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Abstract:  
 

Conventional forecasting models require time series that are stationary over time in 

terms of mean and variance. However, we often encounter data that rarely meet this 

condition. The data may have Non-Gaussian (N-G) distribution or contain heavy tails or 

extreme values. In order to improve and strengthen the predictive performance, various 

(N-G) models have been used, each of which has a different property from the other 

models. The combined formulas of discrete distributions such as Poisson or Negative – 

Binomial (NB) distribution with Autoregressive Integrated Moving Average (ARIMA) 

models provide an interpretable methodology when modeling time series data by 

following the characteristics of count data because it relies on the distributional 

properties represented by the general linear model based on count data and the time 

dependence represented by the ARIMA model of the residuals. Predicting time-

dependent patterns of count data involves complexities resulting from the discrete and 

positive nature of the data, which is not compatible with the classical ARIMA 

methodology. To address this shortcoming, models combining the two were used as an 

alternative solution. These models are Gamma-ARIMA, Poisson-ARIMA, and NB- 

ARIMA. To fit discrete data to a continuous gamma distribution, a new framework, the 

transformed Gamma-ARIMA model, was proposed. By applying a mathematical 

transformation to discrete data, the series formation becomes more consistent, and the 

Gamma-ARIMA technique is successful on non-Gaussian discrete data sets.. Four 

different mathematical formulations were used, and the Enhanced Grey Wolf Optimizer 

(EGWO) algorithm was used to compare them. The results show that the square root 

transformation is the best using the No-U-Turn Sampler (NUTS) algorithm, and that the 

Bayesian estimation performance is robust and suitable for reliable inference and future 

predictions.  Using an annual time series of the number of pulmonary Tuberculosis 

(TB) cases in Iraq, the results showed that the Poisson-ARIMA model outperformed the 

other models using Mean Square Error (MSE)and Mean Absolute Percentage Error 

(MAPE). 

 

1. Introduction 
 

The majority of time series that describe real events 

and situations in various fields are Non-Gaussian 

(N-G) series ,[1] and predicting these time series is 

a prominent statistical challenge, especially since 

traditional prediction models such as 

Autoregressive Integrated Moving Average 

(ARIMA) models require conditions, foremost 

among which is that the distribution of the error 

series be normal  , [2] but this condition is not met 

with time series in which the variable is of the type 

of countable variable such as people, students, 

employees, crimes, traffic accidents, patients, units 

sold, cars, customers, calls, messages, and many 

others. All of these examples take integer and non-

negative values and therefore cannot be accurately 

represented with a continuous distribution such as 

the normal distribution. If the series contains zeros 

or large values, this means that the distribution is 

severely skewed to the right, and also Kurtosis 

when it is more than three confirms that the 

distribution is non-Gaussian. [3] Deviations from a 

symmetric Gaussian distribution may arise due to 

the integer number of the variable or the binary 

nature of the variable, such as such as whether a 

person has or does not have Tuberculosis (TB). 

Another reason is that the values are spread far 

from the mean in an uneven manner [4]. The 

Gaussian process does not apply to a skewed 
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distribution. [5] New studies have indicated that the 

random variable component may have (N-G) 

distribution in the presence of time dependent 

parameter. [6] Therefore, the main objective of this 

research is to predict the (N-G) time series of 

annual pulmonary tuberculosis cases in Iraq for the 

period from 1985 to 2023, which is a (N-G) series, 

using four different (N-G) models and compare 

them using the statistical measures of Mean 

Squared Error (MSE) and Mean Absolute 

Percentage Errors (MAPE). 

1.1 Tuberculosis (TB) 

Tuberculosis is a contagious bacterial disease 

caused by a bacterium called Cobacterium 

tuberculosis [7]. It is widespread throughout Iraq 

without clear regional boundaries. Tuberculosis 

fluctuates between ups and downs [8], and over the 

years, it has been considered endemic in Iraq [9]. 

There are three categories of the disease [7]. The 

first category is sputum-positive cases, the second 

category is reversible or failed cases, and the third 

category is extrapulmonary tuberculosis. 

