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Abstract:  

 

Orchestration systems, particularly those on VMware vCloud Director (VCD), play a 

vital role in managing multi-tenant virtualized environments. Nonetheless, it is 

problematic to test automation scripts and orchestration workflows directly on production 

or staging VCD infrastructure: it is expensive, inaccessible, and may endanger live 

services. This paper provides an overview of the design and implementation of an API 

call simulator tailored to a specific domain, aiming to create safe, efficient, and repeatable 

testing environments for developers and DevOps engineers. In contrast to generic 

mocking tools, this simulator offers a feature set tailored to VCD-specific requirements, 

including stateful API behavior, vApp mock lifecycles, and dynamic responses. It 

confirms popular HTTP requests on core end-points such as sessions, vApps, catalogs, 

and networks, offering a precise test proxy that does not map virtualization to the 

backend. The simulator also fits well in CI/CD environments and facilitates chaos testing 

through fault injection. A detailed analysis demonstrates its high fidelity to real VCD 

behavior, with low latency under concurrent load, and developers were satisfied with the 

results. Applications include use as a development sandbox tool, a disaster recovery 

testing tool, an educational tool, and a certification tool. The paper concludes by 

suggesting the adoption of these approaches on a broader scale, both in enterprise settings 

and those involving cloud training. The scalability of the simulator ultimately addresses 

the continuity limitations of present-day testing in cloud orchestration. 

 

1. Introduction 
 

Automation and orchestration of complex 

infrastructure are central concepts in the context of 

modern cloud computing, particularly within a 

multi-tenant environment. VMware vCloud Director 

(VCD) is one of the most popular platforms in the 

business. Through VCD, cloud providers can deploy 

secure, multi-tenant virtual data centers to 

customers, enabling them to centrally manage and 

scale other resources, including virtual machines, 

networks, and storage. VCD is strong, though; 

however, it is not very user-friendly to verify 

through a live setup. Developers and DevOps 

engineers may encounter difficulties when required 

to run orchestration scripts or automation jobs that 

interact with the VCD API. The fundamental issue is 

that testing in a real VCD environment is hazardous 

and cost-prohibitive. A test that calls on the 

production VCD server can cause service disruption, 

raise security issues, or cause live infrastructure 

damage in the event of a failure. Moreover, not all 

teams have the opportunity to run a dedicated VCD 

testbed due to licensing and operational costs. 

This article focuses on the design and creation of a 

simulator that imitates the actions of VMware 

vCloud Director API calls. The simulator is designed 

to enable developers and testers to execute 

orchestration workflows realistically without 

requiring a connection to a live VCD environment. 

Like the actual VCD API, the simulator implements 

standard RESTful requests (GET, POST, PUT, and 

DELETE) and responds accordingly. Considering 

the example of a test script attempting to create a 

virtual application (vApp), the simulator returns 

structured data that appears identical to what VCD 

would have, allowing the script to continue running 

and being checked without using any actual 

infrastructure.  

There are several benefits to this strategy. First, it 

becomes safer and easier to test the complicated 

workflows, and there is no chance of confusing the 
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actual services. Second, it reduces the development 

and quality assurance costs, as there is no need to 

have a complete cloud infrastructure that must be 

provisioned and maintained in the test environment. 

Third, it can improve iteration and automation speed 

in continuous integration and delivery (CI/CD) 

pipelines, as test speed and reliability are essential 

factors. 

This article aims to achieve three objectives. To 

begin with, it proposes presenting a realistic 

approach to implementing a simulation of the VCD 

API using modern web technologies. The second 

point clarifies that the simulator can be set up to 

provide various kinds of responses, allowing users to 

understand how their automation reacts to positive 

and negative situations, as well as edge cases. Third, 

it assesses how this simulator facilitates 

development processes, particularly when using 

automated tests. There is a need to explain the extent 

of this work. The simulator does not attempt to 

mimic the complete operations of the VCD system, 

including real provisioning of virtual machines or 

hypervisor-level control. Instead, it only emphasizes 

responses at the API level. This makes it perfect for 

functional testing, regression testing, and integration 

testing, where the primary focus is whether script 

and software tools are interacting appropriately with 

the API endpoints, as opposed to what is happening 

in the background of the virtual infrastructure. 

 

2. Background and Problem Statement 

 
2.1 Overview of VMware vCloud Director (VCD) 

VMware vCloud Director (VCD) is a cloud service 

delivery platform that service providers use to 

provision and orchestrate Infrastructure as a Service 

(IaaS). It is built on top of the core VMware 

virtualization infrastructure—namely vSphere and 

NSX—and reflects a multi-tenant abstraction layer. 

This design enables cloud providers to serve 

independent customers through the creation of 

virtual data centers (VDCs), where compute, 

network, and storage resources are securely isolated 

and managed. Such a layered orchestration model 

aligns with broader strategies in infrastructure 

management, including dual sourcing and resource 

decoupling, which improve system resilience and 

vendor flexibility (16). In essence, VCD provides a 

RESTful application programming interface that 

governs the allocation of virtual resources by 

orchestrating the process. Such resources are virtual 

machines (VMs), vApps (i.e., one or more VMs that 

comprise virtual applications), catalogs (which hold 

templates and media), and networks. The API can 

automate nearly all tasks that can be driven through 

the web-based user interface, including creating a 

vApp, uploading ISO images, managing virtual 

networks, and configuring firewall rules. 

The VCD API is organized and operates according 

to standard guidelines (24). For example, a user can 

log in using a session endpoint, retrieve a list of 

available catalogs, or initiate the creation of a virtual 

machine with specific parameters. This makes the 

API a critical inclusion in any DevOps or automation 

process in VCD environments. These API calls are 

frequently used by teams in the form of scripts and 

in CI/CD pipelines, where they automate operations 

such as environment creation, testing, and 

destruction. As the figure below illustrates, VCD 

operates atop VMware Cloud Foundation, 

leveraging the underlying infrastructure to deliver 

flexible, scalable, and secure cloud environments. 

The integration of API-driven orchestration into 

developer pipelines allows for dynamic environment 

creation, automated testing, and seamless 

teardown—essential for agile and iterative delivery 

models. 

 

 
Figure 1: VMware vCloud Director + VMware Cloud Foundation = Harmony 
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2.2 Issues with Direct Testing of VCD 

Environments 

Although the VCD API has powerful capabilities, 

direct testing against the API poses several 

significant problems (14). The high cost of 

infrastructure is a considerable concern. 

Environments based on VMware are very costly to 

license and to maintain. A basic VCD environment, 

including all its dependencies such as vCenter, ESXi 

hosts, NSX networking, and external databases, 

consumes a considerable number of resources. This 

renders it uneconomical for several organizations to 

maintain a unique test environment for API 

validation. The next significant problem is access 

restrictions. Security, compliance, and stability are 

essential factors in preventing easy access to the 

production VCD environment in many 

organizations. Often, developers and testers lack the 

necessary permissions to conduct meaningful tests 

or execute orchestration scripts. Even when access is 

granted, calling experimental APIs can be risky. For 

instance, an inefficiently written script may 

inadvertently shut down a critical virtual machine, 

delete sensitive data, or alter network 

configurations—disrupting live services in ways that 

compromise both availability and reliability. These 

risks are particularly acute in systems that require 

strong data consistency and operational resilience, 

such as those underpinned by cloud-native databases 

like MongoDB (11). Furthermore, attempts to scale 

or test these systems in real time without controlled 

environments can introduce performance 

bottlenecks or data integrity issues, reinforcing the 

need for isolated simulation layers (12). 

