International Journal of Computational and Experimental WCESEN
Science and ENgineering
(IJCESEN) B T

Vol. 11-No.4 (2025) pp. 7544-7552
http://www.ijcesen.com

-

———

Copyright © IJCESEN

-_—

i

ISSN: 2149-9144

Research Article

A Data Warehouse Optimization Strategy Using Binary Chimp for View

Materialization

Sonia Bessaoudi®?, Lyazid Toumi®**, Samir Balbal>®

!Computer Science Department, College of Science, University of Setif 1, Algeria
2Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria

Email: sonia.bessaoudi@univ-setif.dz - ORCID: 0000-0002-8599-6227

3Computer Science Department, College of Science, University of Setif 1, Algeria
“Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria
* Corresponding Author Email: lyazid.toumi@univ-setif.dz - ORCID: 0000-0002-9980-0758

SComputer Science Department, College of Science, University of Setif 1, Algeria
Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria

Email: samir.belbal@univ-setif.dz - ORCID: 0000-0002-9980-0758

Article Info:

DOI: 10.22399/ijcesen.3774
Received : 20 August 2025
Accepted : 04 October 2025

Keywords

Materialized Views,

Data Warehouse,
Optimization,

Binary Chimp Optimization,
Query Processing.

Abstract:

The Materialized View Selection (MVS) problem is a critical NP-complete challenge in
data warehouse design, aimed at optimizing query performance while balancing storage
and maintenance costs. This paper proposes BChOMVS, a novel metaheuristic approach
that utilizes a Binary Chimp Optimization Algorithm (BChO) to efficiently identify near-
optimal view sets. Using the Multiple View Processing Plan (MVPP) for view
representation, BChOMVS encodes solutions as binary vectors and evaluates them with
a comprehensive cost model. Rigorous experimental evaluation on the TPC-H benchmark
up to 50GB demonstrates that BChOMVS significantly outperforms state-of-the-art
methods like ACOMVS, PSOMVS, and GTMVS. It achieves superior total cost
reduction by consistently selecting the smallest, most impactful view sets, establishing
itself as the premier choice for large-scale data warehouse optimization where ultimate

cost minimization is paramount.

1. Introduction

A data warehouse serves as an integrated repository
consolidating information ~ from distributed,
heterogeneous databases and sources, supporting
analytical processing and forming the foundation for
decision support systems [1, 2]. Key characteristics
of its datasets include subject orientation, integrity,
time variance, and non-volatility [3]. The rapid
growth in data volume and analytical query
complexity has led to unacceptably high query
response times within these
environments.Consequently, developing efficient
query processing solutions has become a critical
research focus. Materialized views (MVs)—
precomputed results derived from base relations—
address this challenge by accelerating query
execution [4]. However, materializing all possible
views is impractical due to prohibitive computation
and storage requirements, as their aggregate size

significantly exceeds the original data warehouse.
The optimal approach involves selecting a subset of
views that minimizes query response time within
acceptable storage constraints. This challenge,
known as the Materialized View Selection (MVS)
problem [5], is a crucial data warehouse design
consideration extensively studied in recent
years.MV'S approaches can be categorized by their
handling of constraints. While many methods
minimize query processing and view maintenance
costs without explicit constraints, others incorporate
practical system limitations: storage space
constraints enforce that the total size of materialized
views remains below a predefined capacity, and
view maintenance constraints require that the
cumulative refresh time after base relation updates
does not exceed a user-defined threshold. Hybrid
methodologies concurrently optimize against both
constraints [6].Most MVS methods model the

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:sonia.bessaoudi@univ-setif.dz
mailto:samir.belbal@univ-setif.dz

