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Abstract:  
 

This study presents a detailed comparative analysis of the foremost programming 

languages employed in Artificial Intelligence (AI) applications: Python, R, Java, and 

Julia. These languages are analysed for their performance, features, ease of use, 

scalability, library support, and their applicability to various AI tasks such as machine 

learning, data analysis, and scientific computing. Each language is evaluated based on 

syntax and readability, execution speed, library ecosystem, and integration with external 

tools. The analysis incorporates a use case of code writing for a linear regression task. 

The aim of this research is to guide AI practitioners, researchers, and developers in 

choosing the most appropriate programming language for their specific needs, optimizing 

both the development process and the performance of AI applications. The findings also 

highlight the ongoing evolution and community support for these languages, influencing 

long-term sustainability and adaptability in the rapidly advancing field of AI. This 

comparative assessment contributes to a deeper understanding of how programming 

languages can enhance or constrain the development and implementation of AI 

technologies. 

1. Introduction 
 

The importance of selecting the most appropriate 

programming languages for artificial intelligence 

(AI) applications has become increasingly evident. 

As AI technologies advance rapidly, choosing the 

correct programming language is crucial for the 

successful development and implementation of AI 

code-based solutions. Among the various coding 

languages used in AI projects such as Python, R, 

Java, and Julia each possesses unique characteristics 

and capabilities in terms of AI application 

development. Understanding these languages and 

assessing their suitability for different AI tasks is 

essential for developers and researchers seeking to 

refine their development approaches. This study 

seeks to provide insights into selecting the most 

appropriate programming language, considering 

factors such as ease of use, performance, scalability, 

and library support through a case study. In this 

study, we conduct a thorough comparative 

evaluation of the selected programming languages 

utilized in AI applications. By examining features, 

performance metrics, and real-world suitability, this 

research intends to assist AI practitioners, 

researchers, and developers in making informed 

decisions regarding language selection for their AI 

projects.  

1.1. Overview of Programming Languages in AI 

In the domain of AI, different programming 

languages have significant influence over the 
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outcomes of various projects. Python stands out for 

its simplicity and flexibility, becoming a preferred 

choice with its extensive frameworks and user-

friendly features [1]. Python's popularity in AI 

development comes from its readability, ease of 

learning, and vast ecosystem of libraries tailored for 

machine learning, deep learning, and other AI tasks 

[2, 3]. R mostly comes forward for tasks involving 

data analysis and visualization due to its 

specialization in statistical computing [4]. It offers 

powerful statistical functions and visualization tools, 

making it particularly suitable for tasks such as 

exploratory data analysis, statistical modelling, and 

data visualization in AI projects [5]. For large-scale 

AI projects, Java is highly mentioned in the literature 

for its cross-platform operability and focus on 

object-oriented programming capabilities [6, 7]. 

While not as commonly used for AI as Python or R, 

Java's robustness, scalability, and mature ecosystem 

make it a suitable choice for developing enterprise-

level AI applications, especially in scenarios 

requiring integration with existing systems or high-

performance computing [8, 9]. In the realm of 

scientific computing requiring high-efficiency 

computation, Julia emerges as a viable candidate for 

AI innovation [10]. Julia is designed for high-

performance numerical and scientific computing, 

offering speed comparable to low-level languages 

like C and Fortran while maintaining high-level 

syntax similar to Python [11, 12]. Its ability to 

combine high-performance computing with ease of 

use makes it attractive for AI tasks which are 

demanding computational efficiency, such as 

numerical simulations, optimization, and scientific 

modelling [13-15]. Each programming language 

brings distinct advantages and challenges to AI 

development, requiring careful consideration 

aligned with project requirements to determine the 

optimal choice.  

2. Methodology 

 

Our methodology for comparative analysis in this 

study involves a systematic approach to evaluate and 

compare widely used programming languages 

commonly employed in AI development, including 

Python, R, Java, and Julia. Firstly, we selected these 

languages based on their popularity, relevance, and 

prevalence in the AI development landscape, aiming 

to provide a comprehensive comparison that reflects 

the broader preferences and practices within the AI 

community [1]. Secondly, we identified key 

evaluation metrics encompassing aspects such as 

syntax and readability, performance benchmarks, 

library support, and overall suitability for AI tasks. 