Production testing also raises the issue of testing 

stability and performance. Running repeated tests at 

ridiculous levels by creating, modifying, and 

deleting virtual resources may unnecessarily burden 

the production system. This may cause a delay in 

real operator performances or alarm the supervisory 

systems. Additionally, in many production settings, 

failure conditions analogous to those that testers 

should simulate (e.g., timeouts, failing responses, or 

network suspensions) are not generated, which 

prevents tests from validating how orchestration 

scripts react to them. These limitations typically 

leave teams with two unfavorable options: either 

perform against a real system and take the risk, or 

perform against nothing and take a chance when the 

scripts are deployed. Both approaches are less than 

ideal and can lead to time wastage, unsuccessful 

deployments, and the inability to identify bugs at the 

earlier stages of development. 

Testing against a live VMware vCloud Director 

(VCD) environment introduces numerous 

challenges that hinder safe, efficient, and repeatable 

testing. As shown in Table 1, issues such as high 

infrastructure costs, limited access rights, and the 

risk of unintentional disruptions make real-world 

VCD environments unsuitable for development 

pipelines. 

 
Table 1: Challenges of Direct VCD API Testing 

Challenge Area Details 

Infrastructure Cost 
High licensing and maintenance costs for VCD, vCenter, ESXi, NSX, and 

databases. 

Access Restrictions 
Limited developer/tester permissions; compliance and stability concerns restrict 

meaningful testing. 

Risk of Disruption 
Experimental scripts can accidentally shut down VMs, delete data, or alter 

network settings. 

Production Load & 

Stability 
Repeated test cycles can slow down or destabilize production environments. 

Lack of Simulated 

Failures 

Difficult to test failure conditions (e.g., timeouts, network issues) in live 

environments. 

Risk vs. Blind Testing 
Teams must choose between risky real-environment tests or no testing at all 

before deployment. 

Development Impact Leads to time loss, failed deployments, and bugs discovered late in the cycle. 

 

2.3 Testing Challenges in DevOps Contexts 

Orchestration systems, particularly those on 

VMware vCloud Director (VCD), play a crucial role 

in managing multi-tenant virtualized environments. 

However, running automation scripts and 

orchestration workflows directly against production 

or even staging VCD infrastructure can be highly 

problematic due to operational costs, restricted 

accessibility, and risks to live services. These 

challenges necessitate robust simulation alternatives 

that allow for safe and efficient testing. This paper 

provides an overview of the design and 

implementation of an API call simulator tailored to 

the unique demands of cloud orchestration 
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environments—offering developers and DevOps 

engineers a secure, repeatable environment for 

experimentation and validation. Such approaches 

align closely with DevSecOps principles, where 

secure and automated testing is integrated 

throughout CI/CD pipelines to minimize production 

risks and improve code reliability (20). In contrast to 

generic mocking tools, this simulator offers a feature 

set tailored to VCD-specific requirements, including 

stateful API behavior, vApp mock lifecycles, and 

dynamic responses (32). It supports the prevalent 

HTTP operations on primary endpoints, such as 

sessions, vApps, catalogs, and networks, providing a 

precise testing substitute that does not require any 

form of virtualization on its backend. The simulator 

also fits well in CI/CD environments and facilitates 

chaos testing through fault injection. 

A detailed analysis demonstrates its high fidelity to 

real VCD behavior, with low latency under 

concurrent load, and developers were satisfied with 

the results. Sandbox applications and disaster 

recovery testing are possible uses, as well as 

applications in learning and certification. The paper 

concludes by offering suggestions for adopting them 

on a broader scale, both in enterprise settings and 

those involving cloud training. The simulator is an 

ultimate scalable remedy to contemporary testing 

limitations in cloud orchestration. 

 

3. Literature Review and Related Work 

 
3.1 Existing Mocking and Simulation Tools 

Mocking software is increasingly common in 

software development to simulate the responses of 

real systems in a comprehensible and repeatable 

manner (33). These tools enable developers to 

decouple system components, emulate external 

service behavior, and run integration tests without 

depending on live systems. Among the most widely 

used mocking tools are WireMock, Postman Mock 

Server, and Beeceptor. Each offers practical 

capabilities for simulating HTTP-based APIs and is 

effective in many general-purpose software projects. 

However, none of these tools is explicitly designed 

to simulate the complex workflows or stateful 

interactions required in cloud orchestration 

platforms like VMware vCloud Director (VCD). In 

specialized domains—whether in healthcare 

systems, financial platforms, or virtualized 

infrastructure management—general-purpose 

mocking often fails to account for chained state 

transitions, conditional logic, or role-sensitive 

behavior (28). Therefore, while useful in early 

development stages or lightweight service mocking, 

such tools lack the depth and domain-awareness 

needed for realistic cloud orchestration testing. 

An example is WireMock, an open-source 

mechanism that enables the definition of HTTP stubs 

with predetermined responses. It allows flexible 

matching rules, is responsive to delay, and may 

provide dynamic content in response to request 

parameters. It is also quite configurable and can be 

well used to test microservices. WireMock does not, 

however, provide out-of-the-box support for 

modeling complex state transitions or supporting 

long-lived workflows found in cloud orchestration 

systems. It is very good at mocking out a single 

request-response pair, but fails to simulate the rest of 

the lifecycle when working with a virtual application 

or the chain reactions that occur when a resource is 

provisioned in a cloud-based scenario. 

Another common alternative is Postman Mock 

Server, specifically used more often to test frontend 

and API integration. It enables teams to create API 

page designs as well as fake endpoints that respond 

with a set JSON reply. This comes in handy at an 

early developmental stage when the backend service 

might not be ready. Although Postman accepts 

environment variables and dynamic samples, it 

continues to work primarily in the arena of static 

response generation. It lacks memory or state 

persistence between calls, which is necessary when 

attempting to emulate a real-world application where 

some sequence of API calls results in a change in 

system state. Beeceptor is a straightforward, cloud-

based, HTTP mocking server that specializes in 

capturing and debugging RESTful API traffic. 

Installation is straightforward, and it offers a user-

friendly interface for adding and checking traffic 

rules. It is usually applied in prototyping and 

simulating third-party services. It, however, lacks 

support for more advanced functionalities such as 

request chaining, in-memory state monitoring, or 

emulation of authentication flows typical of VCD 

platforms. Each of these tools has a vital purpose and 

can be helpful in numerous testing situations. 

Nevertheless, they have not been constructed from a 

cloud orchestration perspective (3). They specialize 

in individual requests instead of workflows, where 

tasks are tied to one another, which is typical of 

cloud infrastructure management. The state of a 

particular API call sometimes dictates how 

subsequent APIs can and do act, and generic 

mocking tools cannot readily support this type of 

interaction. 

As the figure below illustrates, general-purpose tools 

are typically request-focused, whereas orchestration 

testing demands a flow-focused, context-aware 

simulation approach. 
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Figure 2: Mock Testing 

 

3.2 Gaps in Current Solutions 

Although available tools offer valuable components 

on how to mock APIs, they lack the components 

needed to mock VMware vCloud Director 

Environments. A crucial shortcoming is the lack of 

representation for stateful operations. Operations 

such as establishing a vApp, turning it on, or 

attaching a network are not simple calls in VCD, but 

rather part of a larger lifecycle that spans several 

stages and system elements. A simulator that 

provides only fixed replies is not able to truly 

represent VCD behavior when time-marched. 

Support for cloud-native data structures and payload 

formats is another major shortcoming. VMware 

vCloud Director (VCD) relies heavily on complex 

XML and JSON schemas to represent its 

resources—ranging from virtual machines and 

media files to catalogs and virtual networks. These 

schemas are often deeply nested and interlinked, 

referencing other entities to define dependencies, 

lifecycles, and orchestration behavior. Generic 

mocking frameworks, however, typically treat 

payloads as opaque blobs without enforcing schema 

validity or mimicking inter-resource linkage. This 

limitation reduces test realism and may lead to 

integration failures when such assumptions are 

carried into production workflows. Modern event-

driven and distributed systems demand fault 

tolerance and context-aware message structures, 

where improper schema handling can compromise 

system behavior (7). Identifying and respecting 

context boundaries is essential when decomposing 

monolithic systems into modular services—

underscoring the importance of accurate, schema-

compliant communication between components, 

something generic mock servers often fail to 

reproduce (8). 

