Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - o ’
(IJCESEN) —

Vol. 11-No.4 (2025) pp. 7553-7560

http://www.ijcesen.com | S:SN: 2149-9144

Research Article

Towards a Rewriting Logic-Based Framework for Specifying FIPA Request

Protocols

Mohamed Amin Laouadi'*, Djamel Nessah?, Abdelaziz Lakhfif2,

1 Department of Computer Science, Faculty of Sciences, Setif 1 University - Ferhat Abbas, Setif, 19000, Algeria
* Corresponding Author Email: mohamed.laouadi@univ-setif.dz - ORCID : 0000-0002-6215-2769

2|1COSI Laboratory, Department of Computer Science, University Abbes Laghrour-Khenchela, Khenchela 40002, Algeria
Email: Nessah_djamel@univ-khenchela.dz - ORCID : 0009-0004-8671-7017

3 Department of Computer Science, Faculty of Sciences, Setif 1 University - Ferhat Abbas, Setif, 19000, Algeria

Email: abdelaziz.lakhfif@univ-setif.dz - ORCID : 0000-0002-3287-5456

Article Info:

DOI: 10.22399/ijcesen.4007
Received : 05 August 2025
Accepted : 06 October 2025

Keywords

Interaction Protocols,
FIPA Request,
rewriting logic,
Real-Time Maude,
First Aid.

Abstract:

This paper presents a practical and systematic approach for formally specifying
interactions in multi-agent systems (MAS) based on the well-established FIPA request
protocol. It aims to simplify and streamline the process of translating MAS interaction
descriptions expressed with Agent UML diagrams into precise, unambiguous formal
specifications using the Real-Time Maude language, which is founded on rewriting
logic—a powerful and expressive formalism for specifying and analyzing concurrent and
real-time systems. This integration enables enhanced analysis, rigorous verification, and
validation of agent behaviors in complex and dynamic scenarios. The effectiveness and
usability of the proposed approach are demonstrated through a detailed first aid case
study, highlighting its practical applicability and benefits for designing reliable MAS

interactions.

1. Introduction

Interaction is one of the key aspects of multi-agent
systems, it ensures cooperation and negotiation
between agents. Implementing the interaction
requires an infrastructure that includes
communication languages and interaction protocols.
According to FIPA (Foundation of Intelligent
Physical Agents), an interaction protocol is a
common pattern of communication, so the
specification and implementation of the protocol
must be independent of the application domain and
agent internal architecture. To improve the
development of interaction between agents, we want
to formalize the interaction protocols using a formal
language that is well adapted. We are interested in
FIPA request interaction protocol since it was the
most used protocols for the design of MAS.
Formalizing the FIPA request interaction protocol is
very important for both analysis and design
activities. Furthermore, the Multi-Agent System
(MAS) design requires the involvement with formal
languages. Among these languages: Real-Time
Maude (RT-Maude) [1]. The formal specifications
will eliminate ambiguities in the interpretation of the

models. For that, the integration of Agent UML
(AUML) and Real-Time Maude will enable the
formal validation of the FIPA request protocol. The
purpose of our approach is to translating AUML
diagrams into a formal specification to integrate the
validation of the FIPA request protocol's consistency
starting from the analysis phase. The remainder of
the paper is organized as follows. Section 2 provides
a brief overview of key related works. Section 3
presents the interactional protocol FIPA request. In
section 4 we describe briefly rewriting logic basics.
Sections 5 present the proposed approach along with
the transformation process. However, Section 6
presents a first aid case study to demonstrate the
transformation and validation procedures. In section
7, we conclude and offer some future work
directions for further research.

2. Related Works
In works [2] and [3] authors presented a

formalization process of FIPA protocols and a
formal framework has been proposed. In these

http://dergipark.ulakbim.gov.tr/ijcesen
mailto:mohamed.laouadi@univ-setif.dz
mailto:Nessah_djamel@univ-khenchela.dz
mailto:abdelaziz.lakhfif@univ-setif.dz

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

frameworks, several interaction concepts are
considered.
To incorporate the formal validation of the

consistency of these FIPA interaction protocols,
several modules have been developed since the
analysis phase.

