

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5559-5565

http://www.ijcesen.com
ISSN: 2149-9144

Research Article

Large Language Model Framework for Device Orchestration in Low-Code No-

Code Solutions

Rohith Kumar Punithavel1*, Deeksha Sivakumer2

1Robert W. Plaster Graduate School of Business, University of the Cumberlands, Kentucky, USA

* Corresponding author Email: rohithkumar.punithavel@gmail.com - ORCID: 0009-0002-3922-5549

2Robert W. Plaster Graduate School of Business, University of the Cumberlands, Kentucky, USA

 Email: sivakumer.deeksha@gmail.com - ORCID: 0009-0002-3922-5548

Article Info: Abstract:

DOI: 10.22399/ijcesen.3521

Received: 21 May 2025

Accepted: 18 July 2025

Keywords

LLM,

Prompt Engineering,

Low-Code
No-Code

In today's digital era, virtually every aspect of life or industry is influenced by digital

services. Digital devices have played a critical role in transforming various fields, from

education to healthcare, by enhancing availability and access. They have also helped

prevent theft, robbery, and even property damage. They have also contributed to crime

prevention, including theft, robbery, and property damage. With exponential growth,

digital device manufacturers serving similar or different purposes have created a

heterogeneous digital ecosystem to offer ease-of-use solutions. However, this

heterogeneity poses challenges even for software developers. Beyond software

developers, a growing number of professionals from other engineering streams,

management, and small to medium-sized business owners are required to interact with

digital systems. Low-code and no-code platforms have emerged as viable solutions to

support this shift and encourage these users to manage digital services without complex

programming. The Low-Code and No-Code platforms have limitations but are not limited

to flexibility, usability, and integration, which restrict the development of customized

solutions. Large Language Models have recently drawn everyone's attention due to their

cognitive ability and capability to bridge gaps. In this paper, we explore how LLMs can

enhance Low-Code and No-Code platforms by facilitating the integration of digital

 devices and improving the management of their usage and services.

1. Introduction

The Internet of Things (IoT) has existed for several

decades. IoT is simply an interconnected network of

devices that allows communication among and

between them and the cloud. Through advancements

in connectivity, IoT has become an everyday feature

of life, from home appliances to streetlights. IoT

devices usually consist of sensors, actuators, and

communications interfaces, allowing them to form a

global network that can exchange data over the

Internet without significant human involvement. IoT

transforms devices into intelligent entities and

emphasizes the creation of an interconnected

ecosystem where cloud computing, RFID, and

Wireless sensor networks work together to ensure

data integrity and security (Gubbi et al., 2013). The

applications of IoT span across various domains,

including military, healthcare, home automation,

solid waste management, surveillance systems,

consumer asset tracking, smart grids, vehicular

communication systems, agriculture, transportation,

and disaster monitoring. In the military, IoT is used

for health monitoring, tracking of armed personnel,

smart uniforms, situational awareness, and naval

monitoring. IoT supports remote health monitoring,

ingestible sensors, mobile health solutions, and

smart hospitals. Home automation is enhanced

through remote control of appliances, smart lighting,

intrusion detection, and elder care systems. IoT has

enabled solutions centered on sensor-based

monitoring, like water leak detection, real-time and

remote tracking of utilities usage like water,

electricity, and gas, and many more. In security, IoT

systems can monitor activities from remote locations

through audio and video, incorporating motion and

http://dergipark.org.tr/en/pub/ijcesen
mailto:rohithkumar.punithavel@gmail.com
mailto:sivakumer.deeksha@gmail.com

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5559

face detection, and providing alerts in real-time. In

connected assets, IoT systems integrate GPS, RFID,

and accelerometers; in e-commerce, IoT has

provided the ability to trace and track within

logistics. In agriculture, transportation, and disaster

management, IoT systems are providing solutions

around crop management, nutrient monitoring, road

traffic control, parking management, toll collection,

fleet, and disaster management by helping in

providing early warning of tsunamis, forest fires,

floods, and landslides (Ramson et al., 2020). As the

demand for the IoT has evolved to where we are

today, many vendors and solution providers have

risen and are selling their solutions, resulting in a

fragmented ecosystem. This fragmentation has made

integrating and testing IoT systems challenging and

hindered seamless interoperability (Dudhe et al.,

2017).

