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Abstract:  
 
In the search for new and effective anticancer agents, we performed a QSAR study on a 

series of sixteen bastadins to evaluate their potential as ACAT1 inhibitors and predict 

their antiangiogenic activity. Our goal was to establish a clear correlation between their 

biological responses and a set of molecular descriptors, applying principal component 

analysis (PCA), multiple linear regression (MLR), multiple nonlinear regression 

(MNLR), and an artificial neural network (ANN). Among the models generated, the 

best MLR and MNLR approaches achieved determination coefficients (R²) of 0.71 and 

0.91. To further assess their reliability, we performed an external validation on a test set 

of three compounds, confirmed their predictive accuracy, and yielded R² test values of 

0.70 and 0.83, respectively. Furthermore, the ANN model, built with a 4-4-1 

architecture, showed excellent performance, achieving a correlation coefficient of 0.96 

with leave-one-out cross-validation coefficients (Q²) of 0.79. These results indicate that 

the selected descriptors and calculated parameters are sufficient to reliably predict the 

biological activity of bastadins as ACAT1 inhibitors, providing a solid basis for the 

computer-aided design of novel anticancer agents. 

 

1. Introduction 
 

Cancer continues to be one of the leading 

causes of death worldwide and, in many 

regions, poses a major public health challenge 

[1]. Among the treatment options available, 

chemotherapy using potent chemical agents to 

destroy cancer cells remains a cornerstone, 

especially for metastatic or widespread tumors 

where surgery and radiotherapy are effective 

only for localized cancers. This central role of 

chemotherapy has drawn significant attention 

from researchers, driving ongoing efforts to 

discover and develop new, more effective 

anticancer drugs. Quantitative structure–

activity relationship (QSAR) study have 

become indispensable in pharmaceutical 

research, especially for the early identification 

of promising drug candidates [2,3,4]. The 

classical QSAR approach assumes a clear and 

predictable relationship between a compound’s 

molecular structure and its physical properties, 

chemical affinity, or biological activity. With 

suitable mathematical models and calculated 

molecular descriptors, it is possible to predict 

the biological activity of untested compounds. 

Once built and validated, a QSAR model can 

guide the design of new molecules by 

integrating various physical, chemical, and 

biological variables. Beyond drug design, 

QSAR methods also find applications in 

toxicology, food chemistry, and other scientific 

fields [5].  Macrocyclic compounds occupy a 

special place in medicinal chemistry due to 

http://dergipark.org.tr/en/pub/ijcesen
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their unique structural features and high 

binding affinities, which often translate into 

potent and selective bioactivity. Marine-

derived bastadins are brominated macrocyclic 

tyrosine-based metabolites that have shown a 

broad spectrum of biological activities, 

including antiangiogenic effects [6]. In 

particular, bastadins have emerged as 

promising inhibitors of Acyl-CoA: cholesterol 

acyltransferase 1 (ACAT1), an enzyme 

increasingly recognized for its role in tumor 

progression and chemoresistance [7,8].  In this 

study, as part of our search for innovative 

anticancer agents, we focused on sixteen 

bastadins macrocyclic compounds. Using a 

combination of SAR and QSAR approaches, 

including principal component analysis (PCA), 

multiple linear regression (MLR), multiple 

nonlinear regression (MNLR), and artificial 

neural network (ANN) modeling, we aimed to 

predict their antiangiogenic potential as 

ACAT1 inhibitors and elucidate the structural 

determinants governing their biological 

activity. 

2. Computational Method                                                                                                                                             
2.1. Data set collection and biological 

activities 
 
The bastadins dataset used in this study was 

compiled from previously published research 

and includes both bastarane and isobastarane 

types. Sixteen selected compounds were 

assessed for their antiangiogenic potential by 

measuring their half-maximal inhibitory 

concentrations (IC₅₀) against human umbilical 

vein endothelial cells (HUVEC), with the 

results expressed in micromolar units [9,10].To 

minimize data skewness for the QSAR 

analysis, the IC₅₀ values representing the 

concentration needed to achieve 50% 

inhibition of proliferative activity were 

converted to their logarithmic form (pIC₅₀). 

The substitution patterns and molecular 

structures of these ligands, along with their 

corresponding IC₅₀ and pIC₅₀ values, are 

summarized in Scheme 1 and                  Table 

1, respectively. 
 

2.2. Molecular descriptors 

 
The molecular descriptors for the sixteen 

bastadins under investigation were predicted in 

silico using the HyperChem 8.0.6 [11] and 

Gaussian 09W software packages [12], along 

with the Molinspiration cheminformatics 

platform [13]. The studied molecules were first 

optimized using molecular mechanics with the 

MM+ force field. Their geometries were then 

fully refined using the semi-empirical PM3 

method. Finally, the PM3-optimized structures 

of the sixteen compounds were employed to 

calculate various physicochemical descriptors 

through the QSAR module in 

HyperChem.These descriptors include molar 

refractivity (MR), surface area grid (S), 

hydration energy (HE), molar volume (V), 

molecular weight (MW), molar polarizability 

(Pol), and the partition coefficient 

octanol/water (LogP). LogP and MR were 

calculated using atomic contribution 

approaches, where the hydrophobicity 

constants for LogP and the atomic refractivity 

values for MR both empirically established 

were originally reported by Viswanadhan and 

colleagues [14]. Gavezotti's atomic radii, 

together with the grid-based volume 

calculation method from Bodor et al., form a 

well-established computational approach to 

estimate both solvent-accessible and van der 

Waals surface-bounded molecular volumes 

[15,16].The energy of hydration (EH) plays a 

crucial role in stabilizing molecular 

conformations. It is modeled based on the 

molecule’s accessible surface area in an 

aqueous environment, allowing estimation of 

its overall energy and associated 

thermodynamic effects [17]. Molecular 

polarizability is affected by the weight and 

surface of the molecule. According to recent 

research, molecular orientation and 

interactions are influenced by the variations in 

the polarizability of functional groups on polar 

molecules [18]. Various methods are employed 

to determine a system’s molecular weight 

(MW), including non-intact approaches that 

involve specialized solvent dissolution, as well 

as intact techniques like NMR and 

fluorescence measurements [20]. 

