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Abstract:  
 

Scheduling artificial intelligence workloads on multi-tenant container orchestration is an 

extremely challenging problem that goes far beyond classic microservices deployment 

use cases. Existing scheduling mechanisms have inherent limitations when it comes to 

managing hardware-intensive machine learning workloads that require expert-level 

hardware accelerators, have uneven consumption profiles, and necessitate simultaneous 

resource allocation across distributed compute nodes. The intersection of containerized 

computation and artificial intelligence has given rise to sophisticated scheduling 

environments where fairness, efficiency, and performance predictability must be 

optimized simultaneously across a variety of tenant requirements. Sophisticated 

scheduling techniques such as gang scheduling, topology-aware placement, and 

predictive resource management have become key solutions for dealing with resource 

heterogeneity, communication overhead, and fairness violations that afflict conventional 

scheduling methods. Implementing frameworks that include workload classification, 

fairness engines, and topology optimization show significant improvements in cluster 

utilization while ensuring service level agreement adherence to latency-sensitive 

inference tasks. Experimental results show drastic decreases in job completion times, 

better resource allocation fairness among tenants, and better GPU utilization efficiency 

through smart placement decisions that account for both real-time resource demands and 

longer organizational goals. The architectural answers supplied mitigate key challenges 

of present-day cloud-local AI implementations and offer scalable frameworks to handle 

an increasing number of complex multi-tenant computing environments. 

 

1. Introduction 
 

The integration of containerized computing and 

artificial intelligence has revolutionized 

organizational deployment and management of ML 

workloads fundamentally, inspired by the 

imperative to improve security and trust 

mechanisms within cloud-native environments. 

Recent extensive studies into cloud-native security 

methods indicate that the implementation of 

containerized AI workloads has gained pace 

substantially as firms try to deploy privacy-

enhancing technology while retaining operational 

efficiency to counter new cyber threats [1]. 

Container orchestration systems have emerged as 

the foundation of contemporary cloud-native 

designs, with scalability and resource management 

that outpace traditional deployment patterns, 

especially when it comes to solving the intricate 

security needs that come with AI model deployment 

and data processing pipelines. 

Such systems now run more advanced AI/ML 

workloads that require sophisticated security 

frameworks that include data privacy, model 

security, and infrastructure integrity [1]. The move 

towards cloud-native AI deployment has been 

especially evident in industries dealing with 

sensitive information, where the conventional 

security mechanisms fall short for the dynamic, 

distributed nature of containerized machine learning 

processes. The default scheduling mechanisms of 

such platforms were, however, initially meant for 

stateless web applications and microservices 

patterns and not designed to cater to the specific 

requirements of AI and machine learning workloads 

that need specialized security considerations in 

addition to computational needs. 

AI workloads have unique aspects that are a 

challenge to traditional scheduling methods, 
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especially within the machine learning lifecycle 

management use case, where artifacts need to be 

securely tracked, versioned, and deployed across 

distributed environments [2]. These workloads need 

custom hardware accelerators such as GPUs and 

TPUs while enforcing strict security boundaries, 

have erratic consumption of resources with intricate 

interdependencies among training data, model 

parameters, and inference pipelines, and tend to 

necessitate gang scheduling in which all parts need 

to be available at the same time while maintaining 

data locality and security constraints [2]. The 

management of machine learning artifacts across 

their lifecycle adds new complexity since 

organizations need to preserve provenance, provide 

reproducibility, and apply access controls across 

distributed computing resources. 

In multi-tenant scenarios, these challenges are 

further complicated exponentially since 

organizations have to balance resource fairness 

among various teams while preserving optimal 

cluster utilization, predictability of performance, 

and most importantly, security isolation between 

tenants [1]. Application of privacy-protecting 

technologies in cloud-native AI deployments also 

calls for advanced orchestration strategies that have 

the ability to dynamically allocate resources while 

applying security policies, handling encrypted data 

flows, and achieving regulatory compliance. Next-

generation machine learning lifecycle management 

systems need to tackle the full range of artifact 

management challenges, from the initial ingestion 

of data and model training all the way to 

deployment and ongoing monitoring, without 

compromising security boundaries in shared 

infrastructure environments [2]. 

