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In today's digital era, virtually every aspect of life or industry is influenced by digital 

services. Digital devices have played a critical role in transforming various fields, from 

education to healthcare, by enhancing availability and access. They have also helped 

prevent theft, robbery, and even property damage. They have also contributed to crime 

prevention, including theft, robbery, and property damage. With exponential growth, 

digital device manufacturers serving similar or different purposes have created a 

heterogeneous digital ecosystem to offer ease-of-use solutions. However, this 

heterogeneity poses challenges even for software developers. Beyond software 

developers, a growing number of professionals from other engineering streams, 

management, and small to medium-sized business owners are required to interact with 

digital systems. Low-code and no-code platforms have emerged as viable solutions to 

support this shift and encourage these users to manage digital services without complex 

programming. The Low-Code and No-Code platforms have limitations but are not limited 

to flexibility, usability, and integration, which restrict the development of customized 

solutions. Large Language Models have recently drawn everyone's attention due to their 

cognitive ability and capability to bridge gaps. In this paper, we explore how LLMs can 

enhance Low-Code and No-Code platforms by facilitating the integration of digital 

 devices and improving the management of their usage and services.  
 

1. Introduction 

The Internet of Things (IoT) has existed for several 

decades. IoT is simply an interconnected network of 

devices that allows communication among and 

between them and the cloud. Through advancements 

in connectivity, IoT has become an everyday feature 

of life, from home appliances to streetlights. IoT 

devices usually consist of sensors, actuators, and 

communications interfaces, allowing them to form a 

global network that can exchange data over the 

Internet without significant human involvement. IoT 

transforms devices into intelligent entities and 

emphasizes the creation of an interconnected 

ecosystem where cloud computing, RFID, and 

Wireless sensor networks work together to ensure 

data integrity and security (Gubbi et al., 2013). The 

applications of IoT span across various domains, 

including military, healthcare, home automation, 

solid waste management, surveillance systems, 

consumer asset tracking, smart grids, vehicular 

communication systems, agriculture, transportation, 

and disaster monitoring. In the military, IoT is used 

for health monitoring, tracking of armed personnel, 

smart uniforms, situational awareness, and naval 

monitoring. IoT supports remote health monitoring, 

ingestible sensors, mobile health solutions, and 

smart hospitals. Home automation is enhanced 

through remote control of appliances, smart lighting, 

intrusion detection, and elder care systems. IoT has 

enabled solutions centered on sensor-based 

monitoring, like water leak detection, real-time and 

remote tracking of utilities usage like water, 

electricity, and gas, and many more. In security, IoT 

systems can monitor activities from remote locations 

through audio and video, incorporating motion and 
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face detection, and providing alerts in real-time. In 

connected assets, IoT systems integrate GPS, RFID, 

and accelerometers; in e-commerce, IoT has 

provided the ability to trace and track within 

logistics. In agriculture, transportation, and disaster 

management, IoT systems are providing solutions 

around crop management, nutrient monitoring, road 

traffic control, parking management, toll collection, 

fleet, and disaster management by helping in 

providing early warning of tsunamis, forest fires, 

floods, and landslides (Ramson et al., 2020). As the 

demand for the IoT has evolved to where we are 

today, many vendors and solution providers have 

risen and are selling their solutions, resulting in a 

fragmented ecosystem. This fragmentation has made 

integrating and testing IoT systems challenging and 

hindered seamless interoperability (Dudhe et al., 

2017). 

Low-Code and No-Code platforms allow users with 

little to no coding experience to create software 

applications. Software Development has been 

drastically changed through Low-Code and No- 

Code platforms, which simplify the development 

approach and provide a faster, easier, and less 

expensive alternative to traditional software 

development. The Low-Code and No-Code platform 

has drag-and-drop components, visual tools, and 

prebuilt modules, which can decrease development 

time and complexity. The Low-Code and No-Code 

platform has easy-to-use interfaces, automatic 

security updates, agility, and less maintenance 

(Shridhar, 2021). One of the slightly lesser 

challenges is that Low-Code and No-Code platforms 

have limitations based on their capabilities or 

available components, meaning that Low-Code and 

No-Code are not the best approach for developing 

functionality that requires high customization or 

complex functionality (Elshan et al., 2023). 

However, one unfortunate challenge of Low-Code 

and No-Code is integrating heterogeneous 

ecosystems (e.g., Internet of Things (IoT)). 

