
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 11-No.4 (2025) pp. 7553-7560 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

Towards a Rewriting Logic-Based Framework for Specifying FIPA Request 

Protocols  
 

Mohamed Amin Laouadi1*, Djamel Nessah2, Abdelaziz Lakhfif3,  

 
1 Department of Computer Science, Faculty of Sciences, Setif 1 University - Ferhat Abbas, Setif, 19000, Algeria  

* Corresponding Author Email: mohamed.laouadi@univ-setif.dz - ORCID : 0000-0002-6215-2769 
 

2 ICOSI Laboratory, Department of Computer Science, University Abbes Laghrour-Khenchela, Khenchela 40002, Algeria 

Email: Nessah_djamel@univ-khenchela.dz - ORCID : 0009-0004-8671-7017 
 

3 Department of Computer Science, Faculty of Sciences, Setif 1 University - Ferhat Abbas, Setif, 19000, Algeria 

Email: abdelaziz.lakhfif@univ-setif.dz - ORCID : 0000-0002-3287-5456 

 
Article Info: 

 
DOI: 10.22399/ijcesen.4007 

Received : 05 August 2025 

Accepted : 06 October 2025 

 

Keywords 

 
Interaction Protocols,  

FIPA Request,  

rewriting logic,  

Real-Time Maude,   

First Aid.   

 

Abstract:  
 

This paper presents a practical and systematic approach for formally specifying 

interactions in multi-agent systems (MAS) based on the well-established FIPA request 

protocol. It aims to simplify and streamline the process of translating MAS interaction 

descriptions expressed with Agent UML diagrams into precise, unambiguous formal 

specifications using the Real-Time Maude language, which is founded on rewriting 

logic—a powerful and expressive formalism for specifying and analyzing concurrent and 

real-time systems. This integration enables enhanced analysis, rigorous verification, and 

validation of agent behaviors in complex and dynamic scenarios. The effectiveness and 

usability of the proposed approach are demonstrated through a detailed first aid case 

study, highlighting its practical applicability and benefits for designing reliable MAS 

interactions. 

 

1. Introduction 
Interaction is one of the key aspects of multi-agent 

systems, it ensures cooperation and negotiation 

between agents. Implementing the interaction 

requires an infrastructure that includes 

communication languages and interaction protocols. 

According to FIPA (Foundation of Intelligent 

Physical Agents), an interaction protocol is a 

common pattern of communication, so the 

specification and implementation of the protocol 

must be independent of the application domain and 

agent internal architecture. To improve the 

development of interaction between agents, we want 

to formalize the interaction protocols using a formal 

language that is well adapted. We are interested in 

FIPA request interaction protocol since it was the 

most used protocols for the design of MAS. 

Formalizing the FIPA request interaction protocol is 

very important for both analysis and design 

activities. Furthermore, the Multi-Agent System 

(MAS) design requires the involvement with formal 

languages. Among these languages: Real-Time 

Maude (RT-Maude) [1]. The formal specifications 

will eliminate ambiguities in the interpretation of the 

models. For that, the integration of Agent UML 

(AUML) and Real-Time Maude will enable the 

formal validation of the FIPA request protocol.The 

purpose of our approach is to translating AUML 

diagrams into a formal specification to integrate the 

validation of the FIPA request protocol's consistency 

starting from the analysis phase. The remainder of 

the paper is organized as follows. Section 2 provides 

a brief overview of key related works. Section 3 

presents the interactional protocol FIPA request. In 

section 4 we describe briefly rewriting logic basics. 

Sections 5 present the proposed approach along with 

the transformation process. However, Section 6 

presents a first aid case study to demonstrate the 

transformation and validation procedures. In section 

7, we conclude and offer some future work 

directions for further research. 

 

2. Related Works  
 

In works [2] and [3] authors presented a 

formalization process of FIPA protocols and a 

formal framework has been proposed. In these 

http://dergipark.ulakbim.gov.tr/ijcesen
mailto:mohamed.laouadi@univ-setif.dz
mailto:Nessah_djamel@univ-khenchela.dz
mailto:abdelaziz.lakhfif@univ-setif.dz


Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7554 

 

frameworks, several interaction concepts are 

considered. 

To incorporate the formal validation of the 

consistency of these FIPA interaction protocols, 

several modules have been developed since the 

analysis phase. 