These metrics were chosen to capture the 

multifaceted nature of programming languages' 

suitability for AI tasks and to ensure a 

comprehensive evaluation. Thirdly, we performed a 

linear regression task focused on implementing a 

model to fit a straight line to a set of data points, 

minimizing the distance between these points and 

the line. The dataset employed for this use case is 

designed to provide a comprehensive performance 

evaluation across different programming languages 

and systems. It comprises 1.000.000 observations 

and 100 independent variables, making it 

sufficiently large to effectively differentiate 

execution times. Feature values varies from 0 to 

1000, with a noise level of 10% introduced to mirror 

real-world conditions. Furthermore, the dataset 

integrates both linear and non-linear patterns 

through the inclusion of sine and logarithmic 

functions, thereby enhancing its complexity and 

realism. The dataset's storage space is approximately 

1,85 GB when saved as a CSV file, underscoring its 

substantial size and intricacy.The creation of this 

dataset involved several critical steps to ensure its 

robustness and relevance for benchmarking. 

Initially, 100 features were generated, followed by 

the derivation of random coefficients corresponding 

to these features. The dependent variable was then 

calculated using these coefficients, with added noise 

to emulate real-world variability. To ensure 

consistency in comparison, features were scaled 

during the generation process. The dataset was 

generated using Python. This methodological 

approach ensures that the dataset is not only fit for 

purpose in benchmarking linear regression models 

but also can contribute to practical data analysis 

scenarios. For the development of this use case with 

different programming languages the VS Code 

v1.89.0 IDE, is preferred along with the listed 

extension packs: Java v21, Python v3.11.4, R v4.4.1 

and Julia v1.10.3. Use cases are developed with the 

mentioned programming languages using an Apple 

silicon machine with 64 GB of memory. 

3. Comparative Analysis of Python, R, Java, 

and Julia 

3.1. Comparison of Python, R, Java, and Julia 

across different aspects relevant to AI 

development 

3.1.1. Syntax and Readability 

Python is renowned for its clear and concise syntax, 

which makes it highly readable and suitable for 
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developers of all levels [16, 17]. Its structure 

resembles pseudo-code which is a high-level 

description of an algorithm that uses conventions for 

human understanding. Also, it enhances 

comprehension and ease of coding by its 

straightforward syntax that is close to natural 

language and its build-in functions that perform 

common operations and simple control structures. R, 

on the other hand, emphasizes readability, 

particularly in statistical analysis, with a focus on 

data exploration and visualization. While its syntax 

may be less intuitive for beginners compared to 

Python, it offers specialized features for statistical 

computing. Java's syntax tends to be more verbose, 

which can make it less readable, especially for 

beginners. However, it has strict syntax rules that 

contributes to code clarity and maintainability in 

large-scale projects. Julia offers a clean and 

expressive syntax like Python, enhancing readability 

and ease of use. Its minimalist design and consistent 

syntax contribute to code clarity, making it suitable 

for both beginners and experienced developers. The 

code sections measuring the start time of the linear 

regression model, which is tried as a use case for 

different languages, are given in Figures 1, 2, 3, 4, 

respectively. 

3.1.2. Availability of AI Libraries 

Python supports a vast ecosystem of AI libraries and 

frameworks, making it a popular choice for AI 

# Measure start time 

start_time = time.time() 

start_local_time = time.localtime(start_time) 

print(f"Start Time: {time.strftime('%Y-%m-%d 

%H:%M:%S', start_local_time)}") 

Figure 1. Python code block for measuring start time 

 
// Measure start time 

long startTime = System.nanoTime(); 

LocalDateTime startLocalTime = LocalDateTime.now(); 

DateTimeFormatter formatter = 

DateTimeFormatter.ofPattern("yyyy-MM-dd 

HH:mm:ss"); 

