

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5405-5421
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

PostgreSQL Tuning for Cloud-Native Java: Connection Pooling vs. Reactive

Drivers

Sandeep Reddy Gundla*

Lead Software Engineer, GA, USA
* Corresponding Author Ema i

Article Info:

DOI: 10.22399/ijcesen.3479

Received : 11 May 2025

Accepted : 16 July 2025

Keywords

PostgreSQL Tuning

Java Microservices

Connection Pooling

Reactive Programming

Cloud-Native Architecture

Abstract:

With the transition of software development practices under the cloud-native principles,

database connectivity is the key to developing scalable and high-performance Java

applications. As a widely used and powerful open-source relational database,

PostgreSQL officially supports well-known synchronization access and a newfangled

reactive model. This article compares connection pooling and reactive driver strategies

for handling PostgreSQL connections in a cloud-native Java environment. The test rigs

described in this discussion are designed to use real experiments with containers, different

workloads, and performance monitoring tools. Each model is evaluated based on how it

affects core performance metrics, including throughput, latency, resource utilization, and

fault tolerance. Using mature libraries like HikariCP, connection pooling is demonstrated

to be effective in stable systems with moderate concurrency due to its ease of use and

simplicity, which integrates with existing Java tooling. However, reactive drivers based

on R2DBC benefit from the best scalability and performance in high-concurrency, event-

driven, event-driven systems using non-blocking I/O and asynchronous execution. The

article also discusses practical tuning strategies and implementation guidance that match

PostgreSQL's process model. In addition, it outlines hybrid or transitional use cases

where both models could be used. The findings are ultimately guidance for choosing and

configuring the best fitting PostgreSQL connectivity approach for the everyday modern

Java applications in today's fast changing cloud native landscapes.

1. Introduction

Databases form a foundational component to the

success of applications being deployed in cloud-

native environments, and the performance and

reliability of those databases. Modern organizations

are moving to update or modernize their

infrastructure and adopting containerized,

microservice-oriented architectures as the databases

underneath grow in complexity. The applications

must be highly responsive, scale elastically, and

efficiently utilize resources across the distributed

environment. PostgreSQL has become a favorite

option for many development teams because of its

open source, fully functional set, and strong support

for ANSI SQL standards. In addition, it is proven to

provide stability and a robust concurrency model for

both traditional monoliths and cloud-native

microservices. However, reaching the optimal

performance of a PostgreSQL application isn't all

about picking the right database engine by itself; it is

also about considering how the application connects

and interacts with the database. PostgreSQL's

process-based architecture has each connection run

in a separate backend process. This design increases

isolation and fault tolerance by limiting the number

of simultaneous connections the database can

efficiently support. Because cloud-native

applications commonly consist of many lightweight

services and automated scaling, poor connection

management can overload CPU, memory, and

beyond to the point where systems may fail to

function.

Typically, in Java-based applications, database

connectivity is managed with either connection

pooling or reactive drivers. This includes a unique

philosophy for treating concurrent operations and

system resources in each method. The more

traditional and dominant approach is connection

pooling. This includes keeping an inventory of

reservoir database connections that will be shared

throughout numerous client threads. Instead of

: 0009-0004-1148-4126ORCID: gundlasr@gmail.com -

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5406

creating and destroying connections for each

operation, the threads borrow a connection from the

pool, complete their task, and then return it for reuse.

This reduces the overhead of coordinating

connections by an order of magnitude and allows

much better throughput under predictable

workloads.

Reactive drivers operate with an asynchronous, non-

blocking model following the reactive programming

paradigms. This eliminates threading up threads

waiting on I/O bound operations like querying the

database. Results instead are processed through

callback and event loops as they arrive. Reactive

programming proves itself most valuable in

concurrency, especially when dealing with public

APIs, real-time streaming platforms, or event-driven

architecture. Building on that, Java frameworks such

as Spring WebFlux, Quarkus, and Vert.x have

contributed to the further growth of reactive drivers

with native support for reactive streams and no

blocking database access. Connection pooling or

reactive drivers are not merely choices; they

represent an architectural alignment. Each method

has its strengths and weaknesses and is best used for

applications of different types in different

deployment environments. For example, connection

pooling: systems that have a lot of synchronous code

or rely on legacy libraries or object-relational

mappers (ORMs) may find it useful. However, the

reactive approach may benefit systems requiring

high scalability and low latency under variable load

conditions. This article compares these two

strategies in practical uses in-depth and side-by-side

on how to tune PostgreSQL under running cloud-

native Java applications. Empirical testing

determines how each model works in real-world

workloads, what tuning approaches work from a

database and application perspective, and what

recommendations for action are based on each

approach's empirical testing. With this knowledge,

development teams can intelligently make decisions

that result in scalable, efficient, and reliable systems

deployed on PostgreSQL.

2. Background on PostgreSQL and Java in

Cloud-Native Environments

2.1. PostgreSQL Connection Behavior and

Scalability Challenges

An open-source, relational database system famous

for its reliability, advanced SQL compliance, and

extensibility. It is commonly used for industries with

strong data consistency and transactional integrity

requirements. As PostgreSQL uses a process per

connection model, new database connections are

handled by spawning a new backend process. While

this model gives strong isolation and stability, it

carries the cost of scalability. Modern cloud

applications handle thousands of concurrent clients,

and each connection consumes memory and CPU

resources, making this problem difficult.

When the system is auto-scaling in cloud

environments, it encompasses containerization and

multi-tenant use cases; inefficient connection

management can affect performance (Waseem et al.,

2024). For example, many active connections can

cause excessive context switching, increased

memory usage, and possibly failure to accept new

connections. If they are not tuned properly, no

strategies are in place (e.g., limit the number of

active connections or efficiently reuse them), and the

database server can easily get in trouble. These

issues highlight the need to consider the connection

strategy inside cloud native PostgreSQL

deployments (Goel & Bhramhabhatt, 2024).

As illustrated in the figure below, PostgreSQL

supports several core features that contribute to its

strength in cloud-native applications. These include

high security, data integrity, ACID compliance, SQL

standards adherence, high concurrency, and object-

relational capabilities.

Figure 1: PostgreSQL vs MySQL

 2.2. In Cloud Native Development, how Java fits in

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5407

Java has always dominated enterprise systems, and

it’s evolved as it responds to the needs of cloud-

native design patterns. The fast startup times,

reduced memory footprints, and containerization

support offered by frameworks like Spring Boot,

Micronaut, and Quarkus are now a thing. These

make building and deploying microservices that can

scale automatically in the cloud easier. They also

support multiple database interaction options,

including classic synchronous APIs using JDBC and

modern non-blocking APIs using reactive libraries

(Caschetto, 2024).

Java for cloud-native development brings both

opportunities and challenges to connect to

PostgreSQL. Synchronous, traditional JDBC-based

data access is limited by heavy load. What is

happening is that every thread waiting for a query

response becomes idle and cannot process other

requests. It’s workable in a monolithic application or

one with a predictable load, but it’s not so great for

distributed or highly concurrent systems. To

overcome this, many Java developers utilize

connection pooling to optimize the utilization of

resources and application throughput. However, in

the Java ecosystem, reactive programming can be

utilized differently. Reactive systems can handle

many tasks concurrently, but with a minimal number

of threads. Reactive applications don’t block I/O

operations but register a callback. In Java, these

libraries are supported by Project Reactor, RxJava,

and frameworks like Spring WebFlux for this model.

