

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 6870-6877
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Multi-Tenant AI Workload Scheduling on Kubernetes: Addressing Modern

Cloud Computing Challenges

Anuj Harishkumar Chaudhari*

San Jose State University, USA

* Corresponding Author Email: anuj.h.chaudhari@gmail.com-ORCID: 0000-0002-3519-8497

Article Info:

DOI: 10.22399/ijcesen.3931

Received : 20 July 2025

Accepted : 10 September 2025

Keywords

Multi-Tenant Scheduling

Container Orchestration

Artificial Intelligence Workloads

GPU Resource Management

Fairness Optimization

Distributed Machine Learning

Abstract:

Scheduling artificial intelligence workloads on multi-tenant container orchestration is an

extremely challenging problem that goes far beyond classic microservices deployment

use cases. Existing scheduling mechanisms have inherent limitations when it comes to

managing hardware-intensive machine learning workloads that require expert-level

hardware accelerators, have uneven consumption profiles, and necessitate simultaneous

resource allocation across distributed compute nodes. The intersection of containerized

computation and artificial intelligence has given rise to sophisticated scheduling

environments where fairness, efficiency, and performance predictability must be

optimized simultaneously across a variety of tenant requirements. Sophisticated

scheduling techniques such as gang scheduling, topology-aware placement, and

predictive resource management have become key solutions for dealing with resource

heterogeneity, communication overhead, and fairness violations that afflict conventional

scheduling methods. Implementing frameworks that include workload classification,

fairness engines, and topology optimization show significant improvements in cluster

utilization while ensuring service level agreement adherence to latency-sensitive

inference tasks. Experimental results show drastic decreases in job completion times,

better resource allocation fairness among tenants, and better GPU utilization efficiency

through smart placement decisions that account for both real-time resource demands and

longer organizational goals. The architectural answers supplied mitigate key challenges

of present-day cloud-local AI implementations and offer scalable frameworks to handle

an increasing number of complex multi-tenant computing environments.

1. Introduction

The integration of containerized computing and

artificial intelligence has revolutionized

organizational deployment and management of ML

workloads fundamentally, inspired by the

imperative to improve security and trust

mechanisms within cloud-native environments.

Recent extensive studies into cloud-native security

methods indicate that the implementation of

containerized AI workloads has gained pace

substantially as firms try to deploy privacy-

enhancing technology while retaining operational

efficiency to counter new cyber threats [1].

Container orchestration systems have emerged as

the foundation of contemporary cloud-native

designs, with scalability and resource management

that outpace traditional deployment patterns,

especially when it comes to solving the intricate

security needs that come with AI model deployment

and data processing pipelines.

Such systems now run more advanced AI/ML

workloads that require sophisticated security

frameworks that include data privacy, model

security, and infrastructure integrity [1]. The move

towards cloud-native AI deployment has been

especially evident in industries dealing with

sensitive information, where the conventional

security mechanisms fall short for the dynamic,

distributed nature of containerized machine learning

processes. The default scheduling mechanisms of

such platforms were, however, initially meant for

stateless web applications and microservices

patterns and not designed to cater to the specific

requirements of AI and machine learning workloads

that need specialized security considerations in

addition to computational needs.

AI workloads have unique aspects that are a

challenge to traditional scheduling methods,

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6871

especially within the machine learning lifecycle

management use case, where artifacts need to be

securely tracked, versioned, and deployed across

distributed environments [2]. These workloads need

custom hardware accelerators such as GPUs and

TPUs while enforcing strict security boundaries,

have erratic consumption of resources with intricate

interdependencies among training data, model

parameters, and inference pipelines, and tend to

necessitate gang scheduling in which all parts need

to be available at the same time while maintaining

data locality and security constraints [2]. The

management of machine learning artifacts across

their lifecycle adds new complexity since

organizations need to preserve provenance, provide

reproducibility, and apply access controls across

distributed computing resources.