Heterogeneous ecosystems create multiple obstacles 

to seamless interoperability, scalability, and 

maintainability. The implications of limits on 

interoperability can affect the broader uptake and use 

of Low-Code and No-Code platforms. 

A Large Language Model (LLM) is an artificial 

intelligence system designed to understand and 

generate human-like text. LLMs are based on 

artificial neural networks with a transformer 

architecture. The architecture can process language 

efficiently and at scale (Naveed et al., 2020). LLMs 

predict the next word in a sentence through a training 

process that involves learning statistical 

relationships between words from large amounts of 

data. They do not possess understanding, belief, or 

consciousness; instead, they generate responses 

based on learned patterns, not reasoning or 

experience (Shanahan, 2024). Over the last decade, 

LLMs have evolved significantly with the 

introduction of transformer architecture. The 

transformer architecture uses an attention 

mechanism to understand sentence relationships 

simultaneously, allowing LLMs to perform tasks 

with minimal instruction. GPT-2 and GPT-3 show 

that LLMs can do a lot of different things with little 

or no instruction when they have more data and 

parameters (Naveed et al., 2020). Modern models 

like GPT-4 are multimodal, capable of 

understanding text, images, and audio. Modern 

LLMs are further fine-tuned with techniques like 

Instruction Tuning and Reinforcement Learning 

from Human Feedback to enhance their accuracy 

and performance in complex scenarios (Teubner et 

al., 2023). Large Language Models (LLMs) offer 

advantages like zero-shot and few-shot 

generalization, in-context learning, multi-task 

transfer, and emergent abilities like reasoning and 

planning due to their scale and transformer 

architecture. LLMs suffer from hallucinations, 

sensitivity to prompts, and failing to align context, 

which produces biased or misleading output content. 

LLMs require vast computing power, capital, and 

energy resources to train and generate predictions, 

which raises doubts when considering the range of 

scaling. Even with human-like physical attributes 

that could provide the observer a sense of 

interaction, LLMs demonstrate no understanding or 

reasoning and operate by next-token prediction of 

statistical patterns in training data. 

LLMs are used in various language tasks like text 

summarization, machine translation, information 

retrieval, question answering, and dialogue 

generation. They support code generation and 

completion in programming environments. LLMs 

are utilized in multimodal settings for tasks like 

image captioning, audio-text reasoning, 

conversational agents, assistive writing tools, 

autonomous systems, and educational tutors. LLMs 

are also embedded in business and decision-support 

systems to enhance productivity and content 

generation (Naveed et al., 2020; Shanahan, 2024; 

Teubner et al., 2023). Large Language models 

(LLMs), particularly large-scale transformer-based 

models, require substantial computational 

infrastructure for training. This includes large 

datasets, high-performance parallelized hardware, 

distributed training strategies across multiple 

devices, mixed-precision training to reduce memory 

and computational requirements, and memory and 

compute efficient techniques to enable model 

scaling and performance. High operational costs due 

to intensive computing per query contribute to 

financial burdens. Therefore, research is needed to 
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develop more efficient architectures, tuning 

methods, and inference optimizations for LLMs to 

be more scalable and sustainable (Teubner et al., 

2023). 

This paper presents a framework that addresses the 

challenge of onboarding heterogeneous IoT devices 

on low-code and no-code platforms using large 

language models. In Section 2, we survey existing 

solutions that address IoT Interoperability issues, 

Low-Code and No-Code platform solutions, and 

applications of LLMs. Section 3 discusses the 

proposed end-to-end architecture of our proposed 

methodology. Finally, we summarize the 

framework's key findings, limitations, and future 

scope. 

 

2. Literature Review 

The paper by Deshmukh et al. (2021) introduces a 

middleware product called 'Data Spine' and 

officially aims to solve the very real issue of 

interoperability of heterogeneous IoT platforms. The 

Data Spine product provides a federation of 

interconnected services and platforms, enabling, in 

theory, on-demand interoperability by leveraging 

adaptive data mapping and transformation 

functionalities. Deshmukh et al.'s (2021) research 

contributes significantly to the field of IoT by 

providing a complete architectural framework and 

implementation strategy for enabling cross-platform 

communication. The innovative aspect of the Data 

Spine product allows integration via a visual, drag- 

and-drop style interface, allowing users to bridge the 

gap introduced by the protocol and data model 

contradictions, while having limited technical 

overhead. By utilizing the standardized API 

descriptions, the Data Spine limits the effort required 

for onboarding new platforms and guarantees the 

consistency and discoverability of services. In 

addition, the paper describes how this system 

supports scalable integration by providing an 

extensive library of built-in transformation, routing, 

and mediation components to address performance, 

availability, and maintainability challenges found in 

innovative manufacturing spaces. Despite the Data 

Spine taking an excellent first step towards 

integrating heterogeneous IoT services, the approach 

relies heavily on the manual configuration of its 

foundries and human interpretation of the API 

documentation. 

