

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7544-7552

http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

 1

A Data Warehouse Optimization Strategy Using Binary Chimp for View

Materialization

Sonia Bessaoudi1,2, Lyazid Toumi3,4*, Samir Balbal5,6

1Computer Science Department, College of Science, University of Setif 1, Algeria

2Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria
Email: sonia.bessaoudi@univ-setif.dz - ORCID: 0000-0002-8599-6227

3Computer Science Department, College of Science, University of Setif 1, Algeria
4Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria

* Corresponding Author Email: lyazid.toumi@univ-setif.dz - ORCID: 0000-0002-9980-0758

5Computer Science Department, College of Science, University of Setif 1, Algeria
6Databases and optimization Team, Artificial Intelligence Laboratory, University of Setif 1, Algeria

Email: samir.belbal@univ-setif.dz - ORCID: 0000-0002-9980-0758

Article Info:

DOI: 10.22399/ijcesen.3774

Received : 20 August 2025

Accepted : 04 October 2025

Keywords

Materialized Views,

Data Warehouse,

Optimization,

Binary Chimp Optimization,

Query Processing.

Abstract:

The Materialized View Selection (MVS) problem is a critical NP-complete challenge in

data warehouse design, aimed at optimizing query performance while balancing storage

and maintenance costs. This paper proposes BChOMVS, a novel metaheuristic approach

that utilizes a Binary Chimp Optimization Algorithm (BChO) to efficiently identify near-

optimal view sets. Using the Multiple View Processing Plan (MVPP) for view

representation, BChOMVS encodes solutions as binary vectors and evaluates them with

a comprehensive cost model. Rigorous experimental evaluation on the TPC-H benchmark

up to 50GB demonstrates that BChOMVS significantly outperforms state-of-the-art

methods like ACOMVS, PSOMVS, and GTMVS. It achieves superior total cost

reduction by consistently selecting the smallest, most impactful view sets, establishing

itself as the premier choice for large-scale data warehouse optimization where ultimate

cost minimization is paramount.

1. Introduction

A data warehouse serves as an integrated repository

consolidating information from distributed,

heterogeneous databases and sources, supporting

analytical processing and forming the foundation for

decision support systems [1, 2]. Key characteristics

of its datasets include subject orientation, integrity,

time variance, and non-volatility [3]. The rapid

growth in data volume and analytical query

complexity has led to unacceptably high query

response times within these

environments.Consequently, developing efficient

query processing solutions has become a critical

research focus. Materialized views (MVs)—

precomputed results derived from base relations—

address this challenge by accelerating query

execution [4]. However, materializing all possible

views is impractical due to prohibitive computation

and storage requirements, as their aggregate size

significantly exceeds the original data warehouse.

The optimal approach involves selecting a subset of

views that minimizes query response time within

acceptable storage constraints. This challenge,

known as the Materialized View Selection (MVS)

problem [5], is a crucial data warehouse design

consideration extensively studied in recent

years.MVS approaches can be categorized by their

handling of constraints. While many methods

minimize query processing and view maintenance

costs without explicit constraints, others incorporate

practical system limitations: storage space

constraints enforce that the total size of materialized

views remains below a predefined capacity, and

view maintenance constraints require that the

cumulative refresh time after base relation updates

does not exceed a user-defined threshold. Hybrid

methodologies concurrently optimize against both

constraints [6].Most MVS methods model the

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:sonia.bessaoudi@univ-setif.dz
mailto:samir.belbal@univ-setif.dz

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7545

problem’s search space using view representation

structures, which capture possible views derived

from the workload and their dependencies.

Prominent structures include the Multiple View

Processing Plan (MVPP) [7], the AND-OR DAG

[8], and the Data Cube Lattice [9]. The MVPP is a

DAG integrating query plans (roots: queries, leaves:

base relations, intermediate nodes: relational

operators). The AND-OR DAG represents views as

operation or equivalence nodes. The Data Cube

Lattice encodes view dependencies through graph

edges (e.g., shared grouping attributes).