Low-Code and No-Code platforms allow users with

little to no coding experience to create software

applications. Software Development has been

drastically changed through Low-Code and No-

Code platforms, which simplify the development

approach and provide a faster, easier, and less

expensive alternative to traditional software

development. The Low-Code and No-Code platform

has drag-and-drop components, visual tools, and

prebuilt modules, which can decrease development

time and complexity. The Low-Code and No-Code

platform has easy-to-use interfaces, automatic

security updates, agility, and less maintenance

(Shridhar, 2021). One of the slightly lesser

challenges is that Low-Code and No-Code platforms

have limitations based on their capabilities or

available components, meaning that Low-Code and

No-Code are not the best approach for developing

functionality that requires high customization or

complex functionality (Elshan et al., 2023).

However, one unfortunate challenge of Low-Code

and No-Code is integrating heterogeneous

ecosystems (e.g., Internet of Things (IoT)).

Heterogeneous ecosystems create multiple obstacles

to seamless interoperability, scalability, and

maintainability. The implications of limits on

interoperability can affect the broader uptake and use

of Low-Code and No-Code platforms.

A Large Language Model (LLM) is an artificial

intelligence system designed to understand and

generate human-like text. LLMs are based on

artificial neural networks with a transformer

architecture. The architecture can process language

efficiently and at scale (Naveed et al., 2020). LLMs

predict the next word in a sentence through a training

process that involves learning statistical

relationships between words from large amounts of

data. They do not possess understanding, belief, or

consciousness; instead, they generate responses

based on learned patterns, not reasoning or

experience (Shanahan, 2024). Over the last decade,

LLMs have evolved significantly with the

introduction of transformer architecture. The

transformer architecture uses an attention

mechanism to understand sentence relationships

simultaneously, allowing LLMs to perform tasks

with minimal instruction. GPT-2 and GPT-3 show

that LLMs can do a lot of different things with little

or no instruction when they have more data and

parameters (Naveed et al., 2020). Modern models

like GPT-4 are multimodal, capable of

understanding text, images, and audio. Modern

LLMs are further fine-tuned with techniques like

Instruction Tuning and Reinforcement Learning

from Human Feedback to enhance their accuracy

and performance in complex scenarios (Teubner et

al., 2023). Large Language Models (LLMs) offer

advantages like zero-shot and few-shot

generalization, in-context learning, multi-task

transfer, and emergent abilities like reasoning and

planning due to their scale and transformer

architecture. LLMs suffer from hallucinations,

sensitivity to prompts, and failing to align context,

which produces biased or misleading output content.

LLMs require vast computing power, capital, and

energy resources to train and generate predictions,

which raises doubts when considering the range of

scaling. Even with human-like physical attributes

that could provide the observer a sense of

interaction, LLMs demonstrate no understanding or

reasoning and operate by next-token prediction of

statistical patterns in training data.

LLMs are used in various language tasks like text

summarization, machine translation, information

retrieval, question answering, and dialogue

generation. They support code generation and

completion in programming environments. LLMs

are utilized in multimodal settings for tasks like

image captioning, audio-text reasoning,

conversational agents, assistive writing tools,

autonomous systems, and educational tutors. LLMs

are also embedded in business and decision-support

systems to enhance productivity and content

generation (Naveed et al., 2020; Shanahan, 2024;

Teubner et al., 2023). Large Language models

(LLMs), particularly large-scale transformer-based

models, require substantial computational

infrastructure for training. This includes large

datasets, high-performance parallelized hardware,

distributed training strategies across multiple

devices, mixed-precision training to reduce memory

and computational requirements, and memory and

compute efficient techniques to enable model

scaling and performance. High operational costs due

to intensive computing per query contribute to

financial burdens. Therefore, research is needed to

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5560

develop more efficient architectures, tuning

methods, and inference optimizations for LLMs to

be more scalable and sustainable (Teubner et al.,

2023).