System.out.println("Start Time: " + 

startLocalTime.format(formatter)); 

Figure 2. Java code block for measuring start time 

 
# Measure start time 

start_time = time_ns() 

start_local_time = now() 

println("Start Time: ", start_local_time) 

Figure 3. Julia code block for measuring start time 
 

# Measure start time 

start_time <- Sys.time() 

start_local_time <- format(start_time, "%Y-%m-%d 

%H:%M:%S") 

cat("Start Time:", start_local_time, "\n") 
 

Figure 4. R code block for measuring start time 

 

development. Libraries such as; TensorFlow, 

PyTorch, and scikit-learn provide comprehensive 

support for machine learning, deep learning, and 

data analysis tasks. R offers a wide range of 

packages tailored for statistical analysis, machine 

learning, and data visualization. Popular packages 

include Caret, ggplot2, and dplyr, making R a strong 

contender for statistical computing tasks. While Java 

may not have an extensive collection of AI-specific 

libraries as Python or R, it offers robust support for 

general-purpose programming and integration with 

AI frameworks like TensorFlow and Weka. Julia's 

ecosystem is growing rapidly, with an increasing 

number of AI libraries and packages being 

developed. Libraries like Flux.jl, MLJ.jl, and 

DataFrames.jl provide support for machine learning, 

deep learning, and data manipulation tasks. 

3.1.3. Support for Data Manipulation and 

Visualization 

Python excels at data manipulation and visualization 

tasks benefited from the libraries like Pandas, 

NumPy, and Matplotlib. These libraries offer 

powerful tools for handling and visualizing data  

efficiently. R is highly regarded for its data 

manipulation and visualization capabilities, with 

packages like dplyr, tidyr, and ggplot2 providing 

powerful tools for data manipulation and 

visualization tasks. On the other hand Java offers 

support for general-purpose programming and 

integration with visualization libraries like 

JFreeChart and JavaFX. Julia offers strong support 

for data manipulation and visualization, with 

packages like DataFrames.jl, Query.jl, and Gadfly.jl 

providing efficient tools for data manipulation and 

visualization tasks. 

3.1.4. Integration with External Tools and 

Platforms 

Python offers seamless integration with external 

tools and platforms, based on its extensive 

ecosystem of libraries and frameworks. It
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Table 1. Comparison of Python, R, Java, and Julia across different aspects relevant to AI development 

Aspect Python R Java Julia 

Syntax and 

Readability 

 

 

Clear and concise 

syntax, highly readable, 

resembling pseudo-

code. 

Readable syntax with 

a focus on statistical 

analysis. 

Verbose syntax, strict 

rules contribute to code 

clarity. 

Clean, expressive 

syntax, suitable for 

beginners and 

experienced 

developers. 

Availability of 

AI Libraries 

 

 

 

Vast ecosystem of AI 

libraries and 

frameworks like 

TensorFlow, PyTorch, 

scikit-learn. 

Wide range of 

packages (Caret, 

ggplot2, and dplyr) 

tailored for statistical 

analysis, machine 

learning, and data 

visualization. 

Robust support for 

general-purpose 

programming and 

integration with AI 

frameworks 

(TensorFlow and 

Weka). 

Growing ecosystem 

with libraries like 

Flux.jl, MLJ.jl, 

DataFrames.jl. 

Support for 

Data 

Manipulation 

and 

Visualization 

 

Extensive libraries like 

Pandas, NumPy, 

Matplotlib for efficient 

data manipulation, large 

matrix operations and 

visualization. 

Powerful tools like 

dplyr, tidyr, ggplot2 

for data manipulation 

and visualization 

tasks. 

Limited specialized 

libraries; support for 

general-purpose 

programming 

(JFreeChart and 

JavaFX). 

Strong support with 

packages like 

DataFrames.jl, 

Query.jl, Gadfly.jl. 

 

Integration 

with External 

Tools and 

Platforms 

Seamless integration 

with databases, cloud 

services, and other 

software components. 