1.2 Related Work  

 

In Terengganu -Malaysia ( 2009) [10] they  

assumed that Holt’s trend modified with 

exponential smoothing is the best model for 

forecasting the yearly TB cases, in Iran  [11] They 

justified that SARIMA is the best model for 

forecasting the monthly  TB cases, in China -  

Jiangsu province [12] They illustrated that 

ARIMA-NAR is the best model for forecasting the 

monthly TB cases, in Beijing  [13] They confirmed 

that  SARIMA  is the best model for forecasting the 

monthly  TB cases  , and found the incidence of 

PTB is associated with seasonal weather factors, in 

China [14] They considered SARIMA-GRNN  is 

the best model for  forecasting the  monthly TB 

CASES  , in Japan  [15]  They showed that the 

degree of seasonality of active TB cases was 

significantly related with population mass by using 

spectral analysis  for  the  monthly TB cases,  in 

Shaanxi- China  [16]They asserted that SARIMA is 

the best model for forecasting the monthly TB 

cases, in Niger State [17] They considered that   

ARIMA (2, 1, 3)    is the best model for forecasting 

the monthly TB cases,  in Xinjiang-China [18] 

They confirmed that the best method for predicting 

annual tuberculosis cases is AR-Elman model, in 

Colombia [19] They emphasized that    traditional 

methods in time series   are the best for forecasting 

TB, [20] in Antioquia - Colombia  They confirmed 

that Kalman filter is the best model for forecasting 

the weekly TB cases, in Kenya [21] they use 

ARIMA -ANN to forecast TB cases among 

children in some in some countries, in Malaysia  

[22] They use  SARIMA  model for forecasting the 

monthly TB cases, in Kazakhstan [23] They use 

SARIMA model for forecasting the monthly TB 

cases, in India [24] They showed that NNAR is the 

best model for forecasting the monthly TB cases, in 

Indonesia [25] They confirmed that ARMA (1, 1) is 

the best model for forecasting the monthly TB 

cases, in USA [26] He clarified that the model of 

decision tree (DT) is more accurate than ANN for 

forecasting the monthly TB cases, in Brazil [27] 

They used SARIMA model for forecasting the 

monthly TB cases, in Changde – China [28] They 

affirmed that self-attention model is the best model 

for forecasting the monthly TB cases, In a review 

[29] They confirmed that ARIMA; SARIMA; ETS; 

GRNN; BPNN; NARNN; NNAR; and RNN are 

common time series models for TB incidence 

prediction,  in Yingjisha County- China  (2025) 

[30]  They asserted that SARIMA  is the best model 

for  forecasting  annual TB.  

 

2. Non-Gaussian (N-G) time series 

 
Most time series that represent real-world situations 

are actually series that follow N-G time series 

distributions. N-G time series models were first 

introduced over 40 years ago in order to capture 

characteristics that the Gaussian distribution cannot 

capture.[1], while Gaussian models were introduced 

nearly a century ago. What distinguishes ARIMA 

models from other models is the presence of time-

dependent factors within them. It is known that 

Gaussian ARIMA models have an error distributed 

with a mean zero and a variance of one, while in 

the case of N-G models, where the error distributed 

N-G   in   other forms. The research is based on the 

idea of generating a model of the values of random 

variables of the real series from a heavy-tailed or 

skewed distribution when time series models with 

Gaussian marginal distributions fail to provide a 

true description of the actual situation.[1], The 

classical approach assumes that the time series has 

both deterministic and random components. Recent 

studies have confirmed that there is a not 

insignificant probability that the random component 

has a (N-G) distribution with time-dependent 

parameter values [31]. the N-G models used in this 

paper are: Poisson ARIMA, Negative- Binomial  

(NB) ARIMA and Gamma ARIMA, this section 

explores ARIMA models with innovations is 

members of different types of N-G distributions   

compares   the   predictive performance of the three   

models along with the traditional ARIMA model, 

for TB forecasting in Iraq. 

2.1 Bayesian N-G- ARIMA Models  
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In the Bayesian method, prior information is 

entered and the full distribution of parameters is 

estimated by choosing initial distributions, 

calculating the posterior distribution and 

implementing it using MCMC. 

