language is evaluated based on

syntax and readability, execution speed, library ecosystem, and integration with external

tools. The analysis incorporates a use case of code writing for a linear regression task.

The aim of this research is to guide AI practitioners, researchers, and developers in

choosing the most appropriate programming language for their specific needs, optimizing

both the development process and the performance of AI applications. The findings also

highlight the ongoing evolution and community support for these languages, influencing

long-term sustainability and adaptability in the rapidly advancing field of AI. This

comparative assessment contributes to a deeper understanding of how programming

languages can enhance or constrain the development and implementation of AI

technologies.

1. Introduction

The importance of selecting the most appropriate

programming languages for artificial intelligence

(AI) applications has become increasingly evident.

As AI technologies advance rapidly, choosing the

correct programming language is crucial for the

successful development and implementation of AI

code-based solutions. Among the various coding

languages used in AI projects such as Python, R,

Java, and Julia each possesses unique characteristics

and capabilities in terms of AI application

development. Understanding these languages and

assessing their suitability for different AI tasks is

essential for developers and researchers seeking to

refine their development approaches. This study

seeks to provide insights into selecting the most

appropriate programming language, considering

factors such as ease of use, performance, scalability,

and library support through a case study. In this

study, we conduct a thorough comparative

evaluation of the selected programming languages

utilized in AI applications. By examining features,

performance metrics, and real-world suitability, this

research intends to assist AI practitioners,

researchers, and developers in making informed

decisions regarding language selection for their AI

projects.

1.1. Overview of Programming Languages in AI

In the domain of AI, different programming

languages have significant influence over the

http://www.ijcesen.com/
https://orcid.org/0000-0003-0884-4876
https://orcid.org/0000-0002-7615-3623
https://orcid.org/0000-0003-2273-4411

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

462

outcomes of various projects. Python stands out for

its simplicity and flexibility, becoming a preferred

choice with its extensive frameworks and user-

friendly features [1]. Python's popularity in AI

development comes from its readability, ease of

learning, and vast ecosystem of libraries tailored for

machine learning, deep learning, and other AI tasks

[2, 3]. R mostly comes forward for tasks involving

data analysis and visualization due to its

specialization in statistical computing [4]. It offers

powerful statistical functions and visualization tools,

making it particularly suitable for tasks such as

exploratory data analysis, statistical modelling, and

data visualization in AI projects [5]. For large-scale

AI projects, Java is highly mentioned in the literature

for its cross-platform operability and focus on

object-oriented programming capabilities [6, 7].

While not as commonly used for AI as Python or R,

Java's robustness, scalability, and mature ecosystem

make it a suitable choice for developing enterprise-

level AI applications, especially in scenarios

requiring integration with existing systems or high-

performance computing [8, 9]. In the realm of

scientific computing requiring high-efficiency

computation, Julia emerges as a viable candidate for

AI innovation [10]. Julia is designed for high-

performance numerical and scientific computing,

offering speed comparable to low-level languages

like C and Fortran while maintaining high-level

syntax similar to Python [11, 12]. Its ability to

combine high-performance computing with ease of

use makes it attractive for AI tasks which are

demanding computational efficiency, such as

numerical simulations, optimization, and scientific

modelling [13-15]. Each programming language

brings distinct advantages and challenges to AI

development, requiring careful consideration

aligned with project requirements to determine the

optimal choice.

2. Methodology

Our methodology for comparative analysis in this

study involves a systematic approach to evaluate and

compare widely used programming languages

commonly employed in AI development, including

Python, R, Java, and Julia. Firstly, we selected these

languages based on their popularity, relevance, and

prevalence in the AI development landscape, aiming

to provide a comprehensive comparison that reflects

the broader preferences and practices within the AI

community [1]. Secondly, we identified key

evaluation metrics encompassing aspects such as

syntax and readability, performance benchmarks,

library support, and overall suitability for AI tasks.

