

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5422-5441
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Development of a Simulator to Mimic VMware vCloud Director (VCD) API Calls

for Cloud Orchestration Testing

Zahir Sayyed*

R&D Engineer Software, Jamesburg, New Jersey, USA
* Corresponding Author Email: sayyedzahirr@gmail.com - ORCID: 0009-0004-1148-4126

Article Info:

DOI: 10.22399/ijcesen.3480

Received : 14 May 2025

Accepted : 16 July 2025

Keywords

Cloud Orchestration,

vCloud Director,

API Simulation,

DevOps Testing,

CI/CD Automation

Abstract:

Orchestration systems, particularly those on VMware vCloud Director (VCD), play a

vital role in managing multi-tenant virtualized environments. Nonetheless, it is

problematic to test automation scripts and orchestration workflows directly on production

or staging VCD infrastructure: it is expensive, inaccessible, and may endanger live

services. This paper provides an overview of the design and implementation of an API

call simulator tailored to a specific domain, aiming to create safe, efficient, and repeatable

testing environments for developers and DevOps engineers. In contrast to generic

mocking tools, this simulator offers a feature set tailored to VCD-specific requirements,

including stateful API behavior, vApp mock lifecycles, and dynamic responses. It

confirms popular HTTP requests on core end-points such as sessions, vApps, catalogs,

and networks, offering a precise test proxy that does not map virtualization to the

backend. The simulator also fits well in CI/CD environments and facilitates chaos testing

through fault injection. A detailed analysis demonstrates its high fidelity to real VCD

behavior, with low latency under concurrent load, and developers were satisfied with the

results. Applications include use as a development sandbox tool, a disaster recovery

testing tool, an educational tool, and a certification tool. The paper concludes by

suggesting the adoption of these approaches on a broader scale, both in enterprise settings

and those involving cloud training. The scalability of the simulator ultimately addresses

the continuity limitations of present-day testing in cloud orchestration.

1. Introduction

Automation and orchestration of complex

infrastructure are central concepts in the context of

modern cloud computing, particularly within a

multi-tenant environment. VMware vCloud Director

(VCD) is one of the most popular platforms in the

business. Through VCD, cloud providers can deploy

secure, multi-tenant virtual data centers to

customers, enabling them to centrally manage and

scale other resources, including virtual machines,

networks, and storage. VCD is strong, though;

however, it is not very user-friendly to verify

through a live setup. Developers and DevOps

engineers may encounter difficulties when required

to run orchestration scripts or automation jobs that

interact with the VCD API. The fundamental issue is

that testing in a real VCD environment is hazardous

and cost-prohibitive. A test that calls on the

production VCD server can cause service disruption,

raise security issues, or cause live infrastructure

damage in the event of a failure. Moreover, not all

teams have the opportunity to run a dedicated VCD

testbed due to licensing and operational costs.

This article focuses on the design and creation of a

simulator that imitates the actions of VMware

vCloud Director API calls. The simulator is designed

to enable developers and testers to execute

orchestration workflows realistically without

requiring a connection to a live VCD environment.

Like the actual VCD API, the simulator implements

standard RESTful requests (GET, POST, PUT, and

DELETE) and responds accordingly. Considering

the example of a test script attempting to create a

virtual application (vApp), the simulator returns

structured data that appears identical to what VCD

would have, allowing the script to continue running

and being checked without using any actual

infrastructure.

There are several benefits to this strategy. First, it

becomes safer and easier to test the complicated

workflows, and there is no chance of confusing the

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:sayyedzahirr@gmail.com

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5423

actual services. Second, it reduces the development

and quality assurance costs, as there is no need to

have a complete cloud infrastructure that must be

provisioned and maintained in the test environment.

Third, it can improve iteration and automation speed

in continuous integration and delivery (CI/CD)

pipelines, as test speed and reliability are essential

factors.

This article aims to achieve three objectives. To

begin with, it proposes presenting a realistic

approach to implementing a simulation of the VCD

API using modern web technologies. The second

point clarifies that the simulator can be set up to

provide various kinds of responses, allowing users to

understand how their automation reacts to positive

and negative situations, as well as edge cases. Third,

it assesses how this simulator facilitates

development processes, particularly when using

automated tests. There is a need to explain the extent

of this work. The simulator does not attempt to

mimic the complete operations of the VCD system,

including real provisioning of virtual machines or

hypervisor-level control. Instead, it only emphasizes

responses at the API level. This makes it perfect for

functional testing, regression testing, and integration

testing, where the primary focus is whether script

and software tools are interacting appropriately with

the API endpoints, as opposed to what is happening

in the background of the virtual infrastructure.

2. Background and Problem Statement

2.1 Overview of VMware vCloud Director (VCD)

VMware vCloud Director (VCD) is a cloud service

delivery platform that service providers use to

provision and orchestrate Infrastructure as a Service

(IaaS). It is built on top of the core VMware

virtualization infrastructure—namely vSphere and

NSX—and reflects a multi-tenant abstraction layer.

This design enables cloud providers to serve

independent customers through the creation of

virtual data centers (VDCs), where compute,

network, and storage resources are securely isolated

and managed. Such a layered orchestration model

aligns with broader strategies in infrastructure

management, including dual sourcing and resource

decoupling, which improve system resilience and

vendor flexibility (16). In essence, VCD provides a

RESTful application programming interface that

governs the allocation of virtual resources by

orchestrating the process. Such resources are virtual

machines (VMs), vApps (i.e., one or more VMs that

comprise virtual applications), catalogs (which hold

templates and media), and networks. The API can

automate nearly all tasks that can be driven through

the web-based user interface, including creating a

vApp, uploading ISO images, managing virtual

networks, and configuring firewall rules.

The VCD API is organized and operates according

to standard guidelines (24). For example, a user can

log in using a session endpoint, retrieve a list of

available catalogs, or initiate the creation of a virtual

machine with specific parameters. This makes the

API a critical inclusion in any DevOps or automation

process in VCD environments. These API calls are

frequently used by teams in the form of scripts and

in CI/CD pipelines, where they automate operations

such as environment creation, testing, and

destruction. As the figure below illustrates, VCD

operates atop VMware Cloud Foundation,

leveraging the underlying infrastructure to deliver

flexible, scalable, and secure cloud environments.

The integration of API-driven orchestration into

developer pipelines allows for dynamic environment

creation, automated testing, and seamless

teardown—essential for agile and iterative delivery

models.

Figure 1: VMware vCloud Director + VMware Cloud Foundation = Harmony

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T16
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T24

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5424

2.2 Issues with Direct Testing of VCD

Environments

Although the VCD API has powerful capabilities,

direct testing against the API poses several

significant problems (14). The high cost of

infrastructure is a considerable concern.

Environments based on VMware are very costly to

license and to maintain. A basic VCD environment,

including all its dependencies such as vCenter, ESXi

hosts, NSX networking, and external databases,

consumes a considerable number of resources. This

renders it uneconomical for several organizations to

maintain a unique test environment for API

validation. The next significant problem is access

restrictions. Security, compliance, and stability are

essential factors in preventing easy access to the

production VCD environment in many

organizations. Often, developers and testers lack the

necessary permissions to conduct meaningful tests

or execute orchestration scripts. Even when access is

granted, calling experimental APIs can be risky. For

instance, an inefficiently written script may

inadvertently shut down a critical virtual machine,

delete sensitive data, or alter network

configurations—disrupting live services in ways that

compromise both availability and reliability. These

risks are particularly acute in systems that require

strong data consistency and operational resilience,

such as those underpinned by cloud-native databases

like MongoDB (11). Furthermore, attempts to scale

or test these systems in real time without controlled

environments can introduce performance

bottlenecks or data integrity issues, reinforcing the

need for isolated simulation layers (12).

Production testing also raises the issue of testing

stability and performance. Running repeated tests at

ridiculous levels by creating, modifying, and

deleting virtual resources may unnecessarily burden

the production system. This may cause a delay in

real operator performances or alarm the supervisory

systems. Additionally, in many production settings,

failure conditions analogous to those that testers

should simulate (e.g., timeouts, failing responses, or

network suspensions) are not generated, which

prevents tests from validating how orchestration

scripts react to them. These limitations typically

leave teams with two unfavorable options: either

perform against a real system and take the risk, or

perform against nothing and take a chance when the

scripts are deployed. Both approaches are less than

ideal and can lead to time wastage, unsuccessful

deployments, and the inability to identify bugs at the

earlier stages of development.

Testing against a live VMware vCloud Director

(VCD) environment introduces numerous

challenges that hinder safe, efficient, and repeatable

testing. As shown in Table 1, issues such as high

infrastructure costs, limited access rights, and the

risk of unintentional disruptions make real-world

VCD environments unsuitable for development

pipelines.

