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Abstract:  
 

This paper presents a method for multi-label classification on source EEG signal datasets 

using DCNN and GPReLU with various signal patches. Performance has been appraised 

using ROC Curves for multi-label classification. Emotion is a phenomenal neurological 

expression that releases bio-signals with electrical voltage in the brain, which is read 

through as EEG signals. Reading the EEG signals and analyzing them is carried out for 

many purposes in science and technology. A common DCNN can simply classify the 

signal datasets, which often is inaccurate, although classified signal entities may contain 

features of other classes. Classification in uncertain data leads to class imbalances. 

Therefore, multi-label classification suffices the need for data analysis which anatomizes 

the EEG signal data as containing features of many categories. A DCNN with Geometric 

Parameterized ReLU is introduced to smoothen the pooling activity and work swiftly on 

various image patches of the source EEG signal image datasets.  

 

1. Introduction 

Seizures are thought of as mythological and 

ephemeral prevalence, but in contrast they are the 

physical acts of brain electrical stations. These brain 

functions work on overpowering or under-powering 

situations and are basically a central nervous system 

disorder that affects all ages and genders. This may 

also be possibly due to the past experiences and 

subconscious reactions of brain. The emanation of 

chemical charges as chemical blips of isolation is 

called neuronal discharge. This occurs during the 

interaction of neurons for the success or failure in the 

formation of thoughts, which unpredictably without 

any warning leads to loss of attention on the body’s 

physical presence. Seizures can cause loss of 

consciousness and involuntary movement of limbs, 

oscillations in breathing, constant staring, and a 

stoned feeling in the body. Seizures are caused by 

miscommunications between the brain and the 

internal and external peripheral constituent parts of 

the body. Electroencephalography, a 

neurophysiologic activity, measures the electrical 

signals from bunches of neurons in the brain through 

electrodes, resulting in an electroencephalogram 

(EEG). A clinically manifested seizure shall only be 

analyzed with readings from the scalp using an EEG. 

The EEG is a multichannel and noninvasive method 

for reading the electrical status of the brain; 

however, various characteristics are influenced, 

differing from each patient [1-4].  The nature of the 

data produced by EEG is multivariate time series 

from multiple channels embedded with dynamic 

correlations. Therefore, declaring a patient's seizure 

onset becomes difficult as sometimes the 

characteristics influenced show considerable 

variability in EEG. Even seizures onset on one 

patient might resemble as benign with another. 

During analyses, when detection is confined to 

classifiers with a particular set of seizures, an 

impressive performance might come into 

notifications by the classifiers. Spatial analysis 

methods explore EEG records collected from 

various positions on the head, having an electrode 

placed on spatial positions. The design of spatial 

analysis methods consists of the operations at 

https://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen


Sneha Mishra, Umesh Chandra Jaiswal/ IJCESEN 11-3(2025)5721-5735 

 

5722 

 

cortical sources projecting to electrodes of select 

montages containing various spatial locations. The 

multi-label classification has great operational 

significance as most applications use it [5]. In 

general, where there is a continuous increase of data, 

to meet the urge of predicting multiple labels, the 

multi-label classification suffices. 

 

2. Overview 

The text categorization in information retrieval 

systems widely uses multi-label classification, 

where each classified entity is identified 

simultaneously with multiple labels based on the 

content given in various topics. In computer vision 

and image processing, multi-label classification 

proceeds to identify label-sets for each instance of 

the object in the image. 

Deep Learning and CNN have already achieved 

accolades on EEG data sets, especially CNN renders 

uniquely extracting all static information from 

timestamps [6-7]. As known from consensus object 

classification [25] is a high-level cognitive task, the 

dynamic correlations from the past and future 

respond with certainty and state [8]. The factors 

drawn from this phenomenon are helpful in building 

deep learning models for activity analyses of the 

human brain. 