Integrates well with 

tools and platforms in 

statistical computing 

and data analysis. 

Strong integration 

capabilities for 

enterprise-level 

applications. 

Growing integration 

capabilities with 

support for interfacing 

with external tools and 

platforms. 

 

integrates well with databases, cloud services, and 

other software components, making it suitable for 

a wide range of applications and environments. R 

integrates well with external tools and platforms, 

particularly in the field of statistical computing and 

data analysis. It offers interfaces to databases, web 

services, and APIs, allowing for efficient data 

integration and analysis workflows. Java's strong 

integration capabilities make it suitable for 

enterprise-level applications and integration with 

external tools and platforms. It offers robust 

support for database connectivity, web services, 

and enterprise frameworks like Spring. Julia's 

integration capabilities are growing rapidly, with 

support for interfacing with external tools and 

platforms through libraries and packages. It offers 

integration with databases, web services, and other 

software components, enabling efficient data 

exchange and interoperability in AI applications. 

Table 1 represents multiple aspect comparison of 

these programming languages. 

3.2. Performance Evaluation 

3.2.1. Execution Speed and Efficiency 

Python is a simple programming language and it 

has an interpreted nature in terms of code 

execution. Optimizations like NumPy enhance its 

execution speed. R, also interpreted, offers 

specialized optimizations for statistical tasks. Java, 

a compiled language, provides faster execution 

speeds, especially for CPU-intensive tasks. Julia, 

designed for high-performance computing, often 

outperforms Python and R.  

3.2.2. Memory Usage and Resource 

Consumption 

Python and R may exhibit higher memory usage 

due to dynamic typing and garbage collection. 

Java's memory management system is efficient, 

leading to lower memory overhead. Julia's memory 

management is optimized for high-performance 

computing, enhancing memory efficiency [18]. 

3.2.3. Scalability for Large Datasets and 

Complex Algorithms 

Python and R may face limitations in scalability 

due to their interpreted nature, but frameworks like 

Dask and PySpark offer solutions. Java excels in 

scalability. Julia is highly scalable, with native 

support for parallel processing and efficient 

memory management. 

3.2.4. Parallel Processing Capabilities 

Python's parallel processing capabilities are 

hindered by the Global Interpreter Lock (GIL), but
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Table 2. Comparison of Python, R, Java, and Julia according to performance evaluation 

Performance 

Factor Python R Java Julia 

Memory Usage 

and Resource 

Consumption 

Higher memory usage 

due to dynamic typing 

and garbage collection. 

Memory management 

can be a concern for 

large datasets and 

matrix computations. 

Efficient memory 

management with lower 

overhead; robust garbage 

collection. 

Optimized for memory 

efficiency and high-

performance computing. 

Scalability 

Limited scalability due to 

GIL and interpreted 

nature; distributed 

computing frameworks 

are available. 

Limited scalability for 

memory-intensive 

operations; parallel 

processing packages 

available. 

Excellent scalability for 

large-scale applications; 

support for distributed 

computing frameworks. 

Well-regarded 

scalability; native 

support for parallel 

processing and 

distributed computing. 

Parallel 

Processing 

Capabilities Limited by GIL 

Improving parallel 

processing 

capabilities with  

related packages 

Robust support for multi-

threading and concurrency; 

parallel stream processing 

available. 

Native support for 

parallelism with multi-

threading, distributed 

computing, and GPU 

acceleration. 

 

libraries like Dask and Ray offer solutions. R's 

parallel processing capabilities are improving, but 

it may face challenges due to interpretation. Java 

excels in parallel processing, supported by robust 

multi-threading features. Julia stands out with 

native support for parallelism, making it well-

suited for parallel processing in AI applications. 

In summary, each language has its strengths and 

limitations in performance evaluation for AI 

applications. Python and R offer ease of use. Java 

excels in execution speed and scalability. Julia 

stands out for high-performance computing. The 

selection of the most suitable language depends on 

the specific requirements and constraints of the AI 

project, considering factors such as memory usage, 

scalability, and parallel processing capabilities (see 

Table 2). 