Table 1: Challenges of Direct VCD API Testing

Challenge Area Details

Infrastructure Cost
High licensing and maintenance costs for VCD, vCenter, ESXi, NSX, and

databases.

Access Restrictions
Limited developer/tester permissions; compliance and stability concerns restrict

meaningful testing.

Risk of Disruption
Experimental scripts can accidentally shut down VMs, delete data, or alter

network settings.

Production Load &

Stability
Repeated test cycles can slow down or destabilize production environments.

Lack of Simulated

Failures

Difficult to test failure conditions (e.g., timeouts, network issues) in live

environments.

Risk vs. Blind Testing
Teams must choose between risky real-environment tests or no testing at all

before deployment.

Development Impact Leads to time loss, failed deployments, and bugs discovered late in the cycle.

2.3 Testing Challenges in DevOps Contexts

Orchestration systems, particularly those on

VMware vCloud Director (VCD), play a crucial role

in managing multi-tenant virtualized environments.

However, running automation scripts and

orchestration workflows directly against production

or even staging VCD infrastructure can be highly

problematic due to operational costs, restricted

accessibility, and risks to live services. These

challenges necessitate robust simulation alternatives

that allow for safe and efficient testing. This paper

provides an overview of the design and

implementation of an API call simulator tailored to

the unique demands of cloud orchestration

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T14
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T11
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T12

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5425

environments—offering developers and DevOps

engineers a secure, repeatable environment for

experimentation and validation. Such approaches

align closely with DevSecOps principles, where

secure and automated testing is integrated

throughout CI/CD pipelines to minimize production

risks and improve code reliability (20). In contrast to

generic mocking tools, this simulator offers a feature

set tailored to VCD-specific requirements, including

stateful API behavior, vApp mock lifecycles, and

dynamic responses (32). It supports the prevalent

HTTP operations on primary endpoints, such as

sessions, vApps, catalogs, and networks, providing a

precise testing substitute that does not require any

form of virtualization on its backend. The simulator

also fits well in CI/CD environments and facilitates

chaos testing through fault injection.

A detailed analysis demonstrates its high fidelity to

real VCD behavior, with low latency under

concurrent load, and developers were satisfied with

the results. Sandbox applications and disaster

recovery testing are possible uses, as well as

applications in learning and certification. The paper

concludes by offering suggestions for adopting them

on a broader scale, both in enterprise settings and

those involving cloud training. The simulator is an

ultimate scalable remedy to contemporary testing

limitations in cloud orchestration.

3. Literature Review and Related Work

3.1 Existing Mocking and Simulation Tools

Mocking software is increasingly common in

software development to simulate the responses of

real systems in a comprehensible and repeatable

manner (33). These tools enable developers to

decouple system components, emulate external

service behavior, and run integration tests without

depending on live systems. Among the most widely

used mocking tools are WireMock, Postman Mock

Server, and Beeceptor. Each offers practical

capabilities for simulating HTTP-based APIs and is

effective in many general-purpose software projects.

However, none of these tools is explicitly designed

to simulate the complex workflows or stateful

interactions required in cloud orchestration

platforms like VMware vCloud Director (VCD). In

specialized domains—whether in healthcare

systems, financial platforms, or virtualized

infrastructure management—general-purpose

mocking often fails to account for chained state

transitions, conditional logic, or role-sensitive

behavior (28). Therefore, while useful in early

development stages or lightweight service mocking,

such tools lack the depth and domain-awareness

needed for realistic cloud orchestration testing.

An example is WireMock, an open-source

mechanism that enables the definition of HTTP stubs

with predetermined responses. It allows flexible

matching rules, is responsive to delay, and may

provide dynamic content in response to request

parameters. It is also quite configurable and can be

well used to test microservices. WireMock does not,

however, provide out-of-the-box support for

modeling complex state transitions or supporting

long-lived workflows found in cloud orchestration

systems. It is very good at mocking out a single

request-response pair, but fails to simulate the rest of

the lifecycle when working with a virtual application

or the chain reactions that occur when a resource is

provisioned in a cloud-based scenario.

Another common alternative is Postman Mock

Server, specifically used more often to test frontend

and API integration. It enables teams to create API

page designs as well as fake endpoints that respond

with a set JSON reply. This comes in handy at an

early developmental stage when the backend service

might not be ready. Although Postman accepts

environment variables and dynamic samples, it

continues to work primarily in the arena of static

response generation. It lacks memory or state

persistence between calls, which is necessary when

attempting to emulate a real-world application where

some sequence of API calls results in a change in

system state. Beeceptor is a straightforward, cloud-

based, HTTP mocking server that specializes in

capturing and debugging RESTful API traffic.

Installation is straightforward, and it offers a user-

friendly interface for adding and checking traffic

rules. It is usually applied in prototyping and

simulating third-party services. It, however, lacks

support for more advanced functionalities such as

request chaining, in-memory state monitoring, or

emulation of authentication flows typical of VCD

platforms. Each of these tools has a vital purpose and

can be helpful in numerous testing situations.

Nevertheless, they have not been constructed from a

cloud orchestration perspective (3). They specialize

in individual requests instead of workflows, where

tasks are tied to one another, which is typical of

cloud infrastructure management. The state of a

particular API call sometimes dictates how

subsequent APIs can and do act, and generic

mocking tools cannot readily support this type of

interaction.

As the figure below illustrates, general-purpose tools

are typically request-focused, whereas orchestration

testing demands a flow-focused, context-aware

simulation approach.

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T20
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T32
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T33
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T28
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T3

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5426

Figure 2: Mock Testing

3.2 Gaps in Current Solutions

Although available tools offer valuable components

on how to mock APIs, they lack the components

needed to mock VMware vCloud Director

Environments. A crucial shortcoming is the lack of

representation for stateful operations. Operations

such as establishing a vApp, turning it on, or

attaching a network are not simple calls in VCD, but

rather part of a larger lifecycle that spans several

stages and system elements. A simulator that

provides only fixed replies is not able to truly

represent VCD behavior when time-marched.

Support for cloud-native data structures and payload

formats is another major shortcoming. VMware

vCloud Director (VCD) relies heavily on complex

XML and JSON schemas to represent its

resources—ranging from virtual machines and

media files to catalogs and virtual networks. These

schemas are often deeply nested and interlinked,

referencing other entities to define dependencies,

lifecycles, and orchestration behavior. Generic

mocking frameworks, however, typically treat

payloads as opaque blobs without enforcing schema

validity or mimicking inter-resource linkage. This

limitation reduces test realism and may lead to

integration failures when such assumptions are

carried into production workflows. Modern event-

driven and distributed systems demand fault

tolerance and context-aware message structures,

where improper schema handling can compromise

system behavior (7). Identifying and respecting

context boundaries is essential when decomposing

monolithic systems into modular services—

underscoring the importance of accurate, schema-

compliant communication between components,

something generic mock servers often fail to

reproduce (8).

Authentication and authorization are also weakly

supported. VCD uses a session token and role-based

access control to control permissions between

tenants and users. Available tools simulate basic

auth or API keys and do not attempt to emulate

session management, token expiry, isolation, or

multi-tenant isolation. This complicates testing

security-sensitive operations or verifying that scripts

behave reasonably when subjected to the actual

access limitation. Additionally, many of these tools

lack the development of failure conditions and error

simulation (5). In practical VCD settings, API call

failures often occur due to resource constraints,

rights concerns, and internal system issues. The

ability to emulate such failures is crucial for creating

robust and resilient orchestration systems. It is also

challenging to test edge cases without the capability

to simulate faults and timeouts, or even inject errors

and timeouts.

3.3 Need for Domain-Specific Simulators

The above challenges indicate the need for a

domain-specific solution that suits the special

purpose of VMware vCloud Director. Such a

simulator needs to have an idea of the domain model

of VCD, its resources, lifecycles, workflows, and

authentication methods, unlike a general-purpose

API-mocking tool. It should be able to replicate real-

life behavior in a stateful, predictable manner,

allowing for realistic testing of orchestration scripts

and automation pipelines. By designing a VCD-

specific simulator, the reliability of testing can be

significantly enhanced, infrastructure costs can be

reduced, and the lifecycle can be shortened (2). It

enables testers to simulate real-life experiences

without compromising live systems. Preserving

internal state allows it to simulate entire vApp

lifecycles, catalog management, and user sessions,

and in doing so, offer more valuable results than

simple, static mock servers.

This also aids in simulating error cases and edge

cases, allowing developers to test their system in

both typical and failure scenarios. In addition to

development and testing, such a simulator can also

be beneficial in educational and training settings. It

can provide students or junior engineers with a safe

sandbox to learn the functions of VCD, call API

functions, and conceptualize orchestration flows,

without needing to use a live environment, which is

both expensive and complicated. Although broader-

scale mocking tools are helpful during numerous

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T7
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T8
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T5
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T2

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5427

software projects, they cannot fully simulate

VMware vCloud Director Functionality. The

available tools leave gaps that need to be filled by a

domain-specific simulator, as well as gaps in terms

of stringent testing and development requirements

posed by today's cloud orchestration workflows. To

overcome the challenges identified in live VCD

testing (as shown in Table 1), a tailored simulation

solution is necessary. As outlined in Table 2, a VCD-

specific simulator brings domain awareness, cost

efficiency, and error simulation capabilities that

generic mocking tools lack.