Bayesian Inference 

The posterior conditional distribution is 

calculated according to Bayes' law[32]: 

The general form of Bayesian inference is given 

by: 

P (θ | y) ∝ p (y | θ) · p(θ) 

Where: 

     p (θ | y) is the posterior conditional 

distribution of the parameters θ given the data y. 

     p (y | θ) is the likelihood function of 

observing the data y given the parameters θ. 

     p (θ) The prior distribution of the parameters 

θ. 

To ensure the efficiency and effectiveness of the 

model, the convergence of the two-sampling series 

is confirmed. The effectiveness of Monte Carlo 

(MC) performance is also confirmed by observing 

the MC error, which is assumed to be less than 5% 

of the standard deviation from the posterior mean 

estimate. Otherwise, an alternative distribution is 

tested and the iterations is increased [32]. 

Numerical estimation is performed using 

MCMC (such as Metropolis-Hastings or 

NUTS), Variational Bayes / INLA for speed, 

Indices used for comparison, RMSE, MAPE 

[33], WAIC, LOO, Bayes Factor [33] 

2.2 Gamma–ARIMA Model  

 

This model is used with data that exhibits 

heterogeneous variation over time. The data must 

also be positive continuous and (N-G) in 

distribution. This model combines the precision of 

the temporal structure of ARIMA with the 

suitability of the Gamma distribution for data, 

making it ideal for application. Bayesian estimation 

in this model is an effective tool for incorporating 

prior knowledge and analyzing uncertainty. Given 

the presence of high values in the data, heavy tails, 

and extreme values, and thus a non-normal 

distribution, it is suitable for application. [34] 

𝑌𝑡   =   𝜇𝑡
+  𝜖𝑡       (1)  

𝜖𝑡   ∼  𝐺𝑎𝑚𝑚𝑎(𝛼,𝛽𝑡)                                                                                                                                                        (2) 

   Where’s  

                      𝜇𝑡  is the expected value at time t 

calculated from   ARIMA model. 

                       𝜖𝑡 is the noise (Random innovation) 

distributed Gamma. 

                       α   the shape parameter. 

                        𝛽 is the average parameter 

associated with μ as follows:  

                         𝜇𝑡 = 𝑐 +  ∑  
𝑝
𝑖=1 ∅𝑖𝑌𝑡−𝑖 +

 ∑
           

 𝜃𝑗𝜖𝑡−𝑗                                                                                              (3)   
𝑞
𝑗=1  

2.3 Bayesian Estimation [34] 

The numerical Bayesian estimation method is used 

through the MCMC algorithms. The NUTS (No-U-

Turn Sampler) algorithm is adopted for its 

efficiency in exploring the probability space. 

Prior assumptions: 

       Prior Distributions:           

∅𝑖 ~ 𝑁(0,1) , 𝜃𝑗 ~ 𝑁(0,1),  

𝛼 ~ 𝐻𝑎𝑙𝑓 𝑁𝑜𝑟𝑚𝑎𝑙(5), 𝑐 ~ 𝑁(0,10) 
 Likelihood Function: 

𝑝(𝑌𝑡  | 𝜇𝑡 , 𝛼)  
=  (𝛽𝑡

𝛼 / 𝛤(𝛼))  

∗  𝑌𝑡
(𝛼 − 1)  𝑒(−𝛽𝑡 𝑌𝑡)                                                                                         (4) 

Where                 𝛽𝑡  = 𝛼/
 𝜇𝑡                                                                                                                                        (5)   

    Posterior conditional distribution is performed 

according to Bayes' law: 

𝑝(𝜑, 𝜃, 𝛼, 𝑐 | 𝑌)  
∝  ∏ 𝑝(𝑌𝑡  | 𝜇𝑡 , 𝛼)𝑝(𝜑) 𝑝(𝜃)𝑝(𝛼) 𝑝(𝑐)                                                                                  (6) 

 The implementation is by Markov Chain Monte 

Carlo (MCMC) using samplers such as the No-U-

Turn Sampler (NUTS)[33]. 