Alternatively, structure-less MVS strategies analyze

workloads directly but face a prohibitively large

search space [10].The MVS problem is NP-

complete, with 𝑂(2𝑛) complexity where 𝑛 is the

number of possible views [11]. Consequently,

randomized meta-heuristic methods are preferred for

finding near-optimal solutions efficiently.

Commonly employed techniques include Simulated

Annealing, Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), and Coral Reefs

Optimization (CRO).The Chimp Optimization

Algorithm (ChOA) [12] is a recent swarm

intelligence metaheuristic inspired by chimpanzee

group hunting dynamics and social diversity. It

mathematically models specialized hunting roles

(driving, chasing, blocking, attacking) and

incorporates operators for diverse intelligence and

sexual motivation, achieving a robust exploration-

exploitation balance. ChOA offers advantages

including conceptual simplicity, minimal parameter

tuning, and ease of implementation.This paper

presents BChOMVS, a novel MVS method based on

a Binary Chimp Optimization variant [13].

BChOMVS leverages metaheuristics to efficiently

identify near-optimal view sets using the MVPP

representation structure. Experimental evaluation

demonstrates that BChOMVS yields significantly

higher-quality materialized views compared to

existing methods, translating to substantially

reduced query processing times and lower total view

evaluation costs in data warehousing systems.The

remainder of this paper is structured as follows:

Section 1 reviews related work on the Materialized

View Selection problem. Section 2 provides a formal

definition of the MVS problem and the MVPP

structure. Section 3 outlines the foundational Chimp

Optimization Algorithm (ChOA). Section 4 details

the proposed Binary Chimp Optimization (BChO)

algorithm and its application to MVS (BChOMVS).

Section 5 presents the experimental evaluation and

comparative results. Finally, the work concludes and

suggests future research directions.

2. Related work

Materialized view selection optimizes query

performance in data warehouses by strategically

precomputing and storing query results, balancing

storage, maintenance, and computational trade-offs

[9, 11]. This NP-hard problem faces persistent

challenges due to evolving query workloads, storage

constraints, and maintenance overhead in modern

analytical systems [24, 25], driving continuous

methodological innovation across four

interconnected paradigms.Foundational work

established rigorous cost models for view selection.

Harinarayan et al. introduced the first greedy

algorithm prioritizing high-benefit-per-space views,

proving MVSP's NP-hardness [9]. Gupta and

Mumick formalized maintenance cost constraints in

hierarchical dependency lattices [11], while Yang et

al. incorporated query frequency weights [7]. Integer

Linear Programming (ILP) approaches [26]

guaranteed optimality for small-scale problems but

scaled poorly. Subsequent refinements included A*

search for distributed warehouses [27] and lattice

pruning heuristics [28]. These methods assumed

static workloads, however, and became impractical

beyond ~50 views, necessitating adaptive

alternatives.Scalability limitations spurred

evolutionary approaches. Zhang et al. pioneered

Genetic Algorithms (GAs) encoding view sets as

chromosomes, outperforming greedy methods by

10–25% in dynamic environments [14]. Hybrid

enhancements integrated simulated annealing for

local optima avoidance [29]. Particle Swarm

Optimization (PSO) [30] reduced cloud query

latency by 30% under storage constraints, while

Tabu Search [31] combined query rewriting with

adaptive memory for 1,000+ views. Recent

extensions include multi-colony ant algorithms

balancing global exploration [32] and quantum-

inspired optimization accelerating convergence

[33].Modern warehouses demanded responsiveness

to shifting query patterns. Zhou et al. proposed

reinforcement learning for online MV tuning,

dynamically adding/dropping views based on

workload drift [25]. Apache Hive LLAP and SQL

Server AutoAdmin embedded Markov-based

recommendation engines [34]. Jindal et al. replaced

manual cost modeling with regression-based affinity

prediction using query logs [24]. Cloud-native

innovations emerged, such as Snowflake’s

autonomous refresh isolating maintenance from

query execution [35] and multi-objective optimizers

minimizing dollar costs in pay-per-use models

[36].ML paradigms now dominate frontier research.