3.3. Comparison of Python, R, Java, and Julia 

According to Suitability Assessment for AI 

tasks 

 

3.3.1 Compatibility with AI Tasks 

Python is highly compatible with a wide range of 

AI tasks, including machine learning, natural 

language processing (NLP), computer vision, and 

robotics. Its extensive ecosystem of libraries and 

frameworks such as TensorFlow, PyTorch, NLTK, 

and OpenCV make it a popular choice for AI 

development across various domains. While R is 

primarily known for its strength in statistical 

computing and data analysis, it also has packages 

and libraries for machine learning and NLP tasks. 

However, its support for computer vision and 

robotics may be limited compared to Python. Java 

offers robust support for AI tasks, particularly in 

enterprise-level applications and large-scale 

systems. While it may not have as extensive a 

collection of specialized libraries as Python or R.  

Julia is gaining traction in the AI community, 

especially for high-performance computing tasks. 

It offers support for machine learning, NLP, and 

scientific computing, with growing libraries and 

packages for these tasks. However, its adoption in 

areas like computer vision and robotics may be 

relatively lower compared to Python and Java. 

3.3.2. Flexibility for Prototyping, 

Experimentation, and Deployment 

Python is known for its flexibility, making it ideal 

for rapid prototyping, experimentation, and 

deployment of AI models. Its simple syntax, 

extensive libraries, and frameworks facilitate quick 

iteration and development cycles. R offers 

flexibility for prototyping and experimentation. 

However, its deployment capabilities may be 

limited compared to Python, particularly in 

production environments. Java provides strong 

support for building robust and scalable AI 

applications, making it suitable for deployment in 

production environments. While it may have a 

steeper learning curve compared to Python and R, 

its performance and reliability are advantageous for 

enterprise-level deployments. Julia offers a balance 

between flexibility and performance, making it 

suitable for both prototyping and deployment of AI 

models. Its high-performance computing 

capabilities enable efficient execution of complex 

algorithms, while its syntax and ecosystem support 

rapid development and experimentation.  
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Table 3. Comparison of Python, R, Java, and Julia according to suitability assessment for AI tasks 

Aspect Python R Java Julia 

Compatibility 

with AI Tasks 

Widely compatible; 

extensive ecosystem for 

machine learning, NLP, 

computer vision, and 

robotics. 

Strong in statistical 

computing and data 

analysis; limited support 

for computer vision and 

robotics. 

Strong support for 

enterprise-level AI 

applications; may 

lack specialized 

libraries. 

Growing support for 

high-performance 

computing, machine 

learning, and scientific 

computing. 

Flexibility for 

Prototyping & 

Deployment 

Highly flexible for rapid 

prototyping and 

deployment; extensive 

library support 

Flexible for prototyping 

and experimentation; may 

have limitations in 

deployment compared to 

Python. 

Strong support for 

scalable, reliable 

deployments; steeper 

learning curve for 

beginners. 

Balances flexibility and 

performance; suitable 

for both prototyping and 

deployment. 

Table 3 provides a concise overview of the 

strengths and weaknesses of each programming 

language in terms of suitability for AI tasks, 

helping to inform decisions based on specific 

project requirements and objectives. 

 