These metrics were chosen to capture the

multifaceted nature of programming languages'

suitability for AI tasks and to ensure a

comprehensive evaluation. Thirdly, we performed a

linear regression task focused on implementing a

model to fit a straight line to a set of data points,

minimizing the distance between these points and

the line. The dataset employed for this use case is

designed to provide a comprehensive performance

evaluation across different programming languages

and systems. It comprises 1.000.000 observations

and 100 independent variables, making it

sufficiently large to effectively differentiate

execution times. Feature values varies from 0 to

1000, with a noise level of 10% introduced to mirror

real-world conditions. Furthermore, the dataset

integrates both linear and non-linear patterns

through the inclusion of sine and logarithmic

functions, thereby enhancing its complexity and

realism. The dataset's storage space is approximately

1,85 GB when saved as a CSV file, underscoring its

substantial size and intricacy.The creation of this

dataset involved several critical steps to ensure its

robustness and relevance for benchmarking.

Initially, 100 features were generated, followed by

the derivation of random coefficients corresponding

to these features. The dependent variable was then

calculated using these coefficients, with added noise

to emulate real-world variability. To ensure

consistency in comparison, features were scaled

during the generation process. The dataset was

generated using Python. This methodological

approach ensures that the dataset is not only fit for

purpose in benchmarking linear regression models

but also can contribute to practical data analysis

scenarios. For the development of this use case with

different programming languages the VS Code

v1.89.0 IDE, is preferred along with the listed

extension packs: Java v21, Python v3.11.4, R v4.4.1

and Julia v1.10.3. Use cases are developed with the

mentioned programming languages using an Apple

silicon machine with 64 GB of memory.

3. Comparative Analysis of Python, R, Java,

and Julia

3.1. Comparison of Python, R, Java, and Julia

across different aspects relevant to AI

development

3.1.1. Syntax and Readability

Python is renowned for its clear and concise syntax,

which makes it highly readable and suitable for

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

463

developers of all levels [16, 17]. Its structure

resembles pseudo-code which is a high-level

description of an algorithm that uses conventions for

human understanding. Also, it enhances

comprehension and ease of coding by its

straightforward syntax that is close to natural

language and its build-in functions that perform

common operations and simple control structures. R,

on the other hand, emphasizes readability,

particularly in statistical analysis, with a focus on

data exploration and visualization. While its syntax

may be less intuitive for beginners compared to

Python, it offers specialized features for statistical

computing. Java's syntax tends to be more verbose,

which can make it less readable, especially for

beginners. However, it has strict syntax rules that

contributes to code clarity and maintainability in

large-scale projects. Julia offers a clean and

expressive syntax like Python, enhancing readability

and ease of use. Its minimalist design and consistent

syntax contribute to code clarity, making it suitable

for both beginners and experienced developers. The

code sections measuring the start time of the linear

regression model, which is tried as a use case for

different languages, are given in Figures 1, 2, 3, 4,

respectively.

3.1.2. Availability of AI Libraries

Python supports a vast ecosystem of AI libraries and

frameworks, making it a popular choice for AI

Measure start time

start_time = time.time()

start_local_time = time.localtime(start_time)

print(f"Start Time: {time.strftime('%Y-%m-%d

%H:%M:%S', start_local_time)}")

Figure 1. Python code block for measuring start time

// Measure start time

long startTime = System.nanoTime();

LocalDateTime startLocalTime = LocalDateTime.now();

DateTimeFormatter formatter =

DateTimeFormatter.ofPattern("yyyy-MM-dd

HH:mm:ss");

System.out.println("Start Time: " +

startLocalTime.format(formatter));

Figure 2. Java code block for measuring start time

Measure start time

start_time = time_ns()

start_local_time = now()

println("Start Time: ", start_local_time)

Figure 3. Julia code block for measuring start time

Measure start time

start_time <- Sys.time()

start_local_time <- format(start_time, "%Y-%m-%d

%H:%M:%S")

cat("Start Time:", start_local_time, "\n")

Figure 4. R code block for measuring start time

development. Libraries such as; TensorFlow,

PyTorch, and scikit-learn provide comprehensive

support for machine learning, deep learning, and

data analysis tasks. R offers a wide range of

packages tailored for statistical analysis, machine

learning, and data visualization. Popular packages

include Caret, ggplot2, and dplyr, making R a strong

contender for statistical computing tasks. While Java

may not have an extensive collection of AI-specific

libraries as Python or R, it offers robust support for

general-purpose programming and integration with

AI frameworks like TensorFlow and Weka. Julia's

ecosystem is growing rapidly, with an increasing

number of AI libraries and packages being

developed. Libraries like Flux.jl, MLJ.jl, and

DataFrames.jl provide support for machine learning,

deep learning, and data manipulation tasks.