This paper presents a framework that addresses the

challenge of onboarding heterogeneous IoT devices

on low-code and no-code platforms using large

language models. In Section 2, we survey existing

solutions that address IoT Interoperability issues,

Low-Code and No-Code platform solutions, and

applications of LLMs. Section 3 discusses the

proposed end-to-end architecture of our proposed

methodology. Finally, we summarize the

framework's key findings, limitations, and future

scope.

2. Literature Review

The paper by Deshmukh et al. (2021) introduces a

middleware product called 'Data Spine' and

officially aims to solve the very real issue of

interoperability of heterogeneous IoT platforms. The

Data Spine product provides a federation of

interconnected services and platforms, enabling, in

theory, on-demand interoperability by leveraging

adaptive data mapping and transformation

functionalities. Deshmukh et al.'s (2021) research

contributes significantly to the field of IoT by

providing a complete architectural framework and

implementation strategy for enabling cross-platform

communication. The innovative aspect of the Data

Spine product allows integration via a visual, drag-

and-drop style interface, allowing users to bridge the

gap introduced by the protocol and data model

contradictions, while having limited technical

overhead. By utilizing the standardized API

descriptions, the Data Spine limits the effort required

for onboarding new platforms and guarantees the

consistency and discoverability of services. In

addition, the paper describes how this system

supports scalable integration by providing an

extensive library of built-in transformation, routing,

and mediation components to address performance,

availability, and maintainability challenges found in

innovative manufacturing spaces. Despite the Data

Spine taking an excellent first step towards

integrating heterogeneous IoT services, the approach

relies heavily on the manual configuration of its

foundries and human interpretation of the API

documentation.

The paper by Liu et al. (2024) performs a

comparative analysis of 1600 discussions from Stack

Overflow on traditional low-code programming

(LCP) and LCP augmented by large language

models (LLMs). The Liu et al. (2024) research

highlights challenges of traditional low-code

programming (LCP) and LCP with LLMs.

Traditional LCP requires professional programming

knowledge for complex functionality beyond drag-

and-drop interfaces. In most cases, a user will need

programming knowledge to understand the

necessary code to implement complex functionality

or to troubleshoot or customize its behavior.

Integrating with new APIs is not possible because of

the platform's design. Along with this reliability,

version mismatch and compatibility are some of the

most common issues in Traditional LCP. Regarding

generalized LLM-based LCPs, reliability and

trustworthiness continue to be problems.

Generalized LLMs produce errors due to outdated

training data, and users will need programming

knowledge to validate or correct the outputs. LLMs

are also often prone to hallucinations, where they

produce functions or libraries that do not exist.

Privacy concerns arise as users worry about

exposing sensitive data when interacting with

proprietary LLMs during code generation. The

proposed framework is a structured, secure, and

semantically aware approach to low-code

automation that has been specifically designed to

integrate with protected internal resources and will

use a custom-trained LLM, which will parse

technical documentation and create sound, domain-

specific code blocks.

Hagel et al. (2024) proposed a framework for the

conversion of Low-Code Development Platforms

(LCDPs) to a natively No-Code platform via Large

Language Models (LLMs). The LLM framework

allows users to enter specifications using natural

language, which large language models translate into

valid domain-specific models. This research paper

established a prompt template to establish the

domain-specific grammar and an example data

model to enhance the syntactic and semantic

accuracy during processing. The paper by Hagel et

al. (2024) compared traditional modeling against

LLM-assisted modeling and showed a significant

reduction in task completion time without negatively

affecting usability. The paper by Hagel et al. (2024)

aligns with our research's core objective of using

LLMs to bridge the gap between user intent and

application generation within Low-Code and No-

Code Platforms. The Hagel et al. (2024) study's

intention to use prompt engineering to translate input

as domain-specific models related directly to our

research intention of onboarding heterogeneous

devices into a single platform. Hagel et al. (2024)

assume the user will provide a clear, structured

specification for No-Code development. The method

also lacks mechanisms to interpret formal API

schemas, metadata, or protocol details. It is based on

a single, predefined DSL for form generation, which

limits its generalizability to heterogeneous domains

like IoT.