4. Case Study 

Linear regression is a fundamental technique in 

artificial intelligence and machine learning used to 

predict outcomes based on the linear relationship 

between variables. It is widely utilized in various 

domains such as finance, healthcare, and marketing 

to model and analyse the relationships between 

multiple variables. This case study will focus on 

implementing a linear regression model to fit a 

straight line to a set of data points, minimizing the 

distance between these points and the line. By 

comparing implementations in Python, Julia, Java, 

and R, the syntactic differences, library support, 

and overall ease of use across these languages in 

the context of AI applications are evaluated. For 

this case study, Python, Julia, Java and R 

benchmark codes are partially given in the figure 

5-8. The provided code snippets for implementing 

a linear regression model in Python, Julia, Java, 

and R are generally well-structured and 

demonstrate the basic usage of linear regression 

fitting function in each language. Model of these 

snippets demonstrates the basic approach to linear 

regression in their respective languages, 

showcasing the differences in syntax and library 

support for AI applications. Python and R offer the 

most straightforward syntax for data science tasks, 

while Julia provides high performance with a 

syntax similar to Python's. Java, being more 

verbose, is less common for quick AI prototyping 

but is invaluable for applications where 

performance and scalability are critical. Table 4 

represents the comparison of the programming 

languages in a linear regression case study in terms 

of CPU execution speed in seconds. In Table 5, 

Comparison of the programming languages in 

terms of Line of Code (LOC) is represented In 

comparing programming languages based on lines 

of code and execution times, Python emerges as a 

balanced choice with its concise 16 lines of code 

and the fastest average execution time of 

Figure 5. Python source code for the case study 

 
Figure 6. Julia source code for the case study 
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Figure 7. Java source code for the case study 

 

 
 

Figure 8. R source code for the case study 

 

.Table 4. Comparison of the programming languages in 

terms CPU Execution duration in seconds 

Benchmark 

metrics 

Python 

(v3.11.4) 

JAVA 

(v21) 

Julia 

(v1.10.3) 

R 

(v4.4.1) 

LOC (without 

benchmark 

code) 

7 14 9 5 

LOC (with 

benchmark 

code) 

16 25 18 14 

 

1,859516 seconds. Java, though requiring the most 

lines of code with 25 lines, provides relatively fast 

execution at 4,607241 seconds, suitable for 

performance-sensitive applications despite its 

verbosity. Julia, with 18 lines of code, is slower at 

5,203379 seconds, possibly due to initial 

compilation overhead, and is best suited for tasks 

that leverage its strengths in numerical computing. 

Although R has the least number of code lines, it    

has the slowest speed, with an average execution 

time of 9,706835 in seconds. In the Table 6, an 

analysis of the Unadjusted Function Points (UFP) 

for the case study mentioned above with 

benchmarking code to measure the performance 

implemented in four examined programming 

language is given. The UFP is calculated based on 

the following components: External Inputs (EI), 

External Outputs (EO), External Inquiries (EQ), 

Internal Logical Files (ILF), and External Interface 

Files (EIF). Each component is assigned an average 

weight mentioned in the literature and the total 

weight for each language is computed. 

• External Inputs (EI): Each implementation 

includes loading a CSV file, which is 

considered an external input with a total weight 

of 4. 

• External Outputs (EO): Each implementation 

includes printing the start time, end time, and 

execution time, which are considered external 

outputs with a total weight of 15 (3 outputs, 

each weighted 5). 

• External Inquiries (EQ): None of the 

implementations include external inquiries, 

resulting in a total weight of 0. 

• Internal Logical Files (ILF): Each 

implementation involves three logical files 

(data frames or equivalent), resulting in a total 

weight of 30 (3 files, each weighted 10). 

 

• External Interface Files (EIF): None of the 

implementations use external interface files, 

resulting in a total weight of 0. 

 

The total UFP for each language implementation 

(Python, Java, Julia, R) is 49, shows us a consistent 

level of complexity and functionality across all 

four languages for this specific task. 

Unadjusted Function Points are often preferred 

over adjusted function points because they focuse 

solely on the functional requirements as perceived 

by the end user, making it a straightforward metric 

for comparing different implementations. By 

avoiding the subjective adjustments, this metric 

ensures that the measurement remains unbiased 

and replicable. 

 

Table 5. Comparison of the programming languages in 

terms of Line of Code (LOC) 

  

  

MAC M1 MAX CPU EXECUTION (seconds) 

  
1st 

Run 

2nd 

Run 

3rd 

Run 

4th 

Run 

5th 

Run Avg. 