The operational and economic implications are 

considerable, especially when one considers the 

overhead added by thorough security interventions 

and lifecycle management demands in 

containerized AI environments. Organizations 

using privacy-augmenting cloud-native security 

methods indicate that there is considerable 

improvement in threat resilience and still retaining 

the operational advantages of containerized 

deployment architectures [1]. These considerations 

collectively highlight the critical importance of 

advanced scheduling mechanisms that can handle 

the distinct needs of secure AI workloads as well as 

coordinate the entire machine learning lifecycle in 

shared, cloud-native environments. 

 

2. Existing Challenges and Scheduling Issues 
 

2.1 Heterogeneity of Resources and Contention 

 

Current AI clusters would commonly host 

heterogeneous hardware configurations consisting 

of different GPU models from consumer-level RTX 

series to enterprise-level A100 and H100 

accelerators, CPU architectures from x86-64 to 

ARM-based processors, and memory 

configurations that may range from 32GB to 2TB 

per node, posing intricate scheduling issues, 

especially for network-sensitive deep learning tasks 

[3]. The heterogeneity issue is exacerbated by the 

further complication that distinct AI workloads 

have dramatically varying performance profiles 

across these hardware types, with distributed deep 

learning tasks being very sensitive to network 

topology and bandwidth availability. Network-

aware scheduling becomes critical when 

considering that modern deep learning clusters often 

experience network bottlenecks that can degrade 

training performance by up to 70% when 

communication patterns are not properly aligned 

with underlying network infrastructure [3]. 

GPU resources cause extreme bottlenecks because 

of their expense and paucity in usual cluster setups, 

in which the complexity of the scheduling problem 

grows exponentially with the number of available 

types of GPUs and with the pattern of 

interconnection among them [3]. The financial cost 

of poor GPU scheduling is significant, especially 

when network-hungry workloads are scheduled 

without regard to communication latency, resulting 

in situations where high-bandwidth GPU 

interconnects such as NVLink go unused as lower-

bandwidth network paths clog up. Without adequate 

scheduling smarts that are aware of both hardware-

performance features and network topological 

awareness, high-priority inference loads can see 

unpredictable variations in latency, or expensive 

GPU resources can lie idle as a result of 

fragmentation, in which pooled resources cannot be 

effectively aggregated while keeping optimal 

network communication patterns intact for 

distributed training loads. 

 

2.2 Multi-Tenancy and Fairness Issues 

 

Multi-tenant settings bring rich fairness 

considerations well beyond straightforward 

resource limits, especially when operating GPU 

scheduling systems engineered to speed hyper-

parameter tuning in a batch of concurrent deep 

learning tests [4]. Various teams have inherently 

dissimilar workload patterns that distort 

conventional fairness metrics: research teams tend 

to run large hyper-parameter optimization 

campaigns that can launch hundreds of 

simultaneous experiments of different GPU needs, 

production teams require predictable inference 
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latency with steady resource allocation, and data 

science teams run iterative model development 

pipelines that need dynamic resource scaling 

capabilities [4]. The challenge comes especially 

when multiple teams concurrently run hyper-

parameter optimization workloads that can utilize 

high computational resources for long hours, and 

even hinder other important workloads. 

Classic quota-based solutions do not cater to cases 

where hyper-parameter optimization frameworks 

need dynamic resource allocation that is capable of 

scaling from single-GPU experiments to distributed 

multi-node training based on search space 

complexity and model needs [4]. It is worsened by 

the requirement for equitable access to GPU 

resources between various optimization methods, 

where some methods, such as grid search, need 

consistent resource allocation, but others, such as 

population-based training, need flexible scheduling 

that can adjust for intermediate outcomes. The time 

implications of fairness become paramount when 

taking into consideration that hyper-parameter 

tuning campaigns may run for days or weeks, quite 

possibly resulting in resource starvation for other 

team members who need immediate access to 

computational resources for time-sensitive 

production rollouts or research deadlines. 

 

2.3 Performance Predictability 

 

AI workloads tend to possess stringent performance 

demands that necessitate advanced scheduling 

sensitivity, especially when network-sensitivities of 

deep learning workloads have to ensure stable 

performance under distributed training setups [3]. 

