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Abstract:  
 
The Materialized View Selection (MVS) problem is a critical NP-complete challenge in 

data warehouse design, aimed at optimizing query performance while balancing storage 

and maintenance costs. This paper proposes BChOMVS, a novel metaheuristic approach 

that utilizes a Binary Chimp Optimization Algorithm (BChO) to efficiently identify near-

optimal view sets. Using the Multiple View Processing Plan (MVPP) for view 

representation, BChOMVS encodes solutions as binary vectors and evaluates them with 

a comprehensive cost model. Rigorous experimental evaluation on the TPC-H benchmark 

up to 50GB demonstrates that BChOMVS significantly outperforms state-of-the-art 

methods like ACOMVS, PSOMVS, and GTMVS. It achieves superior total cost 

reduction by consistently selecting the smallest, most impactful view sets, establishing 

itself as the premier choice for large-scale data warehouse optimization where ultimate 

cost minimization is paramount. 

 

1. Introduction 

A data warehouse serves as an integrated repository 

consolidating information from distributed, 

heterogeneous databases and sources, supporting 

analytical processing and forming the foundation for 

decision support systems [1, 2]. Key characteristics 

of its datasets include subject orientation, integrity, 

time variance, and non-volatility [3]. The rapid 

growth in data volume and analytical query 

complexity has led to unacceptably high query 

response times within these 

environments.Consequently, developing efficient 

query processing solutions has become a critical 

research focus. Materialized views (MVs)—

precomputed results derived from base relations—

address this challenge by accelerating query 

execution [4]. However, materializing all possible 

views is impractical due to prohibitive computation 

and storage requirements, as their aggregate size 

significantly exceeds the original data warehouse. 

The optimal approach involves selecting a subset of 

views that minimizes query response time within 

acceptable storage constraints. This challenge, 

known as the Materialized View Selection (MVS) 

problem [5], is a crucial data warehouse design 

consideration extensively studied in recent 

years.MVS approaches can be categorized by their 

handling of constraints. While many methods 

minimize query processing and view maintenance 

costs without explicit constraints, others incorporate 

practical system limitations: storage space 

constraints enforce that the total size of materialized 

views remains below a predefined capacity, and 

view maintenance constraints require that the 

cumulative refresh time after base relation updates 

does not exceed a user-defined threshold. Hybrid 

methodologies concurrently optimize against both 

constraints [6].Most MVS methods model the 
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problem’s search space using view representation 

structures, which capture possible views derived 

from the workload and their dependencies. 

Prominent structures include the Multiple View 

Processing Plan (MVPP) [7], the AND-OR DAG 

[8], and the Data Cube Lattice [9]. The MVPP is a 

DAG integrating query plans (roots: queries, leaves: 

base relations, intermediate nodes: relational 

operators). The AND-OR DAG represents views as 

operation or equivalence nodes. The Data Cube 

Lattice encodes view dependencies through graph 

edges (e.g., shared grouping attributes). 

Alternatively, structure-less MVS strategies analyze 

workloads directly but face a prohibitively large 

search space [10].The MVS problem is NP-

complete, with 𝑂(2𝑛) complexity where 𝑛 is the 

number of possible views [11]. Consequently, 

randomized meta-heuristic methods are preferred for 

finding near-optimal solutions efficiently. 

Commonly employed techniques include Simulated 

Annealing, Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), and Coral Reefs 

Optimization (CRO).The Chimp Optimization 

Algorithm (ChOA) [12] is a recent swarm 

intelligence metaheuristic inspired by chimpanzee 

group hunting dynamics and social diversity. It 

mathematically models specialized hunting roles 

(driving, chasing, blocking, attacking) and 

incorporates operators for diverse intelligence and 

sexual motivation, achieving a robust exploration-

exploitation balance. ChOA offers advantages 

including conceptual simplicity, minimal parameter 

tuning, and ease of implementation.This paper 

presents BChOMVS, a novel MVS method based on 

a Binary Chimp Optimization variant [13]. 