The paper by Liu et al. (2024) performs a 

comparative analysis of 1600 discussions from Stack 

Overflow on traditional low-code programming 

(LCP) and LCP augmented by large language 

models (LLMs). The Liu et al. (2024) research 

highlights challenges of traditional low-code 

programming  (LCP)  and  LCP  with  LLMs. 

Traditional LCP requires professional programming 

knowledge for complex functionality beyond drag- 

and-drop interfaces. In most cases, a user will need 

programming knowledge to understand the 

necessary code to implement complex functionality 

or to troubleshoot or customize its behavior. 

Integrating with new APIs is not possible because of 

the platform's design. Along with this reliability, 

version mismatch and compatibility are some of the 

most common issues in Traditional LCP. Regarding 

generalized LLM-based LCPs, reliability and 

trustworthiness continue to be problems. 

Generalized LLMs produce errors due to outdated 

training data, and users will need programming 

knowledge to validate or correct the outputs. LLMs 

are also often prone to hallucinations, where they 

produce functions or libraries that do not exist. 

Privacy concerns arise as users worry about 

exposing sensitive data when interacting with 

proprietary LLMs during code generation. The 

proposed framework is a structured, secure, and 

semantically aware approach to low-code 

automation that has been specifically designed to 

integrate with protected internal resources and will 

use a custom-trained LLM, which will parse 

technical documentation and create sound, domain- 

specific code blocks. 

Hagel et al. (2024) proposed a framework for the 

conversion of Low-Code Development Platforms 

(LCDPs) to a natively No-Code platform via Large 

Language Models (LLMs). The LLM framework 

allows users to enter specifications using natural 

language, which large language models translate into 

valid domain-specific models. This research paper 

established a prompt template to establish the 

domain-specific grammar and an example data 

model to enhance the syntactic and semantic 

accuracy during processing. The paper by Hagel et 

al. (2024) compared traditional modeling against 

LLM-assisted modeling and showed a significant 

reduction in task completion time without negatively 

affecting usability. The paper by Hagel et al. (2024) 

aligns with our research's core objective of using 

LLMs to bridge the gap between user intent and 

application generation within Low-Code and No- 

Code Platforms. The Hagel et al. (2024) study's 

intention to use prompt engineering to translate input 

as domain-specific models related directly to our 

research intention of onboarding heterogeneous 

devices into a single platform. Hagel et al. (2024) 

assume the user will provide a clear, structured 

specification for No-Code development. The method 

also lacks mechanisms to interpret formal API 

schemas, metadata, or protocol details. It is based on 

a single, predefined DSL for form generation, which 

limits its generalizability to heterogeneous domains 

like IoT. 
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Wang et al. (2025) examines the possible use of 

large language models for Low-Code and No-Code 

development of end-user IoT applications. The paper 

offers a detailed evaluation framework to assess 

LLMs' performance in this area of interest. The 

authors expanded a dataset of user-described smart 

home tasks by adding multilingual prompts and 

detailed semantic evaluation metrics. They used the 

LLM4FaaS platform, which combines LLMs with 

Function-as-a-Service infrastructure, aggregating 

the importance of LLMs to generate only core 

functional logic. Wang et al. (2025) examined the 

effect of the linguistic provenance of the LLMs on 

the outputs produced, noting they achieved 

alignment between model-trained data and input 

language, enabling usability improvements and 

appropriateness for an end-user audience. The 

authors noted issues for domain-specific 

functionality and lightweight models. They outlined 

further reflections for LLM deployment in 

applications related to usability, user trust, and 

ethical considerations. Ultimately, the study 

underscores the importance of model selection, 

prompt design, and linguistic alignment in applying 

LLMs for no-code IoT development. Wang et al. 