In the present work we continue in the same way of
both approaches [2] and [3] but with more details
and applying the result of the translation process
proposed on a real example, an essential idea that has
not been done yet. Additionally, by utilizing the
interactional protocol FIPA request, the suggested
formal framework for MAS, reduces the possibility
of misunderstandings between users and developers.

3. The Interactional Protocol FIPA Request

The Interactional Protocol FIPA Request allows one
agent to request another to perform some action. The
representation of this protocol is given in Fig.
1.After considering the request, the Participant
decides whether to accept it or not. "Refused"”
becomes true and the Participant communicates a
refusal if a refusal choice is made. If not, "agreed"
turns into reality. The Participant communicates a
"agree" if the criteria specify that an express
agreement is essential (i.e., "notification necessary"
is true). Depending on the situation, the "agree"
might not be required [4].

FIPA-Request-Protocol]

| Initiator | | Participant |

request :

refuss
[refused]

agree

[agreed and
nofification necessary]

failure

inform-done : inform

>ﬁg_reed]

i inform-result : inform

Figure 1. FIPA request interaction protocol [4].

4. Rewriting Logic and Real-Time Maude

7554

According to Eker et al. [5] rewriting logic is a
highly expressive and natural framework designed
for specifying concurrent systems, parallelism,
communication, and interaction. It effectively
models state and concurrent computations,
particularly suited for concurrent object-oriented
programming. Maude [6] is a language for the
specifation, simulation, and model checking rewrite
theories, which are the specification units of
rewriting logic (see the survey [7] and [8, 9, 10]).
Maude's rewriting logic is realized via rewrite
theories that combine equational specifications with
rewrite rules that handle local state transformations.
It supports complex rewriting modulo associativity,
commutativity, and identity axioms, complemented
by a strategic language layer that controls rule
application for enhanced user-defined behavior
control.

Regarding to the language performance, Maude was
ranked second (after Haskell) as the best
performance language in a recent comparative
analysis of well-known algebraic, functional and
object-oriented languages performed in [11]. This
blend makes Maude a powerful tool for specifying,
executing, verifying, and analyzing complex
concurrent systems, programming languages, and
protocols.

Real-Time Maude [12] is an extension of Maude
developed to utilize the principles of real-time
rewrite theory.

Recent developments have further enhanced
Maude’s capabilities and applications. Duran et al.
[13] demonstrate how Maude supports formal
specification, verification, and declarative
programming of open distributed systems, enabling
scalable and reliable system designs that leverage
rewriting logic's inherent concurrency and
modularity. Moreover, bridging semantic gaps
between qualitative and quantitative models in
distributed systems has been advanced through work
by Liu et al. [14], who apply Maude for combined
qualitative-quantitative ~ semantics facilitating
automated reasoning on complex system properties.

5. The FIPA Request Formal Interactional
Framework

The developed framework (Fig. 2) consists of
multiple formal modules, with different categories
(functional, object-oriented, and timed object-
oriented modules). Due to space constraints, only the
main modules of the framework are presented. The
STATE-CHART module (Fig. 3) defines the types
of actions and conditions an agent can use to specify
operations related to its states.

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

0%
e N - G L
. 3 1
SR
s 2
R —
; BUE,
w1 el
|
«
Al ’ | o
e W .‘ ‘
v —_—
) \l
NOMNTWEIS Ly VEBCOBE0S | SRS) MR
)
PR LS NETONS

Figure 2. The FIPA Request formal framework modules.