 

Proposed Transformed Gamma–ARIMA 

for Discrete Time Seri 

Ordinary ARIMA models are built on the 

assumption that the residuals are normally 

distributed. However, this assumption is often 

violated when real-world data consists of 

numerical values. In contrast, Gamma-ARIMA 

models are only suitable for continuous and 

positive data, which leaves us puzzled as to how 

these models fit discrete count series. However, 

many practical time series—such as daily 
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hospital visits or statistics for specific events—

are not only discrete and non-negative, but also 

exhibit properties such as heteroscedasticity and 

asymmetry. These features make the Gamma 

distribution attractive, but the challenge remains 

in finding a way to transform the data from 

discrete to continuous. Therefore, a new 

framework, the transformed Gamma-ARIMA 

model, has been proposed. By applying a 

mathematical transformation to the discrete data, 

the series can be reshaped into a more consistent 

form of Gamma modeling, making the Gamma-

ARIMA technique successful on discrete, non-

Gaussian data sets. Four different mathematical 

formulas have been used, and these are the 

formulas that have been applied:  

𝑦𝑡 =  𝑦𝑡 + ( 𝑙𝑜𝑔(𝑦𝑡) −  𝑙𝑜𝑔(𝑦𝑡 − 1))         (7)   

      𝑦𝑡 =  𝑦𝑡 + 0.05                                    (8)    

𝑦𝑡 =  𝑦𝑡 + ( 𝑙𝑛(𝑦𝑡) −  𝑙𝑜𝑔(𝑦𝑡))                   (9)  

𝑦𝑡 =  𝑦𝑡 + 𝑙𝑜𝑔(𝑦𝑡)                           (10) 

𝑦𝑡 =  sqrt (𝑦𝑡 )                                    (11) 

 

     The Enhanced Grey Wolf Optimizer (EGWO) 

algorithm is used to select the best transformation 

from among the proposed transformation. 

Enhanced Grey Wolf Optimizer (EGWO) [35] 

 

      The Enhanced Grey Wolf Optimizer (EGWO) 

represents an improved variant of the Grey Wolf 

Optimizer (GWO), originally developed by 

Mirjalili et al.)2014) [36]. This algorithm draws its 

conceptual foundation from the natural hunting 

patterns and hierarchical organization of grey 

wolves. In EGWO, the mechanisms of locating, 

surrounding, and attacking prey are mathematically 

modeled to guide the optimization process, 

reflecting the cooperative behavior seen in wild 

wolf packs. 

 

In the GWO algorithm, wolves are classified 

into four categories: 

- Alpha (α): Denotes the best candidate solution. 

- Beta (β): The  second best solution. 

- Delta (δ):  The third best solution. 

- Omega (ω):  The remaining wolves that follow 

α, β, and δ. 

The GWO algorithm uses the (12),(13) 

equations for  updating  the positions of the 

wolves: 

    𝐷 =  |𝐶 ∗  𝑋𝑝(𝑡) −  𝑋(𝑡)|                 (12)   

𝑋(𝑡 + 1) =   𝑋𝑝(𝑡) −  𝐴    ∗  𝐷      (13) 
𝑊ℎ𝑒𝑟𝑒: 

 
𝑋𝑝(𝑡): 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑦 (𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). 

- The coefficients are dynamically adjusted using 

stochastic components that gradually diminish over 

iterations, aiming to achieve a trade-off between 

exploration of the search space and exploitation of 

promising areas. 

 

2.4 Poisson–ARIMA Model 

    This model is used with data that exhibits 

Positive-valued outcomes, Skewed distributions 

and time-varying means with flexible dynamics. 