In the present work we continue in the same way of 

both approaches [2] and [3] but with more details 

and applying the result of the translation process 

proposed on a real example, an essential idea that has 

not been done yet. Additionally, by utilizing the 

interactional protocol FIPA request, the suggested 

formal framework for MAS, reduces the possibility 

of misunderstandings between users and developers. 

 

3. The Interactional Protocol FIPA Request 
 

The Interactional Protocol FIPA Request allows one 

agent to request another to perform some action. The 

representation of this protocol is given in Fig. 

1.After considering the request, the Participant 

decides whether to accept it or not. "Refused" 

becomes true and the Participant communicates a 

refusal if a refusal choice is made. If not, "agreed" 

turns into reality. The Participant communicates a 

"agree" if the criteria specify that an express 

agreement is essential (i.e., "notification necessary" 

is true). Depending on the situation, the "agree" 

might not be required [4]. 

 

 
Figure 1. FIPA request interaction protocol [4]. 

 

4. Rewriting Logic and Real-Time Maude 

According to Eker et al. [5] rewriting logic is a 

highly expressive and natural framework designed 

for specifying concurrent systems, parallelism, 

communication, and interaction. It effectively 

models state and concurrent computations, 

particularly suited for concurrent object-oriented 

programming. Maude [6] is a language for the 

specifation, simulation, and model checking rewrite 

theories, which are the specification units of 

rewriting logic (see the survey [7] and [8, 9, 10]). 

Maude's rewriting logic is realized via rewrite 

theories that combine equational specifications with 

rewrite rules that handle local state transformations. 

It supports complex rewriting modulo associativity, 

commutativity, and identity axioms, complemented 

by a strategic language layer that controls rule 

application for enhanced user-defined behavior 

control. 

Regarding to the language performance, Maude was 

ranked second (after Haskell) as the best 

performance language in a recent comparative 

analysis of well-known algebraic, functional and 

object-oriented languages performed in [11]. This 

blend makes Maude a powerful tool for specifying, 

executing, verifying, and analyzing complex 

concurrent systems, programming languages, and 

protocols. 

Real-Time Maude [12] is an extension of Maude 

developed to utilize the principles of real-time 

rewrite theory.  

Recent developments have further enhanced 

Maude’s capabilities and applications. Durán et al. 

[13] demonstrate how Maude supports formal 

specification, verification, and declarative 

programming of open distributed systems, enabling 

scalable and reliable system designs that leverage 

rewriting logic's inherent concurrency and 

modularity. Moreover, bridging semantic gaps 

between qualitative and quantitative models in 

distributed systems has been advanced through work 

by Liu et al. [14], who apply Maude for combined 

qualitative-quantitative semantics facilitating 

automated reasoning on complex system properties. 

 

5. The FIPA Request Formal Interactional 

Framework 

 
The developed framework (Fig. 2) consists of 

multiple formal modules, with different categories 

(functional, object-oriented, and timed object-

oriented modules). Due to space constraints, only the 

main modules of the framework are presented. The 

STATE-CHART module (Fig. 3) defines the types 

of actions and conditions an agent can use to specify 

operations related to its states. 

 



Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7555 

 

 
Figure 2. The FIPA Request formal framework modules. 
 

 

 

 

 

 

 

 

 

 

 
Figure 3. The functional module STATE-CHART 

 

Individual agent behavior is represented via the 

INTRA-BEHAVIOR modules, which import the 

STATE-CHART module. Based on the INTRA-

BEHAVIOR modules, the INTER-BEHAVIOR 

module establishes relations to control interactions 

between various agents.The IDENTIFICATION and 

ACTION modules are imported within the 

MESSAGE module (Fig. 4), handles the agent 

identification mechanism and defines the structure 

of messages exchanged between agents. 

 

 
Figure 4. The object oriented module MESSAGE. 

 

Communicating agents typically have a Message 

Box to store messages received from other agents, 

along with a list of their acquaintances. To manage 

these, we suggest the MESSAGE-BOX and LIST-

OF- ACQUAINTANCE modules, which deal with 

agents' Message Boxes and acquaintance lists, 

respectively. 

We define the MESSAGE-OPERATIONS module 

to explain the sending and receiving operations (Fig. 

5), which imports the LIST-OF- ACQUAINTANCE 

and MESSAGE modules. 

 

 

 

 

 

 

 

 

 
Figure 5. The object oriented module MESSAGE-

OPERATIONS 

 

The functional module ROLE-CONCEPT (Fig. 6) 

represent the concept of role that agents can 

performs within groups. 