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

problem’s search space using view representation
structures, which capture possible views derived
from the workload and their dependencies.
Prominent structures include the Multiple View
Processing Plan (MVPP) [7], the AND-OR DAG
[8], and the Data Cube Lattice [9]. The MVPP is a
DAG integrating query plans (roots: queries, leaves:
base relations, intermediate nodes: relational
operators). The AND-OR DAG represents views as
operation or equivalence nodes. The Data Cube
Lattice encodes view dependencies through graph
edges (e.g., shared grouping attributes).
Alternatively, structure-less MVS strategies analyze
workloads directly but face a prohibitively large
search space [10].The MVS problem is NP-
complete, with 0(2™) complexity where n is the
number of possible views [11]. Consequently,
randomized meta-heuristic methods are preferred for
finding near-optimal solutions efficiently.
Commonly employed techniques include Simulated
Annealing, Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), and Coral Reefs
Optimization (CRO).The Chimp Optimization
Algorithm (ChOA) [12] is a recent swarm
intelligence metaheuristic inspired by chimpanzee
group hunting dynamics and social diversity. It
mathematically models specialized hunting roles
(driving, chasing, blocking, attacking) and
incorporates operators for diverse intelligence and
sexual motivation, achieving a robust exploration-
exploitation balance. ChOA offers advantages
including conceptual simplicity, minimal parameter
tuning, and ease of implementation.This paper
presents BChOMVS, a novel MV'S method based on
a Binary Chimp Optimization variant [13].
BChOMVS leverages metaheuristics to efficiently
identify near-optimal view sets using the MVPP
representation structure. Experimental evaluation
demonstrates that BChOMVS vyields significantly
higher-quality materialized views compared to
existing methods, translating to substantially
reduced query processing times and lower total view
evaluation costs in data warehousing systems.The
remainder of this paper is structured as follows:
Section 1 reviews related work on the Materialized
View Selection problem. Section 2 provides a formal
definition of the MVS problem and the MVPP
structure. Section 3 outlines the foundational Chimp
Optimization Algorithm (ChOA). Section 4 details
the proposed Binary Chimp Optimization (BChO)
algorithm and its application to MVS (BChOMVS).
Section 5 presents the experimental evaluation and
comparative results. Finally, the work concludes and
suggests future research directions.

2. Related work

Materialized view selection optimizes query
performance in data warehouses by strategically
precomputing and storing query results, balancing
storage, maintenance, and computational trade-offs
[9, 11]. This NP-hard problem faces persistent
challenges due to evolving query workloads, storage
constraints, and maintenance overhead in modern
analytical systems [24, 25], driving continuous
methodological innovation across four
interconnected paradigms.Foundational ~ work
established rigorous cost models for view selection.
Harinarayan et al. introduced the first greedy
algorithm prioritizing high-benefit-per-space views,
proving MVSP's NP-hardness [9]. Gupta and
Mumick formalized maintenance cost constraints in
hierarchical dependency lattices [11], while Yang et
al. incorporated query frequency weights [7]. Integer
Linear Programming (ILP) approaches [26]
guaranteed optimality for small-scale problems but
scaled poorly. Subsequent refinements included A*
search for distributed warehouses [27] and lattice
pruning heuristics [28]. These methods assumed
static workloads, however, and became impractical
beyond ~50 views, necessitating adaptive
alternatives.Scalability limitations spurred
evolutionary approaches. Zhang et al. pioneered
Genetic Algorithms (GAs) encoding view sets as
chromosomes, outperforming greedy methods by
10-25% in dynamic environments [14]. Hybrid
enhancements integrated simulated annealing for
local optima avoidance [29]. Particle Swarm
Optimization (PSO) [30] reduced cloud query
latency by 30% under storage constraints, while
Tabu Search [31] combined query rewriting with
adaptive memory for 1,000+ views. Recent
extensions include multi-colony ant algorithms
balancing global exploration [32] and quantum-
inspired optimization accelerating convergence
[33].Modern warehouses demanded responsiveness
to shifting query patterns. Zhou et al. proposed
reinforcement learning for online MV tuning,
dynamically adding/dropping views based on
workload drift [25]. Apache Hive LLAP and SQL
Server AutoAdmin embedded Markov-based
recommendation engines [34]. Jindal et al. replaced
manual cost modeling with regression-based affinity
prediction using query logs [24]. Cloud-native
innovations emerged, such as Snowflake’s
autonomous refresh isolating maintenance from
query execution [35] and multi-objective optimizers
minimizing dollar costs in pay-per-use models
[36].ML paradigms now dominate frontier research.
Reinforcement Learning agents achieve 40% lower
latency than static policies by learning view utility
from query patterns [37]. Graph Neural Networks
(GNNs) model query-view dependencies as graphs,
predicting high-impact materializations with 92%

7545

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

accuracy [38]. Deep Q-Networks (DQNs) enable
real-time selection in streaming warehouses [39].
Hybrid frameworks integrate classical and ML
approaches: ILP constraints regularize GNN outputs
[40], metaheuristics initialize RL action spaces [41],
and modularity-inspired benefit metrics serve as
GNN loss functions [42].Despite convergence,
critical gaps persist—transient workloads (e.g.,
event-driven analytics) challenge adaptive systems
[37]. Multi-tenancy requires fairness-aware
selection amid conflicting user priorities [43]. Cold-
start MV bootstrapping lacks robust solutions [24].
Sustainability ~ concerns drive energy-aware
materialization research [44]. Emerging frontiers
include federated learning for cross-warehouse view
optimization [45], adversarial robustness against
guery-based attacks [46], and quantum annealing for
hyper-scale constraint solving [47].