              According to Formula )1)   

       Let {𝑦𝑡} be a time series, with density:  

           𝑝(𝑦𝑡|𝜆𝑡) = exp(−𝜆𝑡)
𝜆𝑡

𝑦𝑡

𝑦𝑡 !
 ,     𝑦 𝑡 =

   0,1,2, …   ,                                  𝜆 >
0,                      (14) 

                   𝜖𝑡   ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡)                                                                                                                                   (15) 

                   The model supposes that E (𝑦𝑡) = Var 

(𝑦𝑡) 

 

2.5 Negative Binomial ARIMA (NB – 

ARIMA) Model [37] 

     The Negative Binomial–ARIMA model is an 

extension of the typical ARIMA model used to 

analyze time series containing count data that suffer 

from overdispersion that is: E(𝑦𝑡) < Var (𝑦𝑡), This 

model assumes that the residuals do not follow a 

normal distribution, as in traditional ARIMA, but 

rather follow a more flexible negative binomial 

distribution. The negative binomial distribution is a 

probability distribution used to model the number 

of failures before reaching a certain number of 

successes in a series of trials with two outcomes 

(success or failure). The probability of success in 

each trial is 𝑝p. 

 

        Probability Density Function (PMF) Formula 

[38] 

  If: 𝑦 is the Number of failures (or observed events) 

before reaching 𝑟 success. 
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  p: Probability of success in each trial 

 The probability function is given by the following 

equation: 

𝑃(𝑌 = 𝑦) =  𝐶(𝑦 + 𝑟 − 1, 𝑟
− 1) 𝑝𝑟  (1 − 𝑝)𝑦                   (16)     

                             According to Formula )1) 

𝜖𝑡   ∼ 𝑁𝐵(𝜇𝑡  , 𝛼  )                   
The estimation is performed using the MCMC 

method to extract the dimensional distribution of all 

parameters. 

 

3. Methodology  

- Preprocessing: Perform Normality tests 

(Shapiro–Wilk, Jarque–Bera, Anderson–

Darling) [39]. 

 Stationarity test: Conduct the (Augmented 

Dickey-Fuller) ADF) test [40] before and 

after taking appropriate differences or 

transformations. 

 After Determine the required degree of 

difference, Determine the appropriate p and 

q degrees   based on the graphs of the 

autocorrelation function (ACF) and the 

partial autocorrelation function (PACF). 

- Apply ARIMA and (N-G) ARIMA which are: 

Poisson- ARIMA; NB -ARIMA; and Gamma- 

ARIMA By Bayesian inference 

o Plot the results and calculate 

RMSE  

- Select the best model according to the RMSE 

and MAPE 

- Prediction. 

 

Figure 1.  Proposed algorithm flowchart for selecting the best  forecasting  model 
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  4.   Results and Discussion  

4.1 Annual Tuberculosis cases Data 

Data on pulmonary tuberculosis annual count data 

across Iraq were obtained from the Ministry of 

Health / Department of Health and Life Statistics 

for the years )1985 – 2023 (.  The cases  are divided 

into three categories: active tuberculosis, inactive 

tuberculosis, and extrapulmonary tuberculosis. This 

research relied on the total number of cases for the 

three categories. All analyses were performed using 

Python and MATLAB. The Descriptive Statistics 

were calculated, the values in table (1): 

Table 1. the Descriptive Statistics 

The statistic  Value The statistic Value The 

statistic  

Value 

Count 39 Min 4843 Q3 14523.5 

Mean 12496.15 Max 29906 IQR 6374.5 

Median 9668 Range 25063 Skewness 1.351392 

Standard Deviation 6939.062 Q1 8149 Kurtosis 0.832763 

Variance 48,150,580     

 

From table 1. We note that the data has a significant 

deviation from the mean of approximately 6,939 

units and a large variance of 6,939, indicating a 

clear disparity in the data. The difference between 

the largest and smallest values is 25,062, indicating 

the presence of extreme data that has a significant 

impact on the dispersion. (50%) of the data falls 

between 8,147 and 14,523.6, with a skewness of 

1.351. This means that the values are skewed to the 

right side of the distribution. A positive skewness 

indicates a long tail on the right. Platykurtic 

Distribution (Kurtosis < 3 (With very high values 

affecting the distribution, such as the maximum 

value of 29,905.  

 

 
               Figure 2. Boxplot of Original Time Series  

From figure 2. we notice the median is close to the 

first quartile Q1, which is closer to the minimum 

acceptable limit, indicating the presence of positive 

skewness with the   presence of 5 extreme values 

that exceed the acceptable upper limit, while there 

are no values less than the acceptable lower limit. 