3.1.3. Support for Data Manipulation and

Visualization

Python excels at data manipulation and visualization

tasks benefited from the libraries like Pandas,

NumPy, and Matplotlib. These libraries offer

powerful tools for handling and visualizing data

efficiently. R is highly regarded for its data

manipulation and visualization capabilities, with

packages like dplyr, tidyr, and ggplot2 providing

powerful tools for data manipulation and

visualization tasks. On the other hand Java offers

support for general-purpose programming and

integration with visualization libraries like

JFreeChart and JavaFX. Julia offers strong support

for data manipulation and visualization, with

packages like DataFrames.jl, Query.jl, and Gadfly.jl

providing efficient tools for data manipulation and

visualization tasks.

3.1.4. Integration with External Tools and

Platforms

Python offers seamless integration with external

tools and platforms, based on its extensive

ecosystem of libraries and frameworks. It

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

464

Table 1. Comparison of Python, R, Java, and Julia across different aspects relevant to AI development

Aspect Python R Java Julia

Syntax and

Readability

Clear and concise

syntax, highly readable,

resembling pseudo-

code.

Readable syntax with

a focus on statistical

analysis.

Verbose syntax, strict

rules contribute to code

clarity.

Clean, expressive

syntax, suitable for

beginners and

experienced

developers.

Availability of

AI Libraries

Vast ecosystem of AI

libraries and

frameworks like

TensorFlow, PyTorch,

scikit-learn.

Wide range of

packages (Caret,

ggplot2, and dplyr)

tailored for statistical

analysis, machine

learning, and data

visualization.

Robust support for

general-purpose

programming and

integration with AI

frameworks

(TensorFlow and

Weka).

Growing ecosystem

with libraries like

Flux.jl, MLJ.jl,

DataFrames.jl.

Support for

Data

Manipulation

and

Visualization

Extensive libraries like

Pandas, NumPy,

Matplotlib for efficient

data manipulation, large

matrix operations and

visualization.

Powerful tools like

dplyr, tidyr, ggplot2

for data manipulation

and visualization

tasks.

Limited specialized

libraries; support for

general-purpose

programming

(JFreeChart and

JavaFX).

Strong support with

packages like

DataFrames.jl,

Query.jl, Gadfly.jl.

Integration

with External

Tools and

Platforms

Seamless integration

with databases, cloud

services, and other

software components.

Integrates well with

tools and platforms in

statistical computing

and data analysis.

Strong integration

capabilities for

enterprise-level

applications.

Growing integration

capabilities with

support for interfacing

with external tools and

platforms.

integrates well with databases, cloud services, and

other software components, making it suitable for

a wide range of applications and environments. R

integrates well with external tools and platforms,

particularly in the field of statistical computing and

data analysis. It offers interfaces to databases, web

services, and APIs, allowing for efficient data

integration and analysis workflows. Java's strong

integration capabilities make it suitable for

enterprise-level applications and integration with

external tools and platforms. It offers robust

support for database connectivity, web services,

and enterprise frameworks like Spring. Julia's

integration capabilities are growing rapidly, with

support for interfacing with external tools and

platforms through libraries and packages. It offers

integration with databases, web services, and other

software components, enabling efficient data

exchange and interoperability in AI applications.

Table 1 represents multiple aspect comparison of

these programming languages.

3.2. Performance Evaluation

3.2.1. Execution Speed and Efficiency

Python is a simple programming language and it

has an interpreted nature in terms of code

execution. Optimizations like NumPy enhance its

execution speed. R, also interpreted, offers

specialized optimizations for statistical tasks. Java,

a compiled language, provides faster execution

speeds, especially for CPU-intensive tasks. Julia,

designed for high-performance computing, often

outperforms Python and R.

3.2.2. Memory Usage and Resource

Consumption

Python and R may exhibit higher memory usage

due to dynamic typing and garbage collection.