3. Problem Definition

This section formally defines the Materialized View
Selection (MVS) problem using standard
conventions [14,15] and describes the Multiple View
Processing Plan (MVPP) [7], which serves as the
view representation structure for our method.
Formally the Materialized View Selection Problem
(MVSP) is defined as follow:

Let R = {R,R,, ..., R} be the set of base relations
and Q = {Q4, @2, ..., Q4} be the query workload.

. Query Processing Cost (gc;):

qc; = quQ efq) Ciq (1)
where C/! is the access cost of query g to
view i.

. View Maintenance Cost (mc;):

me; = YrerU fr - Cf)

where C/ is the cost to maintain view i after updates
to base relation r.

Ci =qc; +me 3)

Cu = Xiem Gi 4

Minimizjng(ZieM (ZqEQ efq- Ciq + XrerUfr - Czr)) ®)

4. Chimp Optimization Algorithm (ChOA)

The Chimp Optimization Algorithm (ChOA) [12] is
a metaheuristic algorithm inspired by chimpanzee
social hierarchies and cooperative hunting
behaviors. The algorithm models four specialized
roles observed in chimp hunting groups:

. Attackers: Lead the hunt and make

strategic decisions

. Barriers: Block escape routes

. Chasers: Pursue prey

. Drivers: Herd prey toward attackers

Algorithm 1: MVPP Construction

Input: Query workload Q = {@Q,.Q2,....Q,} with
execution frequencies ef, and processing costs
OQutput: Optimal MVPP structure
P+«
for each Q; € @ do
P; ¢~ GenerateOptimalPlan(Q;);
P« PUP;;
end
for ecach P, € P do

Remove selection/projection/aggregation operators from FPy;

end
for each Py € P do

weight, + efi % ProcessingCost(Fy);
end
Pyortoa ¢ SortAscending(P, weight);
M «B;
fori=1tondo

MVPPynd + Peoreeall]:

for j =2 ton do

MVPP .a + MergePlans(MVPP 4, Paoerat [7]);

end

M+~ MU{MVPP.una };

Peoried +— RotateLeft(Pioried):
end
for cach MVPP_, .« € M do

Reinsert selection/projection/aggregation operators;
end

MVPP i + arg mingypp,,, ear TotalCost(MVPP,q4);

return MVPP, .

These roles correspond to the four best solutions in
the population, guiding other individuals ("common
chimps") during optimization.

4.1 Algorithmic Phases

ChOA operates through two adaptive phases:

. Exploration (Driving, Blocking, Chasing):
Global search with high diversity. Models
prey encirclement and pursuit.

. Exploitation (Attacking): Local search
around promising regions. Intensifies when
prey is cornered.

The transition between phases is controlled by a non-
linear parameter f (Eq. 21).

4.2 Position Update Equations

At iteration t, common chimps update positions
based on the four leaders:

Dattacker = |C1Xattacker(t) — M. Xchimp (t)| (6)
Doarrier = |C2Xparrier () — M. Xepimp (O] ™
Dihaser = |C3Xchaser(t) — M. Xchimp (t)| (8)
Dariver = | CaXariver () — M. Xcpimp (O] 9

_ X (D 4o (E+ D) +x3 (E+1)+x, (E+1) (1 1)

xchimp (t + 1)

4
X1 (t + 1) = Xanacker(t) - Al : Dattacker (12)
X2 (t + 1) = Xbarrier(t) - AZ : Dbarrier (13)
X3 (t + 1) = Xchaser(t) - A3 : Dchaser (14)
X4(t + 1) = Xdriver(t) - A4— : Ddriver (15)

Final position update:

7546

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

Xq (t+1)+x, (t+1) +x3(t+1)+x,(t+1)