Authentication and authorization are also weakly 

supported. VCD uses a session token and role-based 

access control to control permissions between 

tenants and users. Available tools simulate basic 

auth or API keys and do not attempt to emulate 

session management, token expiry, isolation, or 

multi-tenant isolation. This complicates testing 

security-sensitive operations or verifying that scripts 

behave reasonably when subjected to the actual 

access limitation. Additionally, many of these tools 

lack the development of failure conditions and error 

simulation (5). In practical VCD settings, API call 

failures often occur due to resource constraints, 

rights concerns, and internal system issues. The 

ability to emulate such failures is crucial for creating 

robust and resilient orchestration systems. It is also 

challenging to test edge cases without the capability 

to simulate faults and timeouts, or even inject errors 

and timeouts. 

 

3.3 Need for Domain-Specific Simulators 

The above challenges indicate the need for a 

domain-specific solution that suits the special 

purpose of VMware vCloud Director. Such a 

simulator needs to have an idea of the domain model 

of VCD, its resources, lifecycles, workflows, and 

authentication methods, unlike a general-purpose 

API-mocking tool. It should be able to replicate real-

life behavior in a stateful, predictable manner, 

allowing for realistic testing of orchestration scripts 

and automation pipelines. By designing a VCD-

specific simulator, the reliability of testing can be 

significantly enhanced, infrastructure costs can be 

reduced, and the lifecycle can be shortened (2). It 

enables testers to simulate real-life experiences 

without compromising live systems. Preserving 

internal state allows it to simulate entire vApp 

lifecycles, catalog management, and user sessions, 

and in doing so, offer more valuable results than 

simple, static mock servers.  

This also aids in simulating error cases and edge 

cases, allowing developers to test their system in 

both typical and failure scenarios. In addition to 

development and testing, such a simulator can also 

be beneficial in educational and training settings. It 

can provide students or junior engineers with a safe 

sandbox to learn the functions of VCD, call API 

functions, and conceptualize orchestration flows, 

without needing to use a live environment, which is 

both expensive and complicated. Although broader-

scale mocking tools are helpful during numerous 
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software projects, they cannot fully simulate 

VMware vCloud Director Functionality. The 

available tools leave gaps that need to be filled by a 

domain-specific simulator, as well as gaps in terms 

of stringent testing and development requirements 

posed by today's cloud orchestration workflows. To 

overcome the challenges identified in live VCD 

testing (as shown in Table 1), a tailored simulation 

solution is necessary. As outlined in Table 2, a VCD-

specific simulator brings domain awareness, cost 

efficiency, and error simulation capabilities that 

generic mocking tools lack. 

 
Table 2: Justification for a VCD-Specific Simulator 

Requirement/Benefit Explanation 

Domain Awareness 
Simulator should understand VCD’s specific resources, workflows, and 

authentication methods. 

Stateful Behavior 
Must replicate real-world state changes (e.g., vApp lifecycles, user 

sessions) for accurate testing. 

Enhanced Reliability 
Realistic simulations improve confidence in automation scripts and reduce 

test ambiguity. 

Cost Efficiency 
Reduces need for costly VCD environments; testing becomes feasible for 

smaller teams or projects. 

Error & Edge Case Simulation 
Enables safe, repeatable testing of failure conditions not easily recreated in 

production. 

Educational Utility 
Acts as a training tool for students and junior developers without needing 

access to live systems. 

Superior to General Mocking 

Tools 

Fills gaps left by generic API mocks which lack VCD-specific features and 

behavior. 

 

4. Architecture of the Simulator 

 
4.1 Core Components 

The simulator that models VMware vCloud Director 

(VCD) API calls follows a modular design that 

intentionally echoes the organization and behavior 

of genuine VCD sessions. Its framework consists of 

several interdependent modules, and each module 

contributes to a believable and repeatable testing 

environment (26). Central to the simulator is the API 

Endpoint Manager. It listens for all incoming HTTP 

requests from client software, including 

orchestration scripts and automation utilities. After 

receiving a message, the manager determines which 

endpoint the client targeted, verifies the HTTP 

method used (GET, POST, PUT, or DELETE), and 

forwards the request to the appropriate internal 

handler. In this way, the manager serves as the 

gateway that mediates between external callers and 

the simulators' underlying processing logic. 

Once a request has been routed, control passes to the 

Payload Engine, which constructs the response 

payload destined for the client. This engine operates 

from predefined templates that closely mirror the 

structure and content of genuine VCD API outputs, 

inserting dynamic elements such as unique 

identifiers, timestamps, and operational status 

according to the current state of the simulation. Such 

contextual variability is crucial for replicating 

production-like workflows, where the content of a 

response is contingent upon prior actions and current 

parameters. To further sustain the appearance of an 

operational cloud environment, the simulator 

employs a State Tracker (23). This component 

monitors all active entities within the simulation—

virtual applications (vApps), networks, catalogs, and 

user accounts—and updates its internal registry 

whenever a client request creates, modifies, or 

removes a resource. By recording every transaction, 

the State Tracker ensures that future queries 

reference an accurate snapshot of the system's 

current state. For instance, when a client creates a 

vApp and subsequently requests a list of vApps, the 

simulator dutifully includes the new entry in the 

returned dataset, even though no underlying 

infrastructure has been provisioned. 

The final critical element is the Logging Module. It 

captures each incoming request, together with the 

corresponding response, headers, payload, and a 

precise timestamp. Such detailed records aid in 

debugging, facilitate systematic audits, and clarify 

the execution flow of test scripts during simulated 

runs. Furthermore, they enhance transparency and, 

more importantly, provide the traceability that 

regulated testing scenarios demand. When coupled, 

these four parts operate seamlessly to produce a 

simulation platform that is flexible, responsive, and 

mindful of its internal state, thereby mirroring 

VCD's API layer with high fidelity. 
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As the figure below illustrates, the simulation 

framework mirrors the operational logic and 

interaction flow of a real-world VCD API layer. 

 

 
Figure 3: VMware vCloud Director 

 

4.2 Technology Stack 

The simulator is constructed from a blend of 

contemporary, broadly supported technologies 

selected for their ease of use, solid performance, and 

room for future growth. Backend logic runs on either 

Node.js or Flask, with the choice guided by 

deployment context and performance criteria. Both 

environments come with mature libraries for 

RESTful routing, middleware insertion, and request 

parsing, making either one a suitable base for a 

system that must juggle multiple endpoints, each 

capable of shifting behavior. The API's structure is 

defined using the OpenAPI Specification, also 

known as Swagger (6). By formalizing every path, 

parameter, response, and possible error, this contract 

ensures all endpoints remain consistent and 

predictable. Automated tools then read the contract 

to build live documentation and create tests, so 

developers can immediately see how to use the API 

in systems such as Postman or Swagger UI while 

they are still working on other test scenarios. 

The simulator manages its data using a lightweight, 

schema-less database, typically either MongoDB or 

Redis. MongoDB's document model suits VCDs' 

nested JSON structures, allowing developers to store 

entire payloads as single, retrievable documents. 

Redis, however, shines when speed is critical; its in-

memory key-value store can quickly track session 

states or ephemeral resources needed during high-

frequency CI/CD cycles. Combining Node.js or 

Flask with the OpenAPI spec and MongoDB or 

Redis yields a nimble stack that emphasizes speed, 

realism, and the flexibility for users to adjust parts of 

the system without waiting for slow, monolithic 

releases. 