Furthermore, the Molinspiration program was 

used to calculate important molecular 

descriptors such as topological polar surface 

area (TPSA), hydrogen bond donors (HBD), 

hydrogen bond acceptors (HBA), and the 

number of rotatable bonds (NRB). These 

descriptors play a crucial role in drug-likeness, 

assessing molecular properties such as oral 

bioavailability, aqueous solubility, and 

membrane permeability [21].    
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Figure 1. 2D structures of bastadins  

Table 1. Dataset of bastadins and their corresponding experimental activities 
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The Gaussian 09W software package was also 

applied to measure quantum chemical 

parameters. The minimized compound basis 

set to calculate the electronic descriptors, 

which are reported in Table 2. A key chemical 

descriptor affecting polarizability is polar 

surface area (PSA), which is utilized in 

molecular modeling to predict molecule 

transport characteristics such as intestine 

absorption or blood-brain barrier crossing [19].    

 

Table 2. Electronic descriptors included in the QSAR modeling 

 

  

 

 
2.3. Multi-Parameter Optimization (MPO) 

method  

 

Multi-parameter optimization (MPO) is a drug 

development technique that considers 

numerous properties in order to predict drug-

likeness and identify effective and safe 

medication candidates [26]. MPO methods 

vary from empirical rules to more complex 

computer procedures; among these rules, we 

carry out rules of thumb and calculated metrics 

[27.28.29].Rules of thumb are the most 

prevalent approach used to evaluate the quality 

of compounds in relation to variables other 

than potency, which provide suggestions for 

desired compound features. Several rules have 

been developed; the Lipinski’s rule is the most 

widely utilized [27,28].The selected 

compounds were evaluated using Lipinski's 

rule, or "rule of five." This is a concept 

frequently used in drug-likeness, which is 

based on analysis of physicochemical 

properties to predict if a biologically active 

molecule is likely to have the chemical and 

physical qualities to be orally bioavailable. A 

compound is more likely to be active orally if 

it satisfies the following requirements:  

According to Lipinski's rule of five, an orally a

ctive medication can only violate one of these 

conditions [30.31]. 

Calculated metrics, on the other hand, seek to 

combine potency with other characteristics to 

create a single metric that can be tracked 

during optimization. The earliest and most 

often used measures are Ligand Efficiency 

(LE) and Lipophilicity Efficiency (LipE) [28], 

which are defined as follows: 

LE = 1,4pIC50/NH  

 

Where NH is the number of heavy atoms. So 

LE decreases with an increasing number of 

heavy atoms.Ligand Efficiency (LE) is a 

particularly essential statistic in fragment drug 

design because it prioritizes small compounds 
with lower potency over bigger, greater 

potency molecules [32,33]. 

 

LipE = pIC50−logP 

 

    Lipophilicity efficiency (LipE) is a key 

factor in compound promiscuity, and 

optimized compounds should be more 

selective, targeting LipE values between 5 and 

7 or even higher. Ideally, LipE should be 

between 5 and 9 or over 10 [34]. 

2.4. Statistical Methods                                                                                                                                  

Principal Component Analysis, Multiple 

Linear Regression, Multiple Nonlinear 

Regression                                                                                                                                             

    The antiangiogenic activity of sixteen 

bastadins on human umbilical vein endothelial 

cells (HUVEC) was investigated to develop a 

QSAR model. To better understand the impact 

of these compounds on their inhibitory activity 

expressed as pIC50, QSAR statistical 

approaches can be used to examine molecular 

descriptors and build robust models to predict 

pIC50.  

   We utilized three strategies available in the 

Dipole moment D, Total Energy E, LUMO Energy, HOMO Energy, 

LUMO+1 Energy, HOMO-1 Energy,  

             Hardness η, Electronegativity μ, Electrophilicity index ω,  

μ = -(EHOMO+ELUMO) / 2, η = (ELUMO- EHOMO) / 2, ω = μ2/ 2η 

(1) Molecular weight (MW) ≤500 Da                         (3) Hydrogen bond donors (HBD) ≤5 

(2) Octanol water partition coefficient logP ≤5              (4) H-bond acceptors (HBA) ≤10    
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XLSTAT program version 2025: principal 

component analysis (PCA), multiple linear 

regression (MLR) and multiple nonlinear 

regression (MNLR). Molecular descriptors 

were initially submitted to PCA using the 

correlation matrix to reduce the number of 

computed descriptors and choose relevant ones 

to quantitatively represent response activity 

[35]. After selecting molecular descriptors, the 

MLR proposes a linear model to predict the 

inhibitory actions of new compounds. The 

MNLR approach is commonly used in QSAR 

modeling to enhance structure-activity 

relationships. We created an MNLR model 

using descriptors and training set molecules 

from MLR.For model construction, we 

randomly separated the data set into two sets: 

training and test. We generated the internal 

validation indices and external validation 

parameters to assess the dependability and 

quality of our created models; the model can 

be used as a tester to identify new ligands with 

improved anti-angiogenic activity. 

 Artificial Neural Networks (ANN) analysis 

   The artificial neural networks (ANN) method 

was used to create nonlinear models of 

structure-activity relationships (QSAR) for 

accurately characterizing the examined 

compounds based on a set of molecular 

descriptors derived from multiple linear 

regression (MLR) and their observed activity. 

The ANN analysis was performed using the 

Matlab R2025a program with the Levenberg-

Marquardt algorithm [36]. There are three 

layers of neurons in it: the input layer, the 

hidden layer, and the output layer [37].The 

descriptors obtained in the multiple linear 

regression models constituted the input layer; 

the input layer included four artificial neurons 

with linear activation functions. The number of 

artificial neural networks in the hidden layer 

was varied through experimentation; the 

hidden layer was made up of 10 artificial 

neurons. A single neuron serves as the output 

layer for sigmoid function activation; the 

architecture of the used ANN models is 

described in Figure 1. 

 

 

Figure 2. The ANN architecture 

 

For ANN analysis, the data sets of molecules 

were randomly separated into three sets: 

training, validation, and testing. 

Validation of model - Cross Validation- 

Cross validation is the most frequent technique 

for validating the stability and predictive 

capability of the QSAR model; it includes 
splitting a dataset into subsets, training the 

model on part of them, and testing it on the 

rest. The Leave-One-Out (LOO) cross-

validation (CV) is a specific instance in which 

k equals n (the total number of samples). Each 

data point is used once as a test, and the 

remainder is used for training. This validation 

procedure enables the estimation of the cross-

correlation coefficient (Q²), which serves as a 

crucial measure of ANN model quality. A Q² 

value greater than 0.5 is generally regarded as 

acceptable, whereas values above 0.9 indicate 

excellent predictive reliability [5]. In this 

study, the performance of the ANN model was 

validated using the Leave-One-Out (LOO) 

method implemented in MATLAB (version 

R2025a). 