BChOMVS leverages metaheuristics to efficiently 

identify near-optimal view sets using the MVPP 

representation structure. Experimental evaluation 

demonstrates that BChOMVS yields significantly 

higher-quality materialized views compared to 

existing methods, translating to substantially 

reduced query processing times and lower total view 

evaluation costs in data warehousing systems.The 

remainder of this paper is structured as follows: 

Section 1 reviews related work on the Materialized 

View Selection problem. Section 2 provides a formal 

definition of the MVS problem and the MVPP 

structure. Section 3 outlines the foundational Chimp 

Optimization Algorithm (ChOA). Section 4 details 

the proposed Binary Chimp Optimization (BChO) 

algorithm and its application to MVS (BChOMVS). 

Section 5 presents the experimental evaluation and 

comparative results. Finally, the work concludes and 

suggests future research directions. 

2. Related work 

Materialized view selection optimizes query 

performance in data warehouses by strategically 

precomputing and storing query results, balancing 

storage, maintenance, and computational trade-offs 

[9, 11]. This NP-hard problem faces persistent 

challenges due to evolving query workloads, storage 

constraints, and maintenance overhead in modern 

analytical systems [24, 25], driving continuous 

methodological innovation across four 

interconnected paradigms.Foundational work 

established rigorous cost models for view selection. 

Harinarayan et al. introduced the first greedy 

algorithm prioritizing high-benefit-per-space views, 

proving MVSP's NP-hardness [9]. Gupta and 

Mumick formalized maintenance cost constraints in 

hierarchical dependency lattices [11], while Yang et 

al. incorporated query frequency weights [7]. Integer 

Linear Programming (ILP) approaches [26] 

guaranteed optimality for small-scale problems but 

scaled poorly. Subsequent refinements included A* 

search for distributed warehouses [27] and lattice 

pruning heuristics [28]. These methods assumed 

static workloads, however, and became impractical 

beyond ~50 views, necessitating adaptive 

alternatives.Scalability limitations spurred 

evolutionary approaches. Zhang et al. pioneered 

Genetic Algorithms (GAs) encoding view sets as 

chromosomes, outperforming greedy methods by 

10–25% in dynamic environments [14]. Hybrid 

enhancements integrated simulated annealing for 

local optima avoidance [29]. Particle Swarm 

Optimization (PSO) [30] reduced cloud query 

latency by 30% under storage constraints, while 

Tabu Search [31] combined query rewriting with 

adaptive memory for 1,000+ views. Recent 

extensions include multi-colony ant algorithms 

balancing global exploration [32] and quantum-

inspired optimization accelerating convergence 

[33].Modern warehouses demanded responsiveness 

to shifting query patterns. Zhou et al. proposed 

reinforcement learning for online MV tuning, 

dynamically adding/dropping views based on 

workload drift [25]. Apache Hive LLAP and SQL 

Server AutoAdmin embedded Markov-based 

recommendation engines [34]. Jindal et al. replaced 

manual cost modeling with regression-based affinity 

prediction using query logs [24]. Cloud-native 

innovations emerged, such as Snowflake’s 

autonomous refresh isolating maintenance from 

query execution [35] and multi-objective optimizers 

minimizing dollar costs in pay-per-use models 

[36].ML paradigms now dominate frontier research. 

Reinforcement Learning agents achieve 40% lower 

latency than static policies by learning view utility 

from query patterns [37]. Graph Neural Networks 

(GNNs) model query-view dependencies as graphs, 

predicting high-impact materializations with 92% 
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accuracy [38]. Deep Q-Networks (DQNs) enable 

real-time selection in streaming warehouses [39]. 