2.1 Entropy in EEG 

Entropy measures the uncertainty in data, which 

almost represents the quantitative output of some 

predictable configuration. Entropy is used to 

measure the disorder in a system in general. The 

concept of entropy is applied to 

electroencephalography to measure the signals' 

uncertainty or random patterns. The signals are 

sampled, from each sample, the time crest is notified 

to make the unpredictable as predictable. If still the 

signals are unpredictable, certain transformations are 

assumed to correct the signals to make them 

meaningful. One way, for a larger accumulation of 

EEG signals, measuring entropy helps preprocess 

the signals and prepares them suitable for the 

classification process. An entropy measure is chosen 

to convert or transform uncertain signals into 

standard signals. An entropy measure makes implicit 

assumptions to make the signals meaningful and 

quantify their importance. The application of 

entropy measure on signals is challenging, such that 

the experiment is a priori; therefore, the meaning to 

be derived out of randomness is not known.  The 

entropy measure is affected by the time-domain(TD) 

and frequency-domain(FD) of the signals based on 

the signal-noise ratio. Thus, it is assumed that the 

input for the experimentation for finding the 

epileptic seizures have already been treated with 

entropy measures and corrected with suitability 

meaningfully.The application of classification 

deserves good consistency apart from high accuracy. 

Due to heterogeneous characteristics and a wide 

range of possibilities due to new behavioral aspects, 

the entropy of the data needs to be studied.  The 

characteristics of a patient with epilepsy are traced 

in the recordings as four periods: interictal, pre-ictal, 

seizure, and post-ictal.  The entropy of short-term 

EEG is implemented to extract characteristic 

features from the channels of EEG and supplied as 

input to the DCNN models. 

2.2 CNNs and EEG 

The challenging element in the diagnosis of epilepsy 

is classification. Classification of epilepsy in 

different states is an experiment every researcher 

needs to explore the characteristic differences from 

the readings of each individual. By transforming 

epileptic signals into power spectrum density energy 

diagrams, Yunyuan et al. proposed a method for 

classifying epileptic signals [1]. Further, the Deep 

CNN is employed for classification based on the 

features selected from the four categorical epileptic 

states interictal, pre-ictal, seizure, and post-ictal. On 

the basis of epileptic EEG data collected by the 

CHB-MIT laboratory, the experiments were 

validated by case studies. The accuracy of 

classification achieved can reduce the likelihood of 

frontal seizures occurring. DCNN algorithms based 

on LSTMs are much more efficient than DCNN 

algorithms based on LSTMs. J.X.Chen et al. has 

proposed a CNN model for classifying epileptic 

disorder data, which employs end-to-end learning of 

signals and states of epilepsy with spatial and 

temporal dimensions [2]. A Bayesian model is 

proposed in the framework, which does emotional 

binary classification. Almost the shallow machine 

learning models like bagging tree, support vector 

machine, linear discriminant analysis admixed with 

Bayesian learning model are employed. A verified 

DEAP dataset with 32 subjects is used in the 

framework. The CNN models are proven suitable for 

learning and classification and stably identify 

epileptic states.  In a new study, Rahib Abiyev et al. 

propose yet another CNN model for epileptic EEG 

data classification, in order to classify epilepsy, it 

must be a chronic neurological disorder that 

produces different types of EEG data and requires a 

combination of methods in CNN [3]. Tengfei Song 

et al. has proposed that DGCNN, deep graph 

convolutional neural networks have a profound 

influence in the classification models of CNN, so far 

employed [4]. The nature of dynamic learning has 

explored many intrinsic relationships among the 
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features extracted from the typical EEG data sets. 