(2025) is focused on building automation rules and 

workflows with descriptive prompts, leveraging 

LLMs to overcome the coding barrier to customizing 

application behavior. Their work is centered around 

the end-user, taking inputs from users. Our proposed 

work addresses a related problem and is focused on 

onboarding heterogeneous devices and access 

devices capabilities through low-code and no-code 

platforms, leveraging large language models. Our 

framework is built around the interoperability of 

devices through a single schema, which can abstract 

away vendor-specific differences, moving from 

user-driven scripted behavior to structured-device 

onboarding. 

 

3. Proposed Framework 

The proposed framework integrates three important 

components: devices, Low Code No Code User 

Interface, and Large Language Model. 

 

Devices 
The devices under consideration are heterogeneous. 

They differ in data formats, processing power, 

communication protocols, hardware systems, and 

capabilities. APIs are used by these devices to 

facilitate smooth integration and interaction. The 

APIs not only offer remote control and automation 

but have broadened the device's capabilities, 

allowing it to perform operations like data 

collection, device management, and device 

monitoring. 

Low Code No Code platform 
Low-Code and No-Code platforms comprise 

independent components that support quick 

application development through abstractions, 

minimal coding, and seamless integration. The Low- 

Code No-Code platforms are organized into layered 

structures starting with an application modeler that 

provides a graphical interface for users to interact 

with, like drag and drop tools, templates, etc. Next is 

server-side infrastructure that handles backend 

functions like code generation, runtime model 

interpretations, microservices orchestration, 

databases, and APIs. The third layer contains 

external services interfaced through standard 

protocols like third-party data connectors, cloud 

services, analytical tools, etc. The key considerations 

while designing Low-Code No-Code platforms are 

the ability to work with diverse external systems, 

scale to accommodate varying traffic loads, and 

security. The platforms also prioritize collaborative 

development, reusability, and flexibility (Sahay et 

al., 2020). 

 

Large Language Model 
The proposed framework utilizes the Large 

Language Model as its core component, with 

detailed implementation details provided in three 

sections: Model Selection, Data Preparation, and 

Tuning. 

 

Model Selection 
LLMs have specific strengths and tradeoffs, and 

choosing the right one depends on alignment with 

your workload. Comprehending the performance of 

various models across fundamental tasks aids in 

developing more intelligent, rapid, and effective 

systems. With more models emerging each year, 

choosing a model based off of its capability is 

important. In this paper, we explore how to select a 

model and fine tune for the task by laying down three 

important research questions. RQ1: How accurate 

and semantically correct is the generated code for the 

use case? RQ2: Is the generated code efficient and 

optimized? RQ3: How well does the LLM 

understand, interpret, and perform to diverse input 

prompts from non-technical users? 

The first research question measures a model's 

capability to rewrite user text prompts into 

syntactically valid and semantically valid code. This 

question is fundamental in a domain-specific 

context, such as onboarding IoT devices. The 

semantics of user text prompts to executable code 

are critical, especially for an end user of the system, 

who may have little knowledge of how to code. 

There is also a challenge in applying their intent to a 

range of potentially complex and diverse API 

specifications of IoT devices. The LLM needs to 
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consistently generate accurate code that compiles 

and operates as intended by the user (Wang et al., 

2025). The second research question concerns 

performance efficiency, which is crucial for latency- 

sensitive or resource-constrained deployments. The 

metrics like execution time, memory usage, and 

performance variance compared to human code are 

central to benchmark studies. LLMs generally create 

functionally correct code blocks, but much variation 

exists in runtime performance. Coignion et al. (2024) 

researched 18 LLMs with a Leetcode dataset, 

measuring and analyzing the model’s runtime and 

memory performance against human code. Finally, 

they found that the LLMs produced more efficient 

code than humans, but models like CodeLlama and 

StarCoder perform well in optimizing algorithms. 

Models like CodeLlama and StarCoder perform well 

in optimizing algorithms, while others show higher 

resource consumption or failure under large input 

loads (Coignion et al., 2024). The third question 

addresses prompt handling, which is essential to the 

usability of LLM-based approaches. In this proposed 

framework, non-technical users depend on natural 

language to explain their requirements for 

visualization, module development goals, upload 

API information, request API customizations, or 

define metadata such as an endpoint URL or access 

server information. As a result, the LLM needs to 

interpret various prompts, many vague and 

imprecise, and support interactive, multi-turn 

conversations. Wang et al.’s (2025) research shows 

that reasoning-optimized models like Gemini and 

DeepSeek R1 consistently displayed higher prompt 

robustness and consistent context-management 

during step-by-step configurations compared to 

others. They effectively used chain-of-thought 

prompting to allow the user to process through 

complicated workflows without burdening them 

with excessive technical detail. 