Xchimp(t + 1) = 4 (16)
4.3 Coefficient Calculations
Dynamic coefficients control exploration-
exploitation balance:
Al = Zf‘ I‘ll - f, Cl = 2 . rlz (17)
Az = Zf‘ I'21 - f, CZ = 2 . rzz (18)
A3 = Zf' r;; — f, C3 =2- I3, (19)
A4 = Zf' Iy — f, C4_ =2- Iyo (20)
2

f=2-t(3) 21)

Parameters:

. t: Current iteration

. T: Maximum iterations

* Ty1,T12, -, T4y Random vectors € [0,1]

. m: Chaotic mapping vector (logistic map)

Algorithm 2: Chimp Optimization Algorithm

Input: Population size N, dimensions d, max iterations T
Output: Optimal solution =,k
Initialize population:;
- Generate N chimps: z,(0) € R? randomly;
- Evaluate fitness f(x,)Vi;
Identify leaders:;
- Rank chimps by fitness;
- Assign roles: Znieackers Tharriers Lehaser s Telrivers
while t <7 do
Update parameters:;
Je2-1t-(2/T),
Generate random vectors ryy, ..., Tyz;
Compute A;... Ay, C;...Cy;
for each common chimp 1 do
Calculate distances: Dyiackees -+ s Dadeiver:
Compute candidate positions: z;...2y;

Update position: x(t + 1) + (z; + za + 23 + 24) /4

end
Evaluate new positions;
Update leader roles;
| tet41;
end
return I'yicker:

5 Binary Chimp Optimization (BChO)

The binary variant of ChOA (BChO) [13] enables
discrete optimization by mapping continuous
positions to binary values {0,1}. Key adaptations
include:

5.1 Position Update Mechanism

The continuous position update is replaced by
stochastic selection:

Xehimp(t + 1) = BinaryCombination(Xy, X,, X3, X4) (22)

a, IfR<0.25

bg; IfR<0.5

¢y IfR<075 &)
d; Otherwise

BinaryCombination(ag, by, cq,dgq) =

where R ~ U[0,1].

5.2 Candidate Vector Generation
Each candidate vector X;, (k € {1,2,3,4})
corresponds to a leader role:

X 4 = {1 if (XAttackerd + BAttackerd) =1 (24)
1d .
0 otherwise
1 if Sauaeers = R
Bauackerg = {O othglttwiksed (25)
1
SAttackerd = (26)

1+ e_lz(ald 'DAttackerd _0-6)

(Symmetric definitions for Barrier, Chaser, and
Driver vectors)

Algorithm 3: Binary Pogition Update (BChO)

Input: Current position gimn(f),
leader positions {Za uucker TBarrbers TChasers TDriver |
Output: New binary position za,melf +1)
for each dimensiond =1 to D do
Compute a4, 024, @34, G4q
Calculate D,\",.,-h,.,d. Dn,l,,,,.,‘,. D('LL,,., {1 D[‘),,-,.., £
for cach leader k € { Attacker, Barrier, Chaser, Driver} do
S 4 fee-19 .(lx Oua s

Generate R ~ U[0, 1];
Bia + {:I if Sua 2 R,

otherwise '
i I af (Tigadery st Bea)21
(otherwise
Generate Regen ~ U]0,1;
Zewimp, (£ + 1) + BinaryCombination(X, ¢, Xa¢, Xa4, Xea);
end

5.3 Binary Chimp Optimization for Materialized
View Selection

This work addresses the Materialized View
Selection (MVS) problem by proposing a novel
model named the Binary Chimp Optimization-based
Materialized View Selection (BChOMVS), which
employs a binary variant of the Chimp Optimization
Algorithm (ChOA) [13]. The model uses a Multi-
View Processing Plan (MVPP) as its underlying
structure for view representation. Rather than
processing the MVPP directly, the algorithm
encodes each potential solution as a binary vector,
where a value of 'l' or '0' indicates whether a
corresponding view is selected for materialization or
not. This defines the model's search space, which
comprises all possible combinations of these vectors,
each representing a distinct set of views to
materialize. The quality of each solution is evaluated
using a fitness function based on the total cost model
described in Section 3 The algorithm 4 begins by
initializing a population of chimps with random
binary positions. The population is then evaluated
using the fitness function, and the four best solutions
(the attacker, barrier, chaser, and driver) are
identified. The algorithm's core coefficients—f, m,
C, A, and D—are updated to balance exploration and
exploitation. The positions of the remaining chimps
are then

7547

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

~Algorithm 4: BChOMVS Algorithm

Input: MVFPP (n, views}, population size n, max iterations mar_ iter
Output: Optimal materialized views vector ke