3. Results and discussion 
3.1. Multi-Parameter Optimization (MPO) 

and drug-likeness evaluation 

 
A key objective of this study was to explore 

the physicochemical properties of sixteen 

bastadins. For this purpose, we applied both 

empirical rules and metric-based approaches to 

evaluate their antiangiogenic activity (pIC50) 

against HUVEC [9,10], as summarized in                                
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Table 1. The analyzed parameters included 

molecular weight (MW), octanol–water 

partition coefficient (LogP), hydrogen bond 

acceptors (HBA), hydrogen bond donors 

(HBD), ligand efficiency (LE), and lipophilic 

efficiency (LipE). The calculated results, 

obtained using HyperChem 8.0.6 [11] and the 

Molinspiration online platform [13], are 

presented in Table 3. 

All compounds were examined for drug-

likeness [38]. To meet Lipinski’s rule and 

exhibit suitable oral bioavailability, a 

compound must maintain an appropriate 

balance between its aqueous solubility and its 

ability to passively diffuse across biological 

barriers [39]. 

Lipinski’s rules are grounded in well-

established physical and chemical principles. 

Hydrogen bonding enhances a molecule’s 

solubility in water but must be broken for it to 

penetrate the lipid bilayer. As the number of 

hydrogen bonds increases, transferring the 

molecule from the aqueous environment to the 

lipid layer becomes more difficult, thereby 

reducing its capacity for passive diffusion [40]. 

According to Table 3, all of the tested 

derivatives except for molecules 15 and 16 

meet Lipinski’s rules (3) and (4). This 

compliance indicates that these compounds 

generally possess lower polarity, which tends 

to favor their ability to cross biological 

membranes, ultimately enhancing their 

potential for good oral absorption. 

Compounds with a lower molecular weight 

tend to display better oral bioavailability. 

Smaller molecules dissolve more easily in 

aqueous environments and can pass through 

biological membranes more efficiently, which 

are necessary processes for absorption in the 

gastrointestinal tract. In contrast, as molecular 

weight increases, the energy required to 

generate larger solvent holes rises, reducing 

solubility and absorption [28].                                                        

Table 3 indicates that all the molecules have a 

molecular weight exceeding 500 Da. 

According to Lipinski’s rules (1), this may 

limit their oral absorption because larger 

molecules often dissolve less in water and pass 

less easily through cell membranes. As a 

result, these compounds might have low oral 

bioavailability and may be better suited for 

alternative administration routes, such as 

intravenous or intramuscular delivery, unless 

to have chemical modification to improve their 

delivery. 

Moreover, Doak et al. demonstrated that the 

500 Da molecular weight threshold in 

Lipinski’s Rule of Five is not a strict barrier to 

the development of oral drugs. Their analysis 

of approved medicines and clinical candidates 

revealed many orally active compounds with 

molecular weights well above this limit 

classified as belonging to the beyond Rule of 

Five (bRo5) category. Such molecules often 

feature notable structural and physicochemical 

adaptations that enable them to bypass the 

limitations imposed by their larger size [41]. 

In our study, the sixteen molecules have a 

macrocyclic structure and high molecular 

weight, which may give them certain 

advantages for drug behavior and membrane 

crossing. Large ring structures can fold in ways 

that hide polar groups, making it easier for 

them to pass through membranes even if they 

are heavy. Because macrocycles are more 

rigid, they can move across lipid membranes 

more easily and are less likely to be broken 

down by metabolic enzymes. These features 

can help macrocyclic drugs reach the 

bloodstream successfully, even when they do 

not fit the usual Rule of Five limits [42]. Log P 

represents a compound's distribution between a 

hydrophobic medium (n-octanol) and an 

aqueous phase (water). It is calculated by 

taking the ratio of the drug's concentration in                

n-octanol to its concentration in water. This 

metric is frequently used to measure oral 

solubility and forecast absorption capacity. 

A rise in logP generally leads to lower water 

solubility, which can diminish the extent of 

absorption. Negative Log P values (LogP < 0) 

show that the molecule is extremely 

hydrophilic, resulting in high solubility in 

aqueous environments, increased gastric 

tolerance, and efficient renal excretion. On the 

other hand, positive LogP values (LogP > 0) 

indicate that a compound is mostly lipophilic, 

which helps it cross membranes, bind to 

plasma proteins, and be metabolized. However, 

this often reduces water solubility and can 

affect stomach tolerance [43] 

In this study, all measured Log P values are in 

the negative range, indicating strong solubility 

in water and enhanced gastric tolerance. The 

highest value within the series is observed for 

compound 3, with a logP of (-0.55). 

The count of hydrogen bond acceptors (O and 

N atoms) and donors (NH and OH groups) is 

important in medication design because it 
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influences a compound's capacity to absorb 

and penetrate biological membranes [44]. 

For the substances studied, these values stayed 

within Lipinski’s limits, below 10 and 5, 

respectively. Compounds that break more than 

one of these rules often have lower 

bioavailability and are less likely to show good 

drug-like properties. [45,46] 

   With the exception of molecules 15 and 16, 

all the compounds examined possess five 

hydrogen bond donors, while molecule 8 

contains four. A reduced number of hydrogen 

bond donors often increases a compound's 

lipophilicity, which improves its ability to pass 

cell membranes and enter the cell interior [39]. 

The results indicate that all molecules follow 

Lipinski's recommendations, meaning that they 

are unlikely to cause oral bioavailability 

concerns in theory. However, molecules 15 

and 16 diverge from these criteria, implying 

that they may experience limitations in oral 

bioavailability. 

 Lipophilic Efficiency (LipE) and Ligand 

Efficiency (LE) are important metrics in drug 

design because they help determine the balance 

between potency and physicochemical 

qualities. Evaluating these measures helps 

discover compounds that combine effective 

biological activity with desirable drug-like 

features, leading to the selection of promising 

candidates for further development 

[47.48].Table 3 shows that all compounds have 

LipE values between 6 and 10, indicating a 

good balance between potency and 

lipophilicity and suggesting effective 

optimization. 