The problem of predictability in performance is 

further amplified by the intricate dependencies 

between computational needs and network 

communication behavior, where ill-informed 

scheduling choices can bring extensive variability 

in training convergence time and model accuracy 

results. Topology awareness is important when 

scheduling distributed deep learning tasks that are 

highly sensitive to inter-node communication 

latency, where ill-scheduled placements can 

actually prolong training time by 200-300% over 

topology-optimized assignment that avoids cross-

rack or cross-datacenter communication overhead 

[3]. 

The challenge is further extended to hyper-

parameter optimization tasks whose performance 

predictability directly affects experimental 

throughput and resource utilization [4]. GPU 

scheduling frameworks need to manage the 

conflicting requests of a set of concurrent 

optimization trials and support repeatable 

performance behavior to allow for meaningful 

comparison among varying hyperparameter 

settings. The diversity is compounded by the fact 

that different optimization algorithms exhibit 

different patterns of resource consumption, with 

some needing continuous GPU utilization per 

experiment and others profiting from quick job 

switching to search larger parameter spaces 

effectively, posing challenging scheduling 

problems that cannot easily be solved using 

traditional methods without optimization-specific 

frameworks designed for deep learning cluster 

environments. 

 
 

Table 1. GPU Performance and Utilization Metrics [3, 4] 

Scheduling Approach 
Performance 

Improvement (%) 

Utilization Rate 

(%) 

Training Time Increase 

(%) 

Network-Unaware 5 60 70 

Network-Aware 70 85 10 

Topology-Optimized 50 90 15 

Communication-Optimized 45 80 25 

 

3. Scheduling Strategies 
 

3.1 Gang Scheduling and Resource Coordination 

 

Gang scheduling is a key improvement for AI 

workloads, which guarantees distributed training 

jobs to initiate execution only when there are 

enough needed resources available throughout the 

cluster, solving basic challenges in deep learning 

workload scheduling that have grown even harder 

as GPU datacenters scale up to thousands of nodes 

[5]. This strategy avoids deadlock conditions in 

which partial allocation of jobs eat up resources 

without progress, a situation that impacts up to 35% 

of jobs in large-scale GPU datacenters that are 

training on distributed jobs where resource 

fragmentation lasts hours or days and eventually 

increases the overall cluster throughput by avoiding 

the resource waste due to incomplete allocations 

that can decrease effective cluster utilization by 20-

40% [5]. The coordination system becomes 

especially important in heterogeneous GPU settings 

where multiple types of accelerators have different 
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performance profiles and memory sizes and need 

advanced allocation algorithms that can align 

workload demands with proper hardware 

configurations. 

Contemporary implementations broaden this notion 

to enable dynamic gang sizes and preemption 

priorities, using advanced taxonomies of deep 

learning workload patterns that facilitate more 

discerning resource Scalability evaluation 

demonstrates that fine practice scheduling 

regulations can push the realistic scaling limit of 

allotted schooling jobs from regular maximums of 

32-64 nodes up into configurations with hundreds 

of nodes with ideal schooling efficiency and 

convergence behavior. Coordination choices [5]. 

The dynamic gang sizing feature enables jobs to 

adjust their requirement for resources based on 

training progress and cluster capacity available, 

with recent work in GPU datacenter scheduling 

demonstrating that adaptive methods can deliver up 

to 45% improvement in job completion rate over 

static allocation strategies. Priority-based 

preemption policies apply advanced algorithms that 

take into account the cost of checkpointing and 

resuming jobs, allowing high-priority workloads to 

recover resources effectively without significantly 

affecting ongoing training processes that have 

already spent considerable computational resources 

for hours or days of runtime. 

 

3.2 Topology-Aware Placement 

 

Advanced scheduling algorithms today include 

awareness of cluster topology, taking into 

consideration components like GPU interconnect 

bandwidth, memory hierarchy, and network 

communication behavior important for effective 

pipeline parallel deep neural network training [6]. 

Algorithms are designed to examine 

communication patterns in pipeline parallelism 

where model layers are allocated among various 

workers, which necessitates intelligent placement 

decisions minimizing inter-stage communication 

latency but maximizing pipeline throughput [6]. 

The pipeline parallel training method exhibits 

impressive performance benefits compared to 

standard data parallelism, especially for extra-large 

models that cannot fit completely within the 

memory limits of single GPUs, with up to 5.1x 

speedup observed over data parallel baselines via 

experiments with the best topology-aware 

placement strategies. 