Java's memory management system is efficient,

leading to lower memory overhead. Julia's memory

management is optimized for high-performance

computing, enhancing memory efficiency [18].

3.2.3. Scalability for Large Datasets and

Complex Algorithms

Python and R may face limitations in scalability

due to their interpreted nature, but frameworks like

Dask and PySpark offer solutions. Java excels in

scalability. Julia is highly scalable, with native

support for parallel processing and efficient

memory management.

3.2.4. Parallel Processing Capabilities

Python's parallel processing capabilities are

hindered by the Global Interpreter Lock (GIL), but

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

465

Table 2. Comparison of Python, R, Java, and Julia according to performance evaluation

Performance

Factor Python R Java Julia

Memory Usage

and Resource

Consumption

Higher memory usage

due to dynamic typing

and garbage collection.

Memory management

can be a concern for

large datasets and

matrix computations.

Efficient memory

management with lower

overhead; robust garbage

collection.

Optimized for memory

efficiency and high-

performance computing.

Scalability

Limited scalability due to

GIL and interpreted

nature; distributed

computing frameworks

are available.

Limited scalability for

memory-intensive

operations; parallel

processing packages

available.

Excellent scalability for

large-scale applications;

support for distributed

computing frameworks.

Well-regarded

scalability; native

support for parallel

processing and

distributed computing.

Parallel

Processing

Capabilities Limited by GIL

Improving parallel

processing

capabilities with

related packages

Robust support for multi-

threading and concurrency;

parallel stream processing

available.

Native support for

parallelism with multi-

threading, distributed

computing, and GPU

acceleration.

libraries like Dask and Ray offer solutions. R's

parallel processing capabilities are improving, but

it may face challenges due to interpretation. Java

excels in parallel processing, supported by robust

multi-threading features. Julia stands out with

native support for parallelism, making it well-

suited for parallel processing in AI applications.

In summary, each language has its strengths and

limitations in performance evaluation for AI

applications. Python and R offer ease of use. Java

excels in execution speed and scalability. Julia

stands out for high-performance computing. The

selection of the most suitable language depends on

the specific requirements and constraints of the AI

project, considering factors such as memory usage,

scalability, and parallel processing capabilities (see

Table 2).

3.3. Comparison of Python, R, Java, and Julia

According to Suitability Assessment for AI

tasks

3.3.1 Compatibility with AI Tasks

Python is highly compatible with a wide range of

AI tasks, including machine learning, natural

language processing (NLP), computer vision, and

robotics. Its extensive ecosystem of libraries and

frameworks such as TensorFlow, PyTorch, NLTK,

and OpenCV make it a popular choice for AI

development across various domains. While R is

primarily known for its strength in statistical

computing and data analysis, it also has packages

and libraries for machine learning and NLP tasks.

However, its support for computer vision and

robotics may be limited compared to Python. Java

offers robust support for AI tasks, particularly in

enterprise-level applications and large-scale

systems. While it may not have as extensive a

collection of specialized libraries as Python or R.

Julia is gaining traction in the AI community,

especially for high-performance computing tasks.

It offers support for machine learning, NLP, and

scientific computing, with growing libraries and

packages for these tasks. However, its adoption in

areas like computer vision and robotics may be

relatively lower compared to Python and Java.

3.3.2. Flexibility for Prototyping,

Experimentation, and Deployment

Python is known for its flexibility, making it ideal

for rapid prototyping, experimentation, and

deployment of AI models. Its simple syntax,

extensive libraries, and frameworks facilitate quick

iteration and development cycles. R offers

flexibility for prototyping and experimentation.

However, its deployment capabilities may be

limited compared to Python, particularly in

production environments. Java provides strong

support for building robust and scalable AI

applications, making it suitable for deployment in

production environments. While it may have a

steeper learning curve compared to Python and R,

its performance and reliability are advantageous for

enterprise-level deployments. Julia offers a balance

between flexibility and performance, making it

suitable for both prototyping and deployment of AI

models. Its high-performance computing

capabilities enable efficient execution of complex

algorithms, while its syntax and ecosystem support

rapid development and experimentation.