Among all the analyzed compounds, 

compound 5 presented the maximum LE value 

of 0.204, identifying it as the top-performing 

molecule. 

 

3.2. Structure Activity Relationship for 

bastadins 

 

For the sixteen bastadins, other 

physicochemical properties were examined, 

including molar refractivity (MR), hydration 

energy (HE), molar volume (V), surface area 

grid (S), and polarizability (Pol) using 

HyperChem 8.0.6. Other parameters, such as 

the number of rotatable bonds (NRB) and 

topological polar surface area (TPSA), were 

calculated with the Molinspiration online 

database. The findings are presented in Table 4 

 In addition, we examined seven quantum 

properties of the bastadins, as summarized in               

Table 5. These include the dipole moment (D), 

total energy (E), energies of the frontier 

orbitals (ELUMO, EHOMO, ELUMO+1, and 

EHOMO–1), and the electrophilicity index 

(ω), all calculated using Gaussian 09 

 In molecular modeling, polarizability, molar 

refractivity, and molecular volume are closely 

related. Polarizability reflects how easily a 

molecule’s electron cloud can be distorted by 

an external electric field, and it typically 

increases with molecular size and weight [49]. 

Molar refractivity, which is derived from the 

Lorentz–Lorenz relationship, incorporates both 

the refractive index and molecular volume, 

thereby serving as an indirect indicator of 

steric effects and the space occupied by atoms 

or functional groups [50]. Because molar 

refractivity is mathematically proportional to 

polarizability, compounds with greater electron 

density and larger volumes tend to exhibit 

higher values of both descriptors [51].  

In this sense, molecular volume is a primary 

determinant influencing both molar refractivity 

and polarizability, making these parameters 

valuable in quantitative structure–activity 

relationship (QSAR) studies where they help to 

rationalize drug absorption, permeability, and 

receptor–ligand recognition [52]. 

An increase in the molecular weight and 

overall size of bastadins leads to higher values 

of both molar refractivity and polarizability 

(Table 4). This result is consistent with                                       

the Lorentz–Lorenz equation [53], which links 

these properties to molecular volume [54].       

Within the studied series, compound 16 stands 

out by exhibiting the highest values of 

polarizability (87.00 Å³), molar refractivity 

(242.87 Å³), and molecular volume (2053.40 

Å³). On the other hand, compound 14 

represents the smallest structure, displaying 

comparatively lower polarizability (65.55 Å³), 

reduced molar refractivity (184.44 Å³), and a 

smaller volume (1588.73 Å³). 

In QSAR investigations, the surface area grid 

is a mathematical tool that divides the region 

around a molecule into a grid and measures the 

solvent-accessible surface area of the 

molecule. This metric is important because 

molecular surface exposure is strongly 

connected to solubility, membrane 

permeability, and, ultimately, bioavailability 

[55].                                                                                    
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 Surface area grid values in the range of 819.28 

to 1043.66 Å² show that these compounds have 

an extended solvent-accessible surface, 

consistent with relatively high molecular size 

and greater potential for identifying biological 

targets [28]. Such large surface areas help 

molecules interact better with their targets, but 

they may also reduce oral bioavailability to 

some extent, since the molecules do not pass 

easily through membranes. 

The calculated surface area follows the same 

increasing pattern as polarizability, molar 

refractivity, and volume in these molecules. 

Compound 16 shows the maximum surface 

value (1043.66 Å²). 

 
Table 3. Pharmacological activities and properties involved in MPO method for bastadins 

 

 

Table 4. Values of physicochemical descriptors used in the regression analysis 

 

compound 

 

MW 

(uma) 

 

Log P 

 

HBA 

 

HBD 

Lipinski 

score of 4 

 

pIC50 

 

LE 

 

LipE 

1 1017.11 -0.94 10 5 3 7.276 0.200 8.216 

2 1019.13 -0.61 10 5 3 7.208 0.198 7.818 

3 1098.03 -0.55 10 5 3 7.284 0.196 7.834 

4 938.22 -0.99 10 5 3 7.268 0.203 8.258 

5* 938.22 -0.99 10 5 3 7.276 0.204 8.266 

6 940.23 -0.66 10 5 3 6.284 0.176 6.944 

7 1019.13 -0.61 10 5 3 6.921 0.190 7.531 

8 1040.03 -2.03 6 4 3 5.398 0.157 7.428 

9 1070.06 -3.87 8 5 3 6.000 0.168 9.870 

10 1070.06 -3.87 8 5 3 6.215 0.174 10.085 

11* 940.23 -0.66 10 5 3 6.796 0.190 7.456 

12* 782.44 -0.76 10 5 3 6.319 0.184 7.079 

13 703.55 -0.81 10 5 3 5.824 0.173 6.634 

14 624.65 -0.86 10 5 3 5.585 0.170 6.445 

15 970.26 -4.09 10 8 2 6.018 0.162 10.108 

16 1054.34 -3.35 12 12 1 5.236 0.126 8.586 

Nº LOG P MW                   

(UMA) 

MR      

(Å³) 

HE 

(KCAL/MOL

) 

V           

(Å³) 

S          

(Å²) 

POL   

(Å³) 

  NRB TPSA 

(Å²) 

1 -0.94 1017.11 222.24 -30.17 1887.95 1008.74 78.49 0 182.30 

2 -0.61 1019.13 222.11 -30.22 1906.02 1017.01 78.68 0 182.30 

3 -0.55 1098.03 229.65 -22.15 1891.29 941.18 81.31 0 182.30 

4 -0.99 938.22 214.70 -32.10 1840.64 982.68 75.87 0 182.30 

5* -0.99 938.22 214.70 -31.10 1819.51 957.27 75.87 0 182.30 

6 -0.66 940.23 214.58 -26.28 1819.05 948.84 76.06 0 182.30 

7 -0.61 1019.13 222.11 -25.62 1875.49 982.58 78.68 0 182.30 
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Table 5. Values of electronic descriptors used in the regression analysis 

   

Hydration energy plays a crucial role in 

controlling the stability of various molecular 

conformations in aqueous environments [56]. 

The most important hydration energy in the 

absolute value is that of compound 16 (45.89 

kcal/mol). Regarding compound 8, it shows the 

minimum absolute value (15.21 kcal/mol) 

(Table 4).  