DREAMER data sets are used in the 

experimentation, where better features recognition is 

extracted with both dependent as well as 

independent to be subjected. An EEG data set was 

montaged at different points in Cheng Lian Liu et 

al.'s study of multi-view convolutional neural 

networks. The unpredictability of the seizure 

challenges is met by extracting features from 

frequency and time domain aspects [5-6]. Even an 

introductory study of electroencephalogram needs 

attention to understand the features and the epileptic 

states temporally connected to several montage 

points, which is prudent with applications of CNN 

architectures. The process of selecting features and 

subsets of features from the large collection of 

features, to achieve the accuracy of modeling and 

finding the best fit for the learning model, to obtain 

the clear and actionable insights of the model, 

constitutes devising an algorithm for feature 

selection. Most classical methods for feature 

selection are variants of simulated annealing and 

genetic algorithms, whereas in evolutionary 

algorithms, stochastic approaches play a lead role in 

some areas. A minimal set of features are used to 

detect the categorical epileptic states to identify the 

severity of epilepsy. Initially, the features are 

manually selected from the dataset, and then the 

algorithmic approach is used to extract the features 

and compare them with the manually selected ones, 

such that the procedure employed to extract features 

is appropriately asserted. The benchmark dataset is 

traversed to find out the data which contain the 

features as can be extracted by the algorithm. The 

seizure is categorized as simple partial seizure (SP), 

complex partial seizure (CP), focal non-specific 

seizure (FN), generalized non-specific seizure (GN), 

absence seizure (AB), tonic seizure (TN), tonic-

clonic seizure (TC), and myoclonic seizures. 

Myoclonic seizures rarely occur and are very mild to 

identify, so they are exempted from the study [9-10]. 

Using clinical manifestations, the source data of 

EEG recordings were annotated and made available 

for the experiment.  

 

A. Feature Extraction 

 

Figure 1. Overview of Feature Extraction 

 
 

Figure 2. International System of Electrode 

Placement – Unipolar Channels. 

Figure 3. Wave Signature of Normal and Epileptic EEG. 
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B. Class Imbalance 

The concept of class imbalance is related to 

imbalances in classification. The predictive 

modeling of classification faces an insufficient 

training dataset where the knowledge required for 

complete classification is missing. To overcome this 

imbalanced classification problem in deep learning 

with images, certain precautions must be considered. 

The first of the activities is identifying the 

frequencies of categories of images in the collection, 

where the training data set shall have a proportionate 

distribution of the categorized data sets. Proportional 

distribution is not as same as equal distribution but 

based on the frequencies of the categories of the 

images. For representing the training data sets in 

typical experimentation of image classification, the 

training data sets shall be composed for less frequent 

categories of images and more frequent categories of 

images as to how their frequencies appear in the 

original datasets [11].  

The contribution in the paper is, the waves of the 

different common signatures are found in most 

images, carefully picked to build the training dataset. 

The following algorithm proposes the ideal fit in 

selecting the training dataset. The second activity to 

overcome the imbalance in classification is to merge 

the near-identical classes. All similar-looking 

objects are combined into a single class, thus 

preventing the formation of many classes [12-13]. In 

some typical classification applications, resampling 

is done for the classes to avoid the misclassification 

of objects. 

C. Data Model and Uncertainty 

The EEG recordings data sets are considered for 

evaluation of the model and understand the 

uncertainty. The data is temporally influenced by 

parameter t. a mathematical model representing the 

prediction of the cumulative number with the 

evolution of time for N observations i.e., N(t), are 

seizures, Let S denote the effect of seizure, which 

can be denoted by 

 (1) 

S is a temporal and linear-dependent function of N. 

Let the constant Nj denote the a cumulative number 

of cases with the similar seizures of electronic 

recordings. Considering that S is negligible then N = 

Nj, then  

(2) 

By substituting (2) in (1) we get 

(3) 

This is called as Ricatti equation, which is specified 

by time independent function and a constant 

parameter α(t) and Nj respectively. This equation 

has played significant role in many health care 

applications, especially in chronic case studies [11], 

[14-16]. This equation is widely used in 

mathematical biology, particularly when the 

problems akin to multi-label classifications and 

uncertainty rise. This rise gives to equation (1), 

where  is substituted by 1 and t by . Thus the 

equation can be linearized by the change of variables 

as  

 (4) 

And further by substituting the (4) in (1), we get 

  (5) 

Where on solving the validity of the model increases 

as the t increases. The very important parameter in 

the above equation is time, as changes in EEG 

electronic recordings are uncertain temporally. The 

seizure is ascertained for the times of the parameter 

as derived from the equation (5). 