These reactive technologies can be used alongside

R2DBC, a non-blocking API that serves as a first-

class interface for relational databases like

PostgreSQL.

2.3. Cloud Native Architectural Patterns with

PostgreSQL

Applications in a cloud-native architecture are

usually built as microservices and are packaged in

containers and orchestrated using Kubernetes

(Ugwueze, 2024). The architecture of microservices

can decide if it wants to have its database connection

pool or use a shared reactive driver that it can make

for itself. Such environments feature multiple

service instances that can be created (or destroyed)

in response to traffic. If not managed carefully,

connection limits add further pressure to this

elasticity (Dhanagari, 2024). Fortunately,

PostgreSQL can be tuned to do this business

efficiently if clients interact with it as PostgreSQL

expects. Database tuning should align with the

application’s architecture and load patterns, even if

a connection pool is used or based on reactive

access. Observability and automation are

capabilities that cloud-native systems favor, along

with tools such as Prometheus and Grafana, which

can be used to monitor connection health and

performance metrics in near real time. In essence,

the tuning decisions are rooted in the interaction

between the process model of PostgreSQL and the

environment of Java execution. The decision

between a traditional connection pooling approach

and the reactive drivers is not just about performance

but architectural alignment with cloud-native

principles like statelessness, elasticity, and fault

isolation.

3. Understanding Connection Pooling

3.1. The Basics of Connection Pooling

Database connection pooling is a well-known

technique for writing higher-performance and

scalable database-driven applications. In layperson's

terms, when discussing a connection pool, the

application maintains and reuses a cache of open

database connections rather than opening and

closing connections for every request. Opening a

new connection to a database such as PostgreSQL is

very resource-intensive. This allows the reusing of

existing connections, thus eliminating the overhead

of repeating the connection establishment and

teardown (Naseer et al., 2020). The connection pool

initializes when an application begins and is created

with several configurable active connections. When

a database operation is needed, the application

borrows a connection from a pool. After the

operation, the connection is returned to the pool

instead of being closed. As a result, latency is

reduced, CPU consumption and memory usage are

reduced, and database call response time is more

predictable.

As illustrated in the figure below, the pool-enabled

data source interacts with the JDBC connection pool,

which in turn manages connections to the database

through a connection factory. 3.2. The common

Java Connection Pooling Libraries

Because of their performance, ease of integration,

and stability, several connection pooling libraries

became popular in the Java ecosystem. Of them,

HikariCP is the most widely used because of its

small footprint, light footprint, and high

performance. It is highly optimized for serving with

low latency and tight memory control and has

become the default connection pool in Spring Boot.

Others are Apache Commons DBCP and c3p0,

which provide more features but are usually more

complicated to configure and can come at a cost

(Dhanagari, 2024).

Fast and simple is what HikariCP is about. The

performance is efficient under various workloads,

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5408

Figure 2: Understanding DB Connection Pools: Essential Knowledge for Web Developers

and essential pool-related configuration parameters

are exposed, such as the maximum pool size, idle

timeout, and connection lifetime. C3p0 is slower but

historically faster than Apache DBCP, with more

configurability and extensibility, as well as

automatic recovery from database outages and

statement caching, but is generally deemed less

performant than HikariCP in recent applications.

Depending on the specific need for the application,

choose the right library (Ouni et al., 2017). HikariCP

is the performance and low-maintenance overhead

winner among most cloud-native applications. It also

plays nicely with frameworks; for example, it is easy

to configure with simple application properties in

Spring Boot.

Table 1: Connection Pool Library Comparison

Library Pros Cons Use Case

HikariCP
High performance, low latency, easy to

use

Limited advanced

features

By default for Spring Boot, most

apps

Apache

DBCP
Feature-rich, long-time support Slower, heavier setup Legacy systems

c3p0 Auto-recovery, detailed tuning
Slower performance,

older

Systems needing connection

resilience

3.3. Advantages and Applications of Connection

Pooling

The most valuable property of connection pooling is

the performance improvement under high

concurrency. It is particularly effective in scenarios

involving hundreds or thousands of simultaneous

HTTP requests, where creating a new database

connection for each request would be inefficient.

With a connection pool, a fixed number of database

connections can be reused for incoming requests.

This approach helps prevent excessive open

connections on the database server, thereby avoiding

resource exhaustion and maintaining system

stability under heavy load. In addition, connection

pooling can be used in applications with fairly

predictable and uniform database access patterns

(Peta et al., 2021). For instance, e-commerce

systems or business applications with transactional

consistency need much to gain; in those

environments, it's safe to borrow a connection, make

a request, and release it back to the pool for others to

use, scaling accordingly without the headache of

manually installing one connection per request.

Applications running behind an API gateway or part

of a load-balanced service mesh also need pooling.

In a containerized deployment, PostgreSQL can be

tuned to stay within capacity so that connection load

is expected to fit in the pool, and each replica or pod

can maintain its connection pool.

3.4. Roadblocks and Obstacles:

Connection pooling has shortcomings, especially in

highly concurrent and resource-constrained

environments. One of the biggest downsides is that

a thread is tied up for the lifetime of each database

operation. As a result, thread blocking can occur,

especially when slow or long-running queries are

concerned. Requests queue or time out due to

exhaustion of the thread pool, thus reducing

application responsiveness. Another problem is

tuning the pool parameters. When the pool size is too

small, it becomes a bottleneck, and the connections

slow down. If it is too large, PostgreSQL may

become overloaded with too many simultaneous

connections. Striking a balance between these

extremes is called tuning, and this entails managing

the trade-offs between application load, system

resources, and other configuration factors (Pirozzi,

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5409

2018). In addition, pooled connections are not

immune to DB-level problems like deadlock,

timeout, network failure. Retrying logic, circuit

breaking, and connection checks need to be applied

carefully.

4. Understanding Reactive Drivers

4.1. Principles of Non-Blocking, Asynchronous

Programming

Reactive programming is based on asynchronous

and non-blocking communication. In a reactive

system, a callback is registered instead of waiting for

a task to complete, such as a database query,

allowing other tasks to proceed concurrently. When

the response is ready, the system processes the

original request and continues with the response.

This application design enables it to take advantage

of many concurrent operations, which can be

handled by fewer threads, yielding better resource

efficiency and responsiveness under high load.

Traditional Java applications block a thread for the

time spent on database operations, preventing it from

handling other requests until the operation is done.

This waste is avoided in reactive systems, which

release the thread to work on other things while

waiting for I/O responses. It should be noted that this

is a particularly beneficial approach in situations

where there is unpredictable latency between the

application and the database or when a system must

handle thousands of connections simultaneously

with limited hardware (Konneru, 2021).

4.2. R2DBC Specification and Reactive Libraries

With the introduction of a few foundational libraries

and frameworks, reactive programming has been

sped up in Java. The core of building non-blocking

applications is given by Project Reactor and

developed by the spring team. Another library that

can support reactive streams and functional

programming models is RxJava. They provide a

framework for constructing data pipelines that

natively process, react, and transform streams of

events in a declarative fashion. The Reactive

Relational Database Connectivity (R2DBC)

specification was introduced to bring reactive

principles to relational databases (Dahlin, 2020).