 
              Figure 3.  Graph of the original time series of TB infections in Iraq for the years 1985-2023. 

 

From Figure 3. we notice that the series does not 

contain a general trend, with a clear peak at the end 

of the nineties and a gradual decline in recent years. 

 

4.2   Normality , stationarity  and diagnostic test 

results 
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Table 2. Gaussian Test Results 
Test / Metric p- Value Interpretation 

Shapiro-Wilk Test (p-value) p = 0.000023 Not Gaussian 

Jarque-Bera Test (p-value) 0.0032 Not Gaussian 

Anderson-Darling Test Statistic 2.67 >  Anderson Critical Value (5%) 

= 0.725 

Not Gaussian 

Skewness 1.3 Positive skew (right-tailed) 

Kurtosis 0.58 Lower than normal kurtosis 

 

table 2. shows the TB time series  follows a (N-G) 

model, This confirms the inevitability of using 

(N-G) models.  Such as Poisson-ARIMA  ,   NB- 

ARIMA and Gamma-ARIMA 

 

Figure 4.  plots of the Autocorrelation function (ACF) (sample) and   the Partial Autocorrelation Function (PACF) 

(sample) for the original series. 

From Figure 3. The ACF plot indicates that the 

time series is not stationary because it is decreasing 

slowly and may also indicate the presence of a 

moving average (MA) component. From the PACF 

plot, we find that the values approach zero after lag 

1, compared to the theoretical properties, this 

indicates the possibility of the presence of an AR 

component (1).  

Table 3. ADF test 
Metric 

 

The original 

series 

after one 

difference 

After Second 

Differencing 

After Log 

Transformation 

ADF Statistic -1.594 -2.32 -3.116 -1.629 

p-value 0.487 0.166 0.025 0.468 

Critical Value 

(1%) 

-3.616 -3.654 -3.661 -3.616 

Critical Value 

(5%) 

-2.941 -2.957 -2.961 -2.941 

Critical Value 

(10%) 

-2.609 -2.618 -2.619 -2.609 

 

Table 3.  Confirms that the series becomes 

stationary after performing the second difference 

and that performing the logarithmic transformation 

does not make the series stationary. 
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Figure 5.  plot of ARIMA (1,2,1) and ARIMA (1,2,2) 

 

Table 4. Comparative analysis and Residual Diagnostics for ARIMA (1,2,1) and ARIMA (1,2,2) 
The 

Model 

RMSE MAPE AIC BIC Residuals 

mean 

Residuals 

(Std) 

Ljung-Box ARCH Shapiro-

Wilk 

ARIMA 

(1,2,1) 

4060.10 2390.44 724.672 729.505 -583 4267.58 0.2791238 0.953 0.0001325 

ARIMA 

(1,2,2) 

4004.85 2536.48 724.200 730.643 -764 4187.28 0.2704236 0.320 0.0010435 

 

Table 4.  shows that the RMSE and MAPE values 

do not agree on one model because the first model 

is the best according to the MAPE measure, while 

the second model is the best according to RMSE. 

As for   Model Selection Criteria AIC and BIC   

there is no agreement between the two measures on 

a specific model, as the AIC measure shows the 

superiority of the second model, but the BIC 

measure shows the superiority of ARIMA (1,2,1) 

because it has the lower value. For the mean of 

residuals, ARIMA (1,2,1) equals   -5.83 has a slight 

downward skew, while ARIMA (1,2,2) equals -

7.64 has a slightly larger downward skew, i.e., the 

ARIMA (1,2,1) model predicts better. For residuals 

Standard Deviation (Std) The most accurate model 

is the one that has the lowest standard deviation of 

the residuals. It is clear from the table that ARIMA 

(1,2,2) has a lower standard deviation of the 

residuals, meaning that it generates predictions that 

are closer to the actual values.  For the Ljung-Box 

test, since the p-values for both models are greater 

than 5%, which means that the residuals are random 

and there is no autocorrelation. For the ARCH test, 

since the p-value is > 0.05 for both models, we 

accept the null hypothesis, there is no statistical 

evidence of homoscedasticity, the residuals exhibit 

homoscedasticity. As for the Shapiro-Wilk test, this 

test confirms that the residuals do not follow the 

normal distribution in both models because the p-

values are very small, less than 0.05, indicating the 

possibility of thick tails or bias in extreme values. 