Combining the findings of Coignion et al. (2024), 

Wang et al. (2025), and Joel et al. (2024) the three 

best LLMs for this use case are: GPT-4o, StarCoder 

and Gemini. GPT-4o was the strongest on accuracy, 

adaptability and reasoning. StarCoder, because of its 

high-performance code generation, and Gemini, 

because of its prompt interpretation and human 

relation. 

 

Dataset 
To build a high-quality dataset for a custom LLM 

that can onboard API-enabled devices via a chatbot 

interface, a systematic multi-step strategy that 

combines existing resources, structured 

transformation, and synthetic augmentation is 

required. The readily available datasets for API 

information include OpenAPI specifications from 

APIs.guru and OpenAPI Directory and Postman 

Collections scattered on GitHub. To extract 

structured metadata, including endpoints, methods, 

parameters, and authentication schemes, these 

datasets can be parsed programmatically using tools 

like Swagger-parser or Postman SDKs. The coding 

datasets, such as HumanEval and MBPP, can be very 

useful in creating a dataset that can augment the 

LLM in a basic code synthesis and logic composition 

way. Also, Leetcode datasets can help provide a 

performance and execution environment benchmark 

towards ensuring the production of executable code 

and data usages in a performance-sensitive and 

resource-constrained environment (Coignion et al., 

2024). The API and coding data can now be 

transformed into simulated user interactions, 

mimicking a step-by-step onboarding dialogue. Joel 

et al.'s (2024) research on LLM applications for both 

domain-specific and low-resource programming 

languages suggests that dataset augmentation using 

synthetic dialog generation, chain-of-thought 

prompting, and scenario-based fine-tuning will be 

essential in compensating for a lack of data and 

keeping the training consistent with actual 

workflows. The dataset should include the user 

prompt, API document, LLM's reasoning chain, 

code modules, and validation tests. Such a hybrid 

approach should allow the LLM to leverage options 

to appropriately parse the documentation and 

generate executable modules for the Low-Code No- 

Code interface. 

 

Fine Tuning 
Training LLMs from scratch consumes a lot of time 

and capital costs. Fine-tuning is taking an already 

trained Large Language Model (LLM) and 

continuing the training on a smaller, specifically 

tasked dataset to adjust the model for a specific 

purpose, style, or application. Raj et al.'s (2024) 

research addresses the significance of fine-tuning 

methods for Large Language Models (LLMs) in 

terms of data, memory optimization methods, and 

focused training strategies. A few techniques include 

Low-Rank Adaptation (LoRA) and Quantized Low- 

Rank Adaptation (QLoRA) that require training only 

a few small, trainable matrices used within the model 

architecture, reducing the number of trainable 

parameters. LoRA allows models to learn when task 

adaptation is desirable with limited computational 

overhead, while QLoRA maintains model quality 

using 4-bit quantization for reduced memory use. 

Quantization is converting model weights from 

high-precision to lower-precision formats, 

decreasing the memory footprint of the model and 

energy usage during training and inference. Post- 

training quantization and quantization-aware 

training (QAT) are examined to mitigate model 

accuracy  degradation  by  leveraging  a  training 
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process that accounts for quantization errors. 

Finally, gradient accumulation was suggested to 

manage large batch sizes based on limited hardware 

while indirectly taking advantage of larger batch 

sizes by capturing gradients over several iterations 

and applying each set of computed gradients jointly, 

since this maintains the behavior of larger batch 

training when limited to hardware maximum 

memory capacity (Raj et al., 2024). Once the model 

is fine-tuned, a single evaluation metric is 

inadequate for evaluating the performance of a Large 

Language Model (LLM) in a multistage, end-to-end 

onboarding system. This model employs multiple 

targeted metrics across some key stages to provide a 

more reliable and comprehensive evaluation. For 

evaluation of prompts, possible metrics include 

Prompt Interpretation Accuracy or user-rated 

Response Helpfulness. In assessing code generation, 

metrics like Pass@k or Functional Correctness Rate 

are considered. Quantitative metrics, including 

BLEU, Precision, Recall, and F1-Score, can be used 

to evaluate a model for document parsing (Wang et 

al., 2025). 