The variations in hydration energy were 

directly related to the number of polar groups 

present in each compound. Compound 16 

carries 12 hydrogen bond donors and 12 

acceptors, which greatly enhances its capacity 

to establish interactions with water, resulting in 

higher hydration energy. On the other hand, 

compound 8, limited to 4 donors and 6 

acceptors, forms fewer hydrogen bonds with 

the solvent and therefore displays a reduced 

hydration energy. 

8 -2.03 1040.03 221.09 -15.21 1845.73 967.20 78.17 0 117.12 

9 -3.87 1070.06 227.39 -21.43 1873.17 952.38 80.87 0 169.17 

10 -3.87 1070.06 227.39 -20.45 1884.90 957.09 80.87 0 169.17 

11* -0.66 940.23 214.58 -29.02 1796.10 905.34 76.06 0 182.30 

12* -0.76 782.44 199.51 -32.25 1731.05 898.70 70.81 0 182.30 

13 -0.81 703.55 191.98 -32.69 1621.29 830.58 68.18 0 182.30 

14 -0.86 624.65 184.44 -30.51 1588.73 819.28 65.55 0 182.30 

15 -4.09 970.26 221.68 -37.54 1873.57 942.44 78.76 0 234.35 

16 -3.35 1054.34 242.87 -45.89 2053.40 1043.66 87.00 4 306.10 

      Nº D                   

(Deb) 

E              

(eV) 

ELUMO    

(eV) 

EHOMO   (eV) ELUMO+1   (eV) EHOMO-1            

(eV) 

ω           

(eV) 

1 9.50 -408241.92 -1.88 -6.11 -1.66 -6.18 3.77 

2 11.76 -408275.50 -2.01 -6.05 -1.21 -6.27 4.02 

3 8.12 -478305.12 -1.82 -6.23 -1.43 -6.44 3.67 

4 8.27 -338212.40 -1.64 -6.13 -1.62 -6.30 3.36 

5* 11.53 -338212.17 -1.82 -6.05 -1.58 -6.11 3.66 

6 10.18 -338245.67 -1.99 -6.01 -1.33 -6.11 3.98 

7 10.91 -408275.42 -2.01 -6.00 -1.40 -6.34 4.02 

8 11.07 -471265.81 -1.23 -6.04 -1.17 -6.50 2.74 

9 6.81 -474278.83 -1.22 -6.14 -1.07 -6.26 2.75 

10 8.71 -474278.54 -1.29 -6.06 -1.24 -6.47 2.83 

11* 4.65 -338246.20 -1.99 -5.83 -1.44 -6.35 3.98 

12* 6.80 -198187.02 -1.85 -5.93 -1.46 -6.34 3.71 

13 1.46 -128157.39 -1.43 -5.79 -1.39 -6.01 2.99 

14 8.41 -58127.76 -1.59 -5.84 -1.28 -6.10 3.25 

15 3.12 -341259.79 -1.82 -5.24 -1.37 -5.56 3.64 

16 4.74 -349360.68 -1.96 -5.36 -1.43 -5.97 3.94 
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    In medicinal chemistry, the number of 

rotatable bonds (NRB) is considered a key 

molecular feature describing conformational 

flexibility. Molecules with many freely 

rotating single bonds can easily adopt different 

shapes in solution. Although such flexibility 

can improve the ability to fit into biological 

targets, it usually has a negative impact on oral 

drug performance, as highly flexible 

compounds tend to cross membranes less 

efficiently and may be metabolized more 

rapidly. For this reason, NRB is frequently 

applied in drug-likeness criteria, where 

compounds with fewer than 10 rotatable bonds 

are generally associated with favorable oral 

absorption profiles [28]. 

Topological Polar Surface Area (TPSA) is an 

important descriptor that reflects the 

contribution of polar atoms, mainly oxygen 

and nitrogen with their attached hydrogens, to 

the molecular surface. It is widely applied in 

drug design because it strongly correlates with 

pharmacokinetic properties such as intestinal 

absorption, Caco-2 permeability, and blood–

brain barrier penetration. In general, 

compounds with TPSA values below 140 Å² 

tend to show better oral bioavailability, while 

those with values under 90 Å² are more likely 

to cross the blood–brain barrier [57]. 

Compounds with TPSA values of 140 Å² or 

more are expected to exhibit poor intestinal 

absorption [58]. 

TPSA of bastadins was found in the range of 

117.12 to 306.10 Å². All compounds present 

TPSA values above 140 Å², except compound 

8, which has TPSA under 140 Å² (Table 4). 

The evaluation of rotatable bonds revealed that 

all compounds were rigid (0 NRB), except 

compound 16, which has 4 NRB. The high 

rigidity observed in most molecules may favor 

stronger binding affinity and stability within 

the active site. 

   All compounds show high TPSA values 

together with no rotatable bonds. This 

combination makes them rigid and strongly 

polar, which reduces their ability to cross 

membranes and the blood–brain barrier. 

However, this property can also be beneficial 

since it increases selectivity, prevents central 

nervous system penetration, and favors 

peripheral activity. 

   The analysis of electronic descriptors shows 

that molecule 3 is the most stable, with the 

lowest total energy value of -478305.12 eV in 

comparison with compound 14 (-58127.76 

eV). This stability might be linked to its 

inhibitory behavior. Compound 2 exhibits the 

highest dipole moment (11.76 D), which can 

be attributed to resonance, where electron 

donation from the nucleus is directed toward 

the electron-attracting groups; the results are 

shown in Table 5. 

To provide a more detailed description of the 

electronic properties, we also investigated 

frontier molecular orbitals. In particular, we 

examined the HOMO (highest occupied 

molecular orbital) and the LUMO (lowest 

unoccupied molecular orbital), together with 

the neighboring orbitals HOMO–1 and 

LUMO+1.  

Studying these orbitals is important because 

the HOMO reflects the electron-donating 

ability of a molecule, while the LUMO 

indicates its capacity to accept electrons. The 

additional orbitals (HOMO–1 and LUMO+1) 

give complementary insights into electronic 

transitions and molecular reactivity, thus 

allowing a more comprehensive interpretation 

of the compound's behavior [59]. 

In this study, the electrophilicity index (ω) was 

calculated to assess the electron-accepting 

capacity of the compounds. Higher ω values 

indicate stronger electrophilic character, while 

lower values reflect weaker electron-accepting 

ability [60]. 