Therefore, for more accurate predictive purposes, it 

is preferable to use a (N-G) ARIMA model.    

Top row: Original data The histogram with KDE 

shows that the data is still non-normal (skewed and 

with long tails). Q–Q plot: Clear deviation from a 

straight line, especially at the tails, indicates that 

the original data does not follow a normal 

distribution. Bottom row: Residuals generated by 

ARIMA(1,2,1) Histogram of residuals: Reasonable 

symmetry around zero is evident, but there are still 

some deviations. Q–Q plot of residuals: The 

residuals are closer to a normal distribution than the 

original data, but there are still deviations in the 

tails. 
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Figure 6. The Histogram with KDE and Q–Q Plot for the original series  and for ARIMA(1,2,1) model

4.3   Modeling Discrete Time Series via a 

Continuous Transformation Using a 

Bayesian Gamma-ARIMA(1,2,1) Model 

 

 

Figure 7. The best transformation by EGWO: T11 for   

Gamma ARIMA (1,2,1) 

The EGWO algorithm, inspired by the behavior of 

wolves, has proven that the square root 

transformation is the best and computationally 

optimal among all proposed transformations. 

The Bayesian Gamma–ARIMA (1,2,1) framework 

was calibrated using the No-U-Turn Sampler 

(NUTS) algorithm obtainable in the PyMC library. 

The sampling process contained of a total of 2,000 

drawdowns, divided into 1,000 adaptation iterations 

and 1,000 drawdowns used for subsequent analysis. 

Throughout the sampling process, no divergent 

transitions were encountered, and the Markov 

chains displayed satisfactory mixing performance. 

The adaptive stage size stabilized inside the range 

of 0.04 to 0.05, indicative of effective exploration 

of the posterior distribution. Convergence 

valuations, including trace visualizations and 

diagnostic metrics, confirmed that the posterior 

estimations were robust and appropriate for 

dependable inference and future predictions. 

 

 

 

Figure 8.    Bayesian Gamma ARMA (1,2,1) 
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Figure 9. Visualization of the Bayesian Gamma–ARIMA model parameter estimates through marginal density plots 

and sampling trace paths. 

The figure shows that the residual deviation is 

small, indicating relative stability in the model. 

Graphically speaking, the probability density 

plot shows that each approximate parameter 

distribution appears single-peaked and relatively 

symmetric (with the exception of the theta 

distribution). Most distributions do not exhibit 

multiple peaks, indicating sample stability. As 

for the trace plots, all series exhibit variance 

around the mean without any obvious skewness. 

There are no signs of undermixing or 

convergence problems  for MCMC chains, 

which enhances the reliability of the inference. 

Therefore, we conclude that R ≈ 1.00 is 

excellent, while almost all parameters converge 

well. The sigma mass > 700 is good, and the 

actual sample size is sufficient for accurate 

analysis. The low sigma indicates low residuals, 

indicating a good fit to the series. From all of 

this, we conclude that the model is effective in 

describing the series after square root 

transformation. 

5.1 NB- ARIMA Model using Bayesian 

NB- ARIMA (1,2,1) Model 

 

Figure 10. Visualization of the Bayesian NB–ARIMA (1,2,1) model parameter estimates through marginal density 

plots and sampling trace paths. 
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From Figure 10.  The density plots show All 

parameters show well-shaped posterior 

distributions, indicating that MCMC is working 

correctly. The trace plots indicate the chains are 

stable, with no apparent drift or mixing failure. 

All chains have normal migrations without 

bottlenecks or suspicious clusters. 