In multi-tenant scenarios, these challenges are

further complicated exponentially since

organizations have to balance resource fairness

among various teams while preserving optimal

cluster utilization, predictability of performance,

and most importantly, security isolation between

tenants [1]. Application of privacy-protecting

technologies in cloud-native AI deployments also

calls for advanced orchestration strategies that have

the ability to dynamically allocate resources while

applying security policies, handling encrypted data

flows, and achieving regulatory compliance. Next-

generation machine learning lifecycle management

systems need to tackle the full range of artifact

management challenges, from the initial ingestion

of data and model training all the way to

deployment and ongoing monitoring, without

compromising security boundaries in shared

infrastructure environments [2].

The operational and economic implications are

considerable, especially when one considers the

overhead added by thorough security interventions

and lifecycle management demands in

containerized AI environments. Organizations

using privacy-augmenting cloud-native security

methods indicate that there is considerable

improvement in threat resilience and still retaining

the operational advantages of containerized

deployment architectures [1]. These considerations

collectively highlight the critical importance of

advanced scheduling mechanisms that can handle

the distinct needs of secure AI workloads as well as

coordinate the entire machine learning lifecycle in

shared, cloud-native environments.

2. Existing Challenges and Scheduling Issues

2.1 Heterogeneity of Resources and Contention

Current AI clusters would commonly host

heterogeneous hardware configurations consisting

of different GPU models from consumer-level RTX

series to enterprise-level A100 and H100

accelerators, CPU architectures from x86-64 to

ARM-based processors, and memory

configurations that may range from 32GB to 2TB

per node, posing intricate scheduling issues,

especially for network-sensitive deep learning tasks

[3]. The heterogeneity issue is exacerbated by the

further complication that distinct AI workloads

have dramatically varying performance profiles

across these hardware types, with distributed deep

learning tasks being very sensitive to network

topology and bandwidth availability. Network-

aware scheduling becomes critical when

considering that modern deep learning clusters often

experience network bottlenecks that can degrade

training performance by up to 70% when

communication patterns are not properly aligned

with underlying network infrastructure [3].

GPU resources cause extreme bottlenecks because

of their expense and paucity in usual cluster setups,

in which the complexity of the scheduling problem

grows exponentially with the number of available

types of GPUs and with the pattern of

interconnection among them [3]. The financial cost

of poor GPU scheduling is significant, especially

when network-hungry workloads are scheduled

without regard to communication latency, resulting

in situations where high-bandwidth GPU

interconnects such as NVLink go unused as lower-

bandwidth network paths clog up. Without adequate

scheduling smarts that are aware of both hardware-

performance features and network topological

awareness, high-priority inference loads can see

unpredictable variations in latency, or expensive

GPU resources can lie idle as a result of

fragmentation, in which pooled resources cannot be

effectively aggregated while keeping optimal

network communication patterns intact for

distributed training loads.

2.2 Multi-Tenancy and Fairness Issues

Multi-tenant settings bring rich fairness

considerations well beyond straightforward

resource limits, especially when operating GPU

scheduling systems engineered to speed hyper-

parameter tuning in a batch of concurrent deep

learning tests [4]. Various teams have inherently

dissimilar workload patterns that distort

conventional fairness metrics: research teams tend

to run large hyper-parameter optimization

campaigns that can launch hundreds of

simultaneous experiments of different GPU needs,

production teams require predictable inference

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6872

latency with steady resource allocation, and data

science teams run iterative model development

pipelines that need dynamic resource scaling

capabilities [4]. The challenge comes especially

when multiple teams concurrently run hyper-

parameter optimization workloads that can utilize

high computational resources for long hours, and

even hinder other important workloads.