 

 

 

 

 

 
Figure 6. The functional module ROLE-CONCEPT. 

 

The concept of a group is represented in the module 

LIST-OF-GROUP (Fig. 7). 

 

 
Figure 7. The object oriented module LIST-OF-GROUP. 

 

In the object-oriented module CLASS-OF-AGENT 

(Fig. 8), the basic attributes (CurrentS, PlayR, GrL, 

AcqL, and MBx,) of the class structure for agents are 

defined. which represent the agent’s current state, 

role, group list, acquaintance list, and Message Box, 

(fmod STATE-CHART is 

sorts State NameS. 

sorts Condition Action. 

 op State : NameS -> State . 

 op IsInternalAct : Action -> Bool . 

 op IsReceivingAct : Action -> Bool . 

 op IsSendingAct : Action -> Bool . 

 op TargetS : State Condition -> State . 

 op ActionToAccomplish : State Condition ->Action. 

endfm) 

(omod MESSAGE-OPERATIONS is     

      pr LIST-OF-ACQUAINTANCE  MESSAGE .                

      subsort Acquaintance < Identifier .       

       

      op SendMssg : Message -> Msg .   

      op ReceiveMssg : Message -> Msg .  

 

endom) 

(fmod ROLE-CONCEPT is 

      sort Role . 

*************** User Part 

      …       

Endfm) 

 

) 



Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7556 

 

respectively. The module imports the STATE-

CHART, ROLE-CONCEPT, MESSAGE BOX, 

MESSAGE-OPERATIONS, and LIST-OF-GROUP 

modules. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. The object oriented module CLASS-OF-

AGENT. 

To represent the supervisor of each agents group, we 

define the SupervisorAgent class in the object-

oriented module SUPERVISOR-CLASS-OF-

AGENT (Fig. 9). This class includes the attribute 

Responsibility (line 1) and imports the CLASS-OF-

AGENT module, serving as a subclass of the Agent 

class (line 2). 

 

 

 

 

 

 

 

 

 
 

Figure 9. The object oriented module SUPERVISOR-

CLASS-OF-AGENT. 

The timed object-oriented module FIPA-USE-

CASEi (Fig. 10) has the same name as the associated 

use case and corresponds to any use case that is 

depicted in the various Agent UML Protocol 

diagrams. These modules contain various rewrite 

rules that specify scenarios in which agents interact; 

these interactions might be conditional or 

unconditional, instantaneous or tick-based. 

 

 

 

 

 

 

 

 

 
 

Figure 10. The Timed object oriented Module FIPA-

USE-CASEi 

 

The timed object-oriented module FIPA-

REQUEST-MAS-INTERACTIONS (Fig. 11), 

which represents all system interactions, imported 

all FIPA-USE-CASEi modules. 

 

 

 

 

 

 
 

Figure 11. The Timed object oriented Module FIPA-

REQUEST-MAS-INTERACTIONS. 

 

Fig. 12, where the Timer message is defined (line 1), 

illustrates the tick rule that ensures the system's time 

progression. 

 

 

 

 

 

 

 

 
 

 

Figure 12. The RT-Maude Tick Rule form. 

 

6. Practical Case Study: FIRST AID 
 

We have chosen the first aid case study to validate 

our approach because it can be built according to 

FIPA request interaction protocol for MAS 

development. 

We generalized the model developed by CHU Thanh 

Quang [13] which models land rescue activities to 

apply to various other cases (road accident; fire; 

earthquake; household accidents (gas leak, etc.). 

The decomposition of the MAS chosen for first aid 

application is illustrated in Fig. 13. This application 

involves two types of agents: (1) the Fireman, acting 

as a Supervisor agent, and (2) the Fire-Station and 

Hospital agents. 

When an incident occurs, the Fire-Station agent will 

be informed via its toll-free number from then on: a 

group of firemens agents hurries to the place to 

secure it and take care of the victims if there is one. 

Once there the firemens inform the nearest hospital 

agent of the number of victims and their conditions. 

 

6.1 AUML used Diagrams 

6.1.1 AUML Protocol Diagram between Fire-

Station and Fireman: 

This diagram (Fig. 14) allows us to see the 

interactions between the FireStation, and Fireman 

agents according to the FIPA Request protocol. 

(omod CLASS-OF-AGENT is             

pr STATE-CHART ROLE-CONCEPT .  

pr MESSAGE-BOX LIST-OF- GROUP .   

pr MESSAGE-OPERATIONS. 

