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Abstract:  
 

The demand for uninterrupted and high-speed mobile data continues to grow, driven by 

the rapid expansion of IoT systems, communication applications, social media platforms, 

and the increasing number of mobile users. The handover mechanism plays a critical role 

in maintaining uninterrupted service during user mobility, and indirectly affects data 

throughput by influencing the device's Reference Signal Received Power (RSRP) levels. 

In LTE systems—which remain widely used globally—the handover process is vital for 

ensuring service quality, and its significance is expected to increase further with the 

densification of base stations in upcoming 5G and 6G technologies.  In this study, we 

utilize a dense LTE drive test dataset to first estimate the device’s distance to the base 

station and the geographical locations of base stations. These estimates, combined with 

parameters such as serving and neighbour cell identities and DL EARFCNs from seven 

different cells, are then used to develop an efficient machine learning–based handover 

prediction model. To evaluate and compare the performance of the Random Forest and 

XGBoost algorithms, multi-class classification metrics including precision, recall, and 

F1-score were utilized. The results demonstrate that Random Forest model can 

effectively identify the optimal target cell without the need for traditional, complex 

handover algorithms. The XGBoost algorithm gave much lower handover performance 

rates and F1-score compared to Random Forest. 

 

1. Introduction 
 

The rising demand for multimedia applications, 

along with the rapid growth of technologies like IoT, 

autonomous vehicles, and machine-to-machine 

communication—which require high-speed data 

transmission on both uplink and downlink—has 

made it necessary to continually upgrade existing 

mobile networks. To enhance service quality, 3GPP 

introduced Long-Term Evolution (LTE). In response 

to the surge in mobile data demand, LTE-Advanced 

(LTE-A) and 4G standards were developed in 

Release 10, with ongoing improvements in 

performance[1]. However, as 4G LTE systems—

still the most widely used globally—struggle to keep 

up, next-generation networks like 5G and beyond 

have begun to take their place[2]. With the arrival of 

5G technology, we’ve seen significant 

improvements in data speeds, reduced latency, and 

enhanced energy efficiency. Offering high service 

quality, 5G can operate using smaller base stations 

compared to LTE systems. However, because it 

relies on higher frequency bands, more base 

stations—and consequently more inter-cell 

handovers—are required to achieve the same 

coverage area as LTE. Because of the smaller cell 

coverage in 5G, user equipment (UE) must perform 

more frequent handovers in certain scenarios. This 

increase leads to several handover-related challenges 

that are now recognized as key performance 

indicators (KPIs). A high number of unnecessary 

handovers can negatively impact throughput, which 

in turn reduces Quality of Service (QoS) and user 

satisfaction[3]. For this reason, preventing 

unnecessary handovers is important for user 

satisfaction and energy efficiency for both LTE and 

5G and beyond systems. When a correct handover 

occurs, the device connects to a base station with 

stronger RSRP values, resulting in lower ping values, 

increased data speed and energy efficiency. As seen in 

Figure 1 above, with the handover mechanism, the base 

station to which the UE is connected changes due to 
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Figure 1. Handover process 

reasons such as the user moving or the radio signal 

quality decreasing in the location. The aim is to provide 

the user with a continuous and high-quality connection. 

As handover is critical for enhancing performance 

and reducing radio link failures, it has been 

extensively studied. Although there are many different 

handover algorithms, the handover mechanism is usually 

done using the parameters serving cell RSRP, neighbour 

cell RSRP, RSRQ, RSSI, UE velocity, and cell identity 

in classical computations, time series algorithms or 

machine learning[4-6]. However, traditional rule-

based mechanisms often fail to adapt to the dynamic 

and heterogeneous nature of dense urban 

environments[7]. The handover process can occur 

not only between mobile phones and base stations, 

but also between base stations and unmanned aerial 

vehicles, satellites and UEs. However, since 4G, 5G 

and beyond 5G systems are used intensively, 

research has focused on this direction[8-12]. 

