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Multi-agent systems(MAS) rely on adaptive communication architectures to coordinate,
scale, and maintain robustness in dynamic settings where fixed topologies fail. By
adjusting connections under uncertainty, agents preserve connectivity while reducing
resource use, yet combining adaptation with collaborative optimization remains
fragmented. Reviewing over fifty key works from 2003 to 2025, we present a unified
taxonomy of communication paradigms (static vs. dynamic; directed vs. undirected,;
hierarchical vs. peer-to-peer; sparse vs. dense), adaptive-control strategies (model-free
protocols, learning-driven topology updates, fault-resilient controls), and cooperative
optimization methods. Advances in distributed consensus, event-triggered messaging,
and quantized communication have dramatically lowered bandwidth requirements
without sacrificing performance, and algebraic connectivity is shown critical for
convergence rates. Despite progress, challenges persist in scalability, privacy/security in
distributed coordination, and trust-aware human-robot interaction. We propose future
directions toward privacy-preserving protocols, enhanced communication security, and
interpretable coordination frameworks.
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1. Introduction [6], and weighted-median opinion dynamics [7]
refines both information content and routing.

Multi-agent systems demand flexible Integrated frameworks—such as end-to-end multi-

communication to ensure coordination, scalability,
and robustness where fixed networks fail [1].
Algebraic connectivity governs convergence and
resilienc [2], while dynamic topologies adapt links
to preserve connectivity when conditions change—
consensus succeeds if graph unions regularly
contain a spanning tree [3,4]. Information timing,
reliability, and acquisition cost inform adaptation
design [5], yielding gains in efficiency, robustness,
scalability, and task-specific tuning. Representative
methods include model-free protocols
(backstepping; reinforcement learning), learning-
driven topology optimization (graph neural
networks; large language models), and fault-
tolerant  schemes  addressing  failures  or
cyberattacks.  Collaborative  optimization  via
distributed consensus [3], clock synchronization

agent deep reinforcement learning [8], the FC-MAS
five-layer model [9], and nonlinear decision designs
that balance speed with flexibility [10]—aim to
unify communication and control under real-world
constraints. Remaining challenges include scaling
to hundreds or thousands of agents, preserving
privacy and security during adaptation, and
designing interpretable, trust-aware channels for
human-agent interaction. Future research should
co-design communication and control, develop
privacy-preserving adaptive protocols, craft human-
interpretable interfaces, and explore quantum-
enhanced communication for greater bandwidth and
security.

2. Communication Structures in MAS

2.1 Topology Taxonomy
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Static topologies keep links fixed, simplifying
analysis and ensuring predictable consensus via
algebraic connectivity, but they cannot adapt to
changes. In fixed graphs, connectivity directly
influences convergence speed, while dynamic
interaction graphs still achieve consensus if their
union frequently contains a spanning tree.
Undirected graphs use bidirectional links and yield
symmetric Laplacians with favorable convergence,
whereas directed graphs introduce asymmetric
constraints—e.g., power limits or interference—
that complicate analysis, requiring event-triggered
schemes for leader—follower consensus in directed
settings [12]. Hierarchical structures assign roles to
reduce communication complexity yet risk single-
point failures; multi-level cliques can confine
failures in very-large-scale systems. Peer-to-peer
architectures treat all agents equally, relying on
local interactions; sequence-averaging consensus
over quantized data maintains convergence,
emphasizing robustness and scalability despite
increased  communication  [13,15].  Sparse
topologies limit each agent’s neighbors—Ilowering
communication burdens but slowing information
spread—while high-pass filters let agents estimate
connectivity in sparse directed graphs and
autonomously adjust links [16]. Dense topologies
speed data dissemination but raise overhead;
integrating differential privacy into distributed
optimization demonstrates that privacy and
convergence can coexist even in dense networks
[14,16].