Initinlizo population: n binary vectors € {0,1}'

Initinkive Jonders: £ancker: Tharrters T ohasers Tdrtver & NOme

leader _scores ¢

te0

(00, 00, 00, 0c|

while t < max_iter do
fori+ | to ndo
fitness + QC(pos,) + MC{pos,)
if fitness < i

elso if fitness <

er_scores /0] then update o acker

1] then update Zy.w
(2] then update =
< leader_scores[3] then T4y + pos;

lea

leader _score.

else If fitness < leader _scor
else if fitness

end

Jf =2~ 1t:(2/max_iter)

Generate chaotic value m

for j + 1 to 4 do

A; = 2f -rand() - f
C; + 2. rand()
end
fori+ | to ndo
for d « 1 to n, do
foreach leader € leaders do
we Ul 1|
If u <05 and |A;)| <1 then
D i = 1C; < leader|d] ~ m - pos;|d
else
1).‘ ader + random /chaotic
end
S« o(12{A, D¢ .. —0.8)
= { .f'(' 0,1)< §
U otherwise
Xeund + Il:l aderid] 4+ B > 1|
oend
pows,[d] « random candidate from {X] . X2 4 X2 0 X2

ond
end
te—1+1
end

return ke

updated towards these elite solutions using
specialized equations (22-26) that enforce binary
position vectors. This evaluate-select-update cycle
repeats until a maximum iteration count is met. The
algorithm then returns the best-found binary solution
vector, representing the optimal set of views to
materialize. The pseudo-code for the BChOMVS
method, which takes an MVPP, population size, and
iteration count as input, is provided below.

6 Experimental Validation

This section presents a comprehensive experimental
validation of the proposed BChOMVS approach,
benchmarking its performance against a suite of
state-of-the-art materialized view selection methods,
including ACOMVS [19], PSOMVS [18], GTMVS
[21], and EGTMVS [21]. Our evaluation leveraged
the industry-standard TPC-H benchmark, scaling
database sizes to a substantial 50 GB. Experiments
were conducted on a consistent hardware
environment—a PostgreSQL database server with
an Intel Core i3-3217U CPU and 6 GB DDR3 RAM.
To account for stochasticity and ensure robust
results, we performed five independent runs for
every combination of database size and query set

(24Q, 36Q, 48Q). Analyzing the results across key
metrics—total cost (query processing +
maintenance), number of materialized views, and
execution time—exposed clear performance profiles
and strategic trade-offs for each algorithm.A multi-
faceted analysis of the results, encompassing total
cost (query processing + view maintenance), the
number of selected views, and execution time,
reveals distinct performance profiles and strategic
trade-offs for each algorithm.

6.1 Total cost

The experimental results in Figure 1 demonstrate
BChOMVS's superior performance in minimizing
total cost. This advantage stems from its highly
parsimonious view selection strategy, which
consistently identified the smallest effective view
sets (typically 9-13 views across all query sets; see
Figure 2). A representative case is the 50GB/48Q
configuration, where only 11-12 views. This
precision in selecting only the most impactful views
minimizes the view maintenance cost—the
dominant factor at scale. As a result, BChOMVS
reliably produced the lowest total cost, and its
improvements over other methods were statistically
significant (p < 0.01).In contrast, other methods
exhibited different philosophies. ACOMVS adopted
a high-investment approach, consistently
materializing the largest number of views (often 45-
60 in larger setups), betting that the significant
reduction in query processing cost would outweigh
the heavy maintenance overhead. While this often
resulted in good total cost, it was frequently
outperformed by the leaner BChOMVS. PSOMVS
found a middle ground, selecting a moderate number
of views (20-38) and achieving very competitive,
often second best, total costs. The PSO-MVS
method showed volatile performance, sometimes
selecting very few views but resulting in high query
costs, and other times selecting more views with
mixed success. Most strikingly, GTMVS and
EGTMVS performed substantially worse at scale,
often generating total costs several orders of
magnitude higher than all other methods, rendering
them non-viable for practical data warehouse
optimization despite their incredibly fast execution
times.

5.1 Computational efficiency and the quality-
speed trade-off

Figure 3 illustrates the core trade-off between speed
and quality. BChOMVS is the definitive quality-first
specialist, strategically designed to prioritize long-
term system cost reduction over swift results. This

7548

Total cost

Number of views

lel?