Reinforcement Learning agents achieve 40% lower

latency than static policies by learning view utility

from query patterns [37]. Graph Neural Networks

(GNNs) model query-view dependencies as graphs,

predicting high-impact materializations with 92%

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7546

accuracy [38]. Deep Q-Networks (DQNs) enable

real-time selection in streaming warehouses [39].

Hybrid frameworks integrate classical and ML

approaches: ILP constraints regularize GNN outputs

[40], metaheuristics initialize RL action spaces [41],

and modularity-inspired benefit metrics serve as

GNN loss functions [42].Despite convergence,

critical gaps persist—transient workloads (e.g.,

event-driven analytics) challenge adaptive systems

[37]. Multi-tenancy requires fairness-aware

selection amid conflicting user priorities [43]. Cold-

start MV bootstrapping lacks robust solutions [24].

Sustainability concerns drive energy-aware

materialization research [44]. Emerging frontiers

include federated learning for cross-warehouse view

optimization [45], adversarial robustness against

query-based attacks [46], and quantum annealing for

hyper-scale constraint solving [47].

3. Problem Definition

This section formally defines the Materialized View

Selection (MVS) problem using standard

conventions [14,15] and describes the Multiple View

Processing Plan (MVPP) [7], which serves as the

view representation structure for our method.

Formally the Materialized View Selection Problem

(MVSP) is defined as follow:

Let 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑟} be the set of base relations

and 𝑄 = {𝑄1, 𝑄2, … , 𝑄𝑞} be the query workload.

• Query Processing Cost (𝑞𝑐𝑖):

𝑞𝑐𝑖 = ∑ 𝑒𝑞∈𝑄 𝑓𝑞 ⋅ 𝐶𝑖
𝑞
 (1)

 where 𝐶𝑖
𝑞

 is the access cost of query 𝑞 to

view 𝑖.

• View Maintenance Cost (𝑚𝑐𝑖):

𝑚𝑐𝑖 = ∑ 𝑢𝑟∈𝑅 𝑓𝑟 ⋅ 𝐶𝑖
𝑟 (2)

 where 𝐶𝑖
𝑟 is the cost to maintain view 𝑖 after updates

to base relation 𝑟.
𝐶𝑖 = 𝑞𝑐𝑖 + 𝑚𝑐𝑖 (3)

𝐶𝑀 = ∑ 𝐶𝑖𝑖∈𝑀 (4)

Minimizing(∑ (∑ 𝑒𝑞∈𝑄 𝑓𝑞 ⋅ 𝐶𝑖
𝑞

+ ∑ 𝑢𝑟∈𝑅 𝑓𝑟 ⋅ 𝐶𝑖
𝑟)𝑖∈𝑀) (5)

4. Chimp Optimization Algorithm (ChOA)

The Chimp Optimization Algorithm (ChOA) [12] is

a metaheuristic algorithm inspired by chimpanzee

social hierarchies and cooperative hunting

behaviors. The algorithm models four specialized

roles observed in chimp hunting groups:

• Attackers: Lead the hunt and make

strategic decisions

• Barriers: Block escape routes

• Chasers: Pursue prey

• Drivers: Herd prey toward attackers

These roles correspond to the four best solutions in

the population, guiding other individuals ("common

chimps") during optimization.

4.1 Algorithmic Phases

ChOA operates through two adaptive phases:

• Exploration (Driving, Blocking, Chasing):

Global search with high diversity. Models

prey encirclement and pursuit.

• Exploitation (Attacking): Local search

around promising regions. Intensifies when

prey is cornered.

The transition between phases is controlled by a non-

linear parameter 𝑓 (Eq. 21).