Table 2: Justification for a VCD-Specific Simulator

Requirement/Benefit Explanation

Domain Awareness
Simulator should understand VCD’s specific resources, workflows, and

authentication methods.

Stateful Behavior
Must replicate real-world state changes (e.g., vApp lifecycles, user

sessions) for accurate testing.

Enhanced Reliability
Realistic simulations improve confidence in automation scripts and reduce

test ambiguity.

Cost Efficiency
Reduces need for costly VCD environments; testing becomes feasible for

smaller teams or projects.

Error & Edge Case Simulation
Enables safe, repeatable testing of failure conditions not easily recreated in

production.

Educational Utility
Acts as a training tool for students and junior developers without needing

access to live systems.

Superior to General Mocking

Tools

Fills gaps left by generic API mocks which lack VCD-specific features and

behavior.

4. Architecture of the Simulator

4.1 Core Components

The simulator that models VMware vCloud Director

(VCD) API calls follows a modular design that

intentionally echoes the organization and behavior

of genuine VCD sessions. Its framework consists of

several interdependent modules, and each module

contributes to a believable and repeatable testing

environment (26). Central to the simulator is the API

Endpoint Manager. It listens for all incoming HTTP

requests from client software, including

orchestration scripts and automation utilities. After

receiving a message, the manager determines which

endpoint the client targeted, verifies the HTTP

method used (GET, POST, PUT, or DELETE), and

forwards the request to the appropriate internal

handler. In this way, the manager serves as the

gateway that mediates between external callers and

the simulators' underlying processing logic.

Once a request has been routed, control passes to the

Payload Engine, which constructs the response

payload destined for the client. This engine operates

from predefined templates that closely mirror the

structure and content of genuine VCD API outputs,

inserting dynamic elements such as unique

identifiers, timestamps, and operational status

according to the current state of the simulation. Such

contextual variability is crucial for replicating

production-like workflows, where the content of a

response is contingent upon prior actions and current

parameters. To further sustain the appearance of an

operational cloud environment, the simulator

employs a State Tracker (23). This component

monitors all active entities within the simulation—

virtual applications (vApps), networks, catalogs, and

user accounts—and updates its internal registry

whenever a client request creates, modifies, or

removes a resource. By recording every transaction,

the State Tracker ensures that future queries

reference an accurate snapshot of the system's

current state. For instance, when a client creates a

vApp and subsequently requests a list of vApps, the

simulator dutifully includes the new entry in the

returned dataset, even though no underlying

infrastructure has been provisioned.

The final critical element is the Logging Module. It

captures each incoming request, together with the

corresponding response, headers, payload, and a

precise timestamp. Such detailed records aid in

debugging, facilitate systematic audits, and clarify

the execution flow of test scripts during simulated

runs. Furthermore, they enhance transparency and,

more importantly, provide the traceability that

regulated testing scenarios demand. When coupled,

these four parts operate seamlessly to produce a

simulation platform that is flexible, responsive, and

mindful of its internal state, thereby mirroring

VCD's API layer with high fidelity.

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T26
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T23

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5428

As the figure below illustrates, the simulation

framework mirrors the operational logic and

interaction flow of a real-world VCD API layer.

Figure 3: VMware vCloud Director

4.2 Technology Stack

The simulator is constructed from a blend of

contemporary, broadly supported technologies

selected for their ease of use, solid performance, and

room for future growth. Backend logic runs on either

Node.js or Flask, with the choice guided by

deployment context and performance criteria. Both

environments come with mature libraries for

RESTful routing, middleware insertion, and request

parsing, making either one a suitable base for a

system that must juggle multiple endpoints, each

capable of shifting behavior. The API's structure is

defined using the OpenAPI Specification, also

known as Swagger (6). By formalizing every path,

parameter, response, and possible error, this contract

ensures all endpoints remain consistent and

predictable. Automated tools then read the contract

to build live documentation and create tests, so

developers can immediately see how to use the API

in systems such as Postman or Swagger UI while

they are still working on other test scenarios.

The simulator manages its data using a lightweight,

schema-less database, typically either MongoDB or

Redis. MongoDB's document model suits VCDs'

nested JSON structures, allowing developers to store

entire payloads as single, retrievable documents.

Redis, however, shines when speed is critical; its in-

memory key-value store can quickly track session

states or ephemeral resources needed during high-

frequency CI/CD cycles. Combining Node.js or

Flask with the OpenAPI spec and MongoDB or

Redis yields a nimble stack that emphasizes speed,

realism, and the flexibility for users to adjust parts of

the system without waiting for slow, monolithic

releases.

4.3 Security Simulation Features

To function as an accurate stand-in for an actual

VCD environment, the simulator must replicate

VCD's authentication and security guardrails. The

first element of this emulation is token-based session

management. When a client directs a login request to

the simulator's authentication endpoint, the

simulator issues a token, usually structured as a

JSON Web Token (JWT) or a mock bearer token.

That token must accompany subsequent API calls,

mirroring the behavior of a live session. In each

request, the simulator verifies the token and can

mark it expired either after a predetermined duration

or according to configurable session rules. In

addition to the token flow, the simulator offers a

basic-auth emulation for users who expect a more

classical scheme. Under this method, the system

checks supplied username and password pairs

against a static inventory defined in its configuration

file. Although real user accounts are neither created

nor persisted, the simulator upholds access-control

rules and replies with standard HTTP status codes

whenever authentication fails or succeeds.

To facilitate deployment in secure test labs, the

simulator optionally accepts Secure Socket Layer

(SSL) termination (27). When configured in this

manner, the tool presents an HTTPS endpoint,

enabling client applications to exchange data with it

over an encrypted channel, just as they would with a

production cloud service. This feature meets the

stringent security policies often found in enterprise

networks, where plaintext traffic is explicitly

forbidden even during non-production testing (21).

With realistic security implemented, the simulator

can be integrated into pipelines that rely on

authentication tokens, session cookies, and protected

transport, thereby strengthening its credibility and

broadening its applicability in cloud-orchestration

evaluation.

5. Core Features and Functionalities

The simulator, which mimics VMware vCloud

Director (VCD) API calls, has been designed with a

set of core features that replicate authentic API

behavior within a controlled, adjustable

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T6
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T27
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T21

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5429

environment. These features answer the everyday

demands of testing cloud orchestration, validating

automation procedures, and aiding development

work. Each function reacts in a manner that remains

true to the responses an actual VCD system would

issue, ensuring that the test results remain

meaningful and dependable.

As the figure below illustrates, these functionalities

form the operational heart of the simulator, enabling

realistic cloud behavior emulation without the cost,

risk, or complexity of live VMware infrastructure.

Figure 4: VMware vCloud Director

5.1 Simulated Endpoint Catalog

Central to the simulator is a comprehensive catalog

of mock API endpoints that closely match the key

tasks typically carried out in VCD settings. These

endpoints follow the same structure and functions as

seen in a live VCD API, covering familiar entry

points, including the authentication call that initiates

a session, as well as those for managing virtual

applications (vApps), catalogs, media objects, and

network settings. For instance, when a client issues

a login request to the session endpoint, the simulator

creates a session token and returns it in the same

format that production VCD instances use (17).

Once the client is authenticated, it can then call

endpoints to create a vApp, list catalog media items,

or touch the virtual network layer. Each endpoint

emulates the behavior outlined in the official VCD

API documentation, delivering consistent response

structures, status codes, and headers. Because it

exposes this wide set of endpoints, the simulator can

act as a drop-in substitute for live VCD systems in

many test cases where the tester wants to validate

automation scripts or orchestration logic without

consuming real cloud resources.

5.2 Dynamic Response Generation

Another key capability of the simulator lies in its

ability to craft dynamic responses influenced by

incoming request data, environment settings, and its

simulated state. Instead of relying on static files or

hardwired replies, the simulator utilizes structured

templates—typically in JSON—that contain

variables and placeholders. When a request arrives,

the system locates the matching template and

populates its fields using values extracted from the

request, pulled from environment variables, or

gathered from internal state. The described method

generates context-aware replies that closely mirror

behavior seen in production systems. For example,

when a user submits a command to provision a new

vApp, the framework automatically fabricates a

fresh identifier, records a timestamped deployment

status, and formats a resource URL in line with

documented conventions. All of these elements are

created on the fly and woven into the reply template

during the actual execution cycle (25). Generating

responses in this manner is beneficial for workloads

that require strict structural consistency or for test

scenarios where analysts want to observe how

automation scripts behave when presented with

subtly different data. By injecting controlled

variability yet still conforming to well-defined

patterns, the simulator broadens test scope without

sacrificing the reliability of individual cases.