 

Figure 11. Bayesian NB - ARMA (1,2,1) 

There are no convergence problems, the central 

values of the coefficients are clear and 

consistent, the posterior distributions are smooth 

and homogeneous, and the RMSE and MAPE 

are within acceptable limits, especially for data 

with high variance 

 

5.2 Poisson ARIMA Model using 

Bayesian Poisson ARMA (1,2,1)  

 
Figure 12. Visualization of the Bayesian Poisson–ARIMA model parameter estimates through marginal density 

plots and sampling trace paths. 

 

The model is stable and appropriate, with no 

indications of poor convergence or sampling 

issues, and the prediction quality is high (low 

MAPE, good RMSE). 

 
Figure 13. Bayesian Poisson- ARMA (1,2,1) 
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There is no irrational explosion or sharp decline, indicating that the model is Bayesian stable. 

Table 5. Model Evaluation Metrics 

Model RMSE MAPE 

ARIMA (1,2,1) 4060.10 23.90%   

Gamma-ARIMA (1,2,1) with sqr-transformation 3884.95 

 

19.31% 

 

Gamma-ARIMA (1,2,1) with log-transformation 3753.81 18.31% 

Poisson-ARIMA (1,2,1) 3.50 0.03% 

NB- ARIMA (1,2,1) 3181.47 

 

17.56% 

The table 5. indicates that the best model is 

Poisson-ARIMA (1,2,1) , followed by the N- B- 

ARIMA, the Gamma -ARIMA model came in third 

place, the Ordinary ARIMA model came in fourth 

place, it is clear from the comparison that models 

with heavy-tailed distributions are more robust to 

outliers and extreme fluctuations. 

              Table 6. Poisson-ARIMA 8-Year Forecast 
Year Forecast Year Forecast 

2024 6569.553 2028 5803.205 

2025 6368.838 2029 5625.486 

2026 6174.773 2030 5452.99 

2027 5986.263 2031 5285.594 

 

6. Conclusions  

The number of reported tuberculosis cases in Iraq 

has declined significantly, especially after 1999, 

reaching its lowest point in 2020. This is due to 

increased healthcare and health awareness. The 

overall trend was significantly upward, but in 1999, 

the overall trend became downward, meaning that 

the time series is not stationary on average. In this 

article, a comparison was made between Gamma-

ARIMA, Poisson-ARIMA, Negative Binomial-

ARIMA, and Classical ARIMA models. The 

Poisson-ARIMA model outperformed the other 

models in accurately predicting tuberculosis cases 

for the next eight years using RMSE and MAPE. 

Annual predictions of tuberculosis cases in Iraq 

were made. These predictions are useful for 

decision-making to maintain public health, control, 

and prevent the disease. We hope that through this 

research, we have taken a step forward toward more 

reliable predictions of tuberculosis cases in Iraq. 

Furthermore, we hope to conduct future studies, 

more detailed by governorate and gender, using 

monthly, quarterly, or semi-annual data, to provide 

insights into TB cases over short periods. The 

Bayesian model is excellent for long-tailed count 

data. It preserves the nature of the original data 

without transformation. It is well-suited for future 

predictions of annual pulmonary TB case numbers. 

ARIMA appears to perform poorly under the 

assumption of a normal error distribution. The 

Bayesian Poisson-ARIMA model is an effective 

model for analyzing time series count data using 

the ARIMA structure and the Poisson distribution. 

Bayesian inference provides reliable estimates. 

Bayesian ARIMA (NG) is an advanced approach 

for analyzing time series that exhibit NG residuals. 

It is an ideal choice when the data contain outliers, 

large variances, and skewed distributions with thick 

tails. The model provides a better understanding of 

uncertainty and delivers more realistic predictions 

compared to the traditional ARIMA model. The 

predictive ability of the Gamma-ARIMA model 

was evaluated in the context of continuous, 

positive, and large-valued time series data 

exhibiting perfectly skewed distributional 

properties. The results showed that the  NG-

ARIMA model improved the prediction accuracy of 

NG time series with an autocorrelated structure. 

This model is of particular interest for data such as 

the annual number of TB cases. The ARIMA-

Poisson model performed better than the N-B-

ARIMA model, while the discrete non-Gaussian 

models performed better than the continuous 

Gamma-ARIMA model with root and log 

transformations. 
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