4.2 Position Update Equations

At iteration 𝑡, common chimps update positions

based on the four leaders:

Dattacker = |C1xattacker(t) − m. xchimp(t)| (6)

Dbarrier = |C2xbarrier(t) − m. xchimp(t)| (7)

Dchaser = |C3xchaser(t) − m. xchimp(t)| (8)

Ddriver = |C4xdriver(t) − m. xchimp(t)| (9)

𝑥chimp(𝑡 + 1) =
𝑥1(𝑡+1)+𝑥2(𝑡+1)+𝑥3(𝑡+1)+𝑥4(𝑡+1)

4
 (11)

x1(t + 1) = xattacker(t) − A1 ⋅ Dattacker (12)

x2(t + 1) = xbarrier(t) − A2 ⋅ Dbarrier (13)

x3(t + 1) = xchaser(t) − A3 ⋅ Dchaser (14)

x4(t + 1) = xdriver(t) − A4 ⋅ Ddriver (15)

Final position update:

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7547

xchimp(t + 1) =
x1(t+1)+x2(t+1)+x3(t+1)+x4(t+1)

4
 (16)

4.3 Coefficient Calculations

Dynamic coefficients control exploration-

exploitation balance:
A1 = 2f ⋅ r11 − f, C1 = 2 ⋅ r12 (17)

A2 = 2f ⋅ r21 − f, C2 = 2 ⋅ r22 (18)
A3 = 2f ⋅ r31 − f, C3 = 2 ⋅ r32 (19)

A4 = 2f ⋅ r41 − f, C4 = 2 ⋅ r42 (20)

f = 2 − t ⋅ (
2

T
) (21)

Parameters:

• 𝑡: Current iteration

• 𝑇: Maximum iterations

• 𝑟11, 𝑟12, … , 𝑟42: Random vectors ∈ [0,1]
• 𝑚: Chaotic mapping vector (logistic map)

5 Binary Chimp Optimization (BChO)

The binary variant of ChOA (BChO) [13] enables

discrete optimization by mapping continuous

positions to binary values {0,1}. Key adaptations

include:

5.1 Position Update Mechanism

The continuous position update is replaced by

stochastic selection:
xchimp(t + 1) = BinaryCombination(X1, X2, X3, X4) (22)

 BinaryCombination(𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 , 𝑑𝑑) = {

𝑎𝑑 If R < 0.25
𝑏𝑑 If R < 0.5
𝑐𝑑 If R < 0.75
𝑑𝑑 Otherwise

 (23)

where R ∼ U[0,1].

5.2 Candidate Vector Generation

Each candidate vector 𝑋𝑘 (𝑘 ∈ {1,2,3,4})

corresponds to a leader role:

X1d = {
1 if (XAttackerd

+ BAttackerd
) ≥ 1 (24)

0 otherwise

BAttackerd
= {

1 if SAttackerd
≥ R

0 otherwise
 (25)

SAttackerd
=

1

1 + e−12(a1d⋅DAttackerd
−0.6)

 (26)

(Symmetric definitions for Barrier, Chaser, and

Driver vectors)

5.3 Binary Chimp Optimization for Materialized

View Selection

This work addresses the Materialized View

Selection (MVS) problem by proposing a novel

model named the Binary Chimp Optimization-based

Materialized View Selection (BChOMVS), which

employs a binary variant of the Chimp Optimization

Algorithm (ChOA) [13]. The model uses a Multi-

View Processing Plan (MVPP) as its underlying

structure for view representation. Rather than

processing the MVPP directly, the algorithm

encodes each potential solution as a binary vector,

where a value of '1' or '0' indicates whether a

corresponding view is selected for materialization or

not. This defines the model's search space, which

comprises all possible combinations of these vectors,

each representing a distinct set of views to

materialize. The quality of each solution is evaluated

using a fitness function based on the total cost model

described in Section 3 The algorithm 4 begins by

initializing a population of chimps with random

binary positions. The population is then evaluated

using the fitness function, and the four best solutions

(the attacker, barrier, chaser, and driver) are

identified. The algorithm's core coefficients—f, m,

C, A, and D—are updated to balance exploration and

exploitation. The positions of the remaining chimps

are then

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7548

updated towards these elite solutions using

specialized equations (22-26) that enforce binary

position vectors. This evaluate-select-update cycle

repeats until a maximum iteration count is met. The

algorithm then returns the best-found binary solution

vector, representing the optimal set of views to

materialize. The pseudo-code for the BChOMVS

method, which takes an MVPP, population size, and

iteration count as input, is provided below.