 

class Agent | CurrentS : State, PlayR : Role,         

GrL : ListofGroup,  AcqL : ListofAcquaint,        

MBx : Message-Box  .         ---(1)                                        

 

endom).       

 

(omod SUPERVISOR-CLASS-OF-AGENT is               

ex CLASS-OF-AGENT  .  

sort Supervisor .     

subsort String < Supervisor.  

class SupervisorAgent | Commitment : Supervisor. --

-(1)      

subclass SupervisorAgent  <  Agent .            ---(2) 

 

endom)       

(tomod FIPA-USE-CASEi is  

inc  CLASS-OF-AGENT .  

inc  SUPERVISOR-CLASS-OF-AGENT. 

inc  INTER-BEHAVIORS.  

rl [1] : Config1 => Config2.      

….. 

rl [K] : Config2k-1 => Config2k.  

endtom)     

(tomod FIPA-REQUEST-MAS-INTERACTIONS  is 

inc FIPA-USE-CASE1.  

…   

inc FIPA-USE-CASEn.    

endtom) 

crl [tickrule] : 

 {Timer(TimeO)           --(1) 

           < A : Agent |   PlayR: Initiator>                      

REST:Configuration} =>  

  { Timer(TimeO monus 1)    

< A : Agent | >  REST:Configuration }    

in time 1 if (TimeO > zero). 



Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7557 

 

 
Figure 13. MAS based Decomposition of the First-Aid 

example. 

 

The Fire-Station agent receives a call informing him 

of an incident from a witness which triggers the 

protocol by sending the message with the 

performative "Request" to Fireman who accepts the 

request by responding with an "Agree" message. 

When the operation is complete, Fireman sends an 

"inform" message to his Fire Station to inform him 

that the mission is complete and therefore the 

protocol ends. 

 
Figure 14. FIPA Request Protocol Diagram between 

Fire-Station & Fireman. 
 

6.1.2 AUML Protocol Diagram between Fireman 

and Hospital: 

As illustrated in Fig. 15.  The Fireman supervisor 

agent begins the protocol by sending a message with 

the performative “Request” to instruct Hospital 

agent to pick up the victims it is transporting. The 

Hospital agent accepts the request by responding 

with an "Agree" message, then sends an "inform" 

message to let the Fireman know that the victims are 

being taken care of. 

 

 
Figure 15. FIPA Request Protocol Diagram between 

Fireman and Hospital. 

 

6.2 Application of the Translation Process 

All of the modules mentioned above are implied in 

the generated description. (STATE-CHART, 

MESSAGE, MESSAGE-OPERATIONS, …), 

which don't change with the other modules' 

definitions: AGENTS (Fig. 16), SUPERVISOR-

AGENTS (Fig. 17), INTER-BEHAVIORS (Fig. 

18), and FIPA-REQUEST-MAS-INTERACTIONS 

(Fig. 19) ... etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. The object oriented module AGENTS. 

 

 

 

 

 

 

 

 
 

Figure 17. The object oriented Module SUPERVISOR-

AGENTS 

. 

(omod AGENTS is             

      ex CLASS-OF-AGENT .  

      inc STRING NAT .          

      subclass FireStation  <  Agent . 

      subclass Hospital  <  Agent . 

class FireStation | CurrentS : State, PlayR : Role, 

GrL : ListofGroup, AcqL : ListofAcquaint,               

MBx : MailBox  .      

class Hospital | CurrentS : State, PlayR : Role, GrL : 

ListofGroup, AcqL : ListofAcquaint,                      

MBx : MailBox  . 

   endom) 

(omod SUPERVISOR-AGENTS is             

      ex SUPERVISOR-CLASS-OF-AGENT .  

      subclass Fireman  <  SupervisorAgent .    

      class Fireman | Commitment : Supervisor .  

 

endom) 



Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7558 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 18. The functional Module INTER-BEHAVIORS. 

 

 
Figure 19. The Timed OO Module FIPA-REQUEST-

MAS-INTERACTIONS. 

6.3 Validation of the First Aid based FIPA 

Request  

In order to validate the First Aid scenario, we 

analyzed a preliminary configuration in which the 

FireStation agent begins by receiving a call, which 

eventually leads to fulfilling the requirements of the 

other agents. 

Fig. 20, presents the timed object oriented module 

FIRST-AID, which imports the module   FIPA-

REQUEST-MAS-INTERACTIONS and contains 

an Initial Configuration. This later describes agents 

in their initial states. 