Hybrid frameworks integrate classical and ML 

approaches: ILP constraints regularize GNN outputs 

[40], metaheuristics initialize RL action spaces [41], 

and modularity-inspired benefit metrics serve as 

GNN loss functions [42].Despite convergence, 

critical gaps persist—transient workloads (e.g., 

event-driven analytics) challenge adaptive systems 

[37]. Multi-tenancy requires fairness-aware 

selection amid conflicting user priorities [43]. Cold-

start MV bootstrapping lacks robust solutions [24]. 

Sustainability concerns drive energy-aware 

materialization research [44]. Emerging frontiers 

include federated learning for cross-warehouse view 

optimization [45], adversarial robustness against 

query-based attacks [46], and quantum annealing for 

hyper-scale constraint solving [47]. 

3. Problem Definition 

This section formally defines the Materialized View 

Selection (MVS) problem using standard 

conventions [14,15] and describes the Multiple View 

Processing Plan (MVPP) [7], which serves as the 

view representation structure for our method. 

Formally the Materialized View Selection Problem 

(MVSP) is defined as follow:  

Let 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑟} be the set of base relations 

and 𝑄 = {𝑄1, 𝑄2, … , 𝑄𝑞} be the query workload. 

• Query Processing Cost (𝑞𝑐𝑖): 

𝑞𝑐𝑖 = ∑ 𝑒𝑞∈𝑄 𝑓𝑞 ⋅ 𝐶𝑖
𝑞
           (1) 

  where 𝐶𝑖
𝑞

 is the access cost of query 𝑞 to 

view 𝑖. 

• View Maintenance Cost (𝑚𝑐𝑖): 

𝑚𝑐𝑖 = ∑ 𝑢𝑟∈𝑅 𝑓𝑟 ⋅ 𝐶𝑖
𝑟           (2) 

  where 𝐶𝑖
𝑟 is the cost to maintain view 𝑖 after updates 

to base relation 𝑟. 
𝐶𝑖 = 𝑞𝑐𝑖 + 𝑚𝑐𝑖   (3) 

𝐶𝑀 = ∑ 𝐶𝑖𝑖∈𝑀    (4) 

Minimizing(∑ (∑ 𝑒𝑞∈𝑄 𝑓𝑞 ⋅ 𝐶𝑖
𝑞

+ ∑ 𝑢𝑟∈𝑅 𝑓𝑟 ⋅ 𝐶𝑖
𝑟)𝑖∈𝑀 )  (5) 

 

4. Chimp Optimization Algorithm (ChOA) 

The Chimp Optimization Algorithm (ChOA) [12] is 

a metaheuristic algorithm inspired by chimpanzee 

social hierarchies and cooperative hunting 

behaviors. The algorithm models four specialized 

roles observed in chimp hunting groups: 

• Attackers: Lead the hunt and make 

strategic decisions 

• Barriers: Block escape routes 

• Chasers: Pursue prey 

• Drivers: Herd prey toward attackers 

 

 

 
These roles correspond to the four best solutions in 

the population, guiding other individuals ("common 

chimps") during optimization. 

4.1 Algorithmic Phases 

ChOA operates through two adaptive phases: 

• Exploration (Driving, Blocking, Chasing): 

Global search with high diversity. Models 

prey encirclement and pursuit. 

• Exploitation (Attacking): Local search 

around promising regions. Intensifies when 

prey is cornered. 

The transition between phases is controlled by a non-

linear parameter 𝑓 (Eq. 21). 

4.2 Position Update Equations 

At iteration 𝑡, common chimps update positions 

based on the four leaders: 

Dattacker = |C1xattacker(t) − m. xchimp(t)|          (6)

Dbarrier = |C2xbarrier(t) − m. xchimp(t)|           (7)

Dchaser = |C3xchaser(t) − m. xchimp(t)|            (8)

Ddriver = |C4xdriver(t) − m. xchimp(t)|            (9)

            

𝑥chimp(𝑡 + 1) =
𝑥1(𝑡+1)+𝑥2(𝑡+1)+𝑥3(𝑡+1)+𝑥4(𝑡+1)