6 Experimental Validation

This section presents a comprehensive experimental

validation of the proposed BChOMVS approach,

benchmarking its performance against a suite of

state-of-the-art materialized view selection methods,

including ACOMVS [19], PSOMVS [18], GTMVS

[21], and EGTMVS [21]. Our evaluation leveraged

the industry-standard TPC-H benchmark, scaling

database sizes to a substantial 50 GB. Experiments

were conducted on a consistent hardware

environment—a PostgreSQL database server with

an Intel Core i3-3217U CPU and 6 GB DDR3 RAM.

To account for stochasticity and ensure robust

results, we performed five independent runs for

every combination of database size and query set

(24Q, 36Q, 48Q). Analyzing the results across key

metrics—total cost (query processing +

maintenance), number of materialized views, and

execution time—exposed clear performance profiles

and strategic trade-offs for each algorithm.A multi-

faceted analysis of the results, encompassing total

cost (query processing + view maintenance), the

number of selected views, and execution time,

reveals distinct performance profiles and strategic

trade-offs for each algorithm.

6.1 Total cost

The experimental results in Figure 1 demonstrate

BChOMVS's superior performance in minimizing

total cost. This advantage stems from its highly

parsimonious view selection strategy, which

consistently identified the smallest effective view

sets (typically 9–13 views across all query sets; see

Figure 2). A representative case is the 50GB/48Q

configuration, where only 11-12 views. This

precision in selecting only the most impactful views

minimizes the view maintenance cost—the

dominant factor at scale. As a result, BChOMVS

reliably produced the lowest total cost, and its

improvements over other methods were statistically

significant (p < 0.01).In contrast, other methods

exhibited different philosophies. ACOMVS adopted

a high-investment approach, consistently

materializing the largest number of views (often 45-

60 in larger setups), betting that the significant

reduction in query processing cost would outweigh

the heavy maintenance overhead. While this often

resulted in good total cost, it was frequently

outperformed by the leaner BChOMVS. PSOMVS

found a middle ground, selecting a moderate number

of views (20-38) and achieving very competitive,

often second best, total costs. The PSO-MVS

method showed volatile performance, sometimes

selecting very few views but resulting in high query

costs, and other times selecting more views with

mixed success. Most strikingly, GTMVS and

EGTMVS performed substantially worse at scale,

often generating total costs several orders of

magnitude higher than all other methods, rendering

them non-viable for practical data warehouse

optimization despite their incredibly fast execution

times.

5.1 Computational efficiency and the quality-

speed trade-off

Figure 3 illustrates the core trade-off between speed

and quality. BChOMVS is the definitive quality-first

specialist, strategically designed to prioritize long-

term system cost reduction over swift results. This

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7549

Figure 1. Total cost comparison across methods and query configuration

Figure 2. Number of views comparison across methods and query configuration

Figure 3. Execution time comparison across methods and query configuration

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7550

priority is evidenced by its execution time—the

highest among its peers, ranging from 12.1 to 43.9

seconds for 50GB instances. This runtime is an

investment in its intensive heuristic, which

meticulously evaluates the entire dataset to identify

the absolute minimal, highest-impact view set,

ensuring optimal operational overhead for the

future.This contrast is sharpened when comparing

BChOMVS to the other methods. On the opposite

end of the spectrum are the speed champions,

GTMVS and EGTMVS, which operate in a league

of their own for raw speed. They can solve even the

largest 50GB instances in fractions of a second

(often under 0.15s), but this unparalleled velocity

comes at an unacceptable cost to solution quality,

rendering them suitable only for situations

demanding an instantaneous "good enough" answer.