D. EEG Signals to EEG Images 

There are five interesting sub-bands of frequencies 

for EEG, viz., alpha, beta, theta, delta, and gamma, 

which usually span the 0 Hz to 64 Hz range; almost 

all the frequencies are prone to noise. The frequency 

of all possible power shots of EEG is 1763.61 Hz, 

which is considered sampling frequency. 

Conditionally the maximum frequency for 

extracting EEG with least noise is 86.81 Hz, or 

evenly half in the sampling frequency is considered. 

Some wavelet transformation does not allow the 

extraction of specific signals, 0 Hz to 64 Hz range is 

considered ideal frequency. The selection of 

appropriate segments of the wavelet representing the 

frequencies and converting them into images by 

decomposing frequencies to build the image data 
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required for the analyses. An example is delegated 

with all five possible frequencies of an interictal 

EEG signal [12-14]. The generic Structure of a 

converted EEG data file consists of the readings 

collected at each pass of scanning at specific 

frequencies of a subject.Numbers of trials are 

executed on various sensor positions of unipolar 

setup, with a considerable number of samples 

pertaining to each subject. As shown above, time, 

matching conditions, and channels are observed and 

recorded. The sensor values readings are recorded 

for the subjects with different positions are between 

-48.33 and 31.057. Whereat FP1: between -6.48 and 

23.794, at FP2: between -7.406 and 20.915, at FC1: 

between -4.405 and 8.779 at FC2: between -2.625 

and 7.629 at FC3: between -5.493 and 9.644 at FC4: 

between -6.002 and 8.158 at FC5: between -16.541 

and 17.151 at FC6: between -8.667 and 9.888. 

 
Figure 4. Image of EEG Interictal signals after decomposition of band-limited into five sub-bands 

 

Figure 5. Generic structure of the EEG Interictal signals  
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FP1: between -6.48 and 23.794 FP2: between -7.406 and 20.9 

FC1: between -4.405 and 8.779 FC2: between 2.625 and 7.629 

FC3: between -5.493 and 9.644 FC4: between -6.002 and 8.158 

FC5: between -16.541 and 17.151 
FC6: between -8.667 and 9.888 

Figure 6. The sensor value readings on selected subjects at positions of FP1, FP2, FC1, FC2, FC3, FC4, FC5, FC6. 
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3. Literature Review 

Deep learning models such as support vector 

machines with linear discriminant analysis, 

Bayesian linear discriminant analysis, etc., are often 

combined with CNNs. Learning EEG data is 

challenging, such as end-to-end automatic emotional 

learning, with improvisations in accuracy. Articles 

and publications related to several studies on 

‘epileptic electroencephalography are collected 

online from several renowned organizations, such 

as, IEEE,  Wiley,  Elsevier and so on, which is 

revealing the current status of technological 

development. In the preliminary studies, keyword-

based search with automated epileptic seizure 

detection, EEG data, selection of EEG channels, 

feature selection in EEG data, conversion of EEG 

signal to EEG image, convolutional neural networks 

for EEG image data classification, and feature 

extraction in EEG data were investigated. In the 

second level of search, keywords related to 

automated epileptic seizure detection, analysis of 

EEG image data for epileptic seizure detection, 

entropy of EEG data, and non-linear features of EEG 

data were used to find research publications. 

Mendeley and Science Direct were employed to 

focus and filter on more relevant journals. 

Researchers have recently recommended umpteen 

solutions regarding the automatic detection of 

seizures [23-26]. Of all the analog methods 

followed, the time-frequency domain methods 

predominate in experimenting. Non-linear methods, 

such as machine learning methods, have achieved 

good performances. As opposed to signal processing 

methods, researchers prefer machine learning and 

deep learning methods to extract seizures from EEG 

data quickly. In [9], the author has discussed the 

application of machine learning in seizure detection 

using the CHB-MIT scalp EEG database and has 

yielded sublime performance factors. In [10], Qin et 

al. has worked on the framework development using 

bi-clustering and extreme learning (ELM) methods 

to classify seizure and non-seizure EEG data. Even 

though analog techniques are not completely 

ignored, they are used to present a new perspective 

on time-frequency in the classification of EEE 

features using local mean decomposition and 

support vector machines [11]. The recordings of 

EEG are decomposed,  and empirical analysis is 

undertaken, using wavelet transform with least 

squares – support vector machine in the 

classification of focal and non-focal classes. 