 

4.3 Security Simulation Features 

To function as an accurate stand-in for an actual 

VCD environment, the simulator must replicate 

VCD's authentication and security guardrails. The 

first element of this emulation is token-based session 

management. When a client directs a login request to 

the simulator's authentication endpoint, the 

simulator issues a token, usually structured as a 

JSON Web Token (JWT) or a mock bearer token. 

That token must accompany subsequent API calls, 

mirroring the behavior of a live session. In each 

request, the simulator verifies the token and can 

mark it expired either after a predetermined duration 

or according to configurable session rules. In 

addition to the token flow, the simulator offers a 

basic-auth emulation for users who expect a more 

classical scheme. Under this method, the system 

checks supplied username and password pairs 

against a static inventory defined in its configuration 

file. Although real user accounts are neither created 

nor persisted, the simulator upholds access-control 

rules and replies with standard HTTP status codes 

whenever authentication fails or succeeds. 

To facilitate deployment in secure test labs, the 

simulator optionally accepts Secure Socket Layer 

(SSL) termination (27). When configured in this 

manner, the tool presents an HTTPS endpoint, 

enabling client applications to exchange data with it 

over an encrypted channel, just as they would with a 

production cloud service. This feature meets the 

stringent security policies often found in enterprise 

networks, where plaintext traffic is explicitly 

forbidden even during non-production testing (21). 

With realistic security implemented, the simulator 

can be integrated into pipelines that rely on 

authentication tokens, session cookies, and protected 

transport, thereby strengthening its credibility and 

broadening its applicability in cloud-orchestration 

evaluation. 

 

5. Core Features and Functionalities 

 
The simulator, which mimics VMware vCloud 

Director (VCD) API calls, has been designed with a 

set of core features that replicate authentic API 

behavior within a controlled, adjustable 
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environment. These features answer the everyday 

demands of testing cloud orchestration, validating 

automation procedures, and aiding development 

work. Each function reacts in a manner that remains 

true to the responses an actual VCD system would 

issue, ensuring that the test results remain 

meaningful and dependable. 

As the figure below illustrates, these functionalities 

form the operational heart of the simulator, enabling 

realistic cloud behavior emulation without the cost, 

risk, or complexity of live VMware infrastructure. 

 

 
Figure 4: VMware vCloud Director 

 

5.1 Simulated Endpoint Catalog 

Central to the simulator is a comprehensive catalog 

of mock API endpoints that closely match the key 

tasks typically carried out in VCD settings. These 

endpoints follow the same structure and functions as 

seen in a live VCD API, covering familiar entry 

points, including the authentication call that initiates 

a session, as well as those for managing virtual 

applications (vApps), catalogs, media objects, and 

network settings. For instance, when a client issues 

a login request to the session endpoint, the simulator 

creates a session token and returns it in the same 

format that production VCD instances use (17). 

Once the client is authenticated, it can then call 

endpoints to create a vApp, list catalog media items, 

or touch the virtual network layer. Each endpoint 

emulates the behavior outlined in the official VCD 

API documentation, delivering consistent response 

structures, status codes, and headers. Because it 

exposes this wide set of endpoints, the simulator can 

act as a drop-in substitute for live VCD systems in 

many test cases where the tester wants to validate 

automation scripts or orchestration logic without 

consuming real cloud resources. 

 

5.2 Dynamic Response Generation 

Another key capability of the simulator lies in its 

ability to craft dynamic responses influenced by 

incoming request data, environment settings, and its 

simulated state. Instead of relying on static files or 

hardwired replies, the simulator utilizes structured 

templates—typically in JSON—that contain 

variables and placeholders. When a request arrives, 

the system locates the matching template and 

populates its fields using values extracted from the 

request, pulled from environment variables, or 

gathered from internal state. The described method 

generates context-aware replies that closely mirror 

behavior seen in production systems. For example, 

when a user submits a command to provision a new 

vApp, the framework automatically fabricates a 

fresh identifier, records a timestamped deployment 

status, and formats a resource URL in line with 

documented conventions. All of these elements are 

created on the fly and woven into the reply template 

during the actual execution cycle (25). Generating 

responses in this manner is beneficial for workloads 

that require strict structural consistency or for test 

scenarios where analysts want to observe how 

automation scripts behave when presented with 

subtly different data. By injecting controlled 

variability yet still conforming to well-defined 

patterns, the simulator broadens test scope without 

sacrificing the reliability of individual cases. 

 

5.3 Stateful Operation Handling 

Preserving system state across multiple chained API 

calls presents a persistent hurdle in replicating 

sophisticated orchestration backends, such as 

VMware Cloud Director. The current 

implementation addresses this problem by 

incorporating an internal state table that logs each 

client action, enabling returned messages to reflect 

the evolving context accurately. Preserving state 

across client transactions is essential for accurately 

imitating the lifecycle of virtual applications. When 

a request arrives to provision a new vApp, the 

simulator commits the vApp's name, status, and 

configuration to either in-memory storage or a 

persistent backend. Subsequent commands, whether 
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to power the vApp on or to check its state, are 

processed using this retained information. As a 

result, the simulator models the temporal evolution 

of VCD resources and guarantees that orchestrated 

workflows behave consistently with production 

behavior. Having a coherent state across sessions 

also underpins multi-step testing, where the output 

of one API call determines the validity of later calls. 

This continuity reflects genuine usage patterns, 

allowing developers to exercise the entire 

orchestration pipeline and confirm that intermediate 

states remain valid. 

 

5.4 Fault Injection Mechanism 

To benchmark robustness, the simulator 

incorporates a fault injection feature that lets testers 

introduce delays, errors, or anomalous behavior on 

demand. By engineering scenarios such as network 

timeouts, downstream service outages, or corrupt 

payloads, users can verify whether calling clients 

handle adversity gracefully, all without impacting 

production systems. For instance, a tester can set the 

simulator to pause for a few seconds before 

responding. This delay accurately imitates the 

noticeable lag that users might experience when 

systems are under heavy load. At other times, the 

simulator can emit specific HTTP error codes—such 

as 503(Service Unavailable) or 500 (Internal Server 

Error)—accompanied by clear text messages that 

guide the client about the nature of the fault. 

By injecting these conditions, developers can 

observe how their automation behaves during failure 

scenarios, verifying that fall-back routines, retry 

loops, and error logs operate as intended. Such 

testing is invaluable in continuous integration 

pipelines and in mission-critical scripts, where 

uninterrupted operation and proven fault tolerance 

are non-negotiable. Taken together, the simulator's 

precise endpoint imitation, dynamic response 

settings, stateful behavior modeling, and 

customizable fault generators create a solid 

environment for validating cloud orchestrators. 

Developers and testers can explore intricate, real-

world interactions with the VCD API without 

endangering production resources, incurring 

unexpected costs, or managing the overhead of live 

infrastructure. As a result, the tool has become a 

standard component of contemporary DevOps 

practices and cloud-centered development 

workflows. 

 

6. Methodology 

 
The simulator, designed to reproduce VMware 

vCloud Director API exchanges, evolved through a 

methodical, multi-phase process (15). Each discrete 

phase was oriented toward a specific technical goal, 

thereby demonstrating anticipation of real-world 

testing and automation environments in which the 

simulator might be deployed. The sequence of 

activities included schema extraction, stub 

generation, middleware assembly, pipeline 

integration, and the judicious application of 

contemporary development tools, all aimed at 

delivering a durable and versatile simulation 

platform.  

 

6.1 API Schema Extraction and Stub Generation  

The inaugural task consisted of harvesting the 

authoritative API schema records from VMware's 

vCloud Director Documentation set. These records 

enumerate accessible endpoints, define request 

formatting, clarify anticipated responses, list error 

codes, and outline the requisite authentication flows. 