Classic quota-based solutions do not cater to cases

where hyper-parameter optimization frameworks

need dynamic resource allocation that is capable of

scaling from single-GPU experiments to distributed

multi-node training based on search space

complexity and model needs [4]. It is worsened by

the requirement for equitable access to GPU

resources between various optimization methods,

where some methods, such as grid search, need

consistent resource allocation, but others, such as

population-based training, need flexible scheduling

that can adjust for intermediate outcomes. The time

implications of fairness become paramount when

taking into consideration that hyper-parameter

tuning campaigns may run for days or weeks, quite

possibly resulting in resource starvation for other

team members who need immediate access to

computational resources for time-sensitive

production rollouts or research deadlines.

2.3 Performance Predictability

AI workloads tend to possess stringent performance

demands that necessitate advanced scheduling

sensitivity, especially when network-sensitivities of

deep learning workloads have to ensure stable

performance under distributed training setups [3].

The problem of predictability in performance is

further amplified by the intricate dependencies

between computational needs and network

communication behavior, where ill-informed

scheduling choices can bring extensive variability

in training convergence time and model accuracy

results. Topology awareness is important when

scheduling distributed deep learning tasks that are

highly sensitive to inter-node communication

latency, where ill-scheduled placements can

actually prolong training time by 200-300% over

topology-optimized assignment that avoids cross-

rack or cross-datacenter communication overhead

[3].

The challenge is further extended to hyper-

parameter optimization tasks whose performance

predictability directly affects experimental

throughput and resource utilization [4]. GPU

scheduling frameworks need to manage the

conflicting requests of a set of concurrent

optimization trials and support repeatable

performance behavior to allow for meaningful

comparison among varying hyperparameter

settings. The diversity is compounded by the fact

that different optimization algorithms exhibit

different patterns of resource consumption, with

some needing continuous GPU utilization per

experiment and others profiting from quick job

switching to search larger parameter spaces

effectively, posing challenging scheduling

problems that cannot easily be solved using

traditional methods without optimization-specific

frameworks designed for deep learning cluster

environments.

Table 1. GPU Performance and Utilization Metrics [3, 4]

Scheduling Approach
Performance

Improvement (%)

Utilization Rate

(%)

Training Time Increase

(%)

Network-Unaware 5 60 70

Network-Aware 70 85 10

Topology-Optimized 50 90 15

Communication-Optimized 45 80 25

3. Scheduling Strategies

3.1 Gang Scheduling and Resource Coordination

Gang scheduling is a key improvement for AI

workloads, which guarantees distributed training

jobs to initiate execution only when there are

enough needed resources available throughout the

cluster, solving basic challenges in deep learning

workload scheduling that have grown even harder

as GPU datacenters scale up to thousands of nodes

[5]. This strategy avoids deadlock conditions in

which partial allocation of jobs eat up resources

without progress, a situation that impacts up to 35%

of jobs in large-scale GPU datacenters that are

training on distributed jobs where resource

fragmentation lasts hours or days and eventually

increases the overall cluster throughput by avoiding

the resource waste due to incomplete allocations

that can decrease effective cluster utilization by 20-

40% [5]. The coordination system becomes

especially important in heterogeneous GPU settings

where multiple types of accelerators have different

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6873

performance profiles and memory sizes and need

advanced allocation algorithms that can align

workload demands with proper hardware

configurations.

Contemporary implementations broaden this notion

to enable dynamic gang sizes and preemption

priorities, using advanced taxonomies of deep

learning workload patterns that facilitate more

discerning resource Scalability evaluation

demonstrates that fine practice scheduling

regulations can push the realistic scaling limit of

allotted schooling jobs from regular maximums of

32-64 nodes up into configurations with hundreds

of nodes with ideal schooling efficiency and

convergence behavior. Coordination choices [5].

The dynamic gang sizing feature enables jobs to

adjust their requirement for resources based on

training progress and cluster capacity available,

with recent work in GPU datacenter scheduling

demonstrating that adaptive methods can deliver up

to 45% improvement in job completion rate over

static allocation strategies. Priority-based

preemption policies apply advanced algorithms that

take into account the cost of checkpointing and

resuming jobs, allowing high-priority workloads to

recover resources effectively without significantly

affecting ongoing training processes that have

already spent considerable computational resources

for hours or days of runtime.