Bridging this gap is the efficient pragmatist,

PSOMVS, which emerges as the fastest high-quality

method. It consistently produces excellent solutions

for large 50GB instances in a remarkably stable 2.1-

3.9 seconds, making it an ideal candidate for

environments requiring frequent re-optimization

under a limited computational budget. Finally, the

deliberate optimizer, ACOMVS, requires a more

substantial computation time than PSOMVS,

typically from 3.9 seconds for smaller sets to 13.6

seconds for the largest configurations. This moderate

investment allows it to thoroughly evaluate a wide

array of candidate views to produce its robust, high-

investment solutions, positioning it between the

pragmatism of PSOMVS and the exhaustive quality

pursuit of BChOMVS. Ultimately, this study

provides two key contributions: it identifies

BChOMVS as the optimal choice for maximizing

cost reduction in large-scale data warehouses, and it

offers practitioners a clear framework for selecting

an algorithm based on their specific priorities for

cost, time, and complexity.

7. Conclusion

This study has addressed the complex and NP-

complete Materialized View Selection (MVS)

problem by introducing BChOMVS, a novel and

highly effective method based on a Binary Chimp

Optimization Algorithm. The core innovation lies in

adapting the ChOA metaheuristic, inspired by

chimpanzee social hunting dynamics, into a discrete

binary variant suitable for the combinatorial nature

of MVS. By employing the MVPP structure and a

robust fitness function based on a total cost model

encompassing both query processing and view

maintenance, BChOMVS efficiently navigates the

vast search space of potential view sets.The

comprehensive experimental validation, conducted

using the industry-standard TPC-H benchmark

across a spectrum of database sizes up to 50GB,

provides unequivocal evidence of BChOMVS's

superiority. The results demonstrate that BChOMVS

consistently achieves the lowest total system cost

compared to a suite of state-of-the-art competitors,

including PSO-MVS, ACOMVS, PSOMVS, and

GTMVS. This performance advantage is directly

Figure 3. Number of views comparison across methods and query configuration

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7551

attributed to its exceptionally parsimonious yet

effective selection strategy. By meticulously

identifying and materializing only the most

impactful views (typically 9-13 in large

configurations), BChOMVS drastically reduces the

view maintenance overhead that becomes the

dominant cost factor at scale. This strategic focus on

long-term operational efficiency stands in stark

contrast to the high-investment approach of

ACOMVS, which materializes a much larger set of

views, and the computationally cheap but ineffective

solutions of GTMVS.The analysis further

illuminated the fundamental quality-speed trade-off

inherent to the MVS problem. While BChOMVS

occupies the position of a deliberate, quality-first

specialist, requiring a higher computational

investment (up to 43.9 seconds for 50GB instances),

this cost is justified when the primary objective is the

absolute minimization of total system expenditure.

This positions BChOMVS as the ideal solution for

strategic data warehouse optimization where the

goal is to establish a stable, cost-efficient

infrastructure for the long term. For scenarios

requiring frequent re-optimization with limited

computational budgets, PSOMVS emerges as a

capable, faster alternative.BChOMVS effectively

demonstrates the power of metaheuristics to solve

the otherwise intractable MVS problem, finding

high-quality solutions beyond the reach of exact

methods. Beyond this algorithmic contribution, our

findings offer a practical decision framework that

clarifies the inherent trade-offs for industry

practitioners. Looking forward, we aim to evolve the

algorithm for dynamic workloads through machine

learning-driven cost prediction and to explore its

deployment in modern, distributed cloud

warehouses.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported

in this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare

that they have equal right on this paper.

 Funding information: The authors declare

that there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are

available on request from the corresponding

author. The data are not publicly available

due to privacy or ethical restrictions.

References

[1] Chandra, P., & Gupta, M. K. (2018). Comprehensive

survey on data warehousing research. International

Journal of Information Technology. 10(2):217–224.

[2] Lechtenbörger, J., & Vossen, G. (2003).

Multidimensional normal forms for data warehouse

design. Information Systems. 28(5):415–434.

[3] Inmon, W. H. (2005). Building the data warehouse.

Wiley.