All agents are shown in their success states in the 

resultant configuration (Fig. 21), signifying that the 

FireStation's restrictions have been met. 

 

7. Conclusions 

 
Several interaction protocols for describing multi-

agent systems existed. However, the majority of 

them offer informal or semi-formal descriptions. In 

this work, we propose a new and general approach,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 20. Initial Configuration. 

 

(fmod INTER-BEHAVIORS is      

   

      pr FIRESTATION-INTRA-BEHAVIOR.       

      pr FIREMAN-INTRA-BEHAVIOR .        

      pr HOSPITAL-INTRA-BEHAVIOR .        

 

op CorrespondingS : State -> State .           ---[1]            

op CorrespondingCond : Action -> Condition .  ---[2] 

 

******** FireStation 

      eq CorrespondingS(AgentState(StartCA)) =  

         AgentState(StartF) .                        

      eq CorrespondingCond(SendAlert ) =  

         ReceiveAlert  . 

 

******* Fireman 

      eq CorrespondingS(AgentState(StartF)) =  

         AgentState(WaitResponseCA) .  

      eq CorrespondingCond(SendAcceptF ) =  

         ReceiveAcceptF .                         

 

******* Hospital 

      eq CorrespondingS(AgentState(StartH)) =  

         AgentState(WaitF) .  

      eq CorrespondingCond(SendAcceptH ) =  

         ReceiveAcceptH  . 

… 

endfm) 

(tomod FIRST-AID is                      

 extending FIPA-REQUEST-MAS-

INTERACTIONS. 

 

--------|Validation Part (Initial Configuration)|------- 

op Initstate : -> GlobalSystem .   

eq Initstate =   

{  

Event("FireStation", AgentState(StartCA), 

ReceiveCall)   Event("Fireman1", 

AgentState(StartWorkF), No-Pb) 

 

Event("Fireman1", AgentState(InRoadF), IsAlive) 

 

< "FireStation" : FireStation | PlayR : FireStation, 

CurrentS : AgentState(StartCA), ListofGroup: 

"Groupe-1", AcqL : "Fireman1", MBx : 

EmptyMessageBox > 

 

< "Fireman1" : Fireman | PlayR : Fireman, 

Commitment : "Supervisor1", CurrentS : 

AgentState(StartF),  GrL : "Groupe-2", MBx : 

EmptyMessageBox, AcqL :("FireStation" : 

"Hospital") > 

 < "Hospital" : Hospital | PlayR : Hospital,        

CurrentS : AgentState(StartH), GrL : "Groupe-3", 

MBx : EmptyMessageBox,  AcqL : "Fireman1" >   

  } . 

 

endtom) 

 

(trew Initstate with no time limit .) 



Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7559 

 

 
 

Figure 21. Execution of Initial Configuration. 

 

that makes it easier to formally describe and validate 

multi-agent systems. It is based on the FIPA request 

interaction protocol.Our approach first captures the  

different aspects (functional, static, and dynamic) of 

multi-agent systems from an interactional 

perspective using AUML diagrams and then 

translates these graphical descriptions into a formal 

representation in RT-Maude.Employing formal 

notations to specify MAS using FIPA request 

interaction protocol enables the creation of precise 

interaction descriptions and provides stronger 

support for their verification and validation 

processes.As we have stressed, the results reported 

in this paper are preliminary. We plan to the 

expansion of this formal interactional framework to 

encompass the various interactional concepts that 

are offer in others agent- interaction protocols. 

Additionally, we want to extend our approach by 

including RT-Maude's capabilities to verify specific 

FIPA request interaction protocol features. 

Author Statements: 

 

 Ethical approval: There is no connection 

between the study and the use of humans or 

animals. 

 Conflict of interest: According to the 

researchers, they have no known financial 

conflicts or affiliations that could have impacted 

the research described in this article. 

 Acknowledgement: According to the writers, 

they have no institutions or individuals to thank. 

 Author contributions: The authors of this work 

declare their equality. 

 Funding information: According to the 

authors, there is no funding to acknowledge. 

 Data availability statement: The 

corresponding author can provide the data 

supporting the findings of the research upon 

request. Due to ethical and privacy concerns, the 

data are not publicly accessible. 

 

References 

 
[1] Ölveczky, P. C. (2014, April). Real-Time Maude and 

its applications. In International Workshop on 

Rewriting Logic and its Applications (pp. 42-79). 