R2DBC is different, though, in that, unlike JDBC, it

has a fully asynchronous API for working with

databases like PostgreSQL, which are 'blocking' in

nature. A standard interface for reactive drivers to

relational databases is defined in R2DBC so

developers can interact with relational databases in a

non-blocking manner. Another such implementation

is the R2DBC PostgreSQL driver, which supports

reactive access to PostgreSQL. It was made to

function without fault with Project Reactor and

Spring WebFlux. Using R2DBC, applications can

perform SQL queries and process results without

blocking threads or keeping expensive, long-lived

thread pools, improving performance in high-

concurrency and low-resource-usage systems.

4.3. Reactive drivers provide benefits in cloud-

native applications.

When using drivers in cloud-native Java

applications, there are many advantages to doing it

reactively (Davis, 2019). One of the most prominent

benefits of adopting Zero-Relational Databases is

that it helps us improve scalability. Reactive

applications need far fewer resources because they

don't depend on a large number of threads to carry

them off. This is particularly handy in containerized

environments where the CPU (and memory, too!) is

limited. The other advantage is responsiveness.

Reactive applications avoid blocking calls and

achieve faster and more predictable response times

under variable workloads. This responsiveness

makes it easier to deliver a smooth and satisfying

user experience while reducing the risk of timeouts

or bottlenecks. Additionally, reactive systems are

more effective at handling failures. Their event-

driven nature enables timely responses and targeted

recovery actions, helping prevent faults from

cascading throughout the system—an approach that

reflects the same principles found in time-sensitive

domains like healthcare, where responsiveness and

scheduled notifications play a critical role in

improving outcomes (Sardana, 2022). Event-driven

architectures, which are common in modern

distributed systems, are also a natural fit for reactive

drivers. In the use case where the system services

communicate through an asynchronous messaging

system such as Kafka or RabbitMQ, they fit in well

since the integration is seamless and design

principles are consistent across the system.

As illustrated in the figure below, cloud-native

automation—a key pillar of reactive application

design—encompasses continuous integration and

deployment (CI/CD), infrastructure as code,

observability, and auto-scaling. These principles

reinforce the alignment between reactive drivers and

cloud-native best practices.

4.4. Reactive Programming – Limitations and

Challenges

Reactive drivers provide benefits, but they also add

complexity that must be managed carefully. One of

the hardest hurdles is the steep learning curve.

Writing, debugging, and maintaining reactive code

requires a different mental model than regular

imperative programming. Yet developers are also

expected to become familiar with concepts like

backpressure, event streams, and functional

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5410

Figure 3: Cloud Native Applications

composition (Proksch, 2017). Another problem is

ecosystem maturity. JDBC has been the standard for

decades and is quite well supported with tools,

libraries, while R2DBC is relatively new compared

to JDBC. Reactive drivers do not fully support all the

features of PostgreSQL or third-party tools. For

example, handling transactions reactively or

integrating with older ORMs might be more

difficult.

They can also be challenging to monitor and

observe. Performance profiling tools and log traces

fit well with traditional thread-based models. On the

other hand, finding issues spread over asynchronous

flows usually requires more sophisticated tooling

and knowledge of reactive patterns. Finally, reactive

drivers are not always necessary. If the application

has low to moderate concurrency or a predictable

workload, the complexity may not be worth the

complexity of performance gains. Therefore, in such

cases, traditional connection pooling could be better.

5. Comparison Criteria

A framework for evaluating tradeoffs is necessary to

understand the benefits and disadvantages of

connection pooling and reactive drivers. The two

approaches are compared using a consistent set of

technical and operational criteria. These criteria

allow us to see how certain methods impact

performance, scalability, reliability, and

maintainability in cloud-native Java apps about

PostgreSQL.

5.1. These are throughput and latency.

Throughput means the rate at which a system

performs database operations; latency is the time one

operation takes. Generally, connection pooling

works well for medium concurrency and consistent

traffic. It allows a fixed number of connections to be

shared across multiple threads, reducing the cost of

opening and closing a connection. With moderate

latency, it achieves high throughput under a stable

load (Chavan, 2023). However, reactive drivers can

perform better than connection pools with high

concurrency when requests are I/O bound and short-

lived (Terber, 2018). Reactive drivers don't block

threads when making database calls, allowing them

to process more operations in parallel. As a result,

they result in better CPU utilization and less idle

time. For scenarios with thousands of concurrent

users, reactive systems keep the latency low and the

Figure 4: Throughput and Latency in Big Data

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5411

throughput high when the application is configured

correctly.

As illustrated in the figure below, concurrent

processing pathways can be optimized for either

real-time (low latency) or batch (high throughput)

needs, both leading to efficient data handling and

timely results in reactive systems.

5.2. Scalability and Resource Utilization.

Connection pooling follows a thread-per-request

model, where each incoming request is handled by a

separate thread. The thread count has to increase as

concurrency increases, which ultimately eats

memory and the CPU. The costs of thread context

switching exacerbate and decrease the application's

efficiency under load. This can be a scalability

bottleneck in virtualized or containerized

environments where resources are shared or

constrained. To achieve reactivity, the driver

chooses to use an event-driven model; a small

number of threads process a large number of I/O

requests (Zhu et al., 2015). This model scales

efficiently, specifically on multicore machines. It

drastically decreases memory usage and assists

applications in serving additional users using fewer

threads. The reactive model scales better than the

rest for microservices that are required to scale

dynamically with the traffic.

5.3. Resilience to Application and Fault Recovery

Mature features of connection pooling libraries, such

as connection validation, retry, and connection leak

detection, are available. These properties assist

applications in gracefully failing from transient

database failures or network disconnections. In

addition, pooled connections are monitored for

health, and unhealthy connections are automatically

removed or recycled. Reactive drivers handle

failures differently. Because they are reactive

streams, they provide operators such as retry or

timeout, letting developers determine how to

respond to errors. While this approach gives us more

flexibility, it comes with careful design issues.

Without appropriate backpressure handling, reactive

pipelines can overwhelm downstream systems. In

reactive systems, resilience depends on the codebase

modeling and handling errors (Stoicescu et al.,

2017).

5.4. Developer Experience and learning curve.

Connection pools are not too tough to work with.

JDBC is familiar to most Java developers, and

libraries like HikariCP are easy to configure and

plug into existing applications. The resulting simpler

way to use the database makes it easier for teams to

build, debug, and maintain database interaction

code. Furthermore, because each thread has a well-

defined execution path, debugging is also easier.

Reactive programming requires a change of mindset.

It includes concepts like publishers, subscribers,

event loops, and backpressure. Writing clean,

maintainable reactive code is hard, especially for

teams that lack enough experience. Though tooling

and IDE support for debugging asynchronous flows

is improving, it's still behind traditional models.

Table 2: Connection pooling vs Reactive Drivers – Summary Comparison

Criteria
Connection Pooling (e.g.,

HikariCP)
Reactive Drivers (e.g., R2DBC)

Thread Model Blocking, thread-per-request Non-blocking, async event-loop

Resource Usage Higher (due to threads) Lower (fewer threads, more efficient)

Latency Under Load Increases with concurrency More stable under load

Learning Curve Low (familiar JDBC model)
High (requires reactive paradigm

understanding)

Tooling and Ecosystem Mature, widely supported Growing, still catching up

PostgreSQL Feature

Support
Full (JDBC-based) Partial (some features unsupported)

Best Use Cases Legacy systems, synchronous APIs High-concurrency, event-driven systems

5.5. Feature Compatibility with PostgreSQL

Advanced features such as advisory locks, server-

side cursors, and listen/notify mechanisms become

available on PostgreSQL. These features work well

with connection pooling since they operate on

standard JDBC connections, which are completely

supported by PostgreSQL. Reactive drivers are

improving in this are,a but are not quite there yet. For

instance, R2DBC's transaction handling demands

explicit management, and there are cases where

server-side features might not be fully supported or

behave in a non-synchronous context. Integrating

reactive database access with ORMs like Hibernate

is problematic, too, because most ORMs are built for

blocking APIs (Raju, 2017).