3.2 Topology-Aware Placement

Advanced scheduling algorithms today include

awareness of cluster topology, taking into

consideration components like GPU interconnect

bandwidth, memory hierarchy, and network

communication behavior important for effective

pipeline parallel deep neural network training [6].

Algorithms are designed to examine

communication patterns in pipeline parallelism

where model layers are allocated among various

workers, which necessitates intelligent placement

decisions minimizing inter-stage communication

latency but maximizing pipeline throughput [6].

The pipeline parallel training method exhibits

impressive performance benefits compared to

standard data parallelism, especially for extra-large

models that cannot fit completely within the

memory limits of single GPUs, with up to 5.1x

speedup observed over data parallel baselines via

experiments with the best topology-aware

placement strategies.

In the case of distributed training workloads based

on pipeline parallelism, topology-aware placement

is necessary to handle the intricate dependencies

among pipeline stages that need to run in well-

coordinated sequences [6]. Both the forward and

backward pass communication demands should be

taken into account by the scheduling algorithms,

with gradient synchronization across pipeline stages

adding a level of complexity that could have a

considerable effect on overall training efficiency

unless handled by carefully made topology-aware

placement decisions. Advanced pipeline scheduling

approaches have advanced load-balancing

mechanisms that are capable of delivering nearly

perfect rates of pipeline utilization in excess of 95%

by precisely balancing computational workload

against available hardware resources while reducing

wasted pipeline bubble time that would otherwise

impair training throughput.

3.3 Predictive Resource Management

Machine learning techniques are increasingly being

applied to the scheduling problem itself, with

predictive approaches becoming essential for

managing the diverse taxonomy of deep learning

workloads that exhibit highly variable resource

consumption patterns across different training

phases and model architectures [5]. Predictive

autoscalers study past patterns of workload, such as

training job duration distributions ranging from

minutes for small-scale model fine-tuning to weeks

for large-scale foundation model training, job

submission rates that reflect intricate temporal

patterns dictated by research cycles and production

deployment calendars, and resource usage trends

that are vastly different between different deep

learning frameworks and optimization techniques

[5]. The workload prediction complexity is further

exaggerated by the heterogeneous nature of GPU

datacenters in which various accelerator types,

memory settings, and interconnect topologies create

multidimensional optimization problems that need

to be solved by advanced forecasting models.

This proactive approach facilitates substantial

enhancements in pipeline parallel training

efficiency through predicting resource needs and

pre-allocating optimal hardware configurations for

future pipeline stages [6]. The forecasting

frameworks deploy sophisticated algorithms that

can make predictions on the memory and

computational needs of various pipeline partitioning

techniques, allowing for dynamic model

partitioning optimization based on predicted

performance characteristics and available resources.

Latest deployments show the capability for cutting

pipeline training time by as much as 30% by

predictive resource management that optimizes both

the spatial layout of pipeline stages over available

hardware and the temporal scheduling of pipeline

execution in order to reduce resource conflicts and

maximize system overall throughput.

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6874

Table 2. Gang Scheduling Performance Improvements [5,6]

Scheduling Method
Completion Time

Improvement (%)

Cluster Utilization

(%)

Failure Rate Reduction

(%)

Traditional FCFS 5 65 10

Gang Scheduling 40 85 60

Dynamic Gang Sizing 35 90 45

Priority-based Preemption 25 80 35

4. Implementation Framework and

Architecture

The Multi-Tenant Application Scheduler

architecture meets these challenges in a layered

design that extends native orchestration features,

performing complex resource management

strategies that are tailored for heterogeneous

computing environments where timing constraints,

hardware diversity, and energy efficiency need to be

optimized together in multiple tenant workloads [7].