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5561

Wang et al. (2025) examines the possible use of

large language models for Low-Code and No-Code

development of end-user IoT applications. The paper

offers a detailed evaluation framework to assess

LLMs' performance in this area of interest. The

authors expanded a dataset of user-described smart

home tasks by adding multilingual prompts and

detailed semantic evaluation metrics. They used the

LLM4FaaS platform, which combines LLMs with

Function-as-a-Service infrastructure, aggregating

the importance of LLMs to generate only core

functional logic. Wang et al. (2025) examined the

effect of the linguistic provenance of the LLMs on

the outputs produced, noting they achieved

alignment between model-trained data and input

language, enabling usability improvements and

appropriateness for an end-user audience. The

authors noted issues for domain-specific

functionality and lightweight models. They outlined

further reflections for LLM deployment in

applications related to usability, user trust, and

ethical considerations. Ultimately, the study

underscores the importance of model selection,

prompt design, and linguistic alignment in applying

LLMs for no-code IoT development. Wang et al.

(2025) is focused on building automation rules and

workflows with descriptive prompts, leveraging

LLMs to overcome the coding barrier to customizing

application behavior. Their work is centered around

the end-user, taking inputs from users. Our proposed

work addresses a related problem and is focused on

onboarding heterogeneous devices and access

devices capabilities through low-code and no-code

platforms, leveraging large language models. Our

framework is built around the interoperability of

devices through a single schema, which can abstract

away vendor-specific differences, moving from

user-driven scripted behavior to structured-device

onboarding.

3. Proposed Framework

The proposed framework integrates three important

components: devices, Low Code No Code User

Interface, and Large Language Model.

Devices
The devices under consideration are heterogeneous.

They differ in data formats, processing power,

communication protocols, hardware systems, and

capabilities. APIs are used by these devices to

facilitate smooth integration and interaction. The

APIs not only offer remote control and automation

but have broadened the device's capabilities,

allowing it to perform operations like data

collection, device management, and device

monitoring.

Low Code No Code platform
Low-Code and No-Code platforms comprise

independent components that support quick

application development through abstractions,

minimal coding, and seamless integration. The Low-

Code No-Code platforms are organized into layered

structures starting with an application modeler that

provides a graphical interface for users to interact

with, like drag and drop tools, templates, etc. Next is

server-side infrastructure that handles backend

functions like code generation, runtime model

interpretations, microservices orchestration,

databases, and APIs. The third layer contains

external services interfaced through standard

protocols like third-party data connectors, cloud

services, analytical tools, etc. The key considerations

while designing Low-Code No-Code platforms are

the ability to work with diverse external systems,

scale to accommodate varying traffic loads, and

security. The platforms also prioritize collaborative

development, reusability, and flexibility (Sahay et

al., 2020).

Large Language Model
The proposed framework utilizes the Large

Language Model as its core component, with

detailed implementation details provided in three

sections: Model Selection, Data Preparation, and

Tuning.

Model Selection
LLMs have specific strengths and tradeoffs, and

choosing the right one depends on alignment with

your workload. Comprehending the performance of

various models across fundamental tasks aids in

developing more intelligent, rapid, and effective

systems. With more models emerging each year,

choosing a model based off of its capability is

important. In this paper, we explore how to select a

model and fine tune for the task by laying down three

important research questions. RQ1: How accurate

and semantically correct is the generated code for the

use case? RQ2: Is the generated code efficient and

optimized? RQ3: How well does the LLM

understand, interpret, and perform to diverse input

prompts from non-technical users?

The first research question measures a model's

capability to rewrite user text prompts into

syntactically valid and semantically valid code. This

question is fundamental in a domain-specific

context, such as onboarding IoT devices. The

semantics of user text prompts to executable code

are critical, especially for an end user of the system,

who may have little knowledge of how to code.