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5412

6. Tuning PostgreSQL for Connection Pooling

In cloud-native Java applications, proper tuning of

PostgreSQL for a connection pool is necessary to

deliver high performance and reliability

(Chinamanagonda, 2023). Connection pools are

effective if PostgreSQL is configured to handle

concurrent connections, memory is well allocated,

and workload characteristics are known. This section

outlines important configuration strategies,

monitoring practices, and best-fit scenarios to ensure

that PostgreSQL and the application operate

optimally when using pooled connections. As

illustrated in the figure below, connection pooling

introduces a layer (the pooler) that sits between

client applications and the PostgreSQL server. It

efficiently manages a limited number of database

connections and shares them among many clients.

Figure 5: Improving API Performance with Connection Pooling

6.1. PostgreSQL Server Important Settings

One of the most important parameters is the total

number of client connections that PostgreSQL will

accept concurrently. When using a connection pool,

this value should align with the number of

connections simultaneously used across all

application instances. For example, if each

microservice pod has a pool of 20 connections and

there are 10 replicas, the PostgreSQL server should

be configured to handle at least 200 concurrent

connections. Avoid over-provisioning this value

because each connection uses memory and CPU

resources (Kumar, 2019). Memory-related settings

are also critical. Allocating sufficient memory for

PostgreSQL to cache and process data efficiently is

essential for maintaining performance. Insufficient

memory allocation can lead to disk spilling during

operations such as sorts and joins, which degrades

performance. Conversely, overly generous memory

settings can result in memory bloat, particularly

under high concurrency. These configurations

should be benchmarked and adjusted based on

workload characteristics.

6.2. Latency Tuning Parameters

HikariCP, DBCP, and so on are all pooling libraries

that each expose a set of configuration parameters

that need to be carefully adjusted. It sets how many

connections in the pool may be allocated. One last

point is the maximum number of connections

allowed; this should not exceed PostgreSQL's

allowable number of connections (the value is based

on max_connections) divided by the number of

application instances. The most common cause of

saturation and slowdowns is misalignment between

the pool size and the database capacity. Another

important parameter is idle timeout, which sets the

time a connection can stay idle before being

removed from the pool (Isyaku et al., 2020).

Properly tuning prevents unnecessary connections

from building up, which still uses resources.

Similarly, for connection Timeout, a time limit is set

for how long a request should wait to establish a

connection from the pool. This protects the

application from stalling if all the connections are in

use. The maxLifetime parameter helps recycle old

connections and cuts the risk of network problems

and database timeouts on long-lived connections.

6.3. Monitoring and Diagnostics.

Connection pooling issues must be identified and

resolved quickly through proactive monitoring.

PostgreSQL supports integration with external

monitoring tools such as Prometheus and Grafana,

which enable real-time visualization of performance

trends and connection behavior. These tools help

track metrics such as connection counts, query

performance, and resource utilization to ensure

system stability and responsiveness. Thus, it is a

good idea to count active, idle, and waiting

connections. A too-high number of idle connections

vs. a too-high number of waiting connections may or

may not indicate whether the pool is too small or too

big. Query duration and queue wait time are also

good metrics for understanding how well the pool

serves incoming requests.

6.4. Common Bottlenecks and their Solutions

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5413

When connection pooling is not tuned properly,

several performance issues can start to emerge. A

common problem is that all the connections are in

use, and new requests have to wait or fail until a

connection is free to use. Insufficient pool size or

queries that hang on to connections for too long can

cause this. There are solutions: increasing the pool

size, optimizing the query execution time, or using

read replicas to offload the read-heavy traffic.

7. Tuning PostgreSQL for Reactive Drivers

Tuning PostgreSQL differs when reactive database

access is used. Reactive systems operate with fewer

concurrent connections while striving for higher

throughput by executing asynchronously, unlike

traditional connection pooling, which maintains

many persistent database connections. PostgreSQL

must be tuned to be efficient and short-lived, with

very little blocking to leverage this model.

Moreover, the network and I/O layers must be set up

to facilitate constant and high-speed communication

between the client and the database server (Nyati,

2018).

7.1. Deterministic Usage of Limited Async

Connections

Typically, reactive applications do not open

hundreds of database connections per instance. No

blocking applications rely on a smaller pool of

connections, which can perform significantly more

operations concurrently through event loops and

asynchronous callbacks. This design also means that

PostgreSQL does not need to be configured with a

large max_connections value. In practice, this value

can remain relatively conservative, as it reduces

memory pressure and overhead on backend

processes. Reactive drivers like R2DBC are more

efficient with connections since they don't tie up

threads, but they need queries to be completed as

quickly as possible to avoid backlogs. So, optimizing

the performance of the individual query and the

amount of processing time done on the server is

paramount. In reactive systems, indexing,

partitioning, and query planning become more

critical because the effectiveness of each non-

blocking call directly impacts system throughput.

7.2. The Async Tuning Parameters and Server

Settings

Even though PostgreSQL is not asynchronous in its

connection handling out of the box, it is possible to

set some parameters to make it work (almost) as fast

as possible when using it with a reactive driver. Disk

I/O is one of the places to focus on. Reactive systems

have a higher demand for fast, predictable response

times. It also helps ensure the database runs on high-

speed storage (SSDs or cloud-native block storage)

for reactive queries.

They are also a function of network configurations

(Fogel et al., 2015). Because reactive systems can

issue many simultaneous small queries, minimizing

packet loss and latency is crucial. This means tuning

the settings of TCP, such as buffer sizes and keep-

alive intervals on the server and client sides.

Optimizing PostgreSQL performance involves

careful configuration of key parameters. Reducing

reliance on disk I/O and improving response times

can be achieved by ensuring that memory-intensive

operations like sorts and joins are handled

efficiently. It is also important to tune PostgreSQL

for effective parallel query execution, allowing the

system to utilize available resources for improved

throughput and responsiveness.

7.3. Using Push Notifications in PostgreSQL

PostgreSQL doesn't natively support full

asynchronous client handling, but it has good

features that would work well with reactive

programming models. Another feature of this kind is

LISTEN/NOTIFY, which enables clients to

subscribe to events and receive notifications

asynchronously from the database. It is especially

useful in systems that must react to real-time

changes, e.g., a chat application or live dashboard.

LISTEN/NOTIFY with reactive drivers lets

applications get database updates without polling,

improving performance and responsiveness. In fact,

PostgreSQL supports logical decoding and

replication slots, which can be used to build real-

time data pipelining or event-driven microservices

using reactive streams. However, to leverage these

features in a reactive context, applications must

incorporate asynchronous event handling logic, and

the database must be configured to support efficient

replication and notification processing.

As illustrated in the figure below, a PostgreSQL

trigger pushes a notification into a channel, which is

then picked up by the application’s event handler.

This asynchronous flow eliminates the need for

frequent queries, significantly improving

responsiveness and system efficiency.