Singular value decomposition and random forests 

are used in absolute epileptic seizure detection [12-

17].The manuscript is organized as follows: The 

EEG data is collected and preprocessed by the 

entropy estimation method. Conversion of EEG data 

into EEG images. Feature selection and extraction 

with computational complexities are discussed. 

Categorization of epileptic and non-epileptic EEG 

data. Application Multi-label classification to 

identify the degree or type of seizures from the EEG 

data.EEG signals are mixtures of noise and other 

artifacts; most of the signals are raw, often used to 

detect emotions and classify EEG signals for the 

same. Some critics and researchers promoted 

channels and frequency bands related to recognizing 

emotions by decoding analog EEG signals traced 

with multiple frequency meters. Motor imagery 

skills are not the least for the CNN specialists to 

identify the involuntary actions of hands of the right 

and left [24]. Deep belief networks made first and 

fast classification and detection with purposeful 

probable anomaly measurements. Other CNNs and 

EEG specialists detected the sleep stage of a human 

from the EEG signals for attentiveness and cognitive 

features of the vehicle drivers. The influence of noise 

has raised many studies to use raw EEG data in deep 

convolutional neural networks, where more 

particular research was instituted for Alzheimer’s 

disease. Conversion of raw data into bands of 

frequencies and noise filtering for classification 

were attractive preprocessing and methodological 

achievements.As opined in the article [13-15], the 

classification of images with deep convolutional 

neural networks is accomplished with eight learned 

layers, five convolutional and three fully connected 

layers. The standard model of neuron to get the 

output f is defined as f (x) = tanhx or as equivalent to 

f(x)=(1+e-x)-1. In terms of the factors of time for 

training, the saturating nonlinearities are very slower 

than non-linearity that are non-saturating. The type 

of neurons with non-linearity are referred to as 

ReLU. In each convolutional layer, only kernels 

from the previous layer are connected to kernel 

maps; however, neurons are connected to all neurons 

from the previous layer.The article [16-22] proposes 

that the features of the EEG signals are fed into 

different classifiers, and their performances are 

empirically compared regarding the frequencies 

emitted and the structures in the readings. The 

proposed methodology's efficacy is studied with a 

single-channel EEG signals database, and the 

number of epochs is recorded. The different sets of 

classes are used to formulate a multi-class 

classification problem, where the performance of the 

methodology is evaluated for each multi-class in the 

classification problem. The basic characteristic of 

single-channel EEG signals is nonlinear and non-

stationary; the non-stationary signal decomposition 

methods such as iterative filtering is used in 

decomposition.   
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Table 1. Applications of DCNN on EEG Signal Image datasets in varied applications [2],[8],[18-19],[21-24],[26 ]. 

 

Encephalogram is a device to aid the study of 

epilepsy [17]. Nearly 50 million people have 

epilepsy around the world. Automated classification 

of EEG signals with a deep CNN model is the 

article’s central idea, where the signals collected are 

classified as normal, preictal, and seizure classes. 

Convergence and accuracy are promised in [17], 

though the model in the article is not as best, it can 

be improved to achieve more than 88.67% even. 

According to Yimin Hou et. al., decoding EEG 

signals to identify the four-class motor imagery is 

accomplished using weighted minimum norm 

estimation. The study uses a particular class of case 

studies and tests them against the Physionet database 

of brain-electric signals. An approach to developing 

global classification, is seen for the motor imagery 

using deep convolutional neural networks. The mean 

accuracy for the overall experiment is observed to be 

93.30%; however, the best class of case studies of 

physio-scouts can be considered to achieve further 

improvisation of the methods. A simple CNN 

architecture has been proposed by W-L Mao et al. 