5.3 Stateful Operation Handling

Preserving system state across multiple chained API

calls presents a persistent hurdle in replicating

sophisticated orchestration backends, such as

VMware Cloud Director. The current

implementation addresses this problem by

incorporating an internal state table that logs each

client action, enabling returned messages to reflect

the evolving context accurately. Preserving state

across client transactions is essential for accurately

imitating the lifecycle of virtual applications. When

a request arrives to provision a new vApp, the

simulator commits the vApp's name, status, and

configuration to either in-memory storage or a

persistent backend. Subsequent commands, whether

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T17
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T25

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5430

to power the vApp on or to check its state, are

processed using this retained information. As a

result, the simulator models the temporal evolution

of VCD resources and guarantees that orchestrated

workflows behave consistently with production

behavior. Having a coherent state across sessions

also underpins multi-step testing, where the output

of one API call determines the validity of later calls.

This continuity reflects genuine usage patterns,

allowing developers to exercise the entire

orchestration pipeline and confirm that intermediate

states remain valid.

5.4 Fault Injection Mechanism

To benchmark robustness, the simulator

incorporates a fault injection feature that lets testers

introduce delays, errors, or anomalous behavior on

demand. By engineering scenarios such as network

timeouts, downstream service outages, or corrupt

payloads, users can verify whether calling clients

handle adversity gracefully, all without impacting

production systems. For instance, a tester can set the

simulator to pause for a few seconds before

responding. This delay accurately imitates the

noticeable lag that users might experience when

systems are under heavy load. At other times, the

simulator can emit specific HTTP error codes—such

as 503(Service Unavailable) or 500 (Internal Server

Error)—accompanied by clear text messages that

guide the client about the nature of the fault.

By injecting these conditions, developers can

observe how their automation behaves during failure

scenarios, verifying that fall-back routines, retry

loops, and error logs operate as intended. Such

testing is invaluable in continuous integration

pipelines and in mission-critical scripts, where

uninterrupted operation and proven fault tolerance

are non-negotiable. Taken together, the simulator's

precise endpoint imitation, dynamic response

settings, stateful behavior modeling, and

customizable fault generators create a solid

environment for validating cloud orchestrators.

Developers and testers can explore intricate, real-

world interactions with the VCD API without

endangering production resources, incurring

unexpected costs, or managing the overhead of live

infrastructure. As a result, the tool has become a

standard component of contemporary DevOps

practices and cloud-centered development

workflows.

6. Methodology

The simulator, designed to reproduce VMware

vCloud Director API exchanges, evolved through a

methodical, multi-phase process (15). Each discrete

phase was oriented toward a specific technical goal,

thereby demonstrating anticipation of real-world

testing and automation environments in which the

simulator might be deployed. The sequence of

activities included schema extraction, stub

generation, middleware assembly, pipeline

integration, and the judicious application of

contemporary development tools, all aimed at

delivering a durable and versatile simulation

platform.

6.1 API Schema Extraction and Stub Generation

The inaugural task consisted of harvesting the

authoritative API schema records from VMware's

vCloud Director Documentation set. These records

enumerate accessible endpoints, define request

formatting, clarify anticipated responses, list error

codes, and outline the requisite authentication flows.

To capture this information in a coherent and

computable format, the team adopted the OpenAPI

(formerly known as Swagger) specification, thus

facilitating future validation, code generation, and

automated testing activities. Once the API schema

was finalized, the team turned its attention to

creating preliminary endpoint stubs, employing a

utility such as Swagger Codegen. This utility ingests

an OpenAPI specification and produces skeletal

server code in multiple languages, relieving

developers of much of the boilerplate typically

involved in endpoint definition. The resulting stubs

include route bindings, supported HTTP verbs, basic

request validation, and empty handlers intended for

future logic. By providing this initial scaffold, the

team was able to focus sooner on the substantive

features of the simulator rather than repetitive

configuration tasks. These automatically produced

files became the baseline for the simulator's routing

component and were later adjusted to accommodate

stateful sessions and context-sensitive replies.

Customizing the scaffolding at this stage helped

keep the simulator's API structure consistent with

the production VCD service and verified that all

routing rules were present before more complex

functionality was layered on top.

6.2 Middleware Development

With the endpoint scaffolds in place, attention

shifted to the middle tier that orchestrates request

handling, embeds application logic, and generates

dynamic outcomes in response to client messages.

At this stage, the team implemented stateful tracking

as its cornerstone feature. Dedicated middleware

modules now log the status of every entity—vApps,

networks, catalogs, and media items—as it is

created, modified, or deleted via any simulator

endpoint. Because of this systematic logging, the

simulator can reproduce lifecycles with a high

degree of verisimilitude; for instance, a vApp moves

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T15

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5431

from "creating" to "ready" automatically, and

queries for media items return precise, up-to-date

lists. Developers built a payload resolution engine to

facilitate the generation of dynamic responses (22).

This engine reads pre-defined templates and

substitute’s placeholders with values drawn from the

incoming request, the environment configuration, or

the live system state. Thus, a single template might

receive a newly assigned identifier, user-provided

metadata, or the current timestamp, allowing the

simulator to adapt quickly to a variety of test

conditions. Together, these middleware components

enable the system to mimic real-world orchestration

flows in a repeatable and dependable way, without

depending on actual hardware or external services.

As the figure below illustrates, middleware acts as

the connective tissue of the simulator, coordinating

between endpoint input and internal logic to generate

intelligent, context-sensitive responses.

Figure 5: Middleware

6.3 Testing and CI/CD Pipeline Integration

To facilitate use in contemporary development

workflows, the simulator was configured for

straightforward deployment within CI/CD pipelines.

The initial step in this approach involved

containerizing the application with Docker. A

dedicated container was constructed to bundle the

simulator, its dependencies, configuration files, and

the complete runtime environment in a single image.

As a result, users can execute the simulator on any

machine with Docker installed, eliminating the need

for manual setup replication. Following

containerization, the simulator was integrated into

CI/CD platforms, including GitHub Actions and

Jenkins. These systems trigger automated testing and

deployment sequences with every code commit or

build event. By inserting the simulator into the

pipeline as a discrete stage, orchestration scripts and

associated automation logic can be exercised against

a stable API mock during each build. This practice

enhances test reliability and reduces the likelihood

of surface-level integration failures surfacing only at

later stages of the release cycle (29, 30). Pipeline

integration equally accommodates the running of

custom test suites, preliminary environment scripts,

and cleanup routines. In this role, the simulator

becomes a key fixture of the automated threshold,

supporting quick, repeatable, and secure testing

sequences.

6.4 Tooling Stack

The final methodological phase focused on selecting

and integrating tools to cover development,

simulation, testing, and deployment. The team

documented the API structure using OpenAPI, and

throughout the entire lifecycle, Swagger UI provided

interactive references, and Swagger Codegen

generated initial stub files. To ease portability, the

application was containerized with Docker, allowing

the simulator to launch on developer laptops, virtual

machines, or cloud services with little extra

configuration. Testing teams relied on Postman to

design and execute collections against the simulator,

confirming that actual responses matched expected

behavior across diverse scenarios.

Continuous integration pipelines in GitHub Actions

and Jenkins executed automated tests, built fresh

container images, and published them to shared

registries for joint exploration. These routines

ensured that the simulator remained in working order

whenever code was added or altered, supporting

quick feedback for all contributors. Following an

orderly sequence—schema design, logic coding,

container packaging, and automated release—the

project produced a realistic, efficient tool for

evaluating cloud orchestration where hands-on

access to VMware vCloud Director is impractical.

As shown in Table 3, GitHub Actions and Jenkins

were used to automate testing, containerization, and

release workflows. This not only accelerated

development cycles but also guaranteed that code

changes did not compromise the simulator’s core

functionality.

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T22
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T29
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T30

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5432

Table 3: CI/CD Pipeline and Simulator Development Workflow

Stage / Component Details

CI Tools Used GitHub Actions and Jenkins

Automation

Functions
Ran automated tests, built new container images, and published to shared registries

Purpose of CI
Ensured simulator functionality was intact after code changes; enabled fast feedback

loops

Development

Sequence
Schema design → Logic coding → Container packaging → Automated release

Outcome
Delivered a realistic, efficient tool for testing VCD orchestration workflows without

direct access

7. Practical Use Cases and Applications

The simulator for VMware vCloud Director (VCD)

API calls was engineered as a hands-on utility rather

than an abstract exercise, addressing the everyday

problems that operators and developers encounter.