7.4. Backpressure and Coordination

Backpressure, how a system indicates it is

overwhelmed and requires slower rates of work

being produced, is one of the most complex facets of

tuning reactive systems. Suppose a system is given

zero or poor backpressure management. In that case,

a reactive system can easily generate far too many

queries for PostgreSQL to process and, in turn, lead

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5414

Figure 6: Async Communication with Postgres Database Triggers

to dropped connections, timeout errors, or poor

performance. The backpressure issue must be

addressed at the application level and within the

reactive library or framework. In the case of Project

Reactor, specific operators are available to manage

overload scenarios by controlling how much data is

buffered or discarded. Further system metrics such

as response time, queue size, and CPU utilization are

monitored continuously to detect early signs of strain

(Singh, 2021). On the database side, practices such

as minimizing locking contention, optimizing query

plans, and maintaining well-scoped transactions can

help ensure that PostgreSQL has sufficient capacity

to handle incoming requests. Reactive applications

at scale are slow by definition; if small delays or lock

waits aren't proactively managed, they can quickly

snowball into massive slowdowns (Smart, 2020).

8. Methodology

A structured and repeatable testing methodology

was then applied to ensure an accurate comparison

of PostgreSQL's performance and behavior when

accessed via connection pooling vs. reactive drivers

in cloud-native Java applications. This work

considered real-world usage in a containerized

environment with standardized workloads through

widely accepted measurement tools. More

concretely, the goal was to determine how each

approach responds in terms of latency, throughput,

resource usage, and stability under realistic usage

patterns and varying loads.

8.1. Testing Environment Setup is done.

Tests were run in a controlled environment built

using Docker containers to simulate a cloud-native

environment (Astyrakakis et al., 2019). The

PostgreSQL database was deployed using the

official image, configured with custom parameters

specific to each connection strategy. Two

codebases—one with Spring Boot and HikariCP for

Java Connection Pooling, and another with Spring

WebFlux and R2DBC for reactive database access—

were containerized and run on Java 17. The

applications were deployed on a Kubernetes cluster

with resource limits to replicate constraints similar

to those in production. The cluster was configured to

limit CPU and memory using Kubernetes manifests

and attached persistent volumes to ensure data

durability across pod restarts. To ensure a fair

comparison, the pooling library and reactive driver

behavior were configured separately using

application properties and environment variables.

The two versions of the application had a simple

REST API exposed that performed common

database operations: a list of items, addictive

records, updating, and querying with joins and pairs.

These load operations were a balanced workload of

read and write-heavy operations.

8.2. Tools and Metrics Collected

A Gatling and Apache Meter combo generated load

and simulated user interactions. It provided these

tools to generate high-throughput HTTP traffic with

response time and error rate monitoring. Three levels

of load were applied, with each test lasting 20

minutes: low (50 concurrent users), medium (200

concurrent users), and high (1,000 concurrent users).

A cool-down period was inserted between the test

runs to avoid the coincidence of results or skewing

by resource leftovers (Singh, 2022). Performance

metrics were gathered from many places. At the

application level, Micrometer was used to log

application-level metrics (request latency, success

rate, error count, which were made visible through

Prometheus. PostgreSQL metrics such as active

connections, buffer usage, query execution time, and

disk I/O were also monitored to provide insights into

system performance.

8.3. Workload Scenarios

Three representative workload scenarios were used

to evaluate the behavior and performance of

PostgreSQL under various access strategies for this

testing framework (Gkamas et al., 2022). The

selected scenarios are common patterns seen in real-

world applications and are intended to expose

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5415

specific stress points for connection pooling and

reactive environments. The first scenario, Scenario

A, was about high-volume read operations. For this

case, multiple clients were simulated to repeatedly

fetch large datasets from the database, placing stress

on PostgreSQL’s ability to handle read-heavy traffic.

This was intended to simulate how each connection

strategy performs under high concurrency with

minimal write operations, and how the system’s

throughput and query latency behave under

sustained read pressure.

In Scenario B, the second scenario focused on

concurrent write operations. The workload here

consists of many users inserting and updating

simultaneously, typical for transactional systems

like financial services, service services, relationship

management, content management, and

management systems. In this case, the goal was to

test PostgreSQL's transactional handling, lock

contention behavior, and response time when many

write operations run in parallel. Additionally, it

compared which approach does better to maintain

consistency, retries, and, for write-intensive cases,

potential contention. Finally, Scenario C simulated a

mixed workload consisting of read and write

operations that ran alternately. This pattern

resembles contemporary application interactions, for

example, online shopping stores or intranet business

dashboards, where data reading happens frequently,

interleaved with data writes or new entries. This

scenario was designed to see how the system

maintained responsiveness, coordinated

transactions, and SW, and switched between

different operations. Carefully designed for each

scenario, they would show different bottlenecks: I/O

wait time, thread starvation, or backpressure

propagation, depending on the architecture and

strategy

.

Table 3: Experimental Scenario Setup

Scenario Description Load Type Primary Stress Area

Scenario A High volume, concurrent read queries Read-heavy I/O and query planner

Scenario B Simultaneous inserts and updates Write-heavy Transaction handling, lock contention

Scenario C Mix of reads and writes Mixed Balance and switching logic

8.4. Fairness and Consistency in Testing

Several key conditions were normalized across all

test runs to standardize comparing the two

application architectures — connection-pooled vs.

reactive. To minimize variability in performance due

to the runtime configuration, the two application

versions were deployed with the same number of

replicas, identical JVM settings, and the same

container resource limits. The PostgreSQL database

was reset before each major batch of tests, wiping

out caches and starting each run from a clean

baseline. All components were deployed in the same

Kubernetes cluster, using local nodes to keep

network latency under control, thus not creating

variation due to network routing. Time was also

synchronized across all containers to ensure all logs,

performance metrics, and event sequences could

correctly correlate for analysis (Farshchi et al.,

2015). Git was used to version control all related

configuration files, deployment scripts, and testing

plans stored in a dedicated repository. This approach

was highly repeatable and traceable, allowing one to

revisit specific scenarios for validation, debugging,

or additional system tuning. The consistent

environment and careful documentation prevented

observed performance differences from being a

function of any uncontrolled external factors.

Instead, they attributed the differences in

performance to the connection strategies themselves

(Sukhadiya et al., 2018).

9. Experimental Results and Analysis

Detailed performance data was collected through a

series of controlled benchmarks to evaluate the

effect of utilizing connection pooling instead of

reactive drivers in PostgreSQL-backed Java

applications. Every test scenario showed how each

strategy behaved under different loads and

workloads. This thesis identifies four primary areas:

throughput, resource utilization, latency trends, and

error patterns. These insights are thus vital as they

allow us to know which strategy to choose according

to the application's operational context.

9.1. Throughput Observations and Performance

Graphs

In Scenario A, the high-volume read scenario

showed that throughput was slightly higher at lower

levels of concurrency (up to 200 users) when using

the HikariCP connection pooling setup. This

advantage is attributed to the capacity of an

optimized JDBC driver and the simplicity of

synchronous processing. While throughput

eventually plateaued with increasing concurrency, it

remained significantly lower beyond 500 users. This

led the application to begin queuing incoming

requests as threads became exhausted and exhibited

blocking behavior (Chavan, 2024).