Among the studied molecules, compounds 2 

and 7 displayed the highest electrophilicity 

index (4.02 eV), highlighting their strong 

electron-accepting ability compared to the 

other compounds, whereas compound 8 

showed a lower ω (2.74 eV), reflecting 

reduced electrophilic power and a lower 

tendency to accept electrons (Table 5). 

3.3. Quantitative Structure-Activity 

Relationships Studies (QSAR) of bastadins 

 

In this part, we aimed to build a reliable QSAR 

model to analyze and predict the biological 

activity (pIC₅₀) of bastadins. This allowed us to 

examine how physicochemical descriptors are 

related to biological response and to highlight 

the molecular features that influence activity.      

The application of mathematical and statistical 

approaches to experimental findings represents 

a valuable strategy for identifying novel 

compounds with strong inhibitory potential [5].  

Our approach begins with Principal 

Component Analysis (PCA), which serves to 

reduce redundancy by selecting the most 
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relevant descriptors from a set of correlated 

variables. It is followed by a stepwise 

regression procedure, where descriptors 

without statistical significance are excluded, 

retaining only those contributing to a robust 

MLR model. (including the critical probability: 

p-value < 0.05 for all descriptors and the 

complete model). 

Principal Component Analysis (PCA) 

Among the 15 calculated molecular descriptors 

(Tables 4 and 5) that quantitatively 

characterize the 16 compounds, only those 

showing a strong correlation with the 

biological activity and a weak inter-correlation 

were selected to build a reliable and efficient 

multiple linear regression (MLR) model for 

predicting the inhibitory activity of bastadins. 

To achieve this, a principal component 

analysis (PCA) was carried out on all 

descriptors using Pearson’s correlation matrix 

with the aid of XLSTAT software (Table 6). 

Descriptors exhibiting strong intercorrelation 

(|r| > 0.90, based on Pearson’s correlation 

matrix) were excluded from the dataset. 

Similarly, descriptors with negligible influence 

on the biological response, defined by 

correlation coefficients with inhibitory activity 

(|r| ≤ 0.1), were also removed. Finally, from the 

remaining set, only those descriptors exhibiting 

the weakest interdependence with one another 

were retained for model construction (61.62). 

The correlation coefficient between Pol and 

inhibitory activity was very low (r = 0.076), 

indicating that polarizability has no significant 

impact on the activity and was therefore 

excluded from the model. 

LUMO and ω are perfectly correlated (r 

(LUMO, ω) = 0.998), 

. E and MW are highly correlated (r (E, MW) = 

0.975). 

The correlation matrix revealed an almost 

perfect linear relationship between LUMO and 

ω (r = 0.998) as well as between E and MW (r 

= 0.975), indicating strong redundancy among 

these descriptors; therefore, one variable from 

each highly correlated pair was removed to 

minimize multicollinearity in the model. 

. MW, MR, V and S are highly correlated (r 

(MW, MR) = 0,953; r (MW, V) = 

0,905); r (MW, S) =0,825; r (MR, V) = 0.977; 

r (MR, S) = 0.862; r (S, V) = 0.932), 

Descriptors MW, MR, V, and S exhibited very 

strong inter-correlations and were therefore all 

excluded from the dataset in order to prevent 

multicollinearity and improve the robustness of 

the model. 

. TPSA and HE are correlated r (TPSA, HE) = 

0.874), 

A strong correlation was observed between 

descriptors TPSA and HE (r = 0.874). To 

prevent multicollinearity, one of the correlated 

descriptors was discarded from the dataset. 

   According to the analysis results, the selected 

descriptors were retained for building the 

multiple linear regression model: E, ELUMO, 

EHOMO, ELUMO+1, EHOMO-1, D, LogP 

and TPSA.

 
Table 6. Correlation matrix (Pearson (n)) between different obtained descriptors 

Variab

les 

pIC

50 

LU

MO 

HO

MO 

Log 

p 

E MW D ω LUM

O+1 

S MR HE Pol TPS

A 

V HO

MO-

1 

pIC5

0 

1                

LUM

O 

-

0.4

58 

1               

HO

MO 

-

0.5

58 

-

0.2

26 

1              

Log 

p 

0.5

28 

-

0.4

71 

-

0.4

54 

1             

E -

0.3

03 

-

0.0

83 

0.3

47 

0.3

41 
1            

MW 0.2

62 

-

0.0

40 

-

0.1

92 

-

0.3

92 

-

0.9

75 

1           
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D 0.4

25 

-

0.1

06 

-

0.6

51 

0.3

29 

-

0.4

05 

0.3

17 
1          

ω 0.4

55 
-

0.9

98 

0.2

08 

0.4

52 

0.0

32 

0.0

90 

0.1

31 
1         

LUM

O+1 

-

0.5

41 

0.5

18 

-

0.0

18 

-

0.4

30 

-

0.1

92 

0.1

23 

0.0

51 

-

0.4

84 

1        

S 0.2

84 

-

0.2

97 

-

0.0

54 

-

0.2

42 

-

0.7

43 

0.8

25 

0.4

21 

0.3

39 

-

0.13

0 

1       

MR 0.1

15 

-

0.1

27 

0.0

43 

-

0.4

89 

-

0.8

64 

0.9

53 

0.1

62 

0.1

75 

0.06

7 
0.8

62 

1      

HE 0.1

15 
0.5

27 

-

0.7

32 

0.0

64 

-

0.4

82 

0.2

90 

0.4

93 
-

0.5

01 

0.47

5 

-

0.0

93 

0.0

27 
1     

Pol 0.0

76 
-

0.1

23 

0.0

78 
-

0.5

14 

-

0.8

50 

0.9

38 

0.1

30 

0.1

70 

0.06

4 
0.8

51 

0.9

99 

-

0.0

01 

1    

TPS

A 

-

0.2

24 

-

0.4

78 

0.7

49 

-

0.3

30 

0.1

60 

0.0

61 

-

0.4

72 

0.4

73 

-

0.27

1 

0.2

91 

0.3

47 
-

0.8

74 

0.3

40 
1   

V 0.1

51 

-

0.2

53 

0.0

97 

-

0.4

31 

-

0.7

96 

0.9

05 

0.2

04 

0.2

98 

-

0.02

5 

0.9

32 

0.9

77 

-

0.1

08 

0.9

76 

0.4

29 
1  

HO

MO-

1 

-

0.2

81 

-

0.2

44 

0.7

96 

-

0.3

18 

0.4

01 

-

0.2

78 

-

0.5

19 

0.2

12 

-

0.15

5 

-

0.1

00 

-

0.1

00 

-

0.7

19 

-

0.1

00 

0.6

38 

-

0.0

40 

1 

  
Multiple Linear Regressions (MLR)                    