Its thoughtful architecture and broad feature set

allow it to fit smoothly into contemporary DevOps

pipelines, cloud application projects, and classroom

demonstrations. By acting as a safe and budget-

friendly substitute for an active VCD instance, the

simulator adds considerable utility where security

policies, cost controls, or the need for predictable,

repeatable tests take priority.

7.1 CI/CD Pipeline Testing

Among the many scenarios where the simulator

shines, integration and testing within continuous

integration and continuous delivery (CI/CD)

pipelines is the most immediately valuable (34). In

typical cloud-native workflows, automation scripts

touch VCD APIs to carry out tasks such as

provisioning VMs, configuring networks, or rolling

out updated applications. Verifying these scripts

early and often within the pipeline is critical;

however, routing every build through a production-

like VCD environment is neither cost-effective nor

sufficiently secure. Integrating the simulator directly

into the continuous integration pipeline enables

developers to verify orchestration logic with every

code commit or build. Acting as a mock VCD

platform, the simulator predictably responds to API

calls, eliminating ambiguity during test execution.

Because of this stable feedback, integration failures,

schema mismatches, and logic bugs can be detected

before they reach production. The setup also allows

multiple pipeline runs to proceed in parallel,

sidestepping concerns about infrastructure

contention or external dependencies (31).

Packaged as a container, the simulator starts and

stops almost instantly with each pipeline execution,

leaving no residual state behind. This speed ensures

that every test runs in a clean, repeatable

environment, eliminating the need for build

engineers to spend precious minutes troubleshooting

artifacts from prior runs. The result is a marked boost

in testing reliability and a better fit with the rapid

iteration cycles modern teams have come to expect.

7.2 Developer Sandboxes

When cloud engineers and developers write

automation or orchestration scripts, they need a fast,

forgiving space to experiment without risk.

Targeting a live VCD system directly exposes the

project to accidental changes on shared resources,

unwanted service charges, and possible downtime.

Worse still, the pressure of working on production

infrastructure often forces developers to limit their

experiments, stifling innovation and learning. A

purpose-built sandbox eliminates these dangers,

encouraging developers to test boldly and iterate

quickly while preserving the stability of the broader

system.

The simulator addresses these needs by offering a

controlled sandbox that closely duplicates VCD's

behavior while leaving the production stack

untouched. Within this isolated space, engineers can

easily load new scripts, check the sequence of API

calls, and observe how their logic responds to

different inputs. They can repeat those tests at will,

because every run starts from the same known state.

Because the simulator tracks state and sends

dynamic replies, developers can push through entire

workflows-authentication, resource provisioning,

and final teardown-and see precisely how their code

would behave against the live API. As a result, teams

shorten the time between draft and deployment,

enter production with more substantial confidence,

and encounter fewer unexpected errors after

integration.

7.3 Disaster Recovery and Failover Simulations

The simulator also proven invaluable for planning

disaster-recovery (DR) and failover strategies. Real-

world DR exercises must verify intricate failover

paths, confirm that error-handling code operates as

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T34
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T31

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5433

intended, and mimic outages at both component and

region levels. Testing those scenarios on a live

system is disruptive, expensive, and often prohibited

in environments where every minute of downtime

incurs a significant cost.

The simulator creates a safe and repeatable testing

space in which disaster-recovery scenarios can be

executed without impacting production services.

With its fault-injection options, users can simulate

various errors—such as API timeouts, transient

service outages, and even malformed responses—

and then observe how the system responds. This

controlled setup enables engineering teams to verify

that their failover scripts and fallback paths function

correctly under various stressful scenarios. Running

these exercises on the simulator strengthens the

overall reliability of automation pipelines,

demonstrates compliance with relevant standards,

and confirms that cloud-architecture plans hold up

when individual components fail.

7.4 Training and Education Labs

The simulator is equally valuable for learning.

Mastering cloud-orchestration platforms such as

VCD demands practical, hands-on exposure;

however, live environments are frequently too large,

costly, or tightly governed for new staff to interact

with freely. Schools, external training providers, and

internal onboarding programs therefore struggle to

deliver meaningful lab work without straining

operational infrastructure. The simulator lowers that

barrier by offering identical tools in an isolated,

resettable space (18, 19). The simulator provides a

safe, low-risk environment that closely replicates the

production API of VCD. Trainees can log in, create

vApps, manage networks, and explore resource

hierarchies just as they would in a live environment.

Because the simulator tracks state and responds

dynamically, the learning experience feels almost

indistinguishable from working with the actual cloud

console.

Instructors can run the simulator on a laptop or host

it in the cloud, tailoring it to any lesson plan and

resetting it with a single command between classes.

That flexibility accommodates both self-guided

study and structured workshops, allowing cloud

engineers to practice automation at their own pace

without worrying about affecting production

resources. The simulator adds convenience,

reliability, and rapid feedback to nearly any

workflow. Whether inserted into a CI/CD pipeline,

used as an independent developer tool, woven into

disaster-recovery tests, or deployed in training labs,

it faithfully reproduces VCD behavior and

accelerates the adoption of cloud orchestration.

8. Evaluation and Performance Metrics

The effectiveness of the VCD API simulator is

assessed along three interrelated axes: fidelity to

VMware vCloud Director Behavior, performance

under varying load conditions, and the subjective

usability experienced by developers and testers

during their daily tasks. By examining these

dimensions together, the evaluation determines

whether the tool is both technically sound and

practically advantageous in real development and

test circuits.

As the figure below illustrates, the evaluation

framework connects performance data, behavioral

accuracy, and end-user satisfaction into a unified

model. This holistic perspective allows stakeholders

to measure not just how the simulator functions, but

how effectively it supports development goals and

reduces operational risks.

Figure 6: Key Performance Metrics

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T18
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T19

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5434

8.1 Fidelity to Real VCD Behaviour

A simulator gains value only when its outputs mirror

those of the actual system it replicates (13). To test

that criterion, the VCD simulator ran beside

production VMware vCloud Director Instances,

allowing every status code, payload identifier, and

API pathway to be checked for correspondence.

During these comparisons, identical commands—

such as creating vApps, fetching catalog entries,

establishing login sessions, or querying media

resources—were issued to both the simulator and the

live cluster, and the resulting JSON or XML

documents were placed side by side for comparison.

The comparison examined not only syntactic form

but logical organization and semantic content

against VMware's published API reference.

The outcomes confirmed that the simulator

maintains a high degree of fidelity. Core elements,

including hierarchical object relationships,

pagination schemes for list endpoints, and metadata

formatting, were reproduced with close

correspondence to the reference system. Stateful

actions such as vApp deployment and power-on

followed established workflows, yielding expected

state transitions and consistent timestamp generation

throughout the test cycle. Deviations primarily arose

in advanced situations, including granular network

policy enforcement and the handling of long-running

asynchronous jobs. These features were

intentionally abstracted in the simulator to limit

computational overhead and avoid unnecessary

complexity. The documented differences were

judged tolerable, since the simulator serves mainly

as a test-and-automation facilitator, not as a drop-in

substitute for production environments.

8.2 Performance Benchmarks

Performance experiments evaluated how the

simulator scaled under representative loads, with

particular focus on automated pipelines and

scenarios that exercised high levels of concurrent

testing. Principal metrics—endpoint latency, overall

request throughput, and per-thread memory

consumption—were recorded for each test class,

enabling comparative analysis across low, medium,

and peak workloads. Latency tests measured average

response time for each API endpoint under idle and

busy conditions. For lightweight calls, such as

session login and metadata retrieval, the average

response time remained below 50 milliseconds, even

with dozens of concurrent users. For state-changing

operations, such as vApp creation, which involve

simulated object generation and state tracking,

latency ranged from 70 to 120 milliseconds,

depending on the payload size and response

complexity.

Throughput was tested by subjecting the simulator to

concurrent API calls via a load-testing framework.

With fifty parallel users issuing a mixed pattern of

read and write commands, the system sustained over

fifteen hundred requests per second and produced

only sporadic, non-influential errors. At peak load,

response times rose slightly, yet the simulator

remained responsive and stable for all measured

flows. Memory footprint and CPU usage remained

within acceptable thresholds, especially when

deployed in Docker containers with specified

resource limits. Redis-backed instances delivered

stronger performance for short-lived sessions and

frequent state lookups, while the MongoDB back

end offered superior durability for longer-running,

sequence-based simulations. Together, these

benchmarks demonstrate that the simulator can

comfortably support typical development, testing,

and continuous integration workloads without

becoming a bottleneck. The performance profile

remains adequate for integration into automated

pipelines and is scalable enough to accommodate

multi-user environments.

The graph illustrates the behavior of the VMware

vCloud Director (VCD) API simulator when

subjected to steadily increasing numbers of virtual

users, specifically, workloads consisting of 10, 25,

and 50 concurrent transactions. Two primary metrics

appear on the figure: latency and throughput.