Cham: Springer International Publishing. 

 https://doi.org/10.1007/978-3-319-12904-4_3 

[2] Mokhati, F., Sahraoui, B., Bouzaher, S., & Kimour, 

M. T. (2010). A tool for specifying and validating 

agents’ interaction protocols: From Agent UML to 

Maude. Object Technology, 9(3). 

 http://www.jot.fm/issues/issue_2010_05/article2/ 

[3] Mokhati, F., Boudiaf, N., Badri, M., & Badri, L. 

(2007). Translating AUML Diagrams into Maude 

Specifications: A Formal Verification of Agents 

Interaction Protocols. J. Object Technol., 6(4), 77-

102.  

 http://www.jot.fm/issues/issue_2007_05/article2 

[4] FIPA Request Interaction Protocol Specification. 

2002. 

http://www.fipa.org/specs/fipa00026/index.html  

[5] Eker, S., Martí-Oliet, N., Meseguer, J., Rubio, R., & 

Verdejo, A. (2023). The Maude strategy language. 

Journal of Logical and Algebraic Methods in 

Programming, 134, 100887. 

https://doi.org/10.1016/j.jlamp.2023.100887 

[6] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-

Oliet, N., Meseguer, J., & Talcott, C. (2007). All about 

maude-a high-performance logical framework: how to 

specify, program, and verify systems in rewriting logic 

(Vol. 4350). Springer.  

[7] Meseguer, J. (2012). Twenty years of rewriting logic. 

The Journal of Logic and Algebraic Programming, 

81(7-8), 721-781. 

https://doi.org/10.1016/j.jlap.2012.06.003 

[8] Liu, S. (2019). Design, verification and automatic 

implementation of correct-by-construction distributed 

transaction systems in Maude (Doctoral dissertation, 

University of Illinois at Urbana-Champaign) 

[9] Liu, S., Ölveczky, P. C., Zhang, M., Wang, Q., & 

Meseguer, J. (2019, April). Automatic analysis of 

consistency properties of distributed transaction 

systems in Maude. In International Conference on 

Tools and Algorithms for the Construction and 

Analysis of Systems (pp. 40-57). Cham: Springer 

International Publishing.  

 https://doi.org/10.1007/978-3-030-17465-1_3 

[10] Ölveczky, P. C. (2016, September). Formalizing and 

validating the P-Store replicated data store in Maude. 

In International Workshop on Algebraic Development 

Techniques (pp. 189-207). Cham: Springer 

International Publishing.  

 https://doi.org/10.1007/978-3-319-72044-9_13 

[11] Garavel, H., Tabikh, M. A., & Arrada, I. S. (2018, 

June). Benchmarking implementations of term 

https://doi.org/10.1016/j.jlamp.2023.100887
https://doi.org/10.1007/978-3-030-17465-1_3


Mohamed Amin Laouadi, Djamel Nessah, Abdelaziz Lakhfif/ IJCESEN 11-4 (2025) 7553-7560 

 

7560 

 

rewriting and pattern matching in algebraic, 

functional, and object-oriented languages: The 4th 

rewrite engines competition. In International 

Workshop on Rewriting Logic and its Applications 

(pp. 1-25). Cham: Springer International Publishing. 

 https://doi.org/10.1007/978-3-319-99840-4_1 

[12] Olveczky, P. C. (2007). Real-time maude 2.3 manual. 

Department of Informatics, University of Oslo, 180.  

[13] Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., 

Meseguer, J., Rubio, R., & Talcott, C. (2024, 

September). Programming open distributed systems in 

Maude. In Proceedings of the 26th International 

Symposium on Principles and Practice of Declarative 

Programming (pp. 1-12). 

 https://doi.org/10.1145/3678232.3678237 

[14] Liu, S., Meseguer, J., Ölveczky, P. C., Zhang, M., & 

Basin, D. (2022). Bridging the semantic gap between 

qualitative and quantitative models of distributed 

systems. Proceedings of the ACM on Programming 

Languages, 6(OOPSLA2), 315-344. 

 https://doi.org/10.1145/3563299 

 [15] Amouroux, E., Chu, T. Q., Boucher, A., & Drogoul, 

A. (2007, November). GAMA: an environment for 

implementing and running spatially explicit multi-

agent simulations. In Pacific Rim International 

Conference on Multi-Agents (pp. 359-371). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

 https://doi.org/10.1007/978-3-642-01639-4_32 

 

 

 

 