2.2 Connectivity and Efficiency Metrics

Algebraic  connectivity—the  second-smallest
Laplacian eigenvalue—quantifies network
connectedness and correlates strongly  with

consensus convergence rate [3]. Distributed high-
pass filters allow agents to estimate true
connectivity without global knowledge and
optimize links in real time [16]. Trust-based
consensus algorithms adjust weights across
multiple channels to enhance reliability under
uncertain communications [14,17], as shown in
Figure 1. Communication cost comprises
bandwidth, energy, and computational complexity;
sequence averaging in quantized scenarios reduces
bandwidth usage while preserving convergence,
and balancing heterogeneous energy costs can
optimize second-order consensus—based clock
synchronization [6]. Integrating differential privacy
into optimization need not impose prohibitive
computational loads, enabling real-time
performance [15,16]. Redundancy and resilience—
measured via edge connectivity—determine a
network’s ability to withstand failures: dynamic
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event-triggered strategies reduce communication
while bolstering robustness under node failures in
directed graphs [12], hierarchical clustering
localizes failures to prevent cascading breakdowns
[13], and privacy mechanisms can be integrated
without significantly degrading resilience [16].

2.3 Topological Influences and Design
Considerations
Topology directly affects consensus: higher

algebraic connectivity yields faster agreement [3],
yet even limited but well-designed connectivity can
achieve timely clock synchronization under energy
constraints [6]. Asynchronous reinforcement-
learning approaches adapt topologies to maintain
stability in dynamic networks [11]. In distributed
optimization, topology influences both convergence
speed and solution quality: strong connectivity is
crucial for privacy-preserving optimization, where
perturbing states and  directions  ensures
convergence under differential privacy, and
sequence averaging over quantized links prevents
divergence, enabling efficient optimization in
sparse, low-bandwidth environments [15,16].
System robustness to disturbances and attacks also
depends on topology: dynamic event-triggered
strategies maintain stability in directed networks
despite  communication disruptions [12], while
hierarchical clustering confines failures locally to
sustain large-scale operation [13]. Practical MAS
topologies must balance task requirements,
resource constraints, scalability, and security—high
connectivity accelerates information flow for time-
critical tasks, whereas long-term monitoring may
prioritize energy efficiency. Combining multiple
communication channels can boost performance
without additional hardware [17], efficient
connectivity estimation helps large-scale networks
maintain performance as they grow [16], and
integrating differential privacy into optimization
addresses  security concerns without unduly
sacrificing resilience [14,16].

3. Adaptive Control Techniques
3.1 Model-Free Adaptive Control

Model-free methods enable agents to optimize
coordination without explicit system models, fitting
complex, uncertain multi-agent  settings.
Backstepping constructs controllers recursively for
strict-feedback nonlinear systems, ensuring stability
via Lyapunov functions and virtual controls; when
combined with neural-network-based reinforcement
learning, it adapts both communication and control
parameters to achieve synchronized tracking
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without solving the full HIB [18,19,21,20]. Despite
rigorous stability guarantees, backstepping’s
“explosion of terms” and reliance on full-state
feedback complicate implementation in high-order
or partially observed systems. Reinforcement
learning (RL) lets agents discover optimal policies
through trial-and-error, removing dependence on
known dynamics. Multi-agent RL architectures mix
Q-values with macro-action fusion to manage
heterogeneity and asynchrony, using attention and
value-decomposition to tailor communication
strategies locally [11,22]. However, RL’s high

computational cost, uncertain convergence in
safety-critical contexts, and the exploration—
exploitation trade-off remain challenges for

resource-limited MAS.
3.2 Learning-Based Topology Adaptation

Machine learning can directly adapt communication
topologies by operating on graph structures or
leveraging semantic understanding. Graph Neural
Networks (GNNs) learn communication patterns
from graph-structured data, using edge-enhanced
attention to weigh neighbor influences and update
link weights end-to-end [23,24]. GNNs naturally
handle heterogeneous agents and often scale with
the number of edges, but training and inference
overheads may exceed individual agent capabilities,
and ensuring learned topologies preserve
connectivity and robustness is still unresolved.
Large-scale language models (LLMs) promise
semantic-aware communication—enabling agents
to compress, prioritize, and contextually interpret
messages. Early work combining deep RL with
GNNs for traffic engineering foreshadows LLM-
based methods that use semantic insights to reduce
redundancy and prioritize critical information [25].

Potential applications include semantic
compression  of  observations, context-aware
message  scheduling, cross-domain translation

among heterogeneous agents, and intent inference
to minimize explicit communication. Practical
hurdles involve large model sizes, inference
latency, and limited interpretability. Hybrid designs
that employ LLMs for semantic preprocessing
alongside lightweight real-time protocols may be
required for safety-critical MAS.