There is also a challenge in applying their intent to a

range of potentially complex and diverse API

specifications of IoT devices. The LLM needs to

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5562

consistently generate accurate code that compiles

and operates as intended by the user (Wang et al.,

2025). The second research question concerns

performance efficiency, which is crucial for latency-

sensitive or resource-constrained deployments. The

metrics like execution time, memory usage, and

performance variance compared to human code are

central to benchmark studies. LLMs generally create

functionally correct code blocks, but much variation

exists in runtime performance. Coignion et al. (2024)

researched 18 LLMs with a Leetcode dataset,

measuring and analyzing the model’s runtime and

memory performance against human code. Finally,

they found that the LLMs produced more efficient

code than humans, but models like CodeLlama and

StarCoder perform well in optimizing algorithms.

Models like CodeLlama and StarCoder perform well

in optimizing algorithms, while others show higher

resource consumption or failure under large input

loads (Coignion et al., 2024). The third question

addresses prompt handling, which is essential to the

usability of LLM-based approaches. In this proposed

framework, non-technical users depend on natural

language to explain their requirements for

visualization, module development goals, upload

API information, request API customizations, or

define metadata such as an endpoint URL or access

server information. As a result, the LLM needs to

interpret various prompts, many vague and

imprecise, and support interactive, multi-turn

conversations. Wang et al.’s (2025) research shows

that reasoning-optimized models like Gemini and

DeepSeek R1 consistently displayed higher prompt

robustness and consistent context-management

during step-by-step configurations compared to

others. They effectively used chain-of-thought

prompting to allow the user to process through

complicated workflows without burdening them

with excessive technical detail.

Combining the findings of Coignion et al. (2024),

Wang et al. (2025), and Joel et al. (2024) the three

best LLMs for this use case are: GPT-4o, StarCoder

and Gemini. GPT-4o was the strongest on accuracy,

adaptability and reasoning. StarCoder, because of its

high-performance code generation, and Gemini,

because of its prompt interpretation and human

relation.

Dataset
To build a high-quality dataset for a custom LLM

that can onboard API-enabled devices via a chatbot

interface, a systematic multi-step strategy that

combines existing resources, structured

transformation, and synthetic augmentation is

required. The readily available datasets for API

information include OpenAPI specifications from

APIs.guru and OpenAPI Directory and Postman

Collections scattered on GitHub. To extract

structured metadata, including endpoints, methods,

parameters, and authentication schemes, these

datasets can be parsed programmatically using tools

like Swagger-parser or Postman SDKs. The coding

datasets, such as HumanEval and MBPP, can be very

useful in creating a dataset that can augment the

LLM in a basic code synthesis and logic composition

way. Also, Leetcode datasets can help provide a

performance and execution environment benchmark

towards ensuring the production of executable code

and data usages in a performance-sensitive and

resource-constrained environment (Coignion et al.,

2024). The API and coding data can now be

transformed into simulated user interactions,

mimicking a step-by-step onboarding dialogue. Joel

et al.'s (2024) research on LLM applications for both

domain-specific and low-resource programming

languages suggests that dataset augmentation using

synthetic dialog generation, chain-of-thought

prompting, and scenario-based fine-tuning will be

essential in compensating for a lack of data and

keeping the training consistent with actual

workflows. The dataset should include the user

prompt, API document, LLM's reasoning chain,

code modules, and validation tests. Such a hybrid

approach should allow the LLM to leverage options

to appropriately parse the documentation and

generate executable modules for the Low-Code No-

Code interface.

Fine Tuning
Training LLMs from scratch consumes a lot of time

and capital costs. Fine-tuning is taking an already

trained Large Language Model (LLM) and

continuing the training on a smaller, specifically

tasked dataset to adjust the model for a specific

purpose, style, or application. Raj et al.'s (2024)

research addresses the significance of fine-tuning

methods for Large Language Models (LLMs) in

terms of data, memory optimization methods, and

focused training strategies. A few techniques include

Low-Rank Adaptation (LoRA) and Quantized Low-

Rank Adaptation (QLoRA) that require training only

a few small, trainable matrices used within the model

architecture, reducing the number of trainable

parameters. LoRA allows models to learn when task

adaptation is desirable with limited computational

overhead, while QLoRA maintains model quality

using 4-bit quantization for reduced memory use.