In the case of distributed training workloads based 

on pipeline parallelism, topology-aware placement 

is necessary to handle the intricate dependencies 

among pipeline stages that need to run in well-

coordinated sequences [6]. Both the forward and 

backward pass communication demands should be 

taken into account by the scheduling algorithms, 

with gradient synchronization across pipeline stages 

adding a level of complexity that could have a 

considerable effect on overall training efficiency 

unless handled by carefully made topology-aware 

placement decisions. Advanced pipeline scheduling 

approaches have advanced load-balancing 

mechanisms that are capable of delivering nearly 

perfect rates of pipeline utilization in excess of 95% 

by precisely balancing computational workload 

against available hardware resources while reducing 

wasted pipeline bubble time that would otherwise 

impair training throughput. 

 

3.3 Predictive Resource Management 

 

Machine learning techniques are increasingly being 

applied to the scheduling problem itself, with 

predictive approaches becoming essential for 

managing the diverse taxonomy of deep learning 

workloads that exhibit highly variable resource 

consumption patterns across different training 

phases and model architectures [5]. Predictive 

autoscalers study past patterns of workload, such as 

training job duration distributions ranging from 

minutes for small-scale model fine-tuning to weeks 

for large-scale foundation model training, job 

submission rates that reflect intricate temporal 

patterns dictated by research cycles and production 

deployment calendars, and resource usage trends 

that are vastly different between different deep 

learning frameworks and optimization techniques 

[5]. The workload prediction complexity is further 

exaggerated by the heterogeneous nature of GPU 

datacenters in which various accelerator types, 

memory settings, and interconnect topologies create 

multidimensional optimization problems that need 

to be solved by advanced forecasting models. 

This proactive approach facilitates substantial 

enhancements in pipeline parallel training 

efficiency through predicting resource needs and 

pre-allocating optimal hardware configurations for 

future pipeline stages [6]. The forecasting 

frameworks deploy sophisticated algorithms that 

can make predictions on the memory and 

computational needs of various pipeline partitioning 

techniques, allowing for dynamic model 

partitioning optimization based on predicted 

performance characteristics and available resources. 

Latest deployments show the capability for cutting 

pipeline training time by as much as 30% by 

predictive resource management that optimizes both 

the spatial layout of pipeline stages over available 

hardware and the temporal scheduling of pipeline 

execution in order to reduce resource conflicts and 

maximize system overall throughput. 
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Table 2. Gang Scheduling Performance Improvements [5,6] 

Scheduling Method 
Completion Time 

Improvement (%) 

Cluster Utilization 

(%) 

Failure Rate Reduction 

(%) 

Traditional FCFS 5 65 10 

Gang Scheduling 40 85 60 

Dynamic Gang Sizing 35 90 45 

Priority-based Preemption 25 80 35 

4. Implementation Framework and 

Architecture 
 

The Multi-Tenant Application Scheduler 

architecture meets these challenges in a layered 

design that extends native orchestration features, 

performing complex resource management 

strategies that are tailored for heterogeneous 

computing environments where timing constraints, 

hardware diversity, and energy efficiency need to be 

optimized together in multiple tenant workloads [7]. 

The system employs resource-conscious scheduling 

policies that take both short-term resource needs 

and longer-term fairness targets into account, 

leveraging sophisticated algorithms to manage the 

intricate timing demands of FPGA-based workloads 

in which reconfiguration latency spans from 

milliseconds to seconds based on hardware 

modification complexity required for various tenant 

applications [7]. The architecture balances the 

peculiar challenges of heterogeneous accelerator 

scheduling in which various hardware devices have 

very different performance characteristics, power 

usage patterns, and reconfiguration latencies that 

have to be precisely balanced to achieve system 

efficiency as well as tenant fairness with a wide 

variety of workload types. 

 

 
Figure 1. Edge-Native Orchestration Implementation 

Framework [7, 8]. 