4
  (11)  

x1(t + 1) = xattacker(t) − A1 ⋅ Dattacker           (12)

x2(t + 1) = xbarrier(t) − A2 ⋅ Dbarrier            (13)

x3(t + 1) = xchaser(t) − A3 ⋅ Dchaser            (14)

x4(t + 1) = xdriver(t) − A4 ⋅ Ddriver             (15)

 

           

Final position update: 
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xchimp(t + 1) =
x1(t+1)+x2(t+1)+x3(t+1)+x4(t+1)

4
           (16) 

4.3 Coefficient Calculations 

Dynamic coefficients control exploration-

exploitation balance: 
A1 = 2f ⋅ r11 − f, C1 = 2 ⋅ r12             (17)

A2 = 2f ⋅ r21 − f, C2 = 2 ⋅ r22         (18)
A3 = 2f ⋅ r31 − f, C3 = 2 ⋅ r32         (19)

A4 = 2f ⋅ r41 − f, C4 = 2 ⋅ r42         (20)

f = 2 − t ⋅ (
2

T
)            (21)

             

Parameters: 

• 𝑡: Current iteration 

• 𝑇: Maximum iterations 

• 𝑟11, 𝑟12, … , 𝑟42: Random vectors ∈ [0,1] 
• 𝑚: Chaotic mapping vector (logistic map) 

 

 

5 Binary Chimp Optimization (BChO) 

The binary variant of ChOA (BChO) [13] enables 

discrete optimization by mapping continuous 

positions to binary values {0,1}. Key adaptations 

include: 

5.1 Position Update Mechanism 

The continuous position update is replaced by 

stochastic selection: 
xchimp(t + 1) = BinaryCombination(X1, X2, X3, X4)           (22) 

           

 BinaryCombination(𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 , 𝑑𝑑) = {

𝑎𝑑    If R < 0.25
𝑏𝑑     If R < 0.5
𝑐𝑑    If R < 0.75
𝑑𝑑   Otherwise

   (23) 

where R ∼ U[0,1]. 

5.2 Candidate Vector Generation 

Each candidate vector 𝑋𝑘 (𝑘 ∈ {1,2,3,4}) 

corresponds to a leader role: 

X1d = {
1 if (XAttackerd

+ BAttackerd
) ≥ 1           (24)

0 otherwise

BAttackerd
= {

1 if SAttackerd
≥ R

0 otherwise
                           (25)

SAttackerd
=

1

1 + e−12(a1d⋅DAttackerd
−0.6)

                  (26)

 

           

(Symmetric definitions for Barrier, Chaser, and 

Driver vectors) 

 

5.3 Binary Chimp Optimization for Materialized 

View Selection 

This work addresses the Materialized View 

Selection (MVS) problem by proposing a novel 

model named the Binary Chimp Optimization-based 

Materialized View Selection (BChOMVS), which 

employs a binary variant of the Chimp Optimization 

Algorithm (ChOA) [13]. The model uses a Multi-

View Processing Plan (MVPP) as its underlying 

structure for view representation. Rather than 

processing the MVPP directly, the algorithm 

encodes each potential solution as a binary vector, 

where a value of '1' or '0' indicates whether a 

corresponding view is selected for materialization or 

not. This defines the model's search space, which 

comprises all possible combinations of these vectors, 

each representing a distinct set of views to 

materialize. The quality of each solution is evaluated 

using a fitness function based on the total cost model 

described in Section 3 The algorithm 4 begins by 

initializing a population of chimps with random 

binary positions. The population is then evaluated 

using the fitness function, and the four best solutions 

(the attacker, barrier, chaser, and driver) are 

identified. The algorithm's core coefficients—f, m, 

C, A, and D—are updated to balance exploration and 

exploitation. The positions of the remaining chimps 

are then 
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updated towards these elite solutions using 

specialized equations (22-26) that enforce binary 

position vectors. This evaluate-select-update cycle 

repeats until a maximum iteration count is met. The 

algorithm then returns the best-found binary solution 

vector, representing the optimal set of views to 

materialize. The pseudo-code for the BChOMVS 

method, which takes an MVPP, population size, and 

iteration count as input, is provided below. 