(fmod STATE-CHART is

sorts State NameS.

sorts Condition Action.

op State : NameS -> State .

op Isinternal Act : Action -> Bool .

op IsReceivingAct : Action -> Bool .

op IsSendingAct : Action -> Bool .

op TargetS : State Condition -> State .

op ActionToAccomplish : State Condition ->Action.
endfm)

Figure 3. The functional module STATE-CHART

Individual agent behavior is represented via the
INTRA-BEHAVIOR modules, which import the
STATE-CHART module. Based on the INTRA-
BEHAVIOR modules, the INTER-BEHAVIOR
module establishes relations to control interactions
between various agents. The IDENTIFICATION and
ACTION modules are imported within the
MESSAGE module (Fig. 4), handles the agent
identification mechanism and defines the structure
of messages exchanged between agents.

(omod MESSAGE is
protecting STATE-CHART .

sorts [dentif Message Content
subsort Oid < Idenfif .
subsort Action < Content .

op o : Identif Content Idenfif -> Message.
op Getldent : Message > Identif .
vars A Al : Identf . var Cont : Content .
eq Getldent (A : Cont: Al)=A.
endom)

Figure 4. The object oriented module MESSAGE.

7555

Communicating agents typically have a Message
Box to store messages received from other agents,
along with a list of their acquaintances. To manage
these, we suggest the MESSAGE-BOX and LIST-
OF- ACQUAINTANCE modules, which deal with
agents' Message Boxes and acquaintance lists,
respectively.

We define the MESSAGE-OPERATIONS module
to explain the sending and receiving operations (Fig.
5), which imports the LIST-OF- ACQUAINTANCE
and MESSAGE modules.

(omod MESSAGE-OPERATIONS is
pr LIST-OF-ACQUAINTANCE MESSAGE .
subsort Acquaintance < Identifier .

op SendMssg : Message -> Msg .
op ReceiveMssg : Message -> Msg .

endom)

Figure 5. The object oriented module MESSAGE-
OPERATIONS

The functional module ROLE-CONCEPT (Fig. 6)
represent the concept of role that agents can
performs within groups.

(fmod ROLE-CONCEPT is
sort Role .
*x*** User Part

* *k*%

Endfm)

Figure 6. The functional module ROLE-CONCEPT.

The concept of a group is represented in the module
LIST-OF-GROUP (Fig. 7).

(omod LIST-OF- GROUP is
ine STRING .
sorts ListofGroup Group .
subsort Group < Listof Growup .
subsort String < ListofGroup .

op o :Group ListofGroup > ListofGroup .
op EmptyListofGroup : -> ListofGroup .
var Grp : Group . var Grofl : ListofGroup .

eq Gp : EmptyListofGroup = Grp .

endom)

Figure 7. The object oriented module LIST-OF-GROUP.

In the object-oriented module CLASS-OF-AGENT
(Fig. 8), the basic attributes (CurrentS, PlayR, GrL,
AcqgL, and MBX,) of the class structure for agents are
defined. which represent the agent’s current state,
role, group list, acquaintance list, and Message Box,

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

respectively. The module imports the STATE-
CHART, ROLE-CONCEPT, MESSAGE BOX,
MESSAGE-OPERATIONS, and LIST-OF-GROUP
modules.

(omod CLASS-OF-AGENT is
pr STATE-CHART ROLE-CONCEPT .

pr MESSAGE-BOX LIST-OF- GROUP .
pr MESSAGE-OPERATIONS.

class Agent | CurrentS : State, PlayR : Role,
GrL : ListofGroup, AcqL : ListofAcquaint,
MBXx : Message-Box . --(1)

endom).

Figure 8. The object oriented module CLASS-OF-
AGENT.

To represent the supervisor of each agents group, we
define the SupervisorAgent class in the object-
oriented module SUPERVISOR-CLASS-OF-
AGENT (Fig. 9). This class includes the attribute
Responsibility (line 1) and imports the CLASS-OF-
AGENT module, serving as a subclass of the Agent
class (line 2).