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

466

Table 3. Comparison of Python, R, Java, and Julia according to suitability assessment for AI tasks

Aspect Python R Java Julia

Compatibility

with AI Tasks

Widely compatible;

extensive ecosystem for

machine learning, NLP,

computer vision, and

robotics.

Strong in statistical

computing and data

analysis; limited support

for computer vision and

robotics.

Strong support for

enterprise-level AI

applications; may

lack specialized

libraries.

Growing support for

high-performance

computing, machine

learning, and scientific

computing.

Flexibility for

Prototyping &

Deployment

Highly flexible for rapid

prototyping and

deployment; extensive

library support

Flexible for prototyping

and experimentation; may

have limitations in

deployment compared to

Python.

Strong support for

scalable, reliable

deployments; steeper

learning curve for

beginners.

Balances flexibility and

performance; suitable

for both prototyping and

deployment.

Table 3 provides a concise overview of the

strengths and weaknesses of each programming

language in terms of suitability for AI tasks,

helping to inform decisions based on specific

project requirements and objectives.

4. Case Study

Linear regression is a fundamental technique in

artificial intelligence and machine learning used to

predict outcomes based on the linear relationship

between variables. It is widely utilized in various

domains such as finance, healthcare, and marketing

to model and analyse the relationships between

multiple variables. This case study will focus on

implementing a linear regression model to fit a

straight line to a set of data points, minimizing the

distance between these points and the line. By

comparing implementations in Python, Julia, Java,

and R, the syntactic differences, library support,

and overall ease of use across these languages in

the context of AI applications are evaluated. For

this case study, Python, Julia, Java and R

benchmark codes are partially given in the figure

5-8. The provided code snippets for implementing

a linear regression model in Python, Julia, Java,

and R are generally well-structured and

demonstrate the basic usage of linear regression

fitting function in each language. Model of these

snippets demonstrates the basic approach to linear

regression in their respective languages,

showcasing the differences in syntax and library

support for AI applications. Python and R offer the

most straightforward syntax for data science tasks,

while Julia provides high performance with a

syntax similar to Python's. Java, being more

verbose, is less common for quick AI prototyping

but is invaluable for applications where

performance and scalability are critical. Table 4

represents the comparison of the programming

languages in a linear regression case study in terms

of CPU execution speed in seconds. In Table 5,

Comparison of the programming languages in

terms of Line of Code (LOC) is represented In

comparing programming languages based on lines

of code and execution times, Python emerges as a

balanced choice with its concise 16 lines of code

and the fastest average execution time of

Figure 5. Python source code for the case study

Figure 6. Julia source code for the case study

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

467

Figure 7. Java source code for the case study

Figure 8. R source code for the case study

.Table 4. Comparison of the programming languages in

terms CPU Execution duration in seconds

Benchmark

metrics

Python

(v3.11.4)

JAVA

(v21)

Julia

(v1.10.3)

R

(v4.4.1)

LOC (without

benchmark

code)

7 14 9 5

LOC (with

benchmark

code)

16 25 18 14

1,859516 seconds. Java, though requiring the most

lines of code with 25 lines, provides relatively fast

execution at 4,607241 seconds, suitable for

performance-sensitive applications despite its

verbosity. Julia, with 18 lines of code, is slower at

5,203379 seconds, possibly due to initial

compilation overhead, and is best suited for tasks

that leverage its strengths in numerical computing.

Although R has the least number of code lines, it

has the slowest speed, with an average execution

time of 9,706835 in seconds. In the Table 6, an

analysis of the Unadjusted Function Points (UFP)

for the case study mentioned above with

benchmarking code to measure the performance

implemented in four examined programming

language is given. The UFP is calculated based on

the following components: External Inputs (EI),

External Outputs (EO), External Inquiries (EQ),

Internal Logical Files (ILF), and External Interface

Files (EIF). Each component is assigned an average

weight mentioned in the literature and the total

weight for each language is computed.

• External Inputs (EI): Each implementation

includes loading a CSV file, which is

considered an external input with a total weight

of 4.

• External Outputs (EO): Each implementation

includes printing the start time, end time, and

execution time, which are considered external

outputs with a total weight of 15 (3 outputs,

each weighted 5).

• External Inquiries (EQ): None of the

implementations include external inquiries,

resulting in a total weight of 0.