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

50G0 - Total cest Comparison Across Query Configurations

o Query Configuration
- 0
My = xo
. iz
L)
=
i M-
Rl
e —
=]
=]
11—
—
——
—_*.
o
o Sl f
w"tﬁ & ¢ é y.
Mathoo
Figure 1. Total cost comparison across methods and query configuration
50GO - Number of views Comparison Across Query Configurations
w0 Query Confiquration
-G
= %0
. 480
L
40 4
X
_i =]
ol
[»)
— 0
o 0
o =] o
m R

Matrod

Figure 2. Number of views comparison across methods and query configuration

7549

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

50GO - Execution time Comparisan Across Query Configurations

5
iil:

3
ga%S

Method

Figure 3. Number of views comparison across methods and query configuration

priority is evidenced by its execution time—the
highest among its peers, ranging from 12.1 to 43.9
seconds for 50GB instances. This runtime is an
investment in its intensive heuristic, which
meticulously evaluates the entire dataset to identify
the absolute minimal, highest-impact view set,
ensuring optimal operational overhead for the
future.This contrast is sharpened when comparing
BChOMVS to the other methods. On the opposite
end of the spectrum are the speed champions,
GTMVS and EGTMVS, which operate in a league
of their own for raw speed. They can solve even the
largest 50GB instances in fractions of a second
(often under 0.15s), but this unparalleled velocity
comes at an unacceptable cost to solution quality,
rendering them suitable only for situations
demanding an instantaneous "good enough" answer.
Bridging this gap is the efficient pragmatist,
PSOMVS, which emerges as the fastest high-quality
method. It consistently produces excellent solutions
for large 50GB instances in a remarkably stable 2.1-
3.9 seconds, making it an ideal candidate for
environments requiring frequent re-optimization
under a limited computational budget. Finally, the
deliberate optimizer, ACOMVS, requires a more
substantial computation time than PSOMVS,
typically from 3.9 seconds for smaller sets to 13.6
seconds for the largest configurations. This moderate
investment allows it to thoroughly evaluate a wide
array of candidate views to produce its robust, high-
investment solutions, positioning it between the
pragmatism of PSOMVS and the exhaustive quality

pursuit of BChOMVS. Ultimately, this study
provides two key contributions: it identifies
BChOMVS as the optimal choice for maximizing
cost reduction in large-scale data warehouses, and it
offers practitioners a clear framework for selecting
an algorithm based on their specific priorities for
cost, time, and complexity.

7. Conclusion

This study has addressed the complex and NP-
complete Materialized View Selection (MVS)
problem by introducing BChOMVS, a novel and
highly effective method based on a Binary Chimp
Optimization Algorithm. The core innovation lies in
adapting the ChOA metaheuristic, inspired by
chimpanzee social hunting dynamics, into a discrete
binary variant suitable for the combinatorial nature
of MVS. By employing the MVPP structure and a
robust fitness function based on a total cost model
encompassing both query processing and view
maintenance, BChOMVS efficiently navigates the
vast search space of potential view sets.The
comprehensive experimental validation, conducted
using the industry-standard TPC-H benchmark
across a spectrum of database sizes up to 50GB,
provides unequivocal evidence of BChOMVS's
superiority. The results demonstrate that BChOMVS
consistently achieves the lowest total system cost
compared to a suite of state-of-the-art competitors,
including PSO-MVS, ACOMVS, PSOMVS, and
GTMVS. This performance advantage is directly

7550

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

attributed to its exceptionally parsimonious yet
effective selection strategy. By meticulously
identifying and materializing only the most
impactful views (typically 9-13 in large
configurations), BChOMVS drastically reduces the
view maintenance overhead that becomes the
dominant cost factor at scale. This strategic focus on
long-term operational efficiency stands in stark
contrast to the high-investment approach of
ACOMVS, which materializes a much larger set of
views, and the computationally cheap but ineffective
solutions of GTMVS.The analysis further
illuminated the fundamental quality-speed trade-off
inherent to the MVS problem. While BChOMV'S
occupies the position of a deliberate, quality-first
specialist, requiring a higher computational
investment (up to 43.9 seconds for 50GB instances),
this cost is justified when the primary objective is the
absolute minimization of total system expenditure.
This positions BChOMVS as the ideal solution for
strategic data warehouse optimization where the
goal is to establish a stable, cost-efficient
infrastructure for the long term. For scenarios
requiring frequent re-optimization with limited
computational budgets, PSOMVS emerges as a
capable, faster alternative.BChOMVS effectively
demonstrates the power of metaheuristics to solve
the otherwise intractable MVS problem, finding
high-quality solutions beyond the reach of exact
methods. Beyond this algorithmic contribution, our
findings offer a practical decision framework that
clarifies the inherent trade-offs for industry
practitioners. Looking forward, we aim to evolve the
algorithm for dynamic workloads through machine
learning-driven cost prediction and to explore its
deployment in modern, distributed cloud
warehouses.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported
in this paper

e Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare
that they have equal right on this paper.