(omod SUPERVISOR-CLASS-OF-AGENT is
ex CLASS-OF-AGENT .

sort Supervisor .
subsort String < Supervisor.
class SupervisorAgent | Commitment : Supervisor. --

(1)
~()

subclass SupervisorAgent < Agent .

endom)

Figure 9. The object oriented module SUPERVISOR-
CLASS-OF-AGENT.

The timed object-oriented module FIPA-USE-
CASEi (Fig. 10) has the same name as the associated
use case and corresponds to any use case that is
depicted in the various Agent UML Protocol
diagrams. These modules contain various rewrite
rules that specify scenarios in which agents interact;
these interactions might be conditional or
unconditional, instantaneous or tick-based.

(tomod FIPA-USE-CASE:i is
inc CLASS-OF-AGENT .

inc SUPERVISOR-CLASS-OF-AGENT.
inc INTER-BEHAVIORS.
rl [1] : Configl => Config2.

rl [K] : Config2k-1 => Config2k.

endtom)

Figure 10. The Timed object oriented Module FIPA-
USE-CASEi

7556

The timed object-oriented module FIPA-
REQUEST-MAS-INTERACTIONS (Fig. 11),
which represents all system interactions, imported
all FIPA-USE-CASEi modules.

(tomod FIPA-REQUEST-MAS-INTERACTIONS is
inc FIPA-USE-CASEL.

inc FIPA-USE-CASEN.
endtom)

Figure 11. The Timed object oriented Module FIPA-
REQUEST-MAS-INTERACTIONS.

Fig. 12, where the Timer message is defined (line 1),
illustrates the tick rule that ensures the system's time
progression.

crl [tickrule] :
{Timer(TimeO) -(1)
<A:Agent| PlayR: Initiator>
REST:Configuration} =>
{ Timer(TimeO monus 1)
< A: Agent|> REST:Configuration }
in time 1 if (TimeO > zero).

Figure 12. The RT-Maude Tick Rule form.
6. Practical Case Study: FIRST AID

We have chosen the first aid case study to validate
our approach because it can be built according to
FIPA request interaction protocol for MAS
development.

We generalized the model developed by CHU Thanh
Quang [13] which models land rescue activities to
apply to various other cases (road accident; fire;
earthquake; household accidents (gas leak, etc.).

The decomposition of the MAS chosen for first aid
application is illustrated in Fig. 13. This application
involves two types of agents: (1) the Fireman, acting
as a Supervisor agent, and (2) the Fire-Station and
Hospital agents.

When an incident occurs, the Fire-Station agent will
be informed via its toll-free number from then on: a
group of firemens agents hurries to the place to
secure it and take care of the victims if there is one.
Once there the firemens inform the nearest hospital
agent of the number of victims and their conditions.

6.1 AUML used Diagrams

6.1.1 AUML Protocol Diagram between Fire-
Station and Fireman:

This diagram (Fig. 14) allows us to see the
interactions between the FireStation, and Fireman
agents according to the FIPA Request protocol.

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

r
Lsend request o
S FIREMAN to go to the
place of the incidest
FIRESTATION \

s arcopts the
request and go
10 Che place of
the Incident

5 infore the
FIRLSTATION

|cacongts thw
regoest and Indorss
the FIREMAN 3:yend request
to HOSPITAL for
take the vistims

.__-'-__cll (;'
BB iy

TWOSTITAL

ool Indicates the chaage of viate (0 a%0s ramsition

\ J

Figure 13. MAS based Decomposition of the First-Aid
example.

The Fire-Station agent receives a call informing him
of an incident from a witness which triggers the
protocol by sending the message with the
performative "Request” to Fireman who accepts the
request by responding with an "Agree" message.
When the operation is complete, Fireman sends an
"inform" message to his Fire Station to inform him
that the mission is complete and therefore the
protocol ends.

message to let the Fireman know that the victims are
being taken care of.

-

Figure 15. FIPA Request Protocol Diagram between
Fireman and Hospital.