6 Experimental Validation 

This section presents a comprehensive experimental 

validation of the proposed BChOMVS approach, 

benchmarking its performance against a suite of 

state-of-the-art materialized view selection methods, 

including ACOMVS [19], PSOMVS [18], GTMVS 

[21], and EGTMVS [21]. Our evaluation leveraged 

the industry-standard TPC-H benchmark, scaling 

database sizes to a substantial 50 GB. Experiments 

were conducted on a consistent hardware 

environment—a PostgreSQL database server with 

an Intel Core i3-3217U CPU and 6 GB DDR3 RAM. 

To account for stochasticity and ensure robust 

results, we performed five independent runs for 

every combination of database size and query set 

(24Q, 36Q, 48Q). Analyzing the results across key 

metrics—total cost (query processing + 

maintenance), number of materialized views, and 

execution time—exposed clear performance profiles 

and strategic trade-offs for each algorithm.A multi-

faceted analysis of the results, encompassing total 

cost (query processing + view maintenance), the 

number of selected views, and execution time, 

reveals distinct performance profiles and strategic 

trade-offs for each algorithm. 

6.1 Total cost  

The experimental results in Figure 1 demonstrate 

BChOMVS's superior performance in minimizing 

total cost. This advantage stems from its highly 

parsimonious view selection strategy, which 

consistently identified the smallest effective view 

sets (typically 9–13 views across all query sets; see 

Figure 2). A representative case is the 50GB/48Q 

configuration, where only 11-12 views. This 

precision in selecting only the most impactful views 

minimizes the view maintenance cost—the 

dominant factor at scale. As a result, BChOMVS 

reliably produced the lowest total cost, and its 

improvements over other methods were statistically 

significant (p < 0.01).In contrast, other methods 

exhibited different philosophies. ACOMVS adopted 

a high-investment approach, consistently 

materializing the largest number of views (often 45-

60 in larger setups), betting that the significant 

reduction in query processing cost would outweigh 

the heavy maintenance overhead. While this often 

resulted in good total cost, it was frequently 

outperformed by the leaner BChOMVS. PSOMVS 

found a middle ground, selecting a moderate number 

of views (20-38) and achieving very competitive, 

often second best, total costs. The PSO-MVS 

method showed volatile performance, sometimes 

selecting very few views but resulting in high query 

costs, and other times selecting more views with 

mixed success. Most strikingly, GTMVS and 

EGTMVS performed substantially worse at scale, 

often generating total costs several orders of 

magnitude higher than all other methods, rendering 

them non-viable for practical data warehouse 

optimization despite their incredibly fast execution 

times. 

5.1 Computational efficiency and the quality-

speed trade-off 

Figure 3 illustrates the core trade-off between speed 

and quality. BChOMVS is the definitive quality-first 

specialist, strategically designed to prioritize long-

term system cost reduction over swift results. This 
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Figure 1. Total cost comparison across methods and query configuration 

Figure 2. Number of views comparison across methods and query configuration 

Figure 3. Execution time comparison across methods and query configuration 
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priority is evidenced by its execution time—the 

highest among its peers, ranging from 12.1 to 43.9 

seconds for 50GB instances. This runtime is an 

investment in its intensive heuristic, which 

meticulously evaluates the entire dataset to identify 

the absolute minimal, highest-impact view set, 

ensuring optimal operational overhead for the 

future.This contrast is sharpened when comparing 

BChOMVS to the other methods. On the opposite 

end of the spectrum are the speed champions, 

GTMVS and EGTMVS, which operate in a league 

of their own for raw speed. They can solve even the 

largest 50GB instances in fractions of a second 

(often under 0.15s), but this unparalleled velocity 

comes at an unacceptable cost to solution quality, 

rendering them suitable only for situations 

demanding an instantaneous "good enough" answer. 