[4] Dhote, C. A., & Ali, M. S. (2009). Materialized view

selection in data warehousing: A survey. Journal of

Applied Sciences. 9(3):401–414.

[5] Gupta, H., & Mumick, I. S. (1998). Selection of views

to materialize under a maintenance cost constraint.

In Proceedings of the International Conference on

Data Engineering.

[6] Mami, I., & Bellahsene, Z. (2012). A survey of view

selection methods. ACM SIGMOD Record.

41(1):20–29.

[7] Yang, J., Karlapalem, K., & Li, Q. (1997). Algorithms

for materialized view design in data warehousing

environment. In Proceedings of the VLDB

Conference. 97:25–29.

[8] Roy, P., Seshadri, S., Sudarshan, S., & Bhobe, S.

(2000). Efficient and extensible algorithms for multi

query optimization. ACM SIGMOD Record.

29(2):249–260.

[9] Harinarayan, V., Rajaraman, A., & Ullman, J. D.

(1996). Implementing data cubes efficiently. ACM

SIGMOD Record. 25(2):205–216.

[10] Gosain, A., & Sachdeva, K. (2020). Materialized

view selection for query performance enhancement

using stochastic ranking based cuckoo search

algorithm. International Journal of Reliability,

Quality and Safety Engineering. 27(3):2050008.

[11] Gupta, H. (1997). Selection of views to materialize

in a data warehouse. In Proceedings of the 6th

International Conference of Data Theory. 98–112.

[12] Khishe, M., & Mosavi, M. R. (2020). Chimp

optimization algorithm. Expert Systems with

Applications. 149:113338.

https://doi.org/10.1016/j.eswa.2020.113338

[13] Wang, J., Khishe, M., Kaveh, M., & Mohammadi, H.

(2021). Binary chimp optimization algorithm

(BChOA): a new binary meta-heuristic for solving

optimization problems. Cognitive Computation.

13:1297-1316.

[14] Zhang, C., Yao, X., & Yang, J. (2001). An

evolutionary approach to materialized views

selection in a data warehouse environment. IEEE

Transactions on Systems, Man and Cybernetics, Part

C (Applications and Reviews). 31(3):282–294.

[15] Derakhshan, R., Stantic, B., Korn, O., & Dehne, F.

(2008). Parallel simulated annealing for materialized

Sonia Bessaoudi, Lyazid Toumi, Samir Balbal/ IJCESEN 11-4(2025)7544-7552

7552

view selection in data warehousing environments. In

Algorithms and Architectures for Parallel

Processing. 121–132.

[16] TPC-H data warehouse.

http://www.tpc.org/tpc_documents_current_version

s/pdf/tpc-h_v2.17.1.pdf

[17] Derakhshan, R., Dehne, F. K., Korn, O., & Stantic,

B. (2006). Simulated Annealing for Materialized

View Selection in Data Warehousing Environment.

In Databases and Applications. 89-94.

[18] Sun, X., & Wang, Z. (2009). An efficient

materialized views selection algorithm based on

PSO. In 2009 International Workshop on Intelligent

Systems and Applications. 1-4.

[19] Song, X., & Gao, L. (2010). An ant colony based

algorithm for optimal selection of materialized view.

In 2010 International Conference on Intelligent

Computing and Integrated Systems. 534-536.

[20] Azgomi, H., & Sohrabi, M. K. (2019). A novel coral

reefs optimization algorithm for materialized view

selection in data warehouse environments. Applied

Intelligence. 49:3965-3989.

[21] Azgomi, H., & Sohrabi, M. K. (2018). A game theory

based framework for materialized view selection in

data warehouses. Engineering Applications of

Artificial Intelligence. 71:125-137.

[22] Sohrabi, M. K., & Azgomi, H. (2019). Evolutionary

game theory approach to materialized view selection

in data warehouses. Knowledge-Based Systems.

163:558-571.

[23] Srinivasarao, P., & Satish, A. R. (2023). Multi‐
objective materialized view selection using flamingo

search optimization algorithm. Software: Practice

and Experience. 53(4):988-1012.