Quantization is converting model weights from

high-precision to lower-precision formats,

decreasing the memory footprint of the model and

energy usage during training and inference. Post-

training quantization and quantization-aware

training (QAT) are examined to mitigate model

accuracy degradation by leveraging a training

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5563

process that accounts for quantization errors.

Finally, gradient accumulation was suggested to

manage large batch sizes based on limited hardware

while indirectly taking advantage of larger batch

sizes by capturing gradients over several iterations

and applying each set of computed gradients jointly,

since this maintains the behavior of larger batch

training when limited to hardware maximum

memory capacity (Raj et al., 2024). Once the model

is fine-tuned, a single evaluation metric is

inadequate for evaluating the performance of a Large

Language Model (LLM) in a multistage, end-to-end

onboarding system. This model employs multiple

targeted metrics across some key stages to provide a

more reliable and comprehensive evaluation. For

evaluation of prompts, possible metrics include

Prompt Interpretation Accuracy or user-rated

Response Helpfulness. In assessing code generation,

metrics like Pass@k or Functional Correctness Rate

are considered. Quantitative metrics, including

BLEU, Precision, Recall, and F1-Score, can be used

to evaluate a model for document parsing (Wang et

al., 2025).

End-to-End Working of Proposed

Framework
The proposed system integrates a custom-trained

Large Language Model (LLM) within a Low-Code

No-Code user interface to automate the onboarding

of API-enabled devices. The user interacts with the

system through a chatbot interface powered by the

custom-trained LLM, designed specifically to

interpret and operationalize device APIs. Vendors

typically provide API information through various

documentation formats, including Swagger docs,

OpenAPI specifications, Postman Collections, and

traditional API documentation. In the chatbot

interface, the user prompts the LLM to onboard a

device, LLM requests for API information

document. Upon uploading the documentation, the

LLM initiates a guided, step-by-step interaction with

the user, employing a chain of thought prompting

mechanism to collect necessary metadata such as

API endpoint URLs, database configurations if data

storage is required, and internal server from which

any data needs to be retrieved. The LLM also

requests user if any customization must be made for

APIs. Following this interactive phase, the LLM

autonomously generates code modules tailored to

the device’s API specifications. These modules

undergo a validation pipeline comprising unit

testing, functional testing, integration checks, and

connectivity testing. Upon successful validation, the

resulting modules are made available on the Low-

Code No-Code platform's user interface dashboard.

Users can then interact with the onboarded device

through a set of autogenerated actions, such as

retrieving real-time, visualizing historical data if

storage was enabled, toggling device states e.g.,

turning devices on/off, or executing other API

supported operations.

Figure 1 Chatbot Interaction Interface of Low Code No

Code Platform

Figure 2 API Swagger Document (YAML file) to Code

block

Figure 3 Generated Actionable Modules on Low Code

No Code User Interface

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5564

4. Challenges

Figure 4 End-to-End Orchestration Diagram

versioning or undocumented API changes (Wang et

al., 2025).

The challenges of utilizing a custom-trained Large

Language Model in a Low-Code No-Code

environment with heterogeneous devices are not

strictly technical integration challenges. The LLM

has been trained specifically for the organization's

use, offering an additional layer of security and

control of data privacy, as sensitive information

stays in the organization's trusted domain. However,

the LLM must contend with various authentication

protocols each vendor has developed and provided

insufficient documentation. To get the system to

communicate, the LLM must identify and reason

through vendor-based protocols, prompt the user to

record their credential in a secure scope, and

complete the task. Latency is another serious effect

when using LLM, especially for live chatbots.