Bridging this gap is the efficient pragmatist, 

PSOMVS, which emerges as the fastest high-quality 

method. It consistently produces excellent solutions 

for large 50GB instances in a remarkably stable 2.1-

3.9 seconds, making it an ideal candidate for 

environments requiring frequent re-optimization 

under a limited computational budget. Finally, the 

deliberate optimizer, ACOMVS, requires a more 

substantial computation time than PSOMVS, 

typically from 3.9 seconds for smaller sets to 13.6 

seconds for the largest configurations. This moderate 

investment allows it to thoroughly evaluate a wide 

array of candidate views to produce its robust, high-

investment solutions, positioning it between the 

pragmatism of PSOMVS and the exhaustive quality 

pursuit of BChOMVS. Ultimately, this study 

provides two key contributions: it identifies 

BChOMVS as the optimal choice for maximizing 

cost reduction in large-scale data warehouses, and it 

offers practitioners a clear framework for selecting 

an algorithm based on their specific priorities for 

cost, time, and complexity. 

7. Conclusion 

This study has addressed the complex and NP-

complete Materialized View Selection (MVS) 

problem by introducing BChOMVS, a novel and 

highly effective method based on a Binary Chimp 

Optimization Algorithm. The core innovation lies in 

adapting the ChOA metaheuristic, inspired by 

chimpanzee social hunting dynamics, into a discrete 

binary variant suitable for the combinatorial nature 

of MVS. By employing the MVPP structure and a 

robust fitness function based on a total cost model 

encompassing both query processing and view 

maintenance, BChOMVS efficiently navigates the 

vast search space of potential view sets.The 

comprehensive experimental validation, conducted 

using the industry-standard TPC-H benchmark 

across a spectrum of database sizes up to 50GB, 

provides unequivocal evidence of BChOMVS's 

superiority. The results demonstrate that BChOMVS 

consistently achieves the lowest total system cost 

compared to a suite of state-of-the-art competitors, 

including PSO-MVS, ACOMVS, PSOMVS, and 

GTMVS. This performance advantage is directly 

Figure 3. Number of views comparison across methods and query configuration 
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attributed to its exceptionally parsimonious yet 

effective selection strategy. By meticulously 

identifying and materializing only the most 

impactful views (typically 9-13 in large 

configurations), BChOMVS drastically reduces the 

view maintenance overhead that becomes the 

dominant cost factor at scale. This strategic focus on 

long-term operational efficiency stands in stark 

contrast to the high-investment approach of 

ACOMVS, which materializes a much larger set of 

views, and the computationally cheap but ineffective 

solutions of GTMVS.The analysis further 

illuminated the fundamental quality-speed trade-off 

inherent to the MVS problem. While BChOMVS 

occupies the position of a deliberate, quality-first 

specialist, requiring a higher computational 

investment (up to 43.9 seconds for 50GB instances), 

this cost is justified when the primary objective is the 

absolute minimization of total system expenditure. 

This positions BChOMVS as the ideal solution for 

strategic data warehouse optimization where the 

goal is to establish a stable, cost-efficient 

infrastructure for the long term. For scenarios 

requiring frequent re-optimization with limited 

computational budgets, PSOMVS emerges as a 

capable, faster alternative.BChOMVS effectively 

demonstrates the power of metaheuristics to solve 

the otherwise intractable MVS problem, finding 

high-quality solutions beyond the reach of exact 

methods. Beyond this algorithmic contribution, our 

findings offer a practical decision framework that 

clarifies the inherent trade-offs for industry 

practitioners. Looking forward, we aim to evolve the 

algorithm for dynamic workloads through machine 

learning-driven cost prediction and to explore its 

deployment in modern, distributed cloud 

warehouses. 
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