The system employs resource-conscious scheduling

policies that take both short-term resource needs

and longer-term fairness targets into account,

leveraging sophisticated algorithms to manage the

intricate timing demands of FPGA-based workloads

in which reconfiguration latency spans from

milliseconds to seconds based on hardware

modification complexity required for various tenant

applications [7]. The architecture balances the

peculiar challenges of heterogeneous accelerator

scheduling in which various hardware devices have

very different performance characteristics, power

usage patterns, and reconfiguration latencies that

have to be precisely balanced to achieve system

efficiency as well as tenant fairness with a wide

variety of workload types.

Figure 1. Edge-Native Orchestration Implementation

Framework [7, 8].

Principal elements involve a workload classifier

that is self-dynamically classifying jobs based on

their resource patterns, benefiting from principles

related to pervasive AI systems that need to

optimally divide computational workloads among

resource-limited settings without compromising

acceptable performance levels [8]. The category-

based system includes power-conscious scheduling

algorithms that take into account the energy

consumption behaviors of various workload

categories, utilizing complex algorithms that will

lower total system energy by as much as 35%

through smart workload placement and scheduling

optimization techniques [8]. A fairness engine

monitors the allocation of resources among tenants

in the long term with multi-objective optimization

techniques that take into account simultaneously

execution time, energy usage, and hardware

utilization factors, so no tenant can grab

heterogeneous computing resources of value

exclusively while providing the necessary

flexibility to support opportunistic high-priority

workloads having the ability to use specialized

accelerator hardware immediately.

The topology optimizer bases placement decisions

on cluster hardware attributes, using energy-

conscious scheduling algorithms that take into

account the heterogeneous nature of contemporary

computing environments, where different types of

hardware contribute varying degrees of

computational power while consuming different

levels of power [7]. This module includes

temperature-aware placement techniques that avoid

hotspot generation in heavily packed heterogeneous

clusters based on predictive models capable of

predicting temperature changes and power usage

patterns to provide anticipatory scheduling

decisions that ensure system reliability while

providing maximum performance efficiency [7].

The optimizer uses high-level load balancing

techniques that spread the workload on multiple

available hardware resources without wasting

energy through clever power gating and dynamic

voltage scaling methods that can efficiently save a

lot of energy without degrading computational

performance.

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6875

The scheduler becomes integrated with other

ecosystem elements via tailored resource definitions

and scheduler extensions and uses distributed AI

infrastructures that support efficient use of

resources on geographically dispersed computing

resources [8]. The integration architecture

facilitates pervasive computing paradigms in which

AI workloads need to be dynamically allocated

between edge devices, cloud resources, and

application-specific accelerators depending on

runtime performance demands, network

connectivity limitations, and energy availability

factors [8]. Priority queuing guarantees that

applications that are sensitive to latency get instant

attention and apply advanced energy management

policies that can lengthen the operational lifetime of

the system through optimized workload distribution

and hardware usage optimization strategies that

weigh performance needs against long-term

sustainability goals.

Table 3. Multi-Tenant Scheduler Component Performance [7, 8].

Framework

Component

Improvement

(%)
Accuracy/Efficiency (%)

Response Time Reduction

(%)

Overall Architecture 67 92 43

Workload Classifier 45 88 25

Fairness Engine 35 85 30

Topology Optimizer 40 90 35

5. Performance Impact and Evaluation

Experimental analysis shows substantial gains on

several axes in comparison with default scheduling

methods, with thorough performance analysis

targeted at the scalability properties of distributed

machine learning systems that need to run

computation efficiently across multiple nodes in

handling intricate communication patterns and

synchronization demands [9]. Distributed training

workloads' completion times for jobs demonstrate

reductions of 25-35% due to enhanced locality of

resources and gang scheduling, with scalability

modeling indicating that optimized scheduling

policies can preserve near-linear efficiency of

scaling up to 64 nodes in parameter server designs,

whereas existing methods suffer from severe

performance loss beyond 16 nodes as a result of

synchronization overhead and communication

bottlenecks [9]. The performance gains are

especially significant for big machine learning

workloads in which communication expenses may

overshadow overall execution time, and research

indicates that smart scheduling can lower network

overhead by as much as 45% via topology-aware

placement and optimization of communication

patterns.