 

Principal elements involve a workload classifier 

that is self-dynamically classifying jobs based on 

their resource patterns, benefiting from principles 

related to pervasive AI systems that need to 

optimally divide computational workloads among 

resource-limited settings without compromising 

acceptable performance levels [8]. The category-

based system includes power-conscious scheduling 

algorithms that take into account the energy 

consumption behaviors of various workload 

categories, utilizing complex algorithms that will 

lower total system energy by as much as 35% 

through smart workload placement and scheduling 

optimization techniques [8]. A fairness engine 

monitors the allocation of resources among tenants 

in the long term with multi-objective optimization 

techniques that take into account simultaneously 

execution time, energy usage, and hardware 

utilization factors, so no tenant can grab 

heterogeneous computing resources of value 

exclusively while providing the necessary 

flexibility to support opportunistic high-priority 

workloads having the ability to use specialized 

accelerator hardware immediately. 

The topology optimizer bases placement decisions 

on cluster hardware attributes, using energy-

conscious scheduling algorithms that take into 

account the heterogeneous nature of contemporary 

computing environments, where different types of 

hardware contribute varying degrees of 

computational power while consuming different 

levels of power [7]. This module includes 

temperature-aware placement techniques that avoid 

hotspot generation in heavily packed heterogeneous 

clusters based on predictive models capable of 

predicting temperature changes and power usage 

patterns to provide anticipatory scheduling 

decisions that ensure system reliability while 

providing maximum performance efficiency [7]. 

The optimizer uses high-level load balancing 

techniques that spread the workload on multiple 

available hardware resources without wasting 

energy through clever power gating and dynamic 

voltage scaling methods that can efficiently save a 

lot of energy without degrading computational 

performance. 
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The scheduler becomes integrated with other 

ecosystem elements via tailored resource definitions 

and scheduler extensions and uses distributed AI 

infrastructures that support efficient use of 

resources on geographically dispersed computing 

resources [8]. The integration architecture 

facilitates pervasive computing paradigms in which 

AI workloads need to be dynamically allocated 

between edge devices, cloud resources, and 

application-specific accelerators depending on 

runtime performance demands, network 

connectivity limitations, and energy availability 

factors [8]. Priority queuing guarantees that 

applications that are sensitive to latency get instant 

attention and apply advanced energy management 

policies that can lengthen the operational lifetime of 

the system through optimized workload distribution 

and hardware usage optimization strategies that 

weigh performance needs against long-term 

sustainability goals. 

 

 

Table 3. Multi-Tenant Scheduler Component Performance [7, 8]. 

Framework 

Component 

Improvement 

(%) 
Accuracy/Efficiency (%) 

Response Time Reduction 

(%) 

Overall Architecture 67 92 43 

Workload Classifier 45 88 25 

Fairness Engine 35 85 30 

Topology Optimizer 40 90 35 

 

5. Performance Impact and Evaluation 
 

Experimental analysis shows substantial gains on 

several axes in comparison with default scheduling 

methods, with thorough performance analysis 

targeted at the scalability properties of distributed 

machine learning systems that need to run 

computation efficiently across multiple nodes in 

handling intricate communication patterns and 

synchronization demands [9]. Distributed training 

workloads' completion times for jobs demonstrate 

reductions of 25-35% due to enhanced locality of 

resources and gang scheduling, with scalability 

modeling indicating that optimized scheduling 

policies can preserve near-linear efficiency of 

scaling up to 64 nodes in parameter server designs, 

whereas existing methods suffer from severe 

performance loss beyond 16 nodes as a result of 

synchronization overhead and communication 

bottlenecks [9]. The performance gains are 

especially significant for big machine learning 

workloads in which communication expenses may 

overshadow overall execution time, and research 

indicates that smart scheduling can lower network 

overhead by as much as 45% via topology-aware 

placement and optimization of communication 

patterns. 

Metrics of fairness, quantified in terms of resource 

allocation variance among tenants by highly 

advanced statistical analysis incorporating 

framework-specific performance attributes, are 

enhanced significantly when advanced scheduling 

policies are used across various deep learning 

frameworks [10]. The performance evaluation 

method factors the tremendous performance trade-

offs in various frameworks, as PyTorch workloads 

usually have 15-25% improved training speed for 

research tasks because of its dynamic computation 

graph structure, whereas TensorFlow installations 

exhibit the best inference performance with the 

possibility of 30% reduced latency for production 

serving [10]. High-end scheduling algorithms need 

to consider these framework-specific features in 

making placement decisions so that fairness is not 

only measured in terms of gross resource allocation 

but also in terms of useful computational power 

provided to various tenants in accordance with their 

selected frameworks and optimization needs. 