for the classification of EEG data, where the core of 

the diagnosis involves identifying and analyzing the 

electro-encephalography [18-19].The classic 

examples of GoogleNet and AlexNet were used to 

demonstrate the operational significance of CNNs in 

EEG data analysis. Ciaran Cooney et al. has worked 

on Brain-Computer Interfaces, Transfer Learning 

was employed in BCI to achieve the classification of 

EEG data [20], [26]. Other TL methods are 

compared and found that the TL for BCI in their 

work has better performance. It has been recorded 

with an accuracy of 35.68%, though not an average 

scale in the performance. It challenges the 

competing methods of TL for BCI.  In [21], the 

method of finding the state of mind during rest and 

the normal electrical signals as the biometric have 

been proposed, which was also referred to as 

brainwave patterns. REC and REO (Resting State 

with Closed Eyes and Open Eyes) are two states in 

which EEG data can be collected from the 

subject, thus collected data is used in CNN 

systems to define the biometric signature of the 

subject, which has achieved 88.00% accuracy in 

biometric identification for a minimum of 10-

class classification [22]. Therefore, the Deep 

Convolutional Neural Networks has a profound 

confluence with the methods of EEG data 

analysis and diagnosis in epilepsy disorders and 

seizures and for a varied collection of 

applications. 

4. Multi-Label Classification 

One of the essential categories and frequently used 

in multi-label classification is the transformation 

method. A multi-label classification problem 

employs an approach to convert either into a single-

label classification or regression.  

 

Figure 7. Types of Multi-Label Classification methods. 

A huge bibliography of algorithms contributes to this 

nature of multi-label classification turning into a 

single-label classification; however, it is inevitable 

to resist the classification problem. Therefore, an 

adaptation method is chosen for many applications 

to handle the data with multi-label characteristics. 

As for a fundamental learning problem, C4.5 is 

employed to overcome the transformation problem 

and convert it into an adaptation problem. The 

frequency of the class is based on the data 

frequencies available in the whole data set. Based on 

the frequency of the class the merge process of the 
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class into another is based on the entities and the 

entropies of the class, which also yields to the 

predictive method of adapting into multi-label 

classification. At the core, the problem 

transformation is employed, and then to overcome 

the ambiguity of sharing the class labels, an 

adaptation mechanism is introduced based on the 

frequencies and entropies. In this situation, the 

question to ponder is ‘not all the elements of data sets 

are equivalent to the multi-label. A set of labels |L| is 

noted to compare all the other classes whether or not 

they belong to the set, but for some applications 

number of labels that have to be compared is too 

large, and for some, it is tiny. The two factors called 

label cardinality, and label density are thus 

introduced to address the issues. The following 

definitions clarify the computation of the two 

factors.  

  (1) 

Where the cardinality D is represented as the average 

number of labels for the examples of D. 

  (2) 

Where the cardinality D is represented as the average 

number of labels for the examples of D with respect 

to L.In the present work, the features of each label 

are ascertained for the merging of the classes and 

comparing with the said L. The features of the EEG 

signal data are observed in different texture forms 

and represented as a template to refer to the 

similarity among the classes. Therefore, first, the 

identification and declaration of class labeling are 

introduced in the simple CNN based on the 

similarity features of the EEG signals data pertaining 

to different instances of different subjects [23-

26].EEG signal images of particular montage points 

of all interictal, pre-ictal, seizure, and post-ictal 

states are generated using pyplot of matplotlib. To 

accommodate the 250 samples with voltage 

variations, the EEG signal image of 380x260 pixels 

is generated. The gross generation and the collection 

of the EEG signal image datasets reflect all the 

properties of interictal, pre-ictal, seizure, and post-

ictal but not of all in full. Therefore, the datasets 

need multi-label classification. The collected EEG 

signal image datasets do not classify the labels, but 

at the training stage, they are categorized; instead, 

they represent the features of all the periods; 

however, they are classified using single-label 

classification, as they belong to the individual bins 

representing a label. The properties of the four 

periods viz., interictal, pre-ictal, seizure, and post-

ictal are highlighted and traced as a guide for the 

training data, such that the training on the EEG 

signal image datasets can define the multiple labels 

for each data entity. The indexed data for the EEG 

signal image datasets are built to note the categories 

of periods. Further for, each entity image of the 

datasets is qualified with the percentage of period 

category, indicating that an entity belongs to 

multiple classes and therefore labeled, thus 

providing the pathologists to assess the severity of 

the epileptic effect. 