6.2 Application of the Translation Process

All of the modules mentioned above are implied in
the generated description. (STATE-CHART,
MESSAGE, MESSAGE-OPERATIONS, ...),
which don't change with the other modules'
definitions: AGENTS (Fig. 16), SUPERVISOR-
AGENTS (Fig. 17), INTER-BEHAVIORS (Fig.
18), and FIPA-REQUEST-MAS-INTERACTIONS
(Fig. 19) ... etc.

jnteraction FreSttor Fremun |/

Figure 14. FIPA Request Protocol Diagram between
Fire-Station & Fireman.

6.1.2 AUML Protocol Diagram between Fireman
and Hospital:

As illustrated in Fig. 15. The Fireman supervisor
agent begins the protocol by sending a message with
the performative “Request” to instruct Hospital
agent to pick up the victims it is transporting. The
Hospital agent accepts the request by responding
with an "Agree" message, then sends an "inform"

7557

(omod AGENTS is
ex CLASS-OF-AGENT .
inc STRING NAT .
subclass FireStation < Agent .
subclass Hospital < Agent .

class FireStation | CurrentS : State, PlayR : Role,
GrL : ListofGroup, AcgL : ListofAcquaint,

MBXx : MailBox .

class Hospital | CurrentS : State, PlayR : Role, GrL :
ListofGroup, AcgL : ListofAcquaint,

MBx : MailBox .

endom)

Figure 16. The object oriented module AGENTS.

(omod SUPERVISOR-AGENTS is
ex SUPERVISOR-CLASS-OF-AGENT .
subclass Fireman < SupervisorAgent .
class Fireman | Commitment : Supervisor .

endom)

Figure 17. The object oriented Module SUPERVISOR-
AGENTS

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

(fmod INTER-BEHAVIORS is

pr FIRESTATION-INTRA-BEHAVIOR.
pr FIREMAN-INTRA-BEHAVIOR .
pr HOSPITAL-INTRA-BEHAVIOR .

op Correspondings : State -> State . -—-[1]
op CorrespondingCond : Action -> Condition . ---[2]

Fkkkkkkx FireStation
eq CorrespondingS(AgentState(StartCA)) =
AgentState(StartF) .
eq CorrespondingCond(SendAlert) =
ReceiveAlert .

FRxEIX* Fireman
eq CorrespondingS(AgentState(StartF)) =
AgentState(WaitResponseCA) .
eq CorrespondingCond(SendAcceptF) =
ReceiveAcceptF .

RxExx Hospital
eq CorrespondingS(AgentState(StartH)) =
AgentState(WaitF) .
eq CorrespondingCond(SendAcceptH) =
ReceiveAcceptH .

endfm)

Figure 18. The functional Module INTER-BEHAVIORS.

(tomod FIPA-FEQUE ST-MAS INTEFR ACTIONS is

including WAT-TIME-DOMAIN .
including AGENTS .
including SUPERVISOR-AGENTS .
including INTER-BEHAVIORS .
ek ok Aok ok Rk User Pa.ft
subsort String < Identifier .
ops Event : Idemtifier State Condition -> M=sg .
op UpDatefAcgl : MailBox > Listof Acquaint .

wvars Al A2 : Identifier .
wvars WMB=x 1 : MailBox .
Listof Acquaint .
wvars Condl Cond? : Condition .
wvar Actl @ Action .
wvar W1 : hMessage .
wvar Contl : Content .
eq UpDateAcqgl (MBx1) =
if MBE=xl =— EmptyhiessageBox then
EmptvAcquaintancelist
else
G etldent{ FronthB ox{MMEx1)) -
UpDateAcqgl {(DeletehdB ox{MB=x1))

wars 51 52 : State .
wars ACL1 :

(FireStation) ————-
crl [Sending-Casel] :

Event{ Al S1. Condl)
< Al : FireStation | CurrentS : 51, Acglist: ACL1 >

==

=< Al : FireStation | Currents :
TargetState! 52 Cond?), Acglist: Tail AACL 1) =
Sendhessage{ Al : ActionToAccomplish{S 1, Condl)
: Head A{ACL1))

Evernt{HeadA{ ACL 1), CormrespondingS{S 1),
CorrespondingCond{ ActionToAccomplish{ 51,
Condl)))

if (IsSendinsAction{ ActionToAccomplish{S1,
Condl)) == true) .

erdtom)

Figure 19. The Timed OO Module FIPA-REQUEST-
MAS-INTERACTIONS.