Latency is traced on the left Y-axis by red and orange

lines and reflects average round-trip times for

distinct classes of calls. For lightweight requests,

such as logon and metadata read, latency remained

remarkably stable, climbing only from 35

milliseconds to 48 milliseconds as the load doubled

from ten to fifty users. In contrast, state-changing

calls, including vApp provisioning, required more

internal processing; here, round-trip times increased

from 70 milliseconds to 120 milliseconds when the

same user increment was applied.

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T13

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5435

Figure 7: Simulator Performance under Varying Load Conditions

8.3 Developer Experience Feedback

The simulator's overall utility was also assessed

through qualitative comments from developers,

testers, and DevOps personnel, complementing the

raw performance figures. Structured surveys were

distributed after multiple integration cycles,

especially to teams that had previously been

hindered by restricted VCD visibility or by test beds

that frequently lost stability. Respondents pointed to

several immediate benefits. Foremost, practitioners

valued the option to execute complete orchestration

pipelines on local workstations, eliminating the need

for VPN gateways or central cloud support. This

single improvement accelerated debugging,

allowing parallel runs and providing engineers with

the room to experiment with early feature

prototypes. Testers further remarked that the

simulator made rare failure scenarios—such as token

expiration, HTTP 500 responses, or intermittent

timeouts—straightforward to generate and examine,

something production-mimicking environments had

long resisted.

The team also gathered quantitative evidence on

automated testing coverage and defect capture (35).

Across integration runs, every group logged a

noticeable rise in executed test cases per build, a

shift attributed to the simulator's easy availability

and its broadly adjustable parameters. Throughout

integration sprints, defect-catch ratios improved,

resulting in fewer discrepancies advancing into

staging or production. That trend was especially

pronounced within error-handling flows and edge-

case checks, areas that prior resource constraints had

consistently left untested.

Several focus group sessions highlighted the value

of comprehensive transaction logs, user-defined

response templates, and built-in export options for

OpenAPI specifications. These elements lowered the

learning curve for novice testers and empowered

seasoned engineers to fine-tune the environment for

specialized scenarios at little extra cost. Taken

together, the two strands of evaluation-technique

accuracy and time-to-deliver in operational settings

provide a clear verdict. The simulator reproducibly

tracked core VCD patterns, sustained heavy loads

without drift, and noticeably eased the developer-

QA feedback loop. By reducing provisioning

overhead, expanding the scope of automation, and

accelerating cycle times, it now meets the daily

demands of cloud orchestration testing. A key

measure of the simulator’s success was its impact on

developer productivity and testing quality. As

detailed in Table 4, developers reported significant

improvements in local testing, faster defect

detection, and enhanced coverage for edge-case

scenarios.

Table 4: Developer Experience Feedback:

Aspect Feedback / Observations

Local Execution
Enabled full orchestration pipelines on local machines; eliminated

VPN/cloud dependency.

Debugging & Prototyping
Accelerated debugging; allowed parallel runs and early feature

experimentation.

Failure Scenario Simulation
Simplified testing of rare cases (e.g., token expiration, HTTP 500,

timeouts).

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T35

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5436

Aspect Feedback / Observations

Automated Testing Coverage
Increased executed test cases per build due to availability and

configurability.

Defect Detection
Higher defect-catch ratios, especially in error-handling and edge-case

logic.

Support Tools
Provided detailed logs, custom response templates, and OpenAPI export

options.

Learning Curve
Lowered for new testers; enhanced scenario flexibility for experienced

users.

Operational Value
Improved evaluation accuracy, reduced delivery time, and optimized

dev-QA feedback loop.

System Reliability
Maintained stability under load and reliably emulated core VCD API

patterns.

9. Limitations and Future Enhancements

9.1 Known Limitations

Although the VCD API simulator is reliable for

training and testing, it has several limitations

stemming from deliberate architectural choices and

design compromises made to keep the

implementation straightforward. These weaknesses

do not typically disrupt standard testing, but they can

complicate more complex scenarios, so users should

consider them before applying the tool in demanding

settings. Concurrency and session handling

represent one of the most noticeable constraints. The

simulator does remember individual sessions and

preserves state across authenticated request cycles,

but it has not been fine-tuned for environments

where large numbers of users execute overlapping

calls simultaneously. In contrast to a fully featured

API gateway, it omits per-tenant memory partitions,

token revocation lists, and built-in load balancing, all

of which strengthen isolation and scaling. As a

result, running the simulator under heavy parallel

loads that alter shared data can still introduce

conflicts or race conditions unless the test sequence

is carefully organized.

Its support for the full VCD resource lifecycle

remains incomplete (10). Although the simulator

manages the standard phases for virtual

applications—creation, deployment, power-on, and

deletion—it overlooks operational controls such as

resource locking, job queues, and time-sensitive

state transitions. In an actual VCD deployment, tasks

can be queued, blocked, or aborted depending on

role permissions, current states, and backend

dependencies. The simulator, however, adopts an

optimistic model: as long as the mock state logically

permits an action, it executes immediately. Because

of this design choice, edge cases—such as

attempting to delete a vApp while another command

is pending—are not accurately reproduced.

Error handling is similarly basic. The fault-injection

tool can emulate timeouts, service-level errors, and

malformed messages, yet it stops short of modeling

nuanced or cascading failures that arise in large,

distributed systems. Although token-based

authentication is effective, the simulator only

partially implements multi-role access control and

the whole hierarchy of permissions. None of these

omissions invalidate basic test cycles, but they do

impose limits when users try to mimic sophisticated

orchestration timing, enforce detailed policies, or

reproduce production-like, multithreaded

workloads.

9.2 Future Work

The development team has identified multiple

enhancement opportunities aimed at overcoming

existing limitations and broadening the simulator's

utility across the entire software development

lifecycle. First on the agenda is a web-based

graphical user interface (GUI). A well-designed

dashboard would allow users to visualize API

endpoints, examine real-time state data (such as

active sessions or allocated virtual applications),

adjust response templates, and simulate fault

conditions through point-and-click actions. By

reducing dependence on command-line syntax, the

GUI would lower the entrance barrier for quality-

assurance testers, educators, and DevOps engineers

who routinely prefer visual instrumentation during

verification.

The second major expansion targets tighter

integration with popular Infrastructure-as-Code

(IaC) frameworks, most notably Terraform and

Ansible. Because contemporary teams rely on these

tools to standardize provisioning pipelines across

heterogeneous cloud providers, creating dedicated

provider modules or plugins linked to the simulator

would enable developers to validate their declarative

configurations before committing resources

externally. Such a testing stage would expose

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T10

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5437

syntactic errors, reveal hidden assumptions, and

furnish higher confidence in template correctness,

ultimately streamlining pre-deployment governance

and reducing unexpected charges from live

environments. Plans are being finalized to strengthen

the internal simulation engine by adding several new

error-handling features. Among these are linked

failure events, randomized fault injection, models of

resource exhaustion, and emulation of degraded

performance across subsystems. Together, these

capabilities will enable developers to subject a

service to realistic, cascading faults and test

resilience patterns, such as retries, graceful

degradation, and fallback procedures. The resulting

tests will provide deeper insight into how production

code behaves under adverse yet plausible conditions.

The workflow engine will also gain a new layer of

configurability, permitting users to chain operations,

introduce conditional waits, and express timing rules

in a domain-specific syntax. A typical use case might

specify that an API call for vApp creation remains in

the "deploying" state for exactly thirty seconds

before moving to "ready," thereby simulating

genuine provisioning latencies observed in cloud

environments. By allowing administrators to

sequence calls and associate delays or blockers with

distinct failure states, the extended engine supports

the rigorous staging of complex orchestration

scenarios and the precise validation of time-sensitive

automation logic. The current release of the VCD

API simulator already serves a wide range of

development and evaluation tasks, yet it remains in

active evolution (4). Planned updates will refine the

user interface, deepen integration with standard

toolchains, and enhance error emulation, making the

simulator a more rounded offering. These additions

aim to bridge the gap between straightforward mock

tests and the complex behavior observed in

production cloud environments, thereby

encouraging wider adoption and greater trust in

automated infrastructure deployments.

As the figure below illustrates, this roadmap

strategically targets key layers of the development

process, aiming to position the simulator as a

foundational tool in automated infrastructure testing.

Figure 8: software-development-strategy

10. Recommendations

The ongoing work on the VCD API simulator shows

clear promise for strengthening test automation

within cloud engineering. To amplify that benefit

across sectors and settings, the following focused

recommendations are offered to practitioners,

organizations, educators, and software developers.