Shaeya and his research group have worked on 

handover algorithms for wireless networked drones 

for 5G and 6G technology and have reported in their 

studies that machine learning based handover 

management systems are a more effective way than 

traditional methods such as MANETS, VANETs, 

and IEEE 802.11[8]. 

Khan et al focuses on the management of handover 

systems on 5G and dense heterogeneous networks. 

Different approaches such as machine learning, deep 

learning, software defined network (SDN), 

augmented reality, and optimized load balancing are 

compared for future technology 5G systems[13]. 

Chabira and her team are exploring and analysing 

AI-driven smart handover and load balancing 

strategies within smart city scenarios for ultra-dense 

5G and upcoming 6G networks[9]. 

In addition, many studies have been conducted on 

the handover management algorithm to increase 

energy efficiency by reducing power consumption in 

LTE systems[14,15]. Maiwada and his research 

group have studied the energy efficiency in LTE-A 

and 5G systems and claim to have created a 

handover algorithm that is 85% efficient. Ju-Hung 

Jon et al achieved energy efficiency of up to 40.5% 

and Avka et all worked on an algorithm that allows 

45.29% less handover[16,17]. 

 

2. Material and Methods 
 

2.1 Data Collection, Filtering and Binning 

Process 

 

In the initial phase of the study, data was collected 

over a 7-day period using a vehicle equipped with a 

PC-tell scanner in the San Francisco, CA area. The 

dataset was first filtered to exclude entries with 

missing values in key parameters such as RSRP, 

serving and neighbour cell IDs, and location 

coordinates. Any row or column with missing values 

in any of the 30 parameters was removed to ensure 

the integrity of the data used in the algorithm. 

Additionally, several LTE sublayer parameters 

deemed irrelevant to the handover analysis were 

eliminated to streamline processing before the data 

binning phase. 

Data binning, a common technique used to mitigate 

the impact of minor measurement fluctuations on 

signal degradation, involves grouping data points 

within specific intervals and replacing them with 

their average values. This approach clusters the data 

into smaller segments—referred to as splits—

effectively reducing noise and smoothing out abrupt 

changes, though at the cost of some resolution[18]. 

Moreover, this method helps neutralize the impact of 

vehicle speed during the data collection process. 

Since RF scanners collect a fixed number of 

measurements over a set time and route, higher 

vehicle speeds result in fewer samples, while slower 

speeds or stops yield more data points. This 

inconsistency can skew machine learning 

predictions, especially when excessive 

measurements are captured near intersections or 

traffic signs. To address this, the dataset was 

spatially segmented into 5 m × 5 m geographic grids 

following feature extraction, with each grid cell 

representing the average of all features and 

parameters within that area. 
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Figure 2. RSRP heat map on the filtered and binned data 

Figure 2 shows the heat map of RSRP values on the 

map using data obtained from drive test results and 

filtered. The number of data after filtering and 

binning is approximately 4 million with 30 column 

of LTE sublayer parameters. 

 

2.2 Estimation of Base Stations’ Location and 

Distances 

In this stage, a machine learning based model was 

developed using XGBoost regression and Random 

Forest regression to estimate the geographical 

latitude and longitude coordinates and the distance 

to the serving base station based on the 20 strongest 

RSRP measurements collected during the driving 

tests. The latitude and longitude values of the base 

station were determined with two different 

regression algorithms depending on the power level 

of the RSRP values, using the device’s RSRP value, 

the serving cell identity, and the neighboring cells’ 

RSRP values and cell IDs, and the neighboring 

RSRP value and cell ID, and then the distance was 

calculated with the help of the haversine formula. 

Known base station locations were used to train and 

evaluate the model at a rate of 80%-20%. The 

Random Forest regressor outperformed the 

XGBoost model in terms of both location estimation 

and classification metrics. The trained model results 

were used in the handover analysis in the next stages 

and used as an auxiliary parameter to increase our 

accuracy rate. 