The QSAR models were generated using the 

experimental antiangiogenic activity values 

(pIC50) of the 16 bastadins combined with the 

chemical descriptors selected by the PCA 

approach. The data set was randomly divided 

into two sets: a training set (thirteen 

compounds) and a testing set (three 

compounds: 5, 11, and 12)                                                                                                 

Multiple Linear Regression (MLR) is one of 

the most widely used techniques in QSAR 

studies. The performance of an MLR model is 

generally evaluated using key statistical 

parameters, including the correlation 

coefficient (R), the coefficient of determination 

(R²), the mean squared error (MSE), the mean 

calibration error (MCE), the Fisher’s statistic 

(F), and the significance level (p-value). The 

following equation describes the best obtained 

linear QSAR model using the multiple linear 

regression (MLR) method:  

pIC50 = 2.55 - 1.89 10⁻⁶ E - 2.11 ELUMO+1 - 

1.32 ELUMO - 1.04 10⁻2 TPSA 

N = 16, R = 0.84, R2 = 0.71, MSE = 0.158, 

MCE = 0.257, F = 4.709, P = 0.03 

The multiple linear regression model showed a 

good overall fit, with a correlation coefficient 

of R = 0.84 and a coefficient of determination 

of 𝑅2 = 0.71. This indicates that about 71% of 

the variance in the biological activity is 

explained by the selected descriptors. The 

prediction errors were also acceptable, with a 

mean squared error (MSE) of 0.158 and a 

mean calibration error (MCE) of 0.257, 

highlighting a good consistency between fitted 

and predicted activities. 

The statistical significance of the model was 

supported by the Fisher test (F=4.709, 𝑝=0.03), 

showing that the regression is significant at the 

95% confidence level and the relationship 

between the selected descriptors and the 

biological activity is not due to chance. 

The negative coefficients of ELUMO+1, 

ELUMO, TPSA, and total energy indicate that 

increases in these properties are associated 

with a decrease in activity, with ELUMO+1 

and ELUMO exerting the most significant 
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influence. The correlations of predicted and 

observed pIC50 values are illustrated in Figure 

2. 

Taken together, these results demonstrate that 

the proposed model is both statistically valid 

and reasonably predictive, providing a reliable 

basis for the analysis of structure–activity 

relationships in this series of compounds and 

guiding the design of new compounds in this 

series.
 

 

Figure 3. Correlations of observed and predicted pIC50 values using MLR 

The potential multicollinearity among the four 

selected descriptors was assessed by 

computing their Variance Inflation Factors 

(VIFs), as presented in Table 7. The VIF for 

each descriptor is calculated using the formula 

VIF=1/(1−𝑅²), where R represents the 

correlation coefficient between the descriptor 

under consideration and all other descriptors in 

the mode1. 

Values of VIF exceeding 10 indicate strong 

multicollinearity, meaning that the variance of 

the estimated coefficient may be inflated and 

the descriptor may appear more influential than 

it actually is. Conversely, a VIF close to 1 

suggests minimal correlation with other 

variables, reflecting a more stable and robust 

model [5].

Table 7: The variance inflation factors (VIF) of descriptors in QSAR model 

 

The Variance Inflation Factors for the 

descriptors ranged from 1.063 to 1.676, 

indicating low multicollinearity and 

confirming that the model is robust, with the 

coefficients not significantly influenced by 

correlations among the variables. 

   The descriptors identified in the MLR model 

were subsequently employed as input variables 

for conducting multiple nonlinear regression 

(MNLR) analysis. 

Multiples nonlinear regression (MNLR) 

In addition to MLR, we employed a nonlinear 

regression approach to refine the                         

structure–activity relationship and 

quantitatively assess the influence of 

substituents. The analysis was carried out on 

the data matrix derived from the descriptors 

previously selected by MLR for the 16 studied 

compounds. Model quality was evaluated 

based on statistical parameters such as the 

correlation coefficient (R), the coefficient of 

determination (R²), and the mean squared error 

(MSE), which guided the selection of the most 

reliable regression model. The QSAR model 

established through the multiple linear 

regression method can be expressed as follows: 

pIC50 = - 0,16 - 7,93 ELUMO - 6,29 10-7 E + 

9,06 ELUMO+1 + 0,04 TPSA - 2,05 ELUMO
2 + 

 E ELUMO+1 ELUMO TPSA 

Tolerance 0.941 0.736 0.596 0.694 

VIF 1.063 1.358 1.676 1.440 
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3,88 10-12 E2 + 3,73 ELUMO+1 
2 - 1,11 10⁻⁴ 

TPSA2 

N = 16, R = 0.95, R2 = 0.91, MSE = 0.048 

   The MNLR model demonstrated a high level 

of reliability, as indicated by the statistical 

parameters. The correlation coefficient (R = 

0.95) reflects an excellent linear relationship 

between the predicted and experimental 

activities. The coefficient of determination (R² 

= 0.91) shows that more than 91% of the 

variance in biological activity is explained by 

the selected descriptors, highlighting the 

robustness of the model. The mean squared 

error (MSE = 0.048) further supports the 

accuracy of the predictions, as lower error 

values indicate better model performance. 

Collectively, these results suggest that the 

developed MNLR model is both statistically 

significant and predictive, making it suitable 

for structure–activity relationship studies. The 

correlations of predicted and observed pIC50 

values are illustrated in Figure 3.

 

Figure 4. Correlations of observed and predicted pIC50 values using MNLR. 

External validation 
To evaluate the external validity of the 

constructed QSAR models, it is essential to test 

them on molecules that were not included in 

the training phase. In this study, the models 

generated from the dataset of 13 bastadins 

were subsequently applied to predict the 

biological activity of 3 test compounds. A 

comparison between the predicted pIC50 

values and the experimentally measured ones 

indicates that the models provide reliable 

estimations for these test compounds (Table 

10). 

 
Table 8: Comparative performance of the models generated through MLR and RNLM approaches 

 

The assessment of model performance 

revealed high predictive accuracy, with the test 

set coefficient of determination attaining 0.70 

for the MLR model and 0.83 for the MNLR 

model. These values demonstrate that both 

statistical approaches provide acceptable 

reliability for the estimation of inhibitory 

activity based on the chosen descriptors, with 

MNLR showing slightly stronger predictive 

ability (Table 8). 