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5416

As a reactive driver setup, though, the throughput

growth was consistent (Senftle et al., 2016). With

1,000 users, the R2DBC application completed

approximately 30% more transactions per second

under high load than the connection-pooled version.

Its event-driven execution model allowed no

blocking threads to process more requests in parallel

without overloading the server. Trends were

visualized by plotting throughput metrics over time.

Despite spikes in thread queueing when connection

pooling, the application showed frequent dips in

transaction rates, which changed little during

garbage collection. In contrast, the reactive driver

showed a much smoother and more stable

performance curve.

As illustrated in the figure below, a typical JDBC-

based interaction begins at the application level,

moving through the Driver Manager, utilizing the

Driver, establishing a Connection, and finally

opening a TCP port to the database.

Figure 7: Connection Pooling with HikariCP

9.2. Resource consumption and behavior of the

system.

Important differences were found in CPU and

memory resource profiling between the two

architectures (Stephenson et al., 2015). The

connection-pooling model used more memory,

particularly under high concurrency, as the number

of active threads increased. During peak usage,

thread dumps confirmed that more than 70% of

memory was going to thread stacks and buffers.

Moreover, while the application's usage increased,

the CPU race was on to handle the increase in large

thread pools. Compared to a reactive application, it

had a much smaller memory footprint. In sustained

periods, it used higher CPUs, but it was more

predictable. Reactive systems gave away short

spikes in resource use in favor of steady state

efficiency, which suited them better for horizontally

scaled environments or containerized deployments

where resource limits are strictly enforced. The

reactive application was more stable in PostgreSQL

itself. Backend process counts stayed low, and buffer

cache efficiency improved since fewer connections

were opened and maintained. However, the

connection-pooled setup resulted in increased

context switches and higher backend memory usage

in PostgreSQL (Karwa, 2023; Karwa, 2024).

Table 4: Resource Usage Comparison

Metric Connection Pooling Reactive Drivers

Peak Memory Usage High (due to threads) Low (few threads)

CPU Pattern Spikes under load Even and predictable

PostgreSQL Backend Usage Near max_connections Low, stable

Thread Dump Count High Minimal

 9.3. Latency and Response Time Response Trend

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5417

Latency metrics showed distinct behaviors in the two

models. Under low concurrency, average response

times stayed under 150ms, but they grew quickly as

the system approached maximum thread count

despite connection pooling. Complex queries p95

latency exceeded 1.2 seconds at 1,000 concurrent

users, and timeout errors increased greatly.

Response times for the reactive drivers were more

consistent. Latency remained under 250 MS on

average and only started pushing past 400 ms p95 at

the top edge of 1,000 concurrent users. Due to its

non-blocking architecture, thread queuing, a

common cause of high latency in traditional systems,

was eliminated. In addition, it enabled much faster

recovery from short-lived spikes in database

response time. Connection pooling worked well

initially on batch updates (Scenario B). Still, under

lock contention, its performance collapsed compared

to the reactive driver, which had a natural timeout

and error recovery built in.

9.4. Operational Insights and Error Rates

The error analysis revealed that the connection-

pooled application experienced more failures under

high load. These issues often required manual

intervention or depended on aggressive retry logic to

maintain stability. Additionally, there were instances

where long-held connections blocked the

availability of other threads. In contrast, the reactive

application encountered fewer overall errors, though

some sensitivity to improper backpressure handling

was observed. These were addressed by improving

the flow control logic within the reactive pipelines.

10. Recommendations

This section offers practical guidance for choosing

between connection pooling and reactive drivers in

PostgreSQL-based Java applications based on

experimental results, observed tradeoffs, and system

behaviors. Recommendations are made in categories

by analyzing the application characteristics,

performance requirements, architectural patterns,

and operational goals. This is not about suggesting

technology but rather about providing suggestions to

guide developers, architects, and DevOps teams to

overlap their technology selection with real

constraints and expectations (Luz et al., 2019).

As illustrated in Figure 8 below, connection pooling

acts as a control layer that channels multiple

application requests through a fixed number of

connections, which are then served by PostgreSQL

worker processes

.

Figure 8: Database Connection Pool

10.1. When to Use Connection Pooling

The logic of connection pooling is a solid choice in

a variety of traditional and moderately sized

applications. The sweet spot is environments in

which traffic is relatively predictable, and the

number of concurrent users doesn't exceed the

capabilities of thread-based execution. This includes

business applications, portals, legacy services, and

consumer use cases with low—to medium-

concurrency APIs. Connection pooling also has a

place when the development team is more familiar

with imperative programming models and JDBC-

based tooling. This approach disrupts the least, uses

existing ORM technologies such as Hibernate or

JPA, and makes debugging and maintenance easier.

In addition, pooled connections play nicely with all

the complex things PostgreSQL does, like multi-

statement transactions, advisory locks, and

PL/pgSQL procedural extensions. Reactive systems

may not be warranted for workloads with limited

variability and delineated query boundaries. In these

cases, tuning HikariCP (or similar) for good

performance and carefully watching HikariCP (and

similar) usage will be enough to scale.

10.2. When Reactive Drivers Are a Better Choice

Systems with reactive drivers offer the largest

benefit in systems targeting high concurrency,

variable traffic patterns, asynchronous

communication, and anything else that might lead to

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5418

low channel utilization within the system. Public

APIs, streaming services, chat platforms,

notification engines, and real-time dashboards are

examples of where Reactive architectures work

exceedingly well—they're great places to serve

thousands of users concurrently with minimal

system resources (Abbott & Fisher, 2016). Reactive

PostgreSQL Access via R2DBC is a great draw for

applications based on Spring WebFlux, Quarkus

Reactive, or Vert.x. Used right, these systems

predictably scale well with fewer threads, and from

predictable to unpredictable load spikes,

performance is constant. Horizontally scalable and

providing better resource isolation, reactive systems

make deployments and autoscaling environments

smoother for containerized deployments. The

reactive approach also works nicely in event-driven

systems with Kafka, RabbitMQ, or WebSockets,

where no blocking I/O and backpressure handling

are inherently part of the system architecture.

Reactive drivers within these systems increase

consistency across the stack and eliminate thread

contention during I/O bursts.

10.3. Hybrid and Transitional strategies are used.

Not every system has to rule out pooling or reactive

access. Many architectures can get away with hybrid

approaches in practice. For example, when the

frontend is reactive, the reactive API gateway may

interact with clients asynchronously, while

downstream services or batch processors can use

pooled JDBC connections for reliability and ease of

integration. Teams from legacy synchronous code

bases to reactive architectures can also use

transitional strategies. For this, reactive database

access can be introduced for noncritical paths, with

performance monitored and gradual adoption

applied as familiarity increases. Throughout this

transition, there should be a clear separation and

consistency of services from legacy to cloud

capability. Moreover, each model should be

encapsulated in a service layer, and developers

should also make sure to appropriately handle

crosscutting concerns such as error handling,

transaction management, or monitoring for each

model. Calling blocking methods from a non-

blocking environment avoids confusion and surfaces

a reliable developer experience across both reactive

and traditional systems.