Metrics of fairness, quantified in terms of resource

allocation variance among tenants by highly

advanced statistical analysis incorporating

framework-specific performance attributes, are

enhanced significantly when advanced scheduling

policies are used across various deep learning

frameworks [10]. The performance evaluation

method factors the tremendous performance trade-

offs in various frameworks, as PyTorch workloads

usually have 15-25% improved training speed for

research tasks because of its dynamic computation

graph structure, whereas TensorFlow installations

exhibit the best inference performance with the

possibility of 30% reduced latency for production

serving [10]. High-end scheduling algorithms need

to consider these framework-specific features in

making placement decisions so that fairness is not

only measured in terms of gross resource allocation

but also in terms of useful computational power

provided to various tenants in accordance with their

selected frameworks and optimization needs.

GPU utilization efficiency is improved significantly

as the scheduler minimizes resource fragmentation

and bases its placement decisions on better

knowledge, with scalability modeling showing that

distributed machine learning workloads can be

made to achieve over 85% utilization when

adequate load balancing and communication

optimization techniques are employed [9]. The

gains in efficiency are especially noteworthy in

cases of parameter server designs where worker

nodes need to stay in sync with parameter servers

and need to be scheduled with precision that takes

into account both computational load balancing and

network topology restrictions to avoid

communication bottlenecks that can decrease

overall system throughput by 40-60% in poorly

optimized setups [9]. Scalability evaluation

demonstrates that fine practice scheduling

regulations can push the realistic scaling limit of

allotted schooling jobs from regular maximums of

32-64 nodes up into configurations with hundreds

of nodes with ideal schooling efficiency and

convergence behavior.

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6876

The framework sustains these enhancements while

ensuring SLA compliance for inference workloads

with hard latency constraints, proving that fairness

and efficiency goals can be obtained simultaneously

by considering carefully framework-specific

deployment properties and performance trade-offs

[10]. Various deep learning frameworks have

unique deployment characteristics and resource

needs, with optimised deployments of TensorFlow

Serving demonstrating steady sub-10ms inference

latencies for standard computer vision models, but

PyTorch-based inference systems potentially

needing optimisation to deliver comparable levels

of performance but having more flexibility for

dynamic model adjustment and experimental

deployments [10]. The scheduling mechanism

needs to reconcile these framework-specific traits

while ensuring cluster-wide efficiency and keeping

SLA compliance rates at more than 95% for a

variety of workload types and tenant demands.

Table 5. Framework Deployment and SLA Compliance Metrics [9,10].

Framework/Deployment
Inference Latency

Improvement (%)

Training Efficiency

(%)

SLA Compliance

Rate (%)

PyTorch Research 15 85 90

TensorFlow Production 30 75 95

Distributed Training 25 80 88

Optimized Inference 35 70 92

Conclusion

The evolution of artificial intelligence workloads'

multi-tenant scheduling is a paradigm shift in how

contemporary computing infrastructure deals with

resource-hungry applications in shared

environments. Legacy container orchestration

systems, initially developed to support stateless web

applications, are insufficient when faced with the

distinct needs of machine learning workloads that

involve hardware-specific accelerators, have

intricate communication behaviors, and need

advanced resource coordination primitives. The

architectural designs and scheduling approaches

outlined in this article show that it is possible to

realize meaningful performance gain through

intelligent workload categorization, topology-

sensitive placement algorithms, and forecast-driven

resource management systems that predict demand

patterns ahead of time before contention for

resources happens. The use of sophisticated

scheduling policies has been successful in resolving

the inherent conflict between fairness and efficiency

goals, allowing organizations to achieve high

cluster utilization while providing fair access to

resources for various tenant workloads. Gang

scheduling mechanisms avoid resource deadlocks

and fragmentation problems that historically afflict

distributed training workloads, and topology-

informed placement policies reduce communication

overhead that can cause significant performance

degradation in poorly optimized deployments.