Artificial Neural networks (ANN) 

At this stage, a feed-forward artificial neural 

network was constructed, composed of four 

layers. The hidden layer used a sigmoid 

activation function, whereas the output layer 

applied a linear activation function. The 

adopted architecture corresponded to a 4-4-1 

structure Figure 4).

 Training set Test set 

R R² MSE R R² MSE 

MLR 0.84 0.71 0.158 0.83 0.70 0.047 

MNLR 0.95 0.91 0.048 0.91 0.83 0.026 
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Figure 5. Configuration [4-4-1] of the developed model and the four-layer artificial neural network's 

construction   

To evaluate the predictive performance of the 

ANN model, the dataset was randomly divided 

into three subsets. Approximately 70% of the 

compounds were assigned to the training set to 

optimize the network parameters, while 15% 

were used as a validation set to monitor the 

learning process and prevent overfitting. The 

remaining 15% was kept aside as an 

independent test set to assess the model’s 

generalization ability. The strong agreement 

between experimental and predicted responses 

is evidenced by high correlation coefficients (R 

and R²) together with very low mean squared 

error (MSE) values across training, validation, 

and test phases (Table 9). The relationship 

between the activities predicted by the artificial 

neural network and the experimental values is 

presented in Figure 5. 

 
Table 9. Statistical indicators (R², R, and MSE) describing the performance of the ANN model across the 

training, validation, and test phases. 

Model                        Samples                       MSE                   R                      R2 

Training                             12                0.0209 0.981                0.962 

Validation  2                0.0302 1.000                1.000 

   Test 2                 0.0031 1.000                1.000 

 

 
 

Figure 6. Comparison of Predicted and Observed pIC50 Values calculated using ANN model 
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The graph shows that predicted and observed 

pIC50 values are very close, meaning the ANN 

model can reliably estimate compound activity. 

Small differences are normal, the high R² and 

low error confirm strong accuracy. Overall, the 

model is effective for predicting pIC50 and can 

help prioritize promising drug candidates in 

discovery.  In this section, the artificial neural 

network (ANN) model was subjected to 

validation through a cross-validation strategy, 

specifically the leave-one-out (LOO) 

procedure, carried out with MATLAB 

software.                                                                                                                    

In this method, one compound is removed 

from the dataset at a time, and its activity is 

predicted using the model built from the 

remaining compounds. The process is repeated 

until all molecules have been tested once, 

which allows an independent evaluation of the 

model’s robustness and predictive ability [63].  

The statistical parameters obtained from this 

validation serve as indicators of the predictive 

reliability and overall performance of the 

developed ANN model: 

Q²LOO = 0.79                                    MSELOO = 

0.117 

The predictive ability was quantified by the 

cross-validated coefficient of determination 

(Q²LOO = 0.79) and the mean squared error 

obtained after LOO (MSELOO = 0.117). These 

results indicate that the model possesses 

satisfactory internal robustness and predictive 

reliability. 

The comparison between the activities 

predicted through ANN leave-one-out cross-

validation and the corresponding experimental 

values is illustrated in Figure 6. 

 

Figure 7. Comparison of Predicted and Observed pIC50 Values calculated using ANN LOO-CV model 

Table 10: Observed values and calculated of pI50 according to different methods. 
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MOL 

 

PIC50  (OBS) 

MLR MNLR ANN CV 

pIC50 (pred) pIC50 (pred) pIC50 (pred) pIC50 (pred) 

1 7.276 7.410 7.520 7.583 7.290 

2 7.208 6.633 6.771 7.420 6.460 

3 7.284 6.979 7.216 7.689 7.532 

4 7.268 6.877 6.976 7.097 7.627 

5* 7.276 7.030 7.010 7.362 7.032 

6 6.284 6.727 6.580 7.202 6.139 

7 6.921 7.033 6.900 7.753 6.894 

8 5.398 6.316 5.498 6.045 5.387 

9 6.000 5.558 6.054 6.060 6.285 

10 6.215 6.008 6.174 6.266 5.620 

11* 6.796 6.959 6.720 7.463 6.480 

12* 6.319 6.552 6.368 5.824 6.570 

13 5.824 5.719 5.621 5.721 6.012 

14 5.585 5.566 5.704 5.8421 5.660 

15 6.018 6.054 6.356 6.900 5.968 

16 5.236 5.636 5.148 6.706 5.865 
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The graph shows a good agreement between the 

observed and predicted values under the ANN LOO 

validation. The two lines follow a very similar 

pattern, which means the model is able to capture 

the data behavior well. The small differences 

between them are normal and expected in 

predictive modeling. Overall, the close alignment 

confirms that the ANN model is reliable and 

effective for estimating pIC50 values, making it a 

useful tool in drug discovery for identifying 

promising compounds.Table 10 reports the 

experimental results with the predicted values 

obtained from MLR, MNLR, ANN, and cross-

validation models. 

4. Conclusion 

In this work, Computational screening and 

SAR/QSAR analyses were performed to evaluate 

both the qualitative and quantitative influence of 

molecular structures on the anticancer activity of 

the compounds. Our findings indicate that this 

series of molecules complies with Lipinski’s rules. 

Key physicochemical and electronic parameters, 

including Topological Polar Surface Area (TPSA), 

total energy (E), and Lowest Unoccupied Molecular 

Orbital (ELUMO), together with the neighboring 

orbital (ELUMO+1), were successfully employed 

to model the antiangiogenic activity of bastadins. 

   The different modeling approaches, MLR, 

MNLR, and ANN, were used to develop QSAR 

models. Among the developed models, the ANN 

showed the best predictive performance. The 

robustness and predictive ability of the models were 

further validated using independent training sets, 

test sets, and leave-one-out (LOO) cross-validation. 

Moreover, the predictions for the test compounds 5, 

11, and 12 were in excellent agreement with the 

experimental results, confirming the reliability of 

the developed models.ve rall, the strong predictive 

performance, minimal residual errors, and 

successful cross-validation confirm that the 

proposed QSAR models are both reliable and 

effective for predicting the anticancer activity of 

this series of molecules. These results highlight the 

potential of bastadins as promising ACAT1 

inhibitors for future computer-aided drug design 

and optimization aimed at developing innovative 

anticancer therapies. 
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