Pyth

on 

1,8983

31 

1,8738

51 

1,8506

40 

1,8283

39 

1,8464

17 

1,8595

16 

Java 

5,8404

10 

4,8995

45 

4,3762

04 

3,8400

37 

4,0800

09 

4,6072

41 

Julia 

5,3544

01 

5,1478

43 

5,1360

30 

5,2103

01 

5,1683

17 

5,2033

79 

R 

9,8139

53 

9,7427

10 

9,6912

65 

9,6903

86 

9,5958

61 

9,7068

35 
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Table 6. UFP Calculation Table for the Linear Regression and Benchmark Code 

UFP 

Calculation 

Table for 

the Linear 

Regression 

+ 

Benchmark 

Code 

Weight Input or Output Total Description 
P

y
th

o
n

 

J
a

v
a
 

J
u

li
a
 

R
 

P
y

th
o
n

 

J
a

v
a
 

J
u

li
a
 

R
 

P
y

th
o
n

 

J
a

v
a
 

J
u

li
a
 

R
 

P
y

th
o
n

 

J
a

v
a
 

J
u

li
a
 

R
 

External 

Inputs (EI) 
4 4 4 4 1 1 1 1 4 4 4 4 

Loading the 

csv file. 

Loading the 

csv file. 

Loading the 

csv file. 

Loading the 

csv file. 

External 

Outputs 

(EO) 

5 5 5 5 3 3 3 3 15 15 15 15 

Printing 

start time, 

end time, 

and 

execution 

time. 

Printing 

start time, 

end time, 

and 

execution 

time. 

Printing start 

time, end 

time, and 

execution 

time. 

Printing start 

time, end 

time, and 

execution 

time. 

External 

Inquiries 

(EQ) 

4 4 4 4 0 0 0 0 0 0 0 0         

Internal 

Logical 

Files (ILF) 

10 10 10 10 3 3 3 3 30 30 30 30 

DataFrames 

('data', 'X', 

'y') 

DataFrames 

('data', 

'formula', 

'model') 

DataFrames 

('data', 'X', 

'y') 

DataFrames 

('data', 'X', 'y') 

External 

Interface 

Files (EIF) 

7 7 7 7 0 0 0 0 0 0 0 0         

Total UFP                 49 49 49 49         

5. Discussion and Conclusion 

In this study we compared the Python, Java, R and 

Julia programming languages for the AI 

applications. First of all we discussed the 

applicability of the languages to AI projects, in 

terms of the decided features presented in the Table 

1. In addition to that we developed a use case based 

on linear regression, and we provided the 

efficiency and execution speed parameters for each 

programming languages benefited from both 

computer science and software engineering areas. 

Case study results show that if fastest execution 

time is needed, Python is the best alternative. By its 

nature, Python is compatible with scripting, 

therefore for this use case the results present a 

conflicting result with current literature. However 

it is not surprising for the codes based on scripting, 

Python outperforms the other programming 

languages. In addition to that for applications 

where execution speed is crucial, Java is suitable 

for high performance computing, memory 

intensive operations and low level system 

operations. Julia’s numerical capabilities 

outweighs its execution time. It should be noted 

that our case study 100% compatible to highlight 

the Julia’s numerical capabilities.  Our results are 

based on four major tasks in this case study; import 

necessary libraries, initialize sample data, fit a 

linear regression model, and finally print the 

execution time results. Our comparative analysis 

reveals insights into the strengths and limitations of 

programming languages in AI development. 

Python emerges as a versatile and widely adopted 

language with extensive library support for AI 

tasks. Especially when we consider cloud 

development platforms such as; Google Colab 

provides a comprehensive pre-loaded libraries for 

data science and AI specific tasks. Julia 

demonstrates promising performance advantages 

for specific use cases. But most of the online 

platforms the language has not supported pre-

loaded libraries such as GLM. It is a major problem 

in terms of usability. As a result, Julia is much more 

dependent to local environments compared with 

Python. The choice of programming language 

should be informed by project requirements, 

development constraints, and long-term objectives. 

Future research directions may explore emerging 

languages and techniques to further enhance AI 

development practices. In future work, we plan to 

expand this use case by conducting experiments on 
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both CUDA supported GPU and Apple Silicon 

processor with neural engine. 
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