• Internal Logical Files (ILF): Each

implementation involves three logical files

(data frames or equivalent), resulting in a total

weight of 30 (3 files, each weighted 10).

• External Interface Files (EIF): None of the

implementations use external interface files,

resulting in a total weight of 0.

The total UFP for each language implementation

(Python, Java, Julia, R) is 49, shows us a consistent

level of complexity and functionality across all

four languages for this specific task.

Unadjusted Function Points are often preferred

over adjusted function points because they focuse

solely on the functional requirements as perceived

by the end user, making it a straightforward metric

for comparing different implementations. By

avoiding the subjective adjustments, this metric

ensures that the measurement remains unbiased

and replicable.

Table 5. Comparison of the programming languages in

terms of Line of Code (LOC)

MAC M1 MAX CPU EXECUTION (seconds)

1st

Run

2nd

Run

3rd

Run

4th

Run

5th

Run Avg.

Pyth

on

1,8983

31

1,8738

51

1,8506

40

1,8283

39

1,8464

17

1,8595

16

Java

5,8404

10

4,8995

45

4,3762

04

3,8400

37

4,0800

09

4,6072

41

Julia

5,3544

01

5,1478

43

5,1360

30

5,2103

01

5,1683

17

5,2033

79

R

9,8139

53

9,7427

10

9,6912

65

9,6903

86

9,5958

61

9,7068

35

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

468

Table 6. UFP Calculation Table for the Linear Regression and Benchmark Code

UFP

Calculation

Table for

the Linear

Regression

+

Benchmark

Code

Weight Input or Output Total Description
P

y
th

o
n

J
a

v
a

J
u

li
a

R

P
y

th
o
n

J
a

v
a

J
u

li
a

R

P
y

th
o
n

J
a

v
a

J
u

li
a

R

P
y

th
o
n

J
a

v
a

J
u

li
a

R

External

Inputs (EI)
4 4 4 4 1 1 1 1 4 4 4 4

Loading the

csv file.

Loading the

csv file.

Loading the

csv file.

Loading the

csv file.

External

Outputs

(EO)

5 5 5 5 3 3 3 3 15 15 15 15

Printing

start time,

end time,

and

execution

time.

Printing

start time,

end time,

and

execution

time.

Printing start

time, end

time, and

execution

time.

Printing start

time, end

time, and

execution

time.

External

Inquiries

(EQ)

4 4 4 4 0 0 0 0 0 0 0 0

Internal

Logical

Files (ILF)

10 10 10 10 3 3 3 3 30 30 30 30

DataFrames

('data', 'X',

'y')

DataFrames

('data',

'formula',

'model')

DataFrames

('data', 'X',

'y')

DataFrames

('data', 'X', 'y')

External

Interface

Files (EIF)

7 7 7 7 0 0 0 0 0 0 0 0

Total UFP 49 49 49 49

5. Discussion and Conclusion

In this study we compared the Python, Java, R and

Julia programming languages for the AI

applications. First of all we discussed the

applicability of the languages to AI projects, in

terms of the decided features presented in the Table

1. In addition to that we developed a use case based

on linear regression, and we provided the

efficiency and execution speed parameters for each

programming languages benefited from both

computer science and software engineering areas.

Case study results show that if fastest execution

time is needed, Python is the best alternative. By its

nature, Python is compatible with scripting,

therefore for this use case the results present a

conflicting result with current literature. However

it is not surprising for the codes based on scripting,

Python outperforms the other programming

languages. In addition to that for applications

where execution speed is crucial, Java is suitable

for high performance computing, memory

intensive operations and low level system

operations. Julia’s numerical capabilities

outweighs its execution time. It should be noted

that our case study 100% compatible to highlight

the Julia’s numerical capabilities. Our results are

based on four major tasks in this case study; import

necessary libraries, initialize sample data, fit a

linear regression model, and finally print the

execution time results. Our comparative analysis

reveals insights into the strengths and limitations of

programming languages in AI development.