To capture this information in a coherent and 

computable format, the team adopted the OpenAPI 

(formerly known as Swagger) specification, thus 

facilitating future validation, code generation, and 

automated testing activities. Once the API schema 

was finalized, the team turned its attention to 

creating preliminary endpoint stubs, employing a 

utility such as Swagger Codegen. This utility ingests 

an OpenAPI specification and produces skeletal 

server code in multiple languages, relieving 

developers of much of the boilerplate typically 

involved in endpoint definition. The resulting stubs 

include route bindings, supported HTTP verbs, basic 

request validation, and empty handlers intended for 

future logic. By providing this initial scaffold, the 

team was able to focus sooner on the substantive 

features of the simulator rather than repetitive 

configuration tasks. These automatically produced 

files became the baseline for the simulator's routing 

component and were later adjusted to accommodate 

stateful sessions and context-sensitive replies. 

Customizing the scaffolding at this stage helped 

keep the simulator's API structure consistent with 

the production VCD service and verified that all 

routing rules were present before more complex 

functionality was layered on top. 

 

6.2 Middleware Development 

With the endpoint scaffolds in place, attention 

shifted to the middle tier that orchestrates request 

handling, embeds application logic, and generates 

dynamic outcomes in response to client messages. 

At this stage, the team implemented stateful tracking 

as its cornerstone feature. Dedicated middleware 

modules now log the status of every entity—vApps, 

networks, catalogs, and media items—as it is 

created, modified, or deleted via any simulator 

endpoint. Because of this systematic logging, the 

simulator can reproduce lifecycles with a high 

degree of verisimilitude; for instance, a vApp moves 
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from "creating" to "ready" automatically, and 

queries for media items return precise, up-to-date 

lists. Developers built a payload resolution engine to 

facilitate the generation of dynamic responses (22). 

This engine reads pre-defined templates and 

substitute’s placeholders with values drawn from the 

incoming request, the environment configuration, or 

the live system state. Thus, a single template might 

receive a newly assigned identifier, user-provided 

metadata, or the current timestamp, allowing the 

simulator to adapt quickly to a variety of test 

conditions. Together, these middleware components 

enable the system to mimic real-world orchestration 

flows in a repeatable and dependable way, without 

depending on actual hardware or external services. 

As the figure below illustrates, middleware acts as 

the connective tissue of the simulator, coordinating 

between endpoint input and internal logic to generate 

intelligent, context-sensitive responses. 

 
Figure 5: Middleware 

 

6.3 Testing and CI/CD Pipeline Integration 

To facilitate use in contemporary development 

workflows, the simulator was configured for 

straightforward deployment within CI/CD pipelines. 

The initial step in this approach involved 

containerizing the application with Docker. A 

dedicated container was constructed to bundle the 

simulator, its dependencies, configuration files, and 

the complete runtime environment in a single image. 

As a result, users can execute the simulator on any 

machine with Docker installed, eliminating the need 

for manual setup replication. Following 

containerization, the simulator was integrated into 

CI/CD platforms, including GitHub Actions and 

Jenkins. These systems trigger automated testing and 

deployment sequences with every code commit or 

build event. By inserting the simulator into the 

pipeline as a discrete stage, orchestration scripts and 

associated automation logic can be exercised against 

a stable API mock during each build. This practice 

enhances test reliability and reduces the likelihood 

of surface-level integration failures surfacing only at 

later stages of the release cycle (29, 30). Pipeline 

integration equally accommodates the running of 

custom test suites, preliminary environment scripts, 

and cleanup routines. In this role, the simulator 

becomes a key fixture of the automated threshold, 

supporting quick, repeatable, and secure testing 

sequences. 

6.4 Tooling Stack 

The final methodological phase focused on selecting 

and integrating tools to cover development, 

simulation, testing, and deployment. The team 

documented the API structure using OpenAPI, and 

throughout the entire lifecycle, Swagger UI provided 

interactive references, and Swagger Codegen 

generated initial stub files. To ease portability, the 

application was containerized with Docker, allowing 

the simulator to launch on developer laptops, virtual 

machines, or cloud services with little extra 

configuration. Testing teams relied on Postman to 

design and execute collections against the simulator, 

confirming that actual responses matched expected 

behavior across diverse scenarios. 

Continuous integration pipelines in GitHub Actions 

and Jenkins executed automated tests, built fresh 

container images, and published them to shared 

registries for joint exploration. These routines 

ensured that the simulator remained in working order 

whenever code was added or altered, supporting 

quick feedback for all contributors. Following an 

orderly sequence—schema design, logic coding, 

container packaging, and automated release—the 

project produced a realistic, efficient tool for 

evaluating cloud orchestration where hands-on 

access to VMware vCloud Director is impractical. 

As shown in Table 3, GitHub Actions and Jenkins 

were used to automate testing, containerization, and 

release workflows. This not only accelerated 

development cycles but also guaranteed that code 

changes did not compromise the simulator’s core 

functionality. 
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Table 3: CI/CD Pipeline and Simulator Development Workflow 

Stage / Component Details 

CI Tools Used GitHub Actions and Jenkins 

Automation 

Functions 
Ran automated tests, built new container images, and published to shared registries 

Purpose of CI 
Ensured simulator functionality was intact after code changes; enabled fast feedback 

loops 

Development 

Sequence 
Schema design → Logic coding → Container packaging → Automated release 

Outcome 
Delivered a realistic, efficient tool for testing VCD orchestration workflows without 

direct access 

 

7. Practical Use Cases and Applications 

 
The simulator for VMware vCloud Director (VCD) 

API calls was engineered as a hands-on utility rather 

than an abstract exercise, addressing the everyday 

problems that operators and developers encounter. 

Its thoughtful architecture and broad feature set 

allow it to fit smoothly into contemporary DevOps 

pipelines, cloud application projects, and classroom 

demonstrations. By acting as a safe and budget-

friendly substitute for an active VCD instance, the 

simulator adds considerable utility where security 

policies, cost controls, or the need for predictable, 

repeatable tests take priority. 

 

7.1 CI/CD Pipeline Testing 

Among the many scenarios where the simulator 

shines, integration and testing within continuous 

integration and continuous delivery (CI/CD) 

pipelines is the most immediately valuable (34). In 

typical cloud-native workflows, automation scripts 

touch VCD APIs to carry out tasks such as 

provisioning VMs, configuring networks, or rolling 

out updated applications. Verifying these scripts 

early and often within the pipeline is critical; 

however, routing every build through a production-

like VCD environment is neither cost-effective nor 

sufficiently secure. Integrating the simulator directly 

into the continuous integration pipeline enables 

developers to verify orchestration logic with every 

code commit or build. Acting as a mock VCD 

platform, the simulator predictably responds to API 

calls, eliminating ambiguity during test execution. 

Because of this stable feedback, integration failures, 

schema mismatches, and logic bugs can be detected 

before they reach production. The setup also allows 

multiple pipeline runs to proceed in parallel, 

sidestepping concerns about infrastructure 

contention or external dependencies (31). 

Packaged as a container, the simulator starts and 

stops almost instantly with each pipeline execution, 

leaving no residual state behind. This speed ensures 

that every test runs in a clean, repeatable 

environment, eliminating the need for build 

engineers to spend precious minutes troubleshooting 

artifacts from prior runs. The result is a marked boost 

in testing reliability and a better fit with the rapid 

iteration cycles modern teams have come to expect.   

 

7.2 Developer Sandboxes   

When cloud engineers and developers write 

automation or orchestration scripts, they need a fast, 

forgiving space to experiment without risk. 

Targeting a live VCD system directly exposes the 

project to accidental changes on shared resources, 

unwanted service charges, and possible downtime. 

Worse still, the pressure of working on production 

infrastructure often forces developers to limit their 

experiments, stifling innovation and learning. A 

purpose-built sandbox eliminates these dangers, 

encouraging developers to test boldly and iterate 

quickly while preserving the stability of the broader 

system. 