[24] Jindal, A. et al. (2018). Machine learning for view

recommendation. SIGMOD Record. 47(2):45-50.

[25] Zhou, J. et al. (2007). Dynamic materialized view

management using reinforcement learning. IEEE

Transactions on Knowledge and Data Engineering.

19(3):352-365.

[26] Baralis, E., Paraboschi, S., & Teniente, E. (1997).

Materialized view selection in a multidimensional

database. In Proceedings of the VLDB Conference.

97:156–165.

[27] Agrawal, S., Chaudhuri, S., & Narasayya, V. R.

(2000). Automated selection of materialized views

and indexes in SQL databases. In Proceedings of

the VLDB Conference. 496–505.

[28] Shukla, A., Deshpande, P. M., & Naughton, J. F.

(1996). Materialized view selection for

multidimensional datasets. In Proceedings of the

VLDB Conference. 96:488–499.

[29] Lin, C., et al. (2015). A new materialized view

selection method based on query cost. Journal of

Systems and Software. 110:16-28.

[30] Gorla, N. et al. (2007). PSO-based view selection in

cloud warehouses. Journal of Cloud Computing.

6(1):12.

[31] Aouiche, K., Jouve, P. E., & Darmont, J. (2006).

Clustering-based materialized view selection in

data warehouses. In Advances in Databases and

Information Systems. 81-95.

[32] Chen, Y., et al. (2022). Cost-aware view

management for cloud-based analytics. Distributed

and Parallel Databases. 40(4):789-815.

[33] Rahmani, A. M., et al. (2024). A hybrid heuristic

for view selection in distributed data warehouses.

Future Generation Computer Systems. 150:112-

125.

[34] Chaudhuri, S., et al. (2019). Auto-administration of

materialized views. In Proceedings of the CIDR

Conference.

[35] Leis, V., et al. (2018). Adaptive query processing in

the cloud. In Proceedings of the IEEE International

Conference on Cloud Engineering. 142-151.

[36] Dageville, B., et al. (2021). Cloud-cost optimization

of materialized views. Proceedings of the VLDB

Endowment. 14(12):2829-2842.

[37] Mirjafari, S., et al. (2022). Adaptive materialization

with deep RL. In 2022 IEEE 38th International

Conference on Data Engineering (ICDE). 2850-

2863.

[38] Wang, L., et al. (2023). GNN-based view benefit

prediction. In Proceedings of the 29th ACM

SIGKDD Conference on Knowledge Discovery

and Data Mining. 4320-4330.

[39] Li, R., et al. (2024). DQN for streaming

warehouses. In Proceedings of the 2024 ACM

SIGMOD International Conference on

Management of Data. 1245-1258.

[40] Kumar, A., & Singh, K. (2023). A multi-objective

optimization framework for view selection using

evolutionary strategies. Data & Knowledge

Engineering. 144:102128.

[41] Feng, L., et al. (2024). Real-time view maintenance

in large-scale data lakes. Information Sciences.

654:119876.

[42] Zhao, X., et al. (2024). Leveraging federated

learning for privacy-preserving view

recommendation. IEEE Transactions on

Knowledge and Data Engineering.

[43] Yu, X., et al. (2020). Workload-aware view

materialization for graph databases. World Wide

Web. 23:2525–2547.

[44] Kannan, R., et al. (2023). Predictive view caching

for low-latency analytics. In Proceedings of the

ACM Symposium on Cloud Computing. 432-446.

[45] Liu, W., et al. (2024). An end-to-end deep

reinforcement learning approach for autonomous

view management. ACM Transactions on

Database Systems. 49(1).

[46] Tang, Y., et al. (2024). Budget-constrained view

selection using meta-heuristics in edge computing

environments. Journal of Parallel and Distributed

Computing. 183:104768.

[47] Teplukhin, M., et al. (2023). Optimizing

materialized views for complex scientific queries.

In Proceedings of the International Conference on

Scientific and Statistical Database Management.

145-156.