10.1 For DevOps and QA Teams

Teams that rely on VMware vCloud Director should

add the simulator to their DevOps pipelines as soon

as practical (9). Swapping or supplementing live

tests with a simulated environment accelerates

feedback loops, reduces risk, and expands the reach

of automation. It is advisable to run the simulator

during nightly builds, regression suites, and

integration checks, particularly where orchestration

code calls VCD APIs. Quality assurance engineers

should consistently utilize the simulator's fault-

injection features when performing chaos tests. By

simulating API timeouts, unauthorized calls, and

sluggish responses, testers can strengthen the

underlying automation scripts and optimize the

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T4
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T9

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5438

backing infrastructure for uncommon but possible

operational anomalies.

10.2 For cloud architects and infrastructure

engineers

Cloud architects may therefore treat the simulator as

an iterative mockup environment in which

orchestration drafts and multi-tenant blueprints can

be field-tested. Executing templates against the

simulator before promotion to production VCD

confirms provisioning logic, verifies API ordering,

and checks policy compliance without affecting live

customers. Infrastructure engineers, in turn, should

advocate for the broader adoption of the tool across

their infrastructure-as-code pipelines. By submitting

Terraform or Ansible modules that mirror the

simulator's input schema, teams narrow the gap

between code commits and runtime observations,

significantly reducing misconfiguration errors when

the software reaches production.

10.3 For Enterprises and Managed Service

Providers

Enterprises running multiple VCD clusters or

supplying vCloud services to customers should

consider using the simulator during internal testing

and onboarding activities. By trying integrations

against the simulator before production access is

granted, teams validate API calls, shorten ramp-up

times, and ease the workload on live systems.

Managed service providers may also adopt the

simulator in their service-assurance workflows,

allowing vendors and partners to verify automation

scripts and configurations before they enter sensitive

environments.

10.4 For Educators and Training Institutions

Educators and cloud trainers can weave the

simulator into DevOps, cloud computing, and

virtualization programs. Its quick setup and

behavior, closely aligned with VMware vCloud

Director, make it well-suited for lab sessions,

workshops, and self-guided study. Learners practice

genuine cloud-orchestration tasks without needing

expensive hardware or endangering running

services. Instructors are encouraged to package the

simulator with ready-made exercises, step-by-step

guides, and OpenAPI documentation, thereby

creating a safe sandbox where students can explore

and deepen their understanding of the material.

10.5 For Simulator Developers and Maintainers

To ensure the simulator remains timely and helpful,

the development team should advance the roadmap

items listed in Section 9.2. Key priorities include a

web-based graphical user interface to simplify

configuration, built-in support for Terraform and

Ansible, and richer error-emulation modules (1).

Adding multi-session concurrency, nested API

workflow support, and refined token-driven role

management will broaden the tool's relevance to

enterprise-scale deployments. Publishing the

simulator as an open-source asset deserves serious

consideration. An open model invites community

patches, accelerates peer review, and promotes

widespread adoption. Hosting practical example

projects alongside user-contributed case studies will

inform future enhancements while illustrating the

simulator's value to prospective teams.

As the figure below illustrates, fostering an open,

extensible, and community-supported simulator

aligns with modern software development best

practices and enhances long-term sustainability.

Figure 9: software-development-process

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T1

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5439

11. Conclusion

The creation of a dedicated simulator for VMware

vCloud Director API calls represents a significant

advancement in cloud orchestration testing. Tailored

for developers, testers, and DevOps operators, the

tool provides a safe, efficient, and inexpensive

substitute for live-system validation. By accurately

modeling authentication, resource provisioning, and

lifecycle functions, it enables thorough workflow

verification without the hazards or access limitations

typically found in production environments. The

simulator surpasses standard mocking frameworks

by incorporating capabilities specifically designed

for cloud orchestration scenarios. Among these are

stateful tracking of virtual resources, multi-step API

choreography, and on-the-fly payload generation

that mirrors parameters found in production

requests. Its built-in fault-injection functions enable

developers to evaluate error-handling paths and

measure resilience, positioning the simulator as a

critical asset for constructing and verifying

automation pipelines. Because it reproduces live

conditions in a contained manner, the tool enhances

both safety and throughput throughout the cloud

development lifecycle.

Its effect on cloud-development practices is already

noticeable. By removing the dependence on live

VDC infrastructure, the simulator reduces the entry

cost of infrastructure-as-code, continuous delivery,

and automated testing pipelines. DevOps teams in

particular gain from being able to run API

workflows, explore edge cases, and test automation

logic in completely isolated targets. Because the

simulator is packaged as a lightweight container, it

can be dropped straight into CI/CD chains on

systems like GitHub Actions or Jenkins, ensuring

every build receives fresh validation before code

leaves the branch. The early detection of defects not

only speeds up the pipeline but also steadies

production by revealing inconsistencies before they

occur.

The simulator also preserves key orchestration

mechanics—session management, endpoint

emulation, and lifecycle simulation—that modern

iterative teams require. In complex multi-tenant

clouds, where live tests may be impractical or

unsafe, the tool provides repeatable and predictable

behavior across a wide range of operating

conditions. Looking ahead, this simulator is likely to

find roles well beyond the present experiments it

supports. Within large companies, it could be

featured in internal validation suites that guide the

secure onboarding of new automation teams and

external partners. Similarly, cloud providers and

managed-service firms may use the tool to verify

third-party integrations before granting production

access, thereby enhancing reliability and reducing

ongoing support demands. For students and

instructors, the performer serves as an affordable

alternative to full-scale cloud laboratories, allowing

learners to practice orchestration tasks with real

commands without incurring the expense or

operational burden of live hardware.

A series of planned updates—among them a

polished web interface, tighter integration with

Terraform and Ansible, and more robust error

modeling—are expected to expand the simulator's

capacity further. When finished, these features

should make the tool easier to navigate, more

responsive to infrastructure-as-code workflows, and

better able to recreate intricate runtime situations

involving interdependencies, latencies, and

conditional branches. The VCD API simulator fills a

crucial gap in cloud engineering by providing

programmers with a safe, repeatable, and realistic

environment for validating orchestration logic. By

using the simulator, DevOps teams can iterate more

quickly, reduce testing costs, and run bold

experiments without jeopardizing production

stability. Given the accelerating shift toward

scalable, cloud-native architectures, instruments of

this kind will prove vital for maintaining

infrastructure agility and resilience. Ongoing

improvements and broader adoption of the tool are

expected to shape patterns in how future cloud

services are designed, tested, and rolled out across

the sector.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5440

[1] Aranda, L. A., Ruano, O., Garcia-Herrero, F., &

Maestro, J. A. (2021). Reliability Analysis of ASIC

Designs With Xilinx SRAM-Based FPGAs. IEEE

Access, 9, 140676-140685.

https://doi.org/10.1109/ACCESS.2021.3119633

[2] Babashamsi, P., Yusoff, N. I. M., Ceylan, H., Nor, N.

G. M., & Jenatabadi, H. S. (2016). Evaluation of

pavement life cycle cost analysis: Review and

analysis. International Journal of Pavement Research

and Technology, 9(4), 241-254.

https://doi.org/10.1016/j.ijprt.2016.08.004

[3] Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A.,

Hauser, C. B., & Domaschka, J. (2015, December).

Cloud orchestration features: Are tools fit for

purpose?. In 2015 IEEE/ACM 8th International

Conference on Utility and Cloud Computing

(UCC) (pp. 95-101). IEEE.

https://doi.org/10.1109/UCC.2015.25

[4] Bennett, B. E. (2021, April). A practical method for

API testing in the context of continuous delivery and

behavior driven development. In 2021 IEEE

international conference on software testing,

verification and validation workshops (ICSTW) (pp.

44-47). IEEE.

https://doi.org/10.1109/ICSTW52544.2021.00020

[5] Bialek, J., Ciapessoni, E., Cirio, D., Cotilla-Sanchez,

E., Dent, C., Dobson, I., ... & Wu, D. (2016).

Benchmarking and validation of cascading failure

analysis tools. IEEE Transactions on Power

Systems, 31(6), 4887-4900.

https://doi.org/10.1109/TPWRS.2016.2518660

[6] Casas, S., Cruz, D., Vidal, G., & Constanzo, M.

(2021, November). Uses and applications of the

OpenAPI/Swagger specification: a systematic

mapping of the literature. In 2021 40th International

Conference of the Chilean Computer Science Society

(SCCC) (pp. 1-8). IEEE.

https://doi.org/10.1109/SCCC54552.2021.9650408

[7] Chavan, A. (2022). Importance of identifying and

establishing context boundaries while migrating from

monolith to microservices. Journal of Engineering

and Applied Sciences Technology, 4, E168.

http://doi.org/10.47363/JEAST/2022(4)E168

[8] Chavan, A. (2024). Fault-tolerant event-driven

systems: Techniques and best practices. Journal of

Engineering and Applied Sciences Technology, 6,

E167. http://doi.org/10.47363/JEAST/2024(6)E167

[9] Dakic, V., Chirammal, H. D., Mukhedkar, P., &

Vettathu, A. (2020). Mastering KVM virtualization:

design expert data center virtualization solutions with

the power of Linux KVM. Packt Publishing Ltd.