The simulator addresses these needs by offering a 

controlled sandbox that closely duplicates VCD's 

behavior while leaving the production stack 

untouched. Within this isolated space, engineers can 

easily load new scripts, check the sequence of API 

calls, and observe how their logic responds to 

different inputs. They can repeat those tests at will, 

because every run starts from the same known state. 

Because the simulator tracks state and sends 

dynamic replies, developers can push through entire 

workflows-authentication, resource provisioning, 

and final teardown-and see precisely how their code 

would behave against the live API. As a result, teams 

shorten the time between draft and deployment, 

enter production with more substantial confidence, 

and encounter fewer unexpected errors after 

integration. 

 

7.3 Disaster Recovery and Failover Simulations 

The simulator also proven invaluable for planning 

disaster-recovery (DR) and failover strategies. Real-

world DR exercises must verify intricate failover 

paths, confirm that error-handling code operates as 
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intended, and mimic outages at both component and 

region levels. Testing those scenarios on a live 

system is disruptive, expensive, and often prohibited 

in environments where every minute of downtime 

incurs a significant cost. 

The simulator creates a safe and repeatable testing 

space in which disaster-recovery scenarios can be 

executed without impacting production services. 

With its fault-injection options, users can simulate 

various errors—such as API timeouts, transient 

service outages, and even malformed responses—

and then observe how the system responds. This 

controlled setup enables engineering teams to verify 

that their failover scripts and fallback paths function 

correctly under various stressful scenarios. Running 

these exercises on the simulator strengthens the 

overall reliability of automation pipelines, 

demonstrates compliance with relevant standards, 

and confirms that cloud-architecture plans hold up 

when individual components fail. 

 

7.4 Training and Education Labs 

The simulator is equally valuable for learning. 

Mastering cloud-orchestration platforms such as 

VCD demands practical, hands-on exposure; 

however, live environments are frequently too large, 

costly, or tightly governed for new staff to interact 

with freely. Schools, external training providers, and 

internal onboarding programs therefore struggle to 

deliver meaningful lab work without straining 

operational infrastructure. The simulator lowers that 

barrier by offering identical tools in an isolated, 

resettable space (18, 19). The simulator provides a 

safe, low-risk environment that closely replicates the 

production API of VCD. Trainees can log in, create 

vApps, manage networks, and explore resource 

hierarchies just as they would in a live environment. 

Because the simulator tracks state and responds 

dynamically, the learning experience feels almost 

indistinguishable from working with the actual cloud 

console. 

Instructors can run the simulator on a laptop or host 

it in the cloud, tailoring it to any lesson plan and 

resetting it with a single command between classes. 

That flexibility accommodates both self-guided 

study and structured workshops, allowing cloud 

engineers to practice automation at their own pace 

without worrying about affecting production 

resources. The simulator adds convenience, 

reliability, and rapid feedback to nearly any 

workflow. Whether inserted into a CI/CD pipeline, 

used as an independent developer tool, woven into 

disaster-recovery tests, or deployed in training labs, 

it faithfully reproduces VCD behavior and 

accelerates the adoption of cloud orchestration. 

 

8. Evaluation and Performance Metrics 

 
The effectiveness of the VCD API simulator is 

assessed along three interrelated axes: fidelity to 

VMware vCloud Director Behavior, performance 

under varying load conditions, and the subjective 

usability experienced by developers and testers 

during their daily tasks. By examining these 

dimensions together, the evaluation determines 

whether the tool is both technically sound and 

practically advantageous in real development and 

test circuits. 

As the figure below illustrates, the evaluation 

framework connects performance data, behavioral 

accuracy, and end-user satisfaction into a unified 

model. This holistic perspective allows stakeholders 

to measure not just how the simulator functions, but 

how effectively it supports development goals and 

reduces operational risks. 

 

 
Figure 6: Key Performance Metrics

  

file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T18
file:///C:/Users/AJAY/Downloads/Zahir%20S_Q3.docx%23T19


Zahir Sayyed / IJCESEN 11-3(2025)5422-5441 

 

5434 

 

8.1 Fidelity to Real VCD Behaviour 

A simulator gains value only when its outputs mirror 

those of the actual system it replicates (13). To test 

that criterion, the VCD simulator ran beside 

production VMware vCloud Director Instances, 

allowing every status code, payload identifier, and 

API pathway to be checked for correspondence. 

During these comparisons, identical commands—

such as creating vApps, fetching catalog entries, 

establishing login sessions, or querying media 

resources—were issued to both the simulator and the 

live cluster, and the resulting JSON or XML 

documents were placed side by side for comparison. 

The comparison examined not only syntactic form 

but logical organization and semantic content 

against VMware's published API reference. 

The outcomes confirmed that the simulator 

maintains a high degree of fidelity. Core elements, 

including hierarchical object relationships, 

pagination schemes for list endpoints, and metadata 

formatting, were reproduced with close 

correspondence to the reference system. Stateful 

actions such as vApp deployment and power-on 

followed established workflows, yielding expected 

state transitions and consistent timestamp generation 

throughout the test cycle. Deviations primarily arose 

in advanced situations, including granular network 

policy enforcement and the handling of long-running 

asynchronous jobs. These features were 

intentionally abstracted in the simulator to limit 

computational overhead and avoid unnecessary 

complexity. The documented differences were 

judged tolerable, since the simulator serves mainly 

as a test-and-automation facilitator, not as a drop-in 

substitute for production environments. 

 

8.2 Performance Benchmarks 

Performance experiments evaluated how the 

simulator scaled under representative loads, with 

particular focus on automated pipelines and 

scenarios that exercised high levels of concurrent 

testing. Principal metrics—endpoint latency, overall 

request throughput, and per-thread memory 

consumption—were recorded for each test class, 

enabling comparative analysis across low, medium, 

and peak workloads. Latency tests measured average 

response time for each API endpoint under idle and 

busy conditions. For lightweight calls, such as 

session login and metadata retrieval, the average 

response time remained below 50 milliseconds, even 

with dozens of concurrent users. For state-changing 

operations, such as vApp creation, which involve 

simulated object generation and state tracking, 

latency ranged from 70 to 120 milliseconds, 

depending on the payload size and response 

complexity. 

Throughput was tested by subjecting the simulator to 

concurrent API calls via a load-testing framework. 

With fifty parallel users issuing a mixed pattern of 

read and write commands, the system sustained over 

fifteen hundred requests per second and produced 

only sporadic, non-influential errors. At peak load, 

response times rose slightly, yet the simulator 

remained responsive and stable for all measured 

flows. Memory footprint and CPU usage remained 

within acceptable thresholds, especially when 

deployed in Docker containers with specified 

resource limits. Redis-backed instances delivered 

stronger performance for short-lived sessions and 

frequent state lookups, while the MongoDB back 

end offered superior durability for longer-running, 

sequence-based simulations. Together, these 

benchmarks demonstrate that the simulator can 

comfortably support typical development, testing, 

and continuous integration workloads without 

becoming a bottleneck. The performance profile 

remains adequate for integration into automated 

pipelines and is scalable enough to accommodate 

multi-user environments. 

The graph illustrates the behavior of the VMware 

vCloud Director (VCD) API simulator when 

subjected to steadily increasing numbers of virtual 

users, specifically, workloads consisting of 10, 25, 

and 50 concurrent transactions. Two primary metrics 

appear on the figure: latency and throughput. 