 

End-to-End Working of Proposed 

Framework 
The proposed system integrates a custom-trained 

Large Language Model (LLM) within a Low-Code 

No-Code user interface to automate the onboarding 

of API-enabled devices. The user interacts with the 

system through a chatbot interface powered by the 

custom-trained LLM, designed specifically to 

interpret and operationalize device APIs. Vendors 

typically provide API information through various 

documentation formats, including Swagger docs, 

OpenAPI specifications, Postman Collections, and 

traditional API documentation. In the chatbot 

interface, the user prompts the LLM to onboard a 

device, LLM requests for API information 

document. Upon uploading the documentation, the 

LLM initiates a guided, step-by-step interaction with 

the user, employing a chain of thought prompting 

mechanism to collect necessary metadata such as 

API endpoint URLs, database configurations if data 

storage is required, and internal server from which 

any data needs to be retrieved. The LLM also 

requests user if any customization must be made for 

APIs. Following this interactive phase, the LLM 

autonomously generates code modules tailored to 

the device’s API specifications. These modules 

undergo a validation pipeline comprising unit 

testing, functional testing, integration checks, and 

connectivity testing. Upon successful validation, the 

resulting modules are made available on the Low- 

Code No-Code platform's user interface dashboard. 

Users can then interact with the onboarded device 

through a set of autogenerated actions, such as 

retrieving real-time, visualizing historical data if 

storage was enabled, toggling device states e.g., 

turning devices on/off, or executing other API 

supported operations. 

 
Figure 1 Chatbot Interaction Interface of Low Code No 

Code Platform 

 

Figure 2 API Swagger Document (YAML file) to Code 

block 

 

Figure 3 Generated Actionable Modules on Low Code 

No Code User Interface 
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4. Challenges 

Figure 4 End-to-End Orchestration Diagram 

 

versioning or undocumented API changes (Wang et 

al., 2025). 

The challenges of utilizing a custom-trained Large 

Language Model in a Low-Code No-Code 

environment with heterogeneous devices are not 

strictly technical integration challenges. The LLM 

has been trained specifically for the organization's 

use, offering an additional layer of security and 

control of data privacy, as sensitive information 

stays in the organization's trusted domain. However, 

the LLM must contend with various authentication 

protocols each vendor has developed and provided 

insufficient documentation. To get the system to 

communicate, the LLM must identify and reason 

through vendor-based protocols, prompt the user to 

record their credential in a secure scope, and 

complete the task. Latency is another serious effect 

when using LLM, especially for live chatbots. 

However, sometimes using LLMs, by adding 

techniques such as LoRA or using quantization to 

reduce latency, it is possible to have some latency vs 

not accepting less than optimal output (Raj et al., 

2024). The LLM has challenges due to a feedback 

loop that involves handling user corrections, 

interpreting testing errors, and autonomously 

refining code. Due to limited dataset availability, 

LLMs will also have difficulty onboarding devices 

where the vendor uses lower-level languages, like 

Verilog (Joel et al., 2024). The quality and 

consistency of generated code rely on the variability 

in user prompts, meaning the effectiveness of LLMs 

depends on non-obvious aspects of the user's natural 

language background and the prompt structure used. 

Other challenges related to onboarding using LLMs 

may include concerns with validation pipelines, 

scaling, performance, and dealing with dynamic API 

5. Conclusion 

The convergence of Low-Code No-Code platforms, 

Internet of Things (IoT), and Large Language 

Models (LLMs) presents a transformative 

opportunity for digital service development and 

deployment. This paper presents a framework that 

uses Language Learning Models (LLMs) to 

automate the integration of diverse IoT devices 

within Low-Code No-Code platforms, thereby 

reducing technical barriers that traditionally hinder 

device interoperability by combining domain- 

specific code generation with an interactive chatbot 

interface. Our research explores methods to tackle 

device ecosystem fragmentation and complexity, 

highlighting the limitations of current Low-Code 

No-Code platforms and the potential of LLMs to fill 

these gaps. Rapid evolution of LLM capabilities, 

including improved reasoning, multimodal input, 

and reduced latency, enhances their potential in 

Low-Code No-Code platforms. Future LLMs 

promise greater context understanding, user 

alignment, and domain-specific integrations like 

real-time device communication. The proposed 

framework aims to create an intelligent, adaptive, 

and scalable Low-Code No-Code solution for all 

users. However, challenges exist in protocol 

handling, API version drift, and compute 

performance. Ongoing research in tuning strategies, 

domain-specific datasets, and prompt engineering is 

vital for maximizing LLM-driven IoT integration in 

Low-Code No-Code ecosystems. 
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