GPU utilization efficiency is improved significantly 

as the scheduler minimizes resource fragmentation 

and bases its placement decisions on better 

knowledge, with scalability modeling showing that 

distributed machine learning workloads can be 

made to achieve over 85% utilization when 

adequate load balancing and communication 

optimization techniques are employed [9]. The 

gains in efficiency are especially noteworthy in 

cases of parameter server designs where worker 

nodes need to stay in sync with parameter servers 

and need to be scheduled with precision that takes 

into account both computational load balancing and 

network topology restrictions to avoid 

communication bottlenecks that can decrease 

overall system throughput by 40-60% in poorly 

optimized setups [9]. Scalability evaluation 

demonstrates that fine practice scheduling 

regulations can push the realistic scaling limit of 

allotted schooling jobs from regular maximums of 

32-64 nodes up into configurations with hundreds 

of nodes with ideal schooling efficiency and 

convergence behavior. 
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The framework sustains these enhancements while 

ensuring SLA compliance for inference workloads 

with hard latency constraints, proving that fairness 

and efficiency goals can be obtained simultaneously 

by considering carefully framework-specific 

deployment properties and performance trade-offs 

[10]. Various deep learning frameworks have 

unique deployment characteristics and resource 

needs, with optimised deployments of TensorFlow 

Serving demonstrating steady sub-10ms inference 

latencies for standard computer vision models, but 

PyTorch-based inference systems potentially 

needing optimisation to deliver comparable levels 

of performance but having more flexibility for 

dynamic model adjustment and experimental 

deployments [10]. The scheduling mechanism 

needs to reconcile these framework-specific traits 

while ensuring cluster-wide efficiency and keeping 

SLA compliance rates at more than 95% for a 

variety of workload types and tenant demands. 

 

 

Table 5. Framework Deployment and SLA Compliance Metrics [9,10].  

Framework/Deployment 
Inference Latency 

Improvement (%) 

Training Efficiency 

(%) 

SLA Compliance 

Rate (%) 

PyTorch Research 15 85 90 

TensorFlow Production 30 75 95 

Distributed Training 25 80 88 

Optimized Inference 35 70 92 

Conclusion 
 

The evolution of artificial intelligence workloads' 

multi-tenant scheduling is a paradigm shift in how 

contemporary computing infrastructure deals with 

resource-hungry applications in shared 

environments. Legacy container orchestration 

systems, initially developed to support stateless web 

applications, are insufficient when faced with the 

distinct needs of machine learning workloads that 

involve hardware-specific accelerators, have 

intricate communication behaviors, and need 

advanced resource coordination primitives. The 

architectural designs and scheduling approaches 

outlined in this article show that it is possible to 

realize meaningful performance gain through 

intelligent workload categorization, topology-

sensitive placement algorithms, and forecast-driven 

resource management systems that predict demand 

patterns ahead of time before contention for 

resources happens. The use of sophisticated 

scheduling policies has been successful in resolving 

the inherent conflict between fairness and efficiency 

goals, allowing organizations to achieve high 

cluster utilization while providing fair access to 

resources for various tenant workloads. Gang 

scheduling mechanisms avoid resource deadlocks 

and fragmentation problems that historically afflict 

distributed training workloads, and topology-

informed placement policies reduce communication 

overhead that can cause significant performance 

degradation in poorly optimized deployments. 

Experimental evaluation demonstrates significant 

advantages in a number of dimensions of 

performance, such as decreasing job completion 

times, better fairness measures, and increased 

hardware utilization ratios that directly equate to 

cost reductions for organizations running large-

scale AI infrastructure. Subsequent progress in 

multi-tenant AI scheduling will be aimed at hybrid 

cloud environments, energy efficiency, 

optimization, and federated learning applications, 

where decisions regarding the placement of 

workloads need to take data locality, network 

topologies, and privacy limitations into account 

with respect to geographically dispersed 

computational resources. The frameworks provided 

form a basis for the design of next-generation 

scheduling systems that can accommodate changing 

AI workload behaviors while preserving the 

operational advantages of containerized 

deployment modes. 
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