However, sometimes using LLMs, by adding

techniques such as LoRA or using quantization to

reduce latency, it is possible to have some latency vs

not accepting less than optimal output (Raj et al.,

2024). The LLM has challenges due to a feedback

loop that involves handling user corrections,

interpreting testing errors, and autonomously

refining code. Due to limited dataset availability,

LLMs will also have difficulty onboarding devices

where the vendor uses lower-level languages, like

Verilog (Joel et al., 2024). The quality and

consistency of generated code rely on the variability

in user prompts, meaning the effectiveness of LLMs

depends on non-obvious aspects of the user's natural

language background and the prompt structure used.

Other challenges related to onboarding using LLMs

may include concerns with validation pipelines,

scaling, performance, and dealing with dynamic API

5. Conclusion

The convergence of Low-Code No-Code platforms,

Internet of Things (IoT), and Large Language

Models (LLMs) presents a transformative

opportunity for digital service development and

deployment. This paper presents a framework that

uses Language Learning Models (LLMs) to

automate the integration of diverse IoT devices

within Low-Code No-Code platforms, thereby

reducing technical barriers that traditionally hinder

device interoperability by combining domain-

specific code generation with an interactive chatbot

interface. Our research explores methods to tackle

device ecosystem fragmentation and complexity,

highlighting the limitations of current Low-Code

No-Code platforms and the potential of LLMs to fill

these gaps. Rapid evolution of LLM capabilities,

including improved reasoning, multimodal input,

and reduced latency, enhances their potential in

Low-Code No-Code platforms. Future LLMs

promise greater context understanding, user

alignment, and domain-specific integrations like

real-time device communication. The proposed

framework aims to create an intelligent, adaptive,

and scalable Low-Code No-Code solution for all

users. However, challenges exist in protocol

handling, API version drift, and compute

performance. Ongoing research in tuning strategies,

domain-specific datasets, and prompt engineering is

vital for maximizing LLM-driven IoT integration in

Low-Code No-Code ecosystems.

Rohith Kumar Punithavel, Deeksha Sivakumer/ IJCESEN 11-3(2025)5559-5565

5565

Author Statements:

• Ethical approval: The conducted research is not

related to either human or animal use.

• Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

• Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

• Author contributions: The authors declare that

they have equal right on this paper.

• Funding information: The authors declare that

there is no funding to be acknowledged.

• Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Buchmann, T., Peinl, R., & Schwägerl, F. (2024,

September). White-box LLM-supported Low-code

Engineering: A Vision and First Insights. In

Proceedings of the ACM/IEEE 27th International

Conference on Model Driven Engineering Languages

and Systems (pp. 556-560).

https://doi.org/10.1145/3652620.3687803

[2] Coignion, T., Quinton, C., & Rouvoy, R. (2024,

June). A performance study of llm-generated code on

leetcode. In Proceedings of the 28th International

Conference on Evaluation and Assessment in

Software Engineering (pp. 79-89).

https://doi.org/10.1145/3661167.3661221

[3] Deshmukh, R. A., Jayakody, D., Schneider, A., &

Damjanovic-Behrendt, V. (2021). Data Spine: A

Federated Interoperability Enabler for

Heterogeneous IoT Platform Ecosystems. Sensors,

21(12), 4010. https://doi.org/10.3390/s21124010

[4] Dudhe, P. V., Kadam, N. V., Hushangabade, R. M.,

& Deshmukh, M. S. (2017, August). Internet of

Things (IOT): An overview and its applications. 2017

International conference on energy, communication,

data analytics and soft computing (ICECDS) (pp.

2650-2653). IEEE.

https://doi.org/10.1109/icecds.2017.8389935

[5] Elshan, E., Dickhaut, E., & Ebel, P. A. (2023). An

investigation of why low code platforms provide

answers and new challenges. 56th Hawaii

International Conference on System Sciences (pp

6159) https://hdl.handle.net/10125/103380

[6] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M.

(2013). Internet of Things (IoT): A vision,

architectural elements, and future directions. Future

Generation Computer Systems (Vol. 29, pp. 1645–

1660).

http://dx.doi.org/10.1016/j.future.2013.01.010

[7] Hagel, N., Hili, N., & Schwab, D. (2024, September).