3.3 Fault-Tolerant & Resilient Control

Real-world MAS must withstand actuator faults,
communication disruptions, and cyberattacks.
Adaptive fault-tolerant controllers wuse virtual
actuator frameworks and fuzzy logic to
approximate unknown nonlinearities, guaranteeing
bounded tracking errors even under DoS attacks
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and intermittent failures [21,26,27]. Common
strategies include adaptive parameter estimation,
virtual actuator reconfiguration, and distributed
observers for joint fault estimation. However,
handling simultaneous faults across multiple
agents—where errors propagate through coupled
dynamics—and balancing redundancy against
resource constraints remain open challenges.
Cyber-attack mitigation must address threats like
Denial-of-Service (DoS), which can block
communication and  disrupt  coordination.
Distributed observer-based adaptive consensus
controllers employ secure observers to estimate
unavailable data and integrate filters with
backstepping to robustly handle concurrent DoS
attacks and actuator faults [20,21]. Modeling the
MAS as a switched system under various attack
scenarios, with average dwell-time analysis, can
guarantee stability [27]. Effective mitigation relies
on resilient estimators, event-triggered
communication to reduce attack surfaces, secure
consensus  protocols robust to adversarial
manipulation, and trust-based mechanisms to
discount compromised agents. Detecting subtle
data-manipulation attacks and quantifying the
trade-off  between  security measures and
performance remain active research areas,
underscoring the importance of co-designing
physical fault tolerance with cyber-resilience.

4. Collaborative Optimization Strategies

4.1 Distributed Consensus and Optimization

Consensus protocols iteratively align agents’ local
estimates through neighbor interactions.
Convergence depends on algebraic connectivity,
and event-triggered bipartite-consensus schemes
use saturation functions and resilient laws to
maintain agreement under DoS attacks, provided
attack duration and frequency remain bounded [34].
For convex optimization with state uncertainties,
gradient-tracking methods with projection-error
compensation  ensure  deterministic  linear
convergence under fixed step sizes, despite noise
[30]. In directed graphs, “optimize-then-agree”
schemes decouple optimization and consensus,
achieving convergence to an O(n) neighborhood of
the global optimum for any n>0 [29].

In  competitive  settings,  Nash-equilibrium
algorithms identify stable strategies where no agent
benefits from deviation. Timestamped inertial best-
response dynamics handle asynchronous updates
and delays, offering almost-sure convergence under
mild network switching and connectivity conditions
[33], while surveys classify equilibrium methods by
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convergence rate, information needs, and game
structure [32].

For distributed optimization without central
coordination, agents with private costs cooperate
using event-triggered schemes that respond to state
errors, neighbor deviations, or exponential
thresholds. These converge globally while avoiding
Zeno behavior [28]. In binary, ultra-low-bandwidth
systems, efficient encoding/decoding enables
bounded consensus error with single-bit exchanges,
proving effective under strict communication limits
[31].

4.2 Event-Triggered and
Communication

Quantized

Event-triggered control fires only when state-
dependent  thresholds are crossed, cutting
transmissions by ~80% in bipartite consensus and
vibration suppression under time-varying actuator
faults while preserving stability [35]. Combining
neural approximation with barrier-Lyapunov
designs yields an event-triggered battery controller
that enforces state-of-charge and temperature limits
with far fewer messages [36]. Most triggers use
Lyapunov-based thresholds; security arises by
treating DoS attacks as communication disruptions
and compensating to maintain stability [34].
Quantized communication maps continuous signals
to discrete levels, reducing transmission size. In
binary-only networks, encoding/decoding schemes
achieve bounded consensus errors with single-bit
exchanges [31]. Paired with event-triggering, only
compressed data is sent on triggers, often cutting
communication by orders of magnitude. Learning-
based methods tune thresholds and quantization
using historical data for added efficiency.

Practical deployment must handle delays, packet
loss, and synchronization. Robust triggers account
for time-varying delays, and modeling DoS-
induced delays with compensation preserves
stability [34]. Since asynchronous triggers can
destabilize, self- or predictive-triggered schemes
schedule transmissions in advance, and minimum
inter-event intervals prevent Zeno behavior.

So, we unifies fragmented efficiency claims in Sec
4.1/4.2 into one comparable framework, covering
all major strategies (event-triggered, quantized,
gradient-tracking), as shown in Table 1.