7558

6.3 Validation of the First Aid based FIPA
Request

In order to validate the First Aid scenario, we
analyzed a preliminary configuration in which the
FireStation agent begins by receiving a call, which
eventually leads to fulfilling the requirements of the
other agents.

Fig. 20, presents the timed object oriented module
FIRST-AID, which imports the module FIPA-
REQUEST-MAS-INTERACTIONS and contains
an Initial Configuration. This later describes agents
in their initial states.

All agents are shown in their success states in the
resultant configuration (Fig. 21), signifying that the
FireStation's restrictions have been met.

7. Conclusions

Several interaction protocols for describing multi-
agent systems existed. However, the majority of
them offer informal or semi-formal descriptions. In
this work, we propose a new and general approach,

(tomod FIRST-AID is
extending FIPA-REQUEST-MAS-
INTERACTIONS.

-------- |Validation Part (Initial Configuration)|-------
op Initstate : -> GlobalSystem .

eq Initstate =

{

Event("FireStation™, AgentState(StartCA),
ReceiveCall) Event("Firemanl”,
AgentState(StartWorkF), No-Pb)

Event("Firemanl", AgentState(InRoadF), IsAlive)

< "FireStation" : FireStation | PlayR : FireStation,
CurrentS : AgentState(StartCA), ListofGroup:
"Groupe-1", AcqL : "Firemanl", MBx :
EmptyMessageBox >

< "Firemanl" : Fireman | PlayR : Fireman,
Commitment : "Supervisorl"”, CurrentS :
AgentState(StartF), GrL : "Groupe-2", MBX :
EmptyMessageBox, AcqL :("FireStation" :
"Hospital™) >

< "Hospital” : Hospital | PlayR : Hospital,
CurrentS : AgentState(StartH), GrL : "Groupe-3",
MBXx : EmptyMessageBox, AcqL : "Firemanl" >

}.
endtom)

(trew Initstate with no time limit .)

Figure 20. Initial Configuration.

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

rh mads Agcarmivigein =0

Figure 21. Execution of Initial Configuration.

that makes it easier to formally describe and validate
multi-agent systems. It is based on the FIPA request
interaction protocol.Our approach first captures the
different aspects (functional, static, and dynamic) of
multi-agent systems from an interactional
perspective using AUML diagrams and then
translates these graphical descriptions into a formal
representation in RT-Maude.Employing formal
notations to specify MAS using FIPA request
interaction protocol enables the creation of precise
interaction descriptions and provides stronger
support for their verification and validation
processes.As we have stressed, the results reported
in this paper are preliminary. We plan to the
expansion of this formal interactional framework to
encompass the various interactional concepts that
are offer in others agent- interaction protocols.
Additionally, we want to extend our approach by
including RT-Maude's capabilities to verify specific
FIPA request interaction protocol features.

Author Statements:

Ethical approval: There is no connection
between the study and the use of humans or
animals.

Conflict of interest: According to the
researchers, they have no known financial
conflicts or affiliations that could have impacted
the research described in this article.
Acknowledgement: According to the writers,
they have no institutions or individuals to thank.
Author contributions: The authors of this work
declare their equality.

Funding information: According to
authors, there is no funding to acknowledge.

the

7559

e Data availability statement: The
corresponding author can provide the data
supporting the findings of the research upon
request. Due to ethical and privacy concerns, the
data are not publicly accessible.