The base station location information was estimated 

by taking the 20 highest RSRP values shown in red 

in Figure 3 and the corresponding latitude and 

longitude values with the help of XGBoost and 

Random Forest regressors depending on the 

magnitude of the RSRP value. Then, using the 

Haversine formula (as presented in Equation 1), the 

distance between the device and the estimated base 

station location is calculated and incorporated into 

the dataset as an additional parameter. 

 
𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 =

2𝑅𝑠𝑖𝑛−1(√𝑠𝑖𝑛2 (
lat2−lat1

2
) ) + 𝑠𝑖𝑛2 (

𝑙𝑜𝑛2−𝑙𝑜𝑛1

2
) 𝑐𝑜𝑠(lat1)𝑐𝑜𝑠(lat2)) 

 (1) 
 

where R is the radius of the earth (6371 km), d is 

the distance between two points, lat1, lat2   latitude 

of the two points, and lon1, lon2  is the longitude of 

the points respectively. Figure 4 shows the locations 

of the base stations predicted with the Random 

Forest regressor method, which gives more accurate 

results than the XGBoost method, on the map. 

 

3. Results and Discussions 
 

An optimal handover selection algorithm was 

developed using XGBoost and random forest 

regressor to improve decision making in ultra-dense 

cellular networks. Using key LTE sublayer 

parameters such as Serving Cell RSRP, Neighbor 

Cell RSRP, and EARFCN values collected from 

drive test data, The model was trained to accurately 

predict the most suitable target cell for handover 
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Figure 3. Representative RSRP heat map for base stations’ latitude and longitude value estimation. 

 

 

Figure 4. Estimated base station locations by Random Forest Regressor
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decisions. The model not only took into account 

signal strength differences, but also incorporated 

complex feature interactions into the learning 

algorithm, resulting in improved handover reliability 

and reduced radio link failures. This data-driven 

approach provides a scalable and adaptable solution 

for intelligent handover management, which is 

critical for maintaining quality of service in 5G and 

beyond networks, as well as in LTE systems. While 

the Random Forest regressor estimate for the 

base station distance has an average error rate of 

10m, this value was found to be 685m for the 

XGBoost algorithm. While recall, accuracy and 

f1 score were 0.98, 0.88 and 0.88 for the 

Random Forest algorithm, these values 

remained at 0.32, 0.16 and 0.21 for the XGBoost 

model, respectively. 

 

 
Figure 5. Random Forest Regressor base station distance Error 

 
Figure 6. XGBoost  Regressor base station distance error

Figures 5 and 6 show the error rates of two different 

regressor methods in predicting the base station 

location. As can be easily seen from the figures, the 

Random Forest model outperforms the XGBoost 

model in location prediction. 

 



Engin Eyceyurt / IJCESEN 11-3(2025)5243-5249 

 

5248 
 

 
Figure 7. Random Forest Regressor Handover Performance most important parameters 

 
Figure 8. XGBoost Regressor Handover Performance most important parameters 

Figures 7 and 8 show the 15 most important 

parameters used in prediction for Random Forest and 

XGBoost regressors, respectively. 

 

4. Conclusions 
 
In this study, two machine learning models based on 

Random Forest and XGBoost, which can be used for 

4G and possibly 5G mobile networks, are used for 

handover estimation and the results of the two 

models are compared. In the study, a 7-day drive test 

data taken from San Francisco, CA is used. After 

various filtering and binning processes are 

performed on the data collected by performing the 

drive test, the number of parameters to be used in the 

handover analysis is increased by determining the 

base station distance. With the system redesigned on 

the Python platform, 30 LTE sublayer parameters 

and base station distance data are used in two 

different models to compare the handover 

performances. As a result, while the Random Forest 

regressor achieved an average error of 

approximately 10 meters in estimating the distance 

to the base station, the XGBoost algorithm yielded a 

significantly higher average error of 685 meters. In 

terms of classification performance, the Random 

Forest model achieved a recall of 0.98, accuracy of 

0.88, and an F1 score of 0.88, whereas the XGBoost 

model's corresponding metrics were substantially 
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lower, with a recall of 0.32, accuracy of 0.16, and an 

F1 score of 0.21. 
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