Turning Low-Code Development Platforms into True

No-Code with LLMs. In Proceedings of the

ACM/IEEE 27th International Conference on Model

Driven Engineering Languages and Systems (pp.

876-885). https://doi.org/10.1145/3652620.3688334

[8] Joel, S., Wu, J. J., & Fard, F. H. (2024). Survey on

Code Generation for Low resource and Domain

Specific Programming Languages. arXiv (Cornell

University).

https://doi.org/10.48550/arxiv.2410.03981

[9] Liu, Y., Chen, J., Bi, T., Grundy, J., Wang, Y., Chen,

T., Tang, Y., & Zheng, Z. (2024). An Empirical

Study on Low Code Programming using Traditional

vs Large Language Model Support. arXiv (Cornell

University).

https://doi.org/10.48550/arxiv.2402.01156

[10] Naveed, H., Khan, A. U., Qiu, S., Saqib, M.,

Anwar, S., Usman, M., Akhtar, N., Barnes, N., &

Mian, A. (2020). A comprehensive overview of large

language models. ACM Transactions on Intelligent

Systems and Technology.

https://doi.org/10.1145/3744746

[11] Raj, J., Kushala, V., Warrier, H., & Gupta, Y.

(2024). Fine Tuning LLM for Enterprise: Practical

guidelines and recommendations. arXiv (Cornell

University).

https://doi.org/10.48550/arxiv.2404.10779

[12] Ramson, S. J., Vishnu, S., & Shanmugam, M.

(2020). Applications of Internet of Things (IoT) – an

overview. 2022 6th International Conference on

Devices, Circuits and Systems (ICDCS), 92–95.

https://doi.org/10.1109/icdcs48716.2020.243556

[13] Sahay, A., Indamutsa, A., Di Ruscio, D., &

Pierantonio, A. (2020, August). Supporting the

understanding and comparison of low-code

development platforms. In 2020 46th Euromicro

Conference on Software Engineering and Advanced

Applications (SEAA) (pp. 171-178). IEEE.

https://doi.org/10.1109/seaa51224.2020.00036

[14] Shanahan, M. (2024). Talking about Large

Language Models. Communications of the ACM,

67(2), 68–79. https://doi.org/10.1145/3624724

[15] Shridhar, S. (2021). Analysis of Low Code-No

Code Development Platforms in comparison with

Traditional Development Methodologies.

International Journal for Research in Applied Science

and Engineering Technology, 9(12), 508–513.

https://doi.org/10.22214/ijraset.2021.39328

[16] Teubner, T., Flath, C. M., Weinhardt, C., Van

Der Aalst, W., & Hinz, O. (2023). Welcome to the

Era of ChatGPT et al. Business & Information

Systems Engineering, 65(2), 95–101.

https://doi.org/10.1007/s12599-023-00795-x

[17] Wang, M., Kapp, A., Schirmer, T., Pfandzelter,

T., & Bermbach, D. (2025). Exploring Influence

Factors on LLM Suitability for No-Code

Development of End User IoT Applications. arXiv

(Cornell University).
https://doi.org/10.48550/arXiv.2505.04710

https://doi.org/10.1145/3652620.3687803
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.3390/s21124010
https://doi.org/10.1109/icecds.2017.8389935
https://hdl.handle.net/10125/103380
http://dx.doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1145/3652620.3688334
https://doi.org/10.48550/arxiv.2410.03981
https://doi.org/10.48550/arxiv.2402.01156
https://doi.org/10.1145/3744746
https://doi.org/10.48550/arxiv.2404.10779
https://doi.org/10.1109/icdcs48716.2020.243556
https://doi.org/10.1109/seaa51224.2020.00036
https://doi.org/10.1145/3624724
https://doi.org/10.22214/ijraset.2021.39328
https://doi.org/10.1007/s12599-023-00795-x
https://doi.org/10.48550/arXiv.2505.04710