Network Setup 

The convolutional layers of the network consisting 

of ReLU and parametric ReLU (pReLU) are the vital 

components of the sequential model of the proposed 

CNN. The parameter for the parametric ReLU 

(pReLU) is derived from the computation of the 

Geometric Mean of two positive values.  

Parametric ReLU (pReLU): 

In many applications, CNN models stand pervasive, 

particularly in image processing. Classification of 

Images, Object Recognition, and Object Detection 

support various strategies of learning which are 

phenomenally accepted universally in all Image 

Processing and Computer Vision applications. The 

purpose of the Geometric Mean is to introduce the 

parameter of the Parametric ReLU, which might 

hold a specific reason. Since the DCNNs explore 

learning behavior exponentially, a standard is 

needed to select a value for the parameter found 

apt.An activation function determines the next level 

of learning during the DCNN process of input flow 

from layer to layer. An equation that can mitigate 

with the negative values such as y = max(0,x) is 

generally introduced in ReLU, whereas with 

parameter ‘a as y = a.max(0,x), attributing the 

geometric mean to the derivation of ‘a’. This aids to 

overcome null values as the inputs for the 

intermediate layers to promote the success of the 

learning model, which particularly raises when data 

is sparse. This may be compared with Leaky ReLU, 

where values between 0.01 and 0.001 may be 

assumed for the negative values, which intends to 

compute with small slope values, where learning 

will not stop, but this is suitable for dense data. In 

experiments with the uncertainty of data, we cannot 

always assure data is dense, so the choice of 

Parametric ReLU with Geometric Mean is once 

again an apt choice. Using the Geometric Mean, the 

care can be taken so that during the computation of 

the parameter, the value cannot become zero or null 
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to make the model profitable [1]. Features of EEG 

signal data are observed, converting them into 

temporal images for a number instance on each 

subject, and are used as input into the CNN 

architecture. Characteristics and drawings about the 

epileptic state are demonstrated based on the features 

present in the input data, whether or not the subject 

manifests with the adverse characteristics of mental 

health. CNN architecture is further employed to 

classify the EEG image data for the categorical 

identification of interictal, pre-ictal, seizure, and 

post-ictal.The working of the proposed DCNN has 

elementary four convolution layers with eight 

feature maps. In each layer, a usual kernel size of 3 

× 3 pixels is set up with ReLU to prevent 

intermediate saturations. Generally, a series of 

sampled and tested positive integers are determined 

for the coefficients of the parameter and tested in the 

ReLU, where all the values converge in pooling. 

Instead of a series of values, a geometric mean of the 

select values is considered a parameter for the 

variable in the ReLU function to improve efficiency 

[5-7]. As the initial step of the operations of DCNN, 

the size of feature maps is reduced even to 2 × 2 

using Max-Pooling, further appended with 

normalization layers to enable quicker convergence 

after each max-pooling layer. The max-pool layer 

generates eight features, which are further input to 

the fully-connected layer. The fully connected layer 

consists of 256 neurons.   

 

 

Table 2: Validation Parameters [5-7] 

 

Table 3: Setup of Image Patches for Experiment [2], [5-6].  

 

Table 4: Number of images patches per class of validation obtained 
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Table 5: Validation Parameters obtained from the experiment 

 

Features of the EEG image data are collected into a 

select category of image patches with EEGF =50, and 

the size of EEGF × EEGF segments are prepared. 

However, the corresponding features of the hand-

extracted EEG image data of a subject at different 

montage points are utilized in training. During the 

experiment, in the augmented dataset, patches are 

asserted as non-overlapping, tested by flipping 

horizontally and vertically; about 19,269 patches 

result as seizures, and 36,635 were negative, which 

can be matched with pathological observations. The 

experiment is conducted by testing the model with 0 

to 150 epochs. It is observed that during iterations 

between and around 66th and 70th epoch, accuracies 

are measured 96% approximately. Table 3 shows 

that for the training (50%), validation (25%), and 

testing (25%) of the total number of patches are 

considered [7-9]. 