Latency is traced on the left Y-axis by red and orange 

lines and reflects average round-trip times for 

distinct classes of calls. For lightweight requests, 

such as logon and metadata read, latency remained 

remarkably stable, climbing only from 35 

milliseconds to 48 milliseconds as the load doubled 

from ten to fifty users. In contrast, state-changing 

calls, including vApp provisioning, required more 

internal processing; here, round-trip times increased 

from 70 milliseconds to 120 milliseconds when the 

same user increment was applied. 
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Figure 7: Simulator Performance under Varying Load Conditions 

 

8.3 Developer Experience Feedback 

The simulator's overall utility was also assessed 

through qualitative comments from developers, 

testers, and DevOps personnel, complementing the 

raw performance figures. Structured surveys were 

distributed after multiple integration cycles, 

especially to teams that had previously been 

hindered by restricted VCD visibility or by test beds 

that frequently lost stability. Respondents pointed to 

several immediate benefits. Foremost, practitioners 

valued the option to execute complete orchestration 

pipelines on local workstations, eliminating the need 

for VPN gateways or central cloud support. This 

single improvement accelerated debugging, 

allowing parallel runs and providing engineers with 

the room to experiment with early feature 

prototypes. Testers further remarked that the 

simulator made rare failure scenarios—such as token 

expiration, HTTP 500 responses, or intermittent 

timeouts—straightforward to generate and examine, 

something production-mimicking environments had 

long resisted. 

The team also gathered quantitative evidence on 

automated testing coverage and defect capture (35). 

Across integration runs, every group logged a 

noticeable rise in executed test cases per build, a 

shift attributed to the simulator's easy availability 

and its broadly adjustable parameters. Throughout 

integration sprints, defect-catch ratios improved, 

resulting in fewer discrepancies advancing into 

staging or production. That trend was especially 

pronounced within error-handling flows and edge-

case checks, areas that prior resource constraints had 

consistently left untested. 

Several focus group sessions highlighted the value 

of comprehensive transaction logs, user-defined 

response templates, and built-in export options for 

OpenAPI specifications. These elements lowered the 

learning curve for novice testers and empowered 

seasoned engineers to fine-tune the environment for 

specialized scenarios at little extra cost. Taken 

together, the two strands of evaluation-technique 

accuracy and time-to-deliver in operational settings 

provide a clear verdict. The simulator reproducibly 

tracked core VCD patterns, sustained heavy loads 

without drift, and noticeably eased the developer-

QA feedback loop. By reducing provisioning 

overhead, expanding the scope of automation, and 

accelerating cycle times, it now meets the daily 

demands of cloud orchestration testing. A key 

measure of the simulator’s success was its impact on 

developer productivity and testing quality. As 

detailed in Table 4, developers reported significant 

improvements in local testing, faster defect 

detection, and enhanced coverage for edge-case 

scenarios. 

 
Table 4: Developer Experience Feedback: 

Aspect Feedback / Observations 

Local Execution 
Enabled full orchestration pipelines on local machines; eliminated 

VPN/cloud dependency. 

Debugging & Prototyping 
Accelerated debugging; allowed parallel runs and early feature 

experimentation. 

Failure Scenario Simulation 
Simplified testing of rare cases (e.g., token expiration, HTTP 500, 

timeouts). 
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Aspect Feedback / Observations 

Automated Testing Coverage 
Increased executed test cases per build due to availability and 

configurability. 

Defect Detection 
Higher defect-catch ratios, especially in error-handling and edge-case 

logic. 

Support Tools 
Provided detailed logs, custom response templates, and OpenAPI export 

options. 

Learning Curve 
Lowered for new testers; enhanced scenario flexibility for experienced 

users. 

Operational Value 
Improved evaluation accuracy, reduced delivery time, and optimized 

dev-QA feedback loop. 

System Reliability 
Maintained stability under load and reliably emulated core VCD API 

patterns. 

 

9. Limitations and Future Enhancements 

 
9.1 Known Limitations 

Although the VCD API simulator is reliable for 

training and testing, it has several limitations 

stemming from deliberate architectural choices and 

design compromises made to keep the 

implementation straightforward. These weaknesses 

do not typically disrupt standard testing, but they can 

complicate more complex scenarios, so users should 

consider them before applying the tool in demanding 

settings. Concurrency and session handling 

represent one of the most noticeable constraints. The 

simulator does remember individual sessions and 

preserves state across authenticated request cycles, 

but it has not been fine-tuned for environments 

where large numbers of users execute overlapping 

calls simultaneously. In contrast to a fully featured 

API gateway, it omits per-tenant memory partitions, 

token revocation lists, and built-in load balancing, all 

of which strengthen isolation and scaling. As a 

result, running the simulator under heavy parallel 

loads that alter shared data can still introduce 

conflicts or race conditions unless the test sequence 

is carefully organized. 

Its support for the full VCD resource lifecycle 

remains incomplete (10). Although the simulator 

manages the standard phases for virtual 

applications—creation, deployment, power-on, and 

deletion—it overlooks operational controls such as 

resource locking, job queues, and time-sensitive 

state transitions. In an actual VCD deployment, tasks 

can be queued, blocked, or aborted depending on 

role permissions, current states, and backend 

dependencies. The simulator, however, adopts an 

optimistic model: as long as the mock state logically 

permits an action, it executes immediately. Because 

of this design choice, edge cases—such as 

attempting to delete a vApp while another command 

is pending—are not accurately reproduced. 

Error handling is similarly basic. The fault-injection 

tool can emulate timeouts, service-level errors, and 

malformed messages, yet it stops short of modeling 

nuanced or cascading failures that arise in large, 

distributed systems. Although token-based 

authentication is effective, the simulator only 

partially implements multi-role access control and 

the whole hierarchy of permissions. None of these 

omissions invalidate basic test cycles, but they do 

impose limits when users try to mimic sophisticated 

orchestration timing, enforce detailed policies, or 

reproduce production-like, multithreaded 

workloads. 

 

9.2 Future Work 

The development team has identified multiple 

enhancement opportunities aimed at overcoming 

existing limitations and broadening the simulator's 

utility across the entire software development 

lifecycle. First on the agenda is a web-based 

graphical user interface (GUI). A well-designed 

dashboard would allow users to visualize API 

endpoints, examine real-time state data (such as 

active sessions or allocated virtual applications), 

adjust response templates, and simulate fault 

conditions through point-and-click actions. By 

reducing dependence on command-line syntax, the 

GUI would lower the entrance barrier for quality-

assurance testers, educators, and DevOps engineers 

who routinely prefer visual instrumentation during 

verification. 

The second major expansion targets tighter 

integration with popular Infrastructure-as-Code 

(IaC) frameworks, most notably Terraform and 

Ansible. Because contemporary teams rely on these 

tools to standardize provisioning pipelines across 

heterogeneous cloud providers, creating dedicated 

provider modules or plugins linked to the simulator 

would enable developers to validate their declarative 

configurations before committing resources 

externally. Such a testing stage would expose 
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syntactic errors, reveal hidden assumptions, and 

furnish higher confidence in template correctness, 

ultimately streamlining pre-deployment governance 

and reducing unexpected charges from live 

environments. Plans are being finalized to strengthen 

the internal simulation engine by adding several new 

error-handling features. Among these are linked 

failure events, randomized fault injection, models of 

resource exhaustion, and emulation of degraded 

performance across subsystems. Together, these 

capabilities will enable developers to subject a 

service to realistic, cascading faults and test 

resilience patterns, such as retries, graceful 

degradation, and fallback procedures. The resulting 

tests will provide deeper insight into how production 

code behaves under adverse yet plausible conditions. 

The workflow engine will also gain a new layer of 

configurability, permitting users to chain operations, 

introduce conditional waits, and express timing rules 

in a domain-specific syntax. A typical use case might 

specify that an API call for vApp creation remains in 

the "deploying" state for exactly thirty seconds 

before moving to "ready," thereby simulating 

genuine provisioning latencies observed in cloud 

environments. By allowing administrators to 

sequence calls and associate delays or blockers with 

distinct failure states, the extended engine supports 

the rigorous staging of complex orchestration 

scenarios and the precise validation of time-sensitive 

automation logic. The current release of the VCD 

API simulator already serves a wide range of 

development and evaluation tasks, yet it remains in 

active evolution (4). Planned updates will refine the 

user interface, deepen integration with standard 

toolchains, and enhance error emulation, making the 

simulator a more rounded offering. These additions 

aim to bridge the gap between straightforward mock 

tests and the complex behavior observed in 

production cloud environments, thereby 

encouraging wider adoption and greater trust in 

automated infrastructure deployments. 