10.4. On Practice and Final Guidance

Whichever method is chosen, there are some best

practices for maximizing Postgres performance for

the intended use case (Shaik, 2020). One important

consideration is setting realistic connection limits

because pool sizes or reactive client connections

must align with the production instance's available

system memory and overall capacity. Good SQL and

proper table indexing help reduce the database

engine load for both coin connection models. It's just

as important to be observable—integration of tools

like Prometheus, Grafana, or DataDog makes

monitoring connection behavior, query latency, and

overall resource usage possible. Reactive and pooled

systems do badly under too many locks or slow-

running queries; therefore, long, long-lived

transactions should be avoided. During normal

operations, the timeout policies should be reviewed

and configured with strategies appropriate to the

system's expected behavior as the workload varies,

emphasizing retry mechanisms. Ultimately, the

choice between connection pooling and reactive

drivers boils down to an application's concurrency

needs, a development team's experience, and the

Application's overall architectural goals. Neither of

these approaches is bad, and both can lead to

excellent PostgreSQL performance in cloud-native

Java environments when applied to the right context

and in conjunction with thoughtfulness regarding

tuning (Mahajan et al., 2018).

11. Conclusion

Database connectivity remains one of the hardest

things to do well within cloud-native environments.

With Java applications migrating to more and more

microservices, containerization, and reactive

programming, picking between connection pools

and reactive drivers is no longer just a technical

detail but a strategic decision influencing how

systems scale, recover, and perform under pressure.

With its robust feature set and process-based

architecture, both paradigms can be satisfied for the

most part when tuned correctly. Each comes with its

ocular strengths and tradeoffs that must be carefully

balanced. In this article, which has the deep context

of connection pooling and reactive drivers, I relate

real testing and real-world workload simulation to

illustrate a comparison of each. Using mature

libraries like HikariCP, connection pooling is still a

proven and reliable way to handle database

connections in synchronous, thread-request Java

applications. In systems without extreme

concurrency or no blocking behavior, the simplicity,

familiarity, and compatibility with JDBC-based

tooling make it a safe and powerful choice. In

contrast, reactive drivers, which are based on non-

blocking I/O and asynchronous processing, have

obvious utility in a concurrent environment with

large numbers of users, unpredictable traffic

patterns, or event-oriented architecture. Reactive

PostgreSQL access can cut memory usage and

increase scalability and consistent latency under load

when paired with Spring WebFlux and R2DBC

frameworks. Such benefits are most pronounced in

public-facing services, streaming systems, and

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5419

cloud-native APIs that are run under elastic scaling

models.

Experimental results reinforced these conclusions.

Under moderate load, connection pooling was

effective at throughput and stabilized latency. While

thread blocking and resource contention started to

show up, despite that, concurrency increased. At

high lead levels, the reactive driver saw smoother

performance and more constant resource usage, but

came with a steeper learning curve and more

inherently challenging error handling. Reactive

systems were lightweight, efficient connections that

PostgreSQL responded to predictably, context-

switched less and with less memory on the backend.

In addition, the tuning techniques used for both

approaches demonstrate the need for an overall

strategy. Just adopting a connection model isn't

enough. The Application's access pattern indicates

how PostgreSQL itself must be configured. All of

these are taken into account, and the biggest

parameters include memory settings, connection

limits, caching, and indexing. Managing pool and

thread usage is important for connection pooling.

Understanding backpressure, event loops, and retry

logic is something reactive drivers should know to

make sure they do not run into overload.

Neither model makes a universal winner. One

depends upon the other, and each has some role

depending on workload, system design, and

operational constraints. Connection pooling is easier

to implement and maintain in applications built upon

existing applications with synchronous frameworks

or applications that rely heavily on JDBC-

compatible libraries. No blocking drivers'

performance and resource efficiency will be

available in systems architected from the ground up

using reactive principles.

A hybrid approach may also provide a practical path

forward. For example, teams can choose to use

reactive techniques selectively where they give them

the most return (such as for high-traffic APIs or

stream processing) while relying on connection

pooling to transactional backend services or legacy

components. This allows the flexibility of gradual

migration and risk reduction and aligns with the

iterative nature of cloud-native development. So,

tuning PostgreSQL for cloud-native Java

applications is multi-faceted. While choosing

between connection pooling and reactive drivers is

key, success depends on understanding how each

integrates with the application’s architecture, scales

under pressure, and responds to—or helps

mitigate—failures. This article provides

recommendations and strategies for teams to gain

insight into making informed decisions, resulting in

stable, efficient, and scalable systems built on

PostgreSQL.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Abbott, M. L., & Fisher, M. T. (2016). Scalability

Rules: Principles for Scaling Web Sites. Addison-

Wesley Professional.

[2] Astyrakakis, N., Nikoloudakis, Y., Kefaloukos, I.,

Skianis, C., Pallis, E., & Markakis, E. K. (2019,

September). Cloud-Native Application Validation &

Stress Testing through a Framework for Auto-Cluster

Deployment. In 2019 IEEE 24th International

Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD)

(pp. 1-5). IEEE.

[3] Caschetto, R. (2024). An Integrated Web Platform

for Remote Control and Monitoring of Diverse

Embedded Devices: A Comprehensive Approach to

Secure Communication and Efficient Data

Management (Doctoral dissertation, Politecnico di

Torino).

[4] Chavan, A. (2023). Managing scalability and cost in

microservices architecture: Balancing infinite

scalability with financial constraints. Journal of

Artificial Intelligence & Cloud Computing, 2, E264.

http://doi.org/10.47363/JAICC/2023(2)E264

[5] Chavan, A. (2024). Fault-tolerant event-driven

systems: Techniques and best practices. Journal of

Engineering and Applied Sciences Technology, 6,

E167. https://doi.org/10.47363/JEAST/2024(6)E167

[6] Chinamanagonda, S. (2023). Cloud-native

Databases: Performance and Scalability-Adoption of

cloud-native databases for improved performance.

Advances in Computer Sciences, 6(1).

[7] Dahlin, K. (2020). An evaluation of spring webflux:

With focus on built in sql features.

[8] Davis, C. (2019). Cloud Native Patterns: Designing

Change-Tolerant Software. Simon and Schuster.

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5420

[9] Dhanagari, M. R. (2024). MongoDB and data

consistency: Bridging the gap between performance

and reliability. Journal of Computer Science and

Technology Studies, 6(2), 183-198.

https://doi.org/10.32996/jcsts.2024.6.2.21

[10] Dhanagari, M. R. (2024). Scaling with

MongoDB: Solutions for handling big data in real-

time. Journal of Computer Science and Technology

Studies, 6(5), 246-264.

https://doi.org/10.32996/jcsts.2024.6.5.20

[11] Farshchi, M., Schneider, J. G., Weber, I., &

Grundy, J. (2015, November). Experience report:

Anomaly detection of cloud application operations

using log and cloud metric correlation analysis. In

2015 IEEE 26th international symposium on

software reliability engineering (ISSRE) (pp. 24-34).

IEEE.

[12] Fogel, A., Fung, S., Pedrosa, L., Walraed-

Sullivan, M., Govindan, R., Mahajan, R., &

Millstein, T. (2015). A general approach to network

configuration analysis. In 12th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 15) (pp. 469-483).

[13] Gkamas, T., Karaiskos, V., & Kontogiannis, S.

(2022). Performance evaluation of distributed

database strategies using docker as a service for

industrial iot data: Application to industry 4.0.

Information, 13(4), 190.

[14] Goel, G., & Bhramhabhatt, R. (2024). Dual

sourcing strategies. International Journal of Science

and Research Archive, 13(2), 2155.

https://doi.org/10.30574/ijsra.2024.13.2.2155

[15] Isyaku, B., Bakar, K. A., Zahid, M. S. M., &

Nura Yusuf, M. (2020). Adaptive and hybrid idle–

hard timeout allocation and flow eviction mechanism

considering traffic characteristics. Electronics, 9(11),

1983.