5. Integrated
Frameworks

Adaptive—Collaborative

5.1 Co-Design Architectures

Co-design recognizes that fixing topology before
designing controllers can be suboptimal. One
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approach  uses a  graph-recurrent  neural
parameterization to model both a distributed
controller and its communication graph compactly,
formulating a joint £;-regularized empirical-risk
problem solved via stochastic gradient descent. By
explicitly balancing communication sparsity against
control accuracy as shown in Figure 2, these
controllers match more complex alternatives while
using far fewer parameters, illustrating the
resource—performance tradeoff [38].

In systems with flexible manipulators subject to
actuator faults and parametric uncertainties, a
unified consensus framework reconstructs fault
terms and estimates unknown dynamics online. A
Lyapunov-based design then ensures rigid-body
synchronization and vibration suppression remain
uniformly ultimately bounded despite
disturbances—demonstrating how co-design can
satisfy multi-objective demands (coordination +
mitigation) within a single optimization loop [39].
For linear agents over directed graphs, a fully
distributed optimal-control scheme lets each agent
use only neighbor information—assuming a
spanning tree exists—to solve local optimization
equations that collectively minimize a global cost.
This implicitly identifies necessary links without
requiring global topology knowledge, reducing
information exchange while preserving optimal
behavior [43].

Across these examples, co-design architectures
share three core traits:

1. Communication topology and control gains
are tuned concurrently rather than
sequentially.

Performance—communication tradeoffs are
modeled explicitly, often via sparsity
regularization.

Implementation remains fully distributed,
relying solely on local data.

By treating communication and control as
interdependent  decision  variables, co-design
frameworks achieve better resource efficiency and
robustness than decoupled designs.

5.2 Data-Driven and Online Adaptation

Even a co-designed system can suffer from
unexpected topology changes, failures, or
disturbances. Data-driven adaptation monitors
metrics—like algebraic connectivity or tracking
error—and adjusts links or control parameters in
real time. A distributed connectivity estimator lets
agents gauge network robustness despite packet
loss and varying link quality; by tuning
convergence and robustness parameters, they add or
prune links to maintain optimal connectivity [40].
Adaptive dynamic programming uses only real-
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time I/0 data to compute near-optimal controls,
compensating actuator faults and disturbances
without explicit models or full-state measurements,
thus preserving performance under uncertainty
[41]. In competitive games, first- and zeroth-order
Nash-equilibrium dynamics achieve fixed-time
convergence using only cost-function
measurements; this model-free, multi-time-scale
scheme reaches equilibrium within a bounded time
regardless of initial conditions, suiting rapidly
changing, partially observable settings [42]. Type-2
fuzzy controllers for flexible robots without full-
state feedback solve LMIs or use fuzzy inference to
compute compensation gains; simulations on a
four-robot network show significant performance
gains under uncertainty, illustrating how fuzzy
adaptation  refines controllers with  limited
information [44]. Together, these methods update
parameters from observed data, embed fault
resilience in learning, and rely solely on local
computations. Integrated with co-design, they form
a holistic paradigm: co-design sets communication—
control tradeoffs, while online learning sustains
optimal performance in dynamic, uncertain, and
resource-constrained environments.

6. Application Domains

6.1 Autonomous Vehicles and Platooning

CACC leverages vehicle-to-vehicle communication
for safe distances and traffic stability. Cui et al.
(2022) developed robust CACC addressing
malware, phishing, and DNS tunneling attacks [45].
Their hybrid All-Predecessor Following and
Predecessor-Leader Following topology enhances
robustness, with simulations validating cruising
capabilities and time delay switch attack resistance.
Yu et al. (2022) analyzed communication
interruption impacts on heterogeneous traffic [51].
Modeling bogus messages and delays with driver
takeover responses, they demonstrated failure
propagation causing potential instability. Middle-
position degraded vehicles proved safer during
partial failures.

6.2 Networked Robotics and Formation Control

Formation control coordinates robots maintaining
spatial configurations, balancing communication
efficiency with performance as shown in Figure 3.
Zhan et al. (2023) addressed nonholonomic
coordination via event-triggered finite-time control
under DoS attacks [46]. Their distributed observers
narrow error boundaries using  projection
operations; event-triggered mechanisms identify
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attacks through timestamp verification, maintaining
robust formation despite disruptions.

Kratky et al. (2025) introduced CAT-ORA for
three-dimensional ~ coordination  [52].  Using
Hungarian algorithm for robot-to-goal assignment
with collision avoidance, this minimizes transition
time—valuable for battery-powered UAVsS where
operation time impacts endurance.