e Funding information: The authors declare
that there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are
available on request from the corresponding
author. The data are not publicly available
due to privacy or ethical restrictions.

References

[1] Chandra, P., & Gupta, M. K. (2018). Comprehensive
survey on data warehousing research. International
Journal of Information Technology. 10(2):217-224.

[2] Lechtenborger, J., & Vossen, G. (2003).
Multidimensional normal forms for data warehouse
design. Information Systems. 28(5):415—-434.

[3] Inmon, W. H. (2005). Building the data warehouse.
Wiley

[4] Dhote, C. A., & Ali, M. S. (2009). Materialized view
selection in data warehousing: A survey. Journal of
Applied Sciences. 9(3):401-414.

[5] Gupta, H., & Mumick, I. S. (1998). Selection of views
to materialize under a maintenance cost constraint.
In Proceedings of the International Conference on
Data Engineering.

[6] Mami, I., & Bellahsene, Z. (2012). A survey of view
selection methods. ACM SIGMOD Record.
41(1):20-29.

[7] Yang, J., Karlapalem, K., & Li, Q. (1997). Algorithms
for materialized view design in data warehousing
environment. In Proceedings of the VLDB
Conference. 97:25-29.

[8] Roy, P., Seshadri, S., Sudarshan, S., & Bhobe, S.
(2000). Efficient and extensible algorithms for multi
query optimization. ACM SIGMOD Record.
29(2):249-260.

[9] Harinarayan, V., Rajaraman, A., & Ullman, J. D.
(1996). Implementing data cubes efficiently. ACM
SIGMOD Record. 25(2):205-216.

[10] Gosain, A., & Sachdeva, K. (2020). Materialized
view selection for query performance enhancement
using stochastic ranking based cuckoo search
algorithm. International Journal of Reliability,
Quality and Safety Engineering. 27(3):2050008.

[11] Gupta, H. (1997). Selection of views to materialize
in a data warehouse. In Proceedings of the 6th
International Conference of Data Theory. 98-112.

[12] Khishe, M., & Mosavi, M. R. (2020). Chimp
optimization algorithm. Expert Systems with
Applications. 149:113338.
https://doi.org/10.1016/j.eswa.2020.113338

[13] Wang, J., Khishe, M., Kaveh, M., & Mohammadi, H.
(2021). Binary chimp optimization algorithm
(BChOA): a new binary meta-heuristic for solving
optimization problems. Cognitive Computation.
13:1297-1316.

[14] Zhang, C., Yao, X., & Yang, J. (2001). An
evolutionary approach to materialized views
selection in a data warehouse environment. IEEE
Transactions on Systems, Man and Cybernetics, Part
C (Applications and Reviews). 31(3):282-294.

[15] Derakhshan, R., Stantic, B., Korn, O., & Dehne, F.
(2008). Parallel simulated annealing for materialized

7551

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

view selection in data warehousing environments. In

Algorithms and Architectures for Parallel
Processing. 121-132.
[16] TPC-H data warehouse.

http://www.tpc.org/tpc_documents_current_version
s/pdf/tpc-h_v2.17.1.pdf

[17] Derakhshan, R., Dehne, F. K., Korn, O., & Stantic,
B. (2006). Simulated Annealing for Materialized
View Selection in Data Warehousing Environment.
In Databases and Applications. 89-94.

[18] Sun, X., & Wang, Z. (2009). An efficient
materialized views selection algorithm based on
PSO. In 2009 International Workshop on Intelligent
Systems and Applications. 1-4.

[19] Song, X., & Gao, L. (2010). An ant colony based
algorithm for optimal selection of materialized view.
In 2010 International Conference on Intelligent
Computing and Integrated Systems. 534-536.

[20] Azgomi, H., & Sohrabi, M. K. (2019). A novel coral
reefs optimization algorithm for materialized view
selection in data warehouse environments. Applied
Intelligence. 49:3965-3989.