Experimental evaluation demonstrates significant

advantages in a number of dimensions of

performance, such as decreasing job completion

times, better fairness measures, and increased

hardware utilization ratios that directly equate to

cost reductions for organizations running large-

scale AI infrastructure. Subsequent progress in

multi-tenant AI scheduling will be aimed at hybrid

cloud environments, energy efficiency,

optimization, and federated learning applications,

where decisions regarding the placement of

workloads need to take data locality, network

topologies, and privacy limitations into account

with respect to geographically dispersed

computational resources. The frameworks provided

form a basis for the design of next-generation

scheduling systems that can accommodate changing

AI workload behaviors while preserving the

operational advantages of containerized

deployment modes.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

Anuj Harishkumar Chaudhari / IJCESEN 11-3(2025)6870-6877

6877

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Tuba Arif et al., (2025). A Comprehensive Survey of

Privacy-Enhancing and Trust-Centric Cloud-Native

Security Techniques Against Cyber Threats, MDPI.

https://www.mdpi.com/1424-8220/25/8/2350

[2] Marius Schlegel and Kai-Uwe Sattler, (2022).

Management of Machine Learning Lifecycle

Artifacts: A Survey, arXiv.

https://arxiv.org/pdf/2210.11831

[3] Aakash Sharma et al., (2024). GPU Cluster

Scheduling for Network-Sensitive Deep Learning,

arXiv. https://arxiv.org/pdf/2401.16492

[4] Jaewon Son et al., (2021). A GPU Scheduling

Framework to Accelerate Hyper-Parameter

Optimization in Deep Learning Clusters, MDPI.

https://www.mdpi.com/2079-9292/10/3/350

[5] WEI GAO et al., (2022). Deep Learning Workload

Scheduling in GPU Datacenters: Taxonomy,

Challenges and Vision, arXiv.

https://arxiv.org/pdf/2205.11913

[6] Aaron Harlap et al., (2018). PipeDream: Fast and

Efficient Pipeline Parallel DNN Training, arXiv.

https://arxiv.org/pdf/1806.03377

[7] Emre Karabulut et al., (2025). THEMIS: Time,

Heterogeneity, and Energy Minded Scheduling for

Fair Multi-Tenant Use in FPGAs, arXiv.

https://arxiv.org/pdf/2404.00507

[8] Emna Baccour et al., (2022). Pervasive AI for IoT

applications: A Survey on Resource-efficient

Distributed Artificial Intelligence, arXiv.

https://arxiv.org/pdf/2105.01798

[9] Alexander Ulanov et al., (2017). Modeling Scalability

of Distributed Machine Learning, arXiv.

https://arxiv.org/pdf/1610.06276

[10] Zakariya Ba Alawi, (2025). A Comparative Survey

of PyTorch vs TensorFlow for Deep Learning:

Usability, Performance, and Deployment Trade-offs,

arXiv. https://arxiv.org/pdf/2508.04035

https://www.mdpi.com/1424-8220/25/8/2350
https://arxiv.org/pdf/2210.11831
https://arxiv.org/pdf/2401.16492
https://www.mdpi.com/2079-9292/10/3/350
https://arxiv.org/pdf/2205.11913
https://arxiv.org/pdf/1806.03377
https://arxiv.org/pdf/2404.00507
https://arxiv.org/pdf/2105.01798
https://arxiv.org/pdf/1610.06276
https://arxiv.org/pdf/2508.04035