Python emerges as a versatile and widely adopted

language with extensive library support for AI

tasks. Especially when we consider cloud

development platforms such as; Google Colab

provides a comprehensive pre-loaded libraries for

data science and AI specific tasks. Julia

demonstrates promising performance advantages

for specific use cases. But most of the online

platforms the language has not supported pre-

loaded libraries such as GLM. It is a major problem

in terms of usability. As a result, Julia is much more

dependent to local environments compared with

Python. The choice of programming language

should be informed by project requirements,

development constraints, and long-term objectives.

Future research directions may explore emerging

languages and techniques to further enhance AI

development practices. In future work, we plan to

expand this use case by conducting experiments on

Güzin TÜRKMEN, Arda SEZEN, Gökhan ŞENGÜL/ IJCESEN 10-3(2024)461-469

469

both CUDA supported GPU and Apple Silicon

processor with neural engine.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] A. Nagpal and G. Gabrani, (2019). Python for Data

Analytics, Scientific and Technical Applications.

Amity International Conference on Artificial

Intelligence (AICAI), Dubai, United Arab

Emirates, pp. 140-145, doi:

10.1109/AICAI.2019.8701341

[2] Rossum, G.V. (2007). Python Programming

Language. USENIX Annual Technical Conference.

[3] S. Raschka and V. Mirjalili, (2019). Python Machine

Learning. Sebastopol, CA: O'Reilly Media,

[4] R Development Core Team, (2008). R: A Language

and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical

Computing.

[5] H. Wickham et al., (2016). ggplot2: Elegant

Graphics for Data Analysis. New York, NY:

Springer-Verlag.

[6] Arnold, K., Gosling, J., & Holmes, D. (2005). The

Java programming language. Addison Wesley

Professional.

https://www.acs.ase.ro/Media/Default/documents/

java/

ClaudiuVinte/books/ArnoldGoslingHolmes06.pdf

[7] W. Savitch, (2014). Java: An Introduction to

Problem Solving and Programming," Upper

Saddle River, NJ: Pearson

[8] Raff, E. (2017). JSAT: Java statistical analysis tool,

a library for machine learning. Journal of Machine

Learning Research, 18, 1-5

[9] C. S. Horstmann, (2008). Java Concepts: Compatible

with Java 5, 6, and 7," Hoboken, NJ: Wiley

[10] K. Gao, G. Mei, F. Piccialli, S. Cuomo, J. Tu, Z.

(2020). Huo Julia language in machine learning:

Algorithms, applications, and open issues Comput

Sci Rev, 37;100254

[11] Cabutto TA, Heeney SP, Ault SV, Mao G, Wang J,

(2018). An overview of the Julia programming

language. Proceedings of the 2018 International

Conference on Computing and Big Data; 87-91.

doi.org/10.1145/3277104.3277119.

[12] J. Bezanson et al., (2017). Why We Created Julia.

Proc. of the IEEE, 104(11);18-22

[13] Lang PF, Shin S, Zavala VM. (2020). SBML2Julia:

interfacing SBML with efficient nonlinear Julia

modeling and solution tools for parameter

optimization. arXiv preprint arXiv:201102597.

[14] V. B. Shah et al., (2017). The Julia Programming

Language. Sebastopol, CA: O'Reilly Media.

[15] S. Danisch et al., (2019). Julia for Data Science.

Sebastopol, CA: O'Reilly Media.

[16] Farooq MS, Khan SA, Ahmad F, Islam S, Abid A.

(2024). An Evaluation Framework and

Comparative Analysis of the Widely Used First

Programming Languages. PLoS ONE 9(2):

e88941.

https://doi.org/10.1371/journal.pone.0088941

[17] Dave, S. (2023). Python Syntax: The Art of

Readability. https://dev.to/souvikdcoder/python-

syntax-the-art-of-readability-10b9 Retrieved:

08.06.2024

[18] CodeLikeAGirl (2023).

https://www.codewithc.com/pythons-dynamic-

typing-memory-costs/ Retrieved: 08.06.2024

https://doi.org/10.1371/journal.pone.0088941
https://dev.to/souvikdcoder/python-syntax-the-art-of-readability-10b9
https://dev.to/souvikdcoder/python-syntax-the-art-of-readability-10b9
https://www.codewithc.com/pythons-dynamic-typing-memory-costs/
https://www.codewithc.com/pythons-dynamic-typing-memory-costs/