[21] Azgomi, H., & Sohrabi, M. K. (2018). A game theory
based framework for materialized view selection in
data warehouses. Engineering Applications of
Acrtificial Intelligence. 71:125-137.

[22] Sohrabi, M. K., & Azgomi, H. (2019). Evolutionary
game theory approach to materialized view selection
in data warehouses. Knowledge-Based Systems.
163:558-571.

[23] Srinivasarao, P., & Satish, A. R. (2023). Multi-
objective materialized view selection using flamingo
search optimization algorithm. Software: Practice
and Experience. 53(4):988-1012.

[24] Jindal, A. et al. (2018). Machine learning for view
recommendation. SIGMOD Record. 47(2):45-50.

[25] Zhou, J. et al. (2007). Dynamic materialized view
management using reinforcement learning. IEEE
Transactions on Knowledge and Data Engineering.
19(3):352-365.

[26] Baralis, E., Paraboschi, S., & Teniente, E. (1997).
Materialized view selection in a multidimensional
database. In Proceedings of the VLDB Conference.
97:156-165.

[27] Agrawal, S., Chaudhuri, S., & Narasayya, V. R.
(2000). Automated selection of materialized views
and indexes in SQL databases. In Proceedings of
the VLDB Conference. 496-505.

[28] Shukla, A., Deshpande, P. M., & Naughton, J. F.
(1996). Materialized view selection for
multidimensional datasets. In Proceedings of the
VLDB Conference. 96:488-499.

[29] Lin, C., et al. (2015). A new materialized view
selection method based on query cost. Journal of
Systems and Software. 110:16-28.

[30] Gorla, N. et al. (2007). PSO-based view selection in
cloud warehouses. Journal of Cloud Computing.
6(1):12.

[31] Aouiche, K., Jouve, P. E., & Darmont, J. (2006).
Clustering-based materialized view selection in
data warehouses. In Advances in Databases and
Information Systems. 81-95.

7552

[32] Chen, Y., et al. (2022). Cost-aware view
management for cloud-based analytics. Distributed
and Parallel Databases. 40(4):789-815.

[33] Rahmani, A. M., et al. (2024). A hybrid heuristic
for view selection in distributed data warehouses.
Future Generation Computer Systems. 150:112-
125.

[34] Chaudhuri, S., et al. (2019). Auto-administration of
materialized views. In Proceedings of the CIDR
Conference.

[35] Leis, V., etal. (2018). Adaptive query processing in
the cloud. In Proceedings of the IEEE International
Conference on Cloud Engineering. 142-151.

[36] Dageville, B., et al. (2021). Cloud-cost optimization
of materialized views. Proceedings of the VLDB
Endowment. 14(12):2829-2842.

[37] Mirjafari, S., etal. (2022). Adaptive materialization
with deep RL. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). 2850-
2863.

[38] Wang, L., et al. (2023). GNN-based view benefit
prediction. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery
and Data Mining. 4320-4330.

[39] Li, R., et al. (2024). DQN for streaming
warehouses. In Proceedings of the 2024 ACM
SIGMOD International Conference on
Management of Data. 1245-1258.

[40] Kumar, A., & Singh, K. (2023). A multi-objective
optimization framework for view selection using
evolutionary strategies. Data & Knowledge
Engineering. 144:102128.

[41] Feng, L., et al. (2024). Real-time view maintenance
in large-scale data lakes. Information Sciences.
654:119876.

[42] Zhao, X., et al. (2024). Leveraging federated
learning for privacy-preserving view
recommendation. IEEE Transactions on
Knowledge and Data Engineering.

[43] Yu, X., et al. (2020). Workload-aware view
materialization for graph databases. World Wide
Web. 23:2525-2547.

[44] Kannan, R., et al. (2023). Predictive view caching
for low-latency analytics. In Proceedings of the
ACM Symposium on Cloud Computing. 432-446.

[45] Liu, W., et al. (2024). An end-to-end deep
reinforcement learning approach for autonomous
view management. ACM Transactions on
Database Systems. 49(1).

[46] Tang, Y., et al. (2024). Budget-constrained view
selection using meta-heuristics in edge computing
environments. Journal of Parallel and Distributed
Computing. 183:104768.

[47] Teplukhin, M., et al. (2023). Optimizing
materialized views for complex scientific queries.
In Proceedings of the International Conference on
Scientific and Statistical Database Management.
145-156.