References

[1] Olveczky, P. C. (2014, April). Real-Time Maude and
its applications. In International Workshop on
Rewriting Logic and its Applications (pp. 42-79).
Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-12904-4_3

[2] Mokhati, F., Sahraoui, B., Bouzaher, S., & Kimour,
M. T. (2010). A tool for specifying and validating
agents’ interaction protocols: From Agent UML to
Maude. Object Technology, 9(3).
http://www.jot.fm/issues/issue_2010_05/article2/

[3] Mokhati, F., Boudiaf, N., Badri, M., & Badri, L.
(2007). Translating AUML Diagrams into Maude
Specifications: A Formal Verification of Agents
Interaction Protocols. J. Object Technol., 6(4), 77-
102.
http://www.jot.fm/issues/issue_2007_05/article2

[4] FIPA Request Interaction Protocol Specification.
2002.
http://lwww.fipa.org/specs/fipa00026/index.html

[5] Eker, S., Marti-Oliet, N., Meseguer, J., Rubio, R., &
Verdejo, A. (2023). The Maude strategy language.
Journal of Logical and Algebraic Methods in
Programming, 134, 100887.
https://doi.org/10.1016/j.jlamp.2023.100887

[6] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-
Oliet, N., Meseguer, J., & Talcott, C. (2007). All about
maude-a high-performance logical framework: how to
specify, program, and verify systems in rewriting logic
(Vol. 4350). Springer.

[7] Meseguer, J. (2012). Twenty years of rewriting logic.
The Journal of Logic and Algebraic Programming,
81(7-8), 721-781.
https://doi.org/10.1016/j.jlap.2012.06.003

[8] Liu, S. (2019). Design, verification and automatic
implementation of correct-by-construction distributed
transaction systems in Maude (Doctoral dissertation,
University of Illinois at Urbana-Champaign)

[9] Liu, S., Olveczky, P. C., Zhang, M., Wang, Q., &
Meseguer, J. (2019, April). Automatic analysis of
consistency properties of distributed transaction
systems in Maude. In International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (pp. 40-57). Cham: Springer
International Publishing.
https://doi.org/10.1007/978-3-030-17465-1_3

[10] Olveczky, P. C. (2016, September). Formalizing and
validating the P-Store replicated data store in Maude.
In International Workshop on Algebraic Development
Techniques (pp. 189-207). Cham: Springer
International Publishing.
https://doi.org/10.1007/978-3-319-72044-9 13

[11] Garavel, H., Tabikh, M. A., & Arrada, I. S. (2018,
June). Benchmarking implementations of term

https://doi.org/10.1016/j.jlamp.2023.100887
https://doi.org/10.1007/978-3-030-17465-1_3

Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560

rewriting and pattern matching in algebraic,
functional, and object-oriented languages: The 4th
rewrite engines competition. In International
Workshop on Rewriting Logic and its Applications
(pp. 1-25). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-99840-4_1

[12] Olveczky, P. C. (2007). Real-time maude 2.3 manual.
Department of Informatics, University of Oslo, 180.

[13] Duran, F., Eker, S., Escobar, S., Marti-Oliet, N.,
Meseguer, J., Rubio, R., & Talcott, C. (2024,
September). Programming open distributed systems in
Maude. In Proceedings of the 26th International
Symposium on Principles and Practice of Declarative
Programming (pp. 1-12).
https://doi.org/10.1145/3678232.3678237

[14] Liu, S., Meseguer, J., Olveczky, P. C., Zhang, M., &
Basin, D. (2022). Bridging the semantic gap between
qualitative and quantitative models of distributed
systems. Proceedings of the ACM on Programming
Languages, 6(0O0PSLA2), 315-344.
https://doi.org/10.1145/3563299

[15] Amouroux, E., Chu, T. Q., Boucher, A., & Drogoul,
A. (2007, November). GAMA: an environment for
implementing and running spatially explicit multi-
agent simulations. In Pacific Rim International
Conference on Multi-Agents (pp. 359-371). Berlin,
Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-01639-4_32

7560