6.3 Smart Grids and Microgrids

Smart grids implement multi-agent coordination in
critical infrastructure. IEEE  2030.5-2023
standardizes grid-user interfaces enabling demand
response, load control, and energy storage [48]. Qiu
and Wang (2023) achieved stability through
adaptive event-triggered regulation for islanded AC
microgrids with communication faults [47].
Fathima and Premalatha (2025) developed resilient
schemes protecting DC microgrids, interrupting
faults in 2.64 milliseconds [49]. Sarker et al. (2023)
created security testbeds ensuring essential loads
remain served despite contingencies [50].

7 Challenges and Future Directions

7.1 Scalability and Complexity

Large-scale systems face exponential
computational growth. Ma et al. (2024) addressed
this via decentralized policy optimization enabling
local agents to infer global dynamics [53]. Their &-
dependent networked MDP achieved performance
across domains with up to 436 agents. Xie et al.
(2022) developed sector-based neighbor selection
with d-subgraph connectivity, reducing overhead
while accelerating convergence [57].

Future directions include hierarchical architectures,
heterogeneous  computation distribution, and
modular designs leveraging "six degrees of
separation” for minimal communication achieving
global awareness [53].

7.2 Security and Privacy

Critical infrastructure deployment raises privacy
and attack concerns. Ye et al. (2024) developed
privacy-preserving consensus integrating
differential privacy into distributed optimization,
characterizing privacy-accuracy tradeoffs [54].
Systems must resist DoS and data-manipulation
through resilient estimators and secure protocols.

Future research includes secure multi-party
computation, privacy-aware reinforcement learning,
and lightweight mechanisms for constrained agents.
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7.3 Human-Robot Collaboration

Systems increasingly integrate human collaborators
requiring new communication and trust approaches.
Zahedi et al. (2023) developed trust models
enabling robots to build/maintain trust over
extended horizons [55]. Loizaga et al. (2024) used
physiological monitoring  showing initial
interactions critically influence long-term trust [58].
Ning et al. (2023) surveyed fixed-time consensus
providing predictable convergence for human-robot
coordination [56].Future directions encompass
explainable Al, adaptive interfaces, and mixed-

7.4 Integration Challenges

Isolated solutions prove insufficient; integrated
approaches simultaneously addressing multiple
challenges are essential. Fixed-time methods
enhance predictability and robustness [56]; model-
based frameworks incorporate efficiency and
robustness within scalable designs [53]. Future

research requires multi-objective optimization,
cross-disciplinary  collaboration,  standardized
benchmarks, and adaptive  meta-controllers

dynamically balancing objectives.

initiative planning.

tin)
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Figure 1.Multi-channel switching improves algebraic connectivity (1) with minimal resource overhead
Note. (a) A, values under single-channel vs. multi-channel configurations; (b) Resource consumption
(bandwidth/energy) versus A, gain. Switching 2—4 channels elevates A, by 40-60% while limiting resource costs to
<15% increase. Source: Gripari¢ et al. (2021).

Table 1.Communication efficiency gains across optimization strategies.( Note. Sources: Tang et al. (2023); Guo & Tang
(2022); Khatana et al. (2020); Alanwar et al. (2020).)

Strategy

Communication

Convergence Guarantee

Key Metric

Reduction
Event-triggered control 80-86% Globa_l convergence, no Zeno Trigger frequency, state
behavior error
Binary-valued 50% bandwidth Bounded error (single-bit Convergence error, frame
consensus reduction exchange) count

Gradient-consensus (G-
CON)

1.7% faster convergence

O(n) near optimum

Iterations to e-error

Event-triggered filtering

86% overhead saving

16% performance loss

MSE vs. communication
cost
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8. Conclusions

This review has surveyed recent advances in
communication  control  and  collaborative
optimization for multi-agent systems. As such
systems see broader deployment, addressing
scalability, coordination, security, and human
integration has become increasingly vital.
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Emerging  solutions—including  decentralized
learning, privacy-aware consensus, and trust-based
human-robot models—have enhanced both task
performance and system adaptability. Yet, real-
world deployment still calls for more robust,
integrative approaches that unite technical rigor
with human-centric design and resilience.
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Future progress hinges on continued theoretical
innovation, empirical validation, and
interdisciplinary collaboration to ensure these
systems perform reliably in complex, unpredictable
environments and fulfill their full societal and
industrial potential.
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