As the figure below illustrates, this roadmap 

strategically targets key layers of the development 

process, aiming to position the simulator as a 

foundational tool in automated infrastructure testing. 

 

 
Figure 8: software-development-strategy 

 

10. Recommendations 

 
The ongoing work on the VCD API simulator shows 

clear promise for strengthening test automation 

within cloud engineering. To amplify that benefit 

across sectors and settings, the following focused 

recommendations are offered to practitioners, 

organizations, educators, and software developers. 

 

10.1 For DevOps and QA Teams 

Teams that rely on VMware vCloud Director should 

add the simulator to their DevOps pipelines as soon 

as practical (9). Swapping or supplementing live 

tests with a simulated environment accelerates 

feedback loops, reduces risk, and expands the reach 

of automation. It is advisable to run the simulator 

during nightly builds, regression suites, and 

integration checks, particularly where orchestration 

code calls VCD APIs. Quality assurance engineers 

should consistently utilize the simulator's fault-

injection features when performing chaos tests. By 

simulating API timeouts, unauthorized calls, and 

sluggish responses, testers can strengthen the 

underlying automation scripts and optimize the 
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backing infrastructure for uncommon but possible 

operational anomalies. 

 

10.2 For cloud architects and infrastructure 

engineers 

Cloud architects may therefore treat the simulator as 

an iterative mockup environment in which 

orchestration drafts and multi-tenant blueprints can 

be field-tested. Executing templates against the 

simulator before promotion to production VCD 

confirms provisioning logic, verifies API ordering, 

and checks policy compliance without affecting live 

customers. Infrastructure engineers, in turn, should 

advocate for the broader adoption of the tool across 

their infrastructure-as-code pipelines. By submitting 

Terraform or Ansible modules that mirror the 

simulator's input schema, teams narrow the gap 

between code commits and runtime observations, 

significantly reducing misconfiguration errors when 

the software reaches production. 

 

10.3 For Enterprises and Managed Service 

Providers 

Enterprises running multiple VCD clusters or 

supplying vCloud services to customers should 

consider using the simulator during internal testing 

and onboarding activities. By trying integrations 

against the simulator before production access is 

granted, teams validate API calls, shorten ramp-up 

times, and ease the workload on live systems. 

Managed service providers may also adopt the 

simulator in their service-assurance workflows, 

allowing vendors and partners to verify automation 

scripts and configurations before they enter sensitive 

environments. 

 

10.4 For Educators and Training Institutions 

Educators and cloud trainers can weave the 

simulator into DevOps, cloud computing, and 

virtualization programs. Its quick setup and 

behavior, closely aligned with VMware vCloud 

Director, make it well-suited for lab sessions, 

workshops, and self-guided study. Learners practice 

genuine cloud-orchestration tasks without needing 

expensive hardware or endangering running 

services. Instructors are encouraged to package the 

simulator with ready-made exercises, step-by-step 

guides, and OpenAPI documentation, thereby 

creating a safe sandbox where students can explore 

and deepen their understanding of the material. 

 

10.5 For Simulator Developers and Maintainers 

To ensure the simulator remains timely and helpful, 

the development team should advance the roadmap 

items listed in Section 9.2. Key priorities include a 

web-based graphical user interface to simplify 

configuration, built-in support for Terraform and 

Ansible, and richer error-emulation modules (1). 

Adding multi-session concurrency, nested API 

workflow support, and refined token-driven role 

management will broaden the tool's relevance to 

enterprise-scale deployments. Publishing the 

simulator as an open-source asset deserves serious 

consideration. An open model invites community 

patches, accelerates peer review, and promotes 

widespread adoption. Hosting practical example 

projects alongside user-contributed case studies will 

inform future enhancements while illustrating the 

simulator's value to prospective teams. 

As the figure below illustrates, fostering an open, 

extensible, and community-supported simulator 

aligns with modern software development best 

practices and enhances long-term sustainability. 

 

 
Figure 9: software-development-process 
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11. Conclusion 

 
The creation of a dedicated simulator for VMware 

vCloud Director API calls represents a significant 

advancement in cloud orchestration testing. Tailored 

for developers, testers, and DevOps operators, the 

tool provides a safe, efficient, and inexpensive 

substitute for live-system validation. By accurately 

modeling authentication, resource provisioning, and 

lifecycle functions, it enables thorough workflow 

verification without the hazards or access limitations 

typically found in production environments. The 

simulator surpasses standard mocking frameworks 

by incorporating capabilities specifically designed 

for cloud orchestration scenarios. Among these are 

stateful tracking of virtual resources, multi-step API 

choreography, and on-the-fly payload generation 

that mirrors parameters found in production 

requests. Its built-in fault-injection functions enable 

developers to evaluate error-handling paths and 

measure resilience, positioning the simulator as a 

critical asset for constructing and verifying 

automation pipelines. Because it reproduces live 

conditions in a contained manner, the tool enhances 

both safety and throughput throughout the cloud 

development lifecycle. 

Its effect on cloud-development practices is already 

noticeable. By removing the dependence on live 

VDC infrastructure, the simulator reduces the entry 

cost of infrastructure-as-code, continuous delivery, 

and automated testing pipelines. DevOps teams in 

particular gain from being able to run API 

workflows, explore edge cases, and test automation 

logic in completely isolated targets. Because the 

simulator is packaged as a lightweight container, it 

can be dropped straight into CI/CD chains on 

systems like GitHub Actions or Jenkins, ensuring 

every build receives fresh validation before code 

leaves the branch. The early detection of defects not 

only speeds up the pipeline but also steadies 

production by revealing inconsistencies before they 

occur. 

The simulator also preserves key orchestration 

mechanics—session management, endpoint 

emulation, and lifecycle simulation—that modern 

iterative teams require. In complex multi-tenant 

clouds, where live tests may be impractical or 

unsafe, the tool provides repeatable and predictable 

behavior across a wide range of operating 

conditions. Looking ahead, this simulator is likely to 

find roles well beyond the present experiments it 

supports. Within large companies, it could be 

featured in internal validation suites that guide the 

secure onboarding of new automation teams and 

external partners. Similarly, cloud providers and 

managed-service firms may use the tool to verify 

third-party integrations before granting production 

access, thereby enhancing reliability and reducing 

ongoing support demands. For students and 

instructors, the performer serves as an affordable 

alternative to full-scale cloud laboratories, allowing 

learners to practice orchestration tasks with real 

commands without incurring the expense or 

operational burden of live hardware. 

A series of planned updates—among them a 

polished web interface, tighter integration with 

Terraform and Ansible, and more robust error 

modeling—are expected to expand the simulator's 

capacity further. When finished, these features 

should make the tool easier to navigate, more 

responsive to infrastructure-as-code workflows, and 

better able to recreate intricate runtime situations 

involving interdependencies, latencies, and 

conditional branches. The VCD API simulator fills a 

crucial gap in cloud engineering by providing 

programmers with a safe, repeatable, and realistic 

environment for validating orchestration logic. By 

using the simulator, DevOps teams can iterate more 

quickly, reduce testing costs, and run bold 

experiments without jeopardizing production 

stability. Given the accelerating shift toward 

scalable, cloud-native architectures, instruments of 

this kind will prove vital for maintaining 

infrastructure agility and resilience. Ongoing 

improvements and broader adoption of the tool are 

expected to shape patterns in how future cloud 

services are designed, tested, and rolled out across 

the sector. 
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