[10] Del Savio, A. A., Vidal Quincot, J. F., Bazán

Montalto, A. D., Rischmoller Delgado, L. A., &

Fischer, M. (2022). Virtual Design and Construction

(VDC) Framework: A Current Review, Update and

Discussion. Applied sciences, 12(23), 12178.

https://doi.org/10.3390/app122312178

[11] Dhanagari, M. R. (2024). MongoDB and data

consistency: Bridging the gap between performance

and reliability. Journal of Computer Science and

Technology Studies, 6(2), 183-198.

https://doi.org/10.32996/jcsts.2024.6.2.21

[12] Dhanagari, M. R. (2024). Scaling with

MongoDB: Solutions for handling big data in real-

time. Journal of Computer Science and Technology

Studies, 6(5), 246-264.

https://doi.org/10.32996/jcsts.2024.6.5.20

[13] Eckhart, M., & Ekelhart, A. (2018, January). A

specification-based state replication approach for

digital twins. In Proceedings of the 2018 workshop

on cyber-physical systems security and privacy (pp.

36-47). https://doi.org/10.1145/3264888.3264892

[14] Ehsan, A., Abuhaliqa, M. A. M., Catal, C., &

Mishra, D. (2022). RESTful API testing

methodologies: Rationale, challenges, and solution

directions. Applied Sciences, 12(9), 4369.

https://doi.org/10.3390/app12094369

[15] Franz, T., Seidl, C., Fischer, P. M., & Gerndt, A.

(2022). Utilizing multi-level concepts for multi-

phase modeling: Context-awareness and process-

based constraints to enable model

evolution. Software and Systems Modeling, 21(4),

1665-1683.

https://link.springer.com/article/10.1007/s10270-

021-00963-1

[16] Goel, G., & Bhramhabhatt, R. (2024). Dual

sourcing strategies. International Journal of Science

and Research Archive, 13(2), 2155.

https://doi.org/10.30574/ijsra.2024.13.2.2155

[17] Jarecki, S., Jubur, M., Krawczyk, H., Shirvanian,

M., & Saxena, N. (2018). Two-Factor Password-

Authenticated Key Exchange with End-to-End

Password Security. Cryptology ePrint Archive.

https://ia.cr/2018/033

[18] Karwa, K. (2023). AI-powered career coaching:

Evaluating feedback tools for design students. Indian

Journal of Economics & Business.

https://www.ashwinanokha.com/ijeb-v22-4-

2023.php

[19] Karwa, K. (2024). Navigating the job market:

Tailored career advice for design students.

International Journal of Emerging Business, 23(2).

https://www.ashwinanokha.com/ijeb-v23-2-

2024.php

[20] Konneru, N. M. K. (2021). Integrating security

into CI/CD pipelines: A DevSecOps approach with

SAST, DAST, and SCA tools. International Journal

of Science and Research Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-

improving-patient

[21] Kumar, A. (2019). The convergence of

predictive analytics in driving business intelligence

and enhancing DevOps efficiency. International

Journal of Computational Engineering and

Management, 6(6), 118-142. Retrieved from

https://ijcem.in/wp-content/uploads/THE-

CONVERGENCE-OF-PREDICTIVE-

ANALYTICS-IN-DRIVING-BUSINESS-

INTELLIGENCE-AND-ENHANCING-DEVOPS-

EFFICIENCY.pdf

[22] Kumar, P. S., Emfinger, W., Karsai, G., Watkins,

D., Gasser, B., & Anilkumar, A. (2016). ROSMOD:

a toolsuite for modeling, generating, deploying, and

managing distributed real-time component-based

https://doi.org/10.1109/ACCESS.2021.3119633
https://doi.org/10.1016/j.ijprt.2016.08.004
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/ICSTW52544.2021.00020
https://doi.org/10.1109/TPWRS.2016.2518660
https://doi.org/10.1109/SCCC54552.2021.9650408
http://doi.org/10.47363/JEAST/2022(4)E168
http://doi.org/10.47363/JEAST/2024(6)E167
https://doi.org/10.3390/app122312178
https://doi.org/10.32996/jcsts.2024.6.2.21
https://doi.org/10.32996/jcsts.2024.6.5.20
https://doi.org/10.1145/3264888.3264892
https://doi.org/10.3390/app12094369
https://link.springer.com/article/10.1007/s10270-021-00963-1
https://link.springer.com/article/10.1007/s10270-021-00963-1
https://doi.org/10.30574/ijsra.2024.13.2.2155
https://ia.cr/2018/033
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
https://www.ashwinanokha.com/ijeb-v23-2-2024.php
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

Zahir Sayyed / IJCESEN 11-3(2025)5422-5441

5441

software using ROS. Electronics, 5(3), 53.

https://doi.org/10.3390/electronics5030053

[23] Morchid, A., Alblushi, I. G. M., Khalid, H. M.,

El Alami, R., Sitaramanan, S. R., & Muyeen, S. M.

(2024). High-technology agriculture system to

enhance food security: A concept of smart irrigation

system using Internet of Things and cloud

computing. Journal of the Saudi Society of

Agricultural Sciences.

https://doi.org/10.1016/j.jssas.2024.02.001

[24] Nieto, M., Senderos, O., & Otaegui, O. (2021).

Boosting AI applications: Labeling format for

complex datasets. SoftwareX, 13, 100653.

https://doi.org/10.1016/j.softx.2020.100653

[25] Nyati, S. (2018). Revolutionizing LTL carrier

operations: A comprehensive analysis of an

algorithm-driven pickup and delivery dispatching

solution. International Journal of Science and

Research (IJSR), 7(2), 1659-1666. Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR242

03183637

[26] Raju, R. K. (2017). Dynamic memory inference

network for natural language inference. International

Journal of Science and Research (IJSR), 6(2).

https://www.ijsr.net/archive/v6i2/SR24926091431.p

df

[27] Ronen, E., Gillham, R., Genkin, D., Shamir, A.,

Wong, D., & Yarom, Y. (2019, May). The 9 lives of

Bleichenbacher's CAT: New cache attacks on TLS

implementations. In 2019 IEEE Symposium on

Security and Privacy (SP) (pp. 435-452). IEEE.

https://doi.org/10.1109/SP.2019.00062

[28] Sardana, J. (2022). The role of notification

scheduling in improving patient outcomes.

International Journal of Science and Research

Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-

improving-patient

[29] Singh, V. (2022). Visual question answering

using transformer architectures: Applying

transformer models to improve performance in VQA

tasks. Journal of Artificial Intelligence and Cognitive

Computing, 1(E228).

https://doi.org/10.47363/JAICC/2022(1)E228

[30] Singh, V. (2023). Enhancing object detection

with self-supervised learning: Improving object

detection algorithms using unlabeled data through

self-supervised techniques. International Journal of

Advanced Engineering and Technology.

https://romanpub.com/resources/Vol%205%20%2C

%20No%201%20-%2023.pdf

[31] Sukhadiya, J., Pandya, H., & Singh, V. (2018).

Comparison of Image Captioning

Methods. INTERNATIONAL JOURNAL OF

ENGINEERING DEVELOPMENT AND

RESEARCH, 6(4), 43-48.

https://rjwave.org/ijedr/papers/IJEDR1804011.pdf

[32] Svensson, A. (2024). What is the best API from

adeveloper’s perspective?: Investigation of API

development with fintechdevelopers in the spotlight.

https://www.diva-

portal.org/smash/get/diva2:1865779/FULLTEXT02

[33] Tiwari, D., Monperrus, M., & Baudry, B. (2024).

Mimicking production behavior with generated

mocks. IEEE Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2024.3458448

[34] Ugwueze, V. U., & Chukwunweike, J. N. (2024).

Continuous integration and deployment strategies for

streamlined DevOps in software engineering and

application delivery. Int J Comput Appl Technol

Res, 14(1), 1-24. http://www.ijcat.com/

[35] Wang, Y., Mäntylä, M. V., Liu, Z., & Markkula,

J. (2022). Test automation maturity improves product

quality—Quantitative study of open source projects

using continuous integration. Journal of Systems and

Software, 188, 111259.

https://doi.org/10.1016/j.jss.2022.111259

https://doi.org/10.3390/electronics5030053
https://doi.org/10.1016/j.jssas.2024.02.001
https://doi.org/10.1016/j.softx.2020.100653
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://doi.org/10.1109/SP.2019.00062
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://doi.org/10.47363/JAICC/2022(1)E228
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://romanpub.com/resources/Vol%205%20%2C%20No%201%20-%2023.pdf
https://rjwave.org/ijedr/papers/IJEDR1804011.pdf
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1865779/FULLTEXT02
https://doi.org/10.1109/TSE.2024.3458448
http://www.ijcat.com/
https://doi.org/10.1016/j.jss.2022.111259