5. Results and Discussions: 

The overall experiment is executed around 150 

iterations, a patch-based method is employed in the 

model during the experiment, and further, it is 

derived that pathological symptoms of seizures the 

accuracy, sensitivity, specificity of 0.967, 0.958, and 

0.948 respectively exists and for no-sign of seizure 

as 0.987, 0.974 and 0.958 respectively. The number 

of image patches per  class during validation 

considered to enable predictions in experimentation 

is shown in the following table.The collected signal 

recordings in CSV formats are interpreted into 

graphical form. The whole experiment of multi-label 

classification is performed on the EEG signal image 

datasets. From each image containing the EEG 

graph, patterns are identified from the images of 

signal patches. These patterns are periodic patterns 

that confine to the four stages discussed earlier; 

however, the overall classification is targeted to 

identify the combination of normal and seizure 

signals in the source images. Correspondence 

indication is maintained between the patches and the 

full images of EEG signal data sets [11-13], [17], 

[24]. The experiment is conducted with a 

‘Sequential model of DCNN using Keras – Tensor 

Flow. As the number of target labels is two, viz., 

‘normal and ‘seizure, which are detected from the 

signal’s images converted from the collected data, 

containing the voltage frequencies of 24 montage 

points, the data is collected from the same subject in 

different temporal conditions. As the dataset is 

moderately large, the network is evaluated several 

times on the same data sets to ascertain the mean 

performance. A list of evaluation scores and 

accuracy scores is obtained.  Below are the ROC 

curves that represent the performance of the model 

evaluation on different collections of image patches 

of EEG signal image datasets. With selected image 

patches and their relevance of classification into 

normal and seizure, the above graphs comply with 

the model described for the DCNN. Our model has 

achieved 74% of higher accuracy, which is near 

about the previous published paper that is 78.1% 

accuracy. But our approach is more sofacsticated in 

terms of fidelity of given achievable data. So, each 

of the EEG signal image entity in the dataset can be 

classified with two labels, ‘normal and ‘seizure,

with the relevant percentage of their existence in the 

source image data sets. The following table shows 

the percentages of labeling for the few selected 

signal images [2], [7]. 

6. Conclusions 

The proposed work uses EEG data from a 

subject with seizures and one without seizures. 

The collected EEG signals are converted into 

images using pyimage. The proposed model is 

tested on the dataset. Algorithmically, the signal 

is converted into a data set in a CSV file for each 

subject and for each time the signals are 

recorded. The proposed model for multi-label 

classification has shown the results with a 

specific percentage of labeling that each EEG 

signal image entity belongs to. Several 

experiments on EEG signal data sets have been 

conducted in the erstwhile research. Based on 

the application, they achieve different levels of
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                                                                   (a) 

 

                                                                     (b) 

 

                                                                       (c) 
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                                                                        (d) 

 

                                                                          (e) 

Figure 8. Repeater Operating Characteristic curve, representing the relevance of classification in the proposed DCNN 

Normal (40%),  Seizure (60%) Normal (23%),  Seizure (77%) 
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Normal (65%), Seizure (35%) 

 
Normal (33%), Seizure (67%) 

Figure 9. EEG Signal Image Entities Classified with Multiple Labels 

accuracy, and performance metrics are found to 

be appropriate for specific models. EEG data 

sets and methods are widely used in a wide 

variety of applications, and when combined 

with DCNN, the comparison of similar 

experiments is very rare. Therefore, the model’s 

performance is tested with the repeater 

operating characteristic curves, based on the 

true positives and false negatives and 

subsequent computations of sensitivity and 

specificity. Practically, the complete image of 

the graph cannot be input into the model, so 

patches of the images in the EEG signal image 

datasets are considered for training, testing, and 

validations. The proposed model proved with 

geometric values of the parameters supplied to 

the ReLU, has achieved a significant level of 

learning to define the labels of the source image 

entities. 
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