[16] Karwa, K. (2023). AI-powered career coaching:

Evaluating feedback tools for design students. Indian

Journal of Economics & Business.

https://www.ashwinanokha.com/ijeb-v22-4-

2023.php

[17] Karwa, K. (2024). The future of work for

industrial and product designers: Preparing students

for AI and automation trends. Identifying the skills

and knowledge that will be critical for future-

proofing design careers. International Journal of

Advanced Research in Engineering and Technology,

15(5).

https://iaeme.com/MasterAdmin/Journal_uploads/IJ

ARET/VOLUME_15_ISSUE_5/IJARET_15_05_01

1.pdf

[18] Konneru, N. M. K. (2021). Integrating security

into CI/CD pipelines: A DevSecOps approach with

SAST, DAST, and SCA tools. International Journal

of Science and Research Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-

improving-patient

[19] Kumar, A. (2019). The convergence of

predictive analytics in driving business intelligence

and enhancing DevOps efficiency. International

Journal of Computational Engineering and

Management, 6(6), 118-142. Retrieved from

https://ijcem.in/wp-content/uploads/THE-

CONVERGENCE-OF-PREDICTIVE-

ANALYTICS-IN-DRIVING-BUSINESS-

INTELLIGENCE-AND-ENHANCING-DEVOPS-

EFFICIENCY.pdf

[20] Luz, W. P., Pinto, G., & Bonifácio, R. (2019).

Adopting DevOps in the real world: A theory, a

model, and a case study. Journal of Systems and

Software, 157, 110384.

[21] Mahajan, A., Gupta, M. K., & Sundar, S. (2018).

Cloud-Native Applications in Java: Build

microservice-based cloud-native applications that

dynamically scale. Packt Publishing Ltd.

[22] Naseer, U., Niccolini, L., Pant, U., Frindell, A.,

Dasineni, R., & Benson, T. A. (2020, July). Zero

downtime release: Disruption-free load balancing of

a multi-billion user website. In Proceedings of the

Annual conference of the ACM Special Interest

Group on Data Communication on the applications,

technologies, architectures, and protocols for

computer communication (pp. 529-541).

[23] Nyati, S. (2018). Transforming telematics in

fleet management: Innovations in asset tracking,

efficiency, and communication. International Journal

of Science and Research (IJSR), 7(10), 1804-1810.

Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR242

03184230

[24] Ouni, A., Kula, R. G., Kessentini, M., Ishio, T.,

German, D. M., & Inoue, K. (2017). Search-based

software library recommendation using multi-

objective optimization. Information and Software

Technology, 83, 55-75.

[25] Peta, V. P., KaluvaKuri, V. P. K., & Khambam,

S. K. R. (2021). Smart AI Systems for Monitoring

Database Pool Connections: Intelligent AI/ML

Monitoring and Remediation of Database Pool

Connection Anomalies in Enterprise Applications.

ML Monitoring and Remediation of Database Pool

Connection Anomalies in Enterprise Applications

(January 01, 2021).

[26] Pirozzi, E. (2018). PostgreSQL 10 High

Performance: Expert techniques for query

optimization, high availability, and efficient database

maintenance. Packt Publishing Ltd.

[27] Proksch, S. (2017). Enriched event streams: a

general platform for empirical studies on in-IDE

activities of software developers (Doctoral

dissertation, Technische Universität Darmstadt).

[28] Raju, R. K. (2017). Dynamic memory inference

network for natural language inference. International

Journal of Science and Research (IJSR), 6(2).

https://www.ijsr.net/archive/v6i2/SR24926091431.p

df

[29] Sardana, J. (2022). The role of notification

scheduling in improving patient outcomes.

International Journal of Science and Research

Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-

improving-patient

[30] Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S.

B., Zheng, Y., Shin, Y. K., ... & Van Duin, A. C.

(2016). The ReaxFF reactive force-field:

Sandeep Reddy Gundla / IJCESEN 11-3(2025)5405-5421

5421

development, applications and future directions. npj

Computational Materials, 2(1), 1-14.

[31] Shaik, B. (2020). PostgreSQL Configuration:

Best Practices for Performance and Security. Apress.

[32] Singh, V. (2021). Generative AI in medical

diagnostics: Utilizing generative models to create

synthetic medical data for training diagnostic

algorithms. International Journal of Computer

Engineering and Medical Technologies.

https://ijcem.in/wp-content/uploads/GENERATIVE-

AI-IN-MEDICAL-DIAGNOSTICS-UTILIZING-

GENERATIVE-MODELS-TO-CREATE-

SYNTHETIC-MEDICAL-DATA-FOR-

TRAINING-DIAGNOSTIC-ALGORITHMS.pdf

[33] Singh, V. (2022). EDGE AI: Deploying deep

learning models on microcontrollers for biomedical

applications: Implementing efficient AI models on

devices like Arduino for real-time health monitoring.

International Journal of Computer Engineering &

Management. https://ijcem.in/wp-

content/uploads/EDGE-AI-DEPLOYING-DEEP-

LEARNING-MODELS-ON-

MICROCONTROLLERS-FOR-BIOMEDICAL-

APPLICATIONS-IMPLEMENTING-EFFICIENT-

AI-MODELS-ON-DEVICES-LIKE-ARDUINO-

FOR-REAL-TIME-HEALTH.pdf

[34] Smart, J. (2020). Sooner safer happier:

antipatterns and patterns for business agility. IT

Revolution.

[35] Stephenson, M., Sastry Hari, S. K., Lee, Y.,

Ebrahimi, E., Johnson, D. R., Nellans, D., ... &

Keckler, S. W. (2015, June). Flexible software

profiling of gpu architectures. In Proceedings of the

42nd Annual International Symposium on Computer

Architecture (pp. 185-197).

[36] Stoicescu, M., Fabre, J. C., & Roy, M. (2017).

Architecting resilient computing systems: A

component-based approach for adaptive fault

tolerance. Journal of Systems Architecture, 73, 6-16.

[37] Sukhadiya, J., Pandya, H., & Singh, V. (2018).

Comparison of Image Captioning Methods.

INTERNATIONAL JOURNAL OF

ENGINEERING DEVELOPMENT AND

RESEARCH, 6(4), 43-48.

https://rjwave.org/ijedr/papers/IJEDR1804011.pdf

[38] Terber, M. (2018). Real-world deployment and

evaluation of synchronous programming in reactive

embedded systems (Doctoral dissertation,

Dissertation, RWTH Aachen University, 2018).

[39] Ugwueze, V. (2024). Cloud Native Application

Development: Best Practices and Challenges.

International Journal of Research Publication and

Reviews, 5, 2399-2412.

[40] Waseem, M., Ahmad, A., Liang, P., Akbar, M.

A., Khan, A. A., Ahmad, I., ... & Mikkonen, T.

(2024). Containerization in Multi-Cloud

Environment: roles, strategies, challenges, and

solutions for effective implementation. arXiv

preprint arXiv:2403.12980.

[41] Zhu, Y., Richins, D., Halpern, M., & Reddi, V.

J. (2015, December). Microarchitectural implications

of event-driven server-side web applications. In

Proceedings of the 48th International Symposium on

Microarchitecture (pp. 762-774).

