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Abstract:  
 

Multi-agent systems(MAS) rely on adaptive communication architectures to coordinate, 

scale, and maintain robustness in dynamic settings where fixed topologies fail. By 

adjusting connections under uncertainty, agents preserve connectivity while reducing 

resource use, yet combining adaptation with collaborative optimization remains 

fragmented. Reviewing over fifty key works from 2003 to 2025, we present a unified 

taxonomy of communication paradigms (static vs. dynamic; directed vs. undirected; 

hierarchical vs. peer‑to‑peer; sparse vs. dense), adaptive‑control strategies (model‑free 

protocols, learning‑driven topology updates, fault‑resilient controls), and cooperative 

optimization methods. Advances in distributed consensus, event-triggered messaging, 

and quantized communication have dramatically lowered bandwidth requirements 

without sacrificing performance, and algebraic connectivity is shown critical for 

convergence rates. Despite progress, challenges persist in scalability, privacy/security in 

distributed coordination, and trust‑aware human–robot interaction. We propose future 

directions toward privacy-preserving protocols, enhanced communication security, and 

interpretable coordination frameworks. 

 

1. Introduction 
 

Multi-agent systems demand flexible 

communication to ensure coordination, scalability, 

and robustness where fixed networks fail [1]. 

Algebraic connectivity governs convergence and 

resilienc [2], while dynamic topologies adapt links 

to preserve connectivity when conditions change—

consensus succeeds if graph unions regularly 

contain a spanning tree [3,4]. Information timing, 

reliability, and acquisition cost inform adaptation 

design  [5], yielding gains in efficiency, robustness, 

scalability, and task-specific tuning. Representative 

methods include model-free protocols 

(backstepping; reinforcement learning), learning-

driven topology optimization (graph neural 

networks; large language models), and fault-

tolerant schemes addressing failures or 

cyberattacks. Collaborative optimization via 

distributed consensus [3], clock synchronization 

[6], and weighted-median opinion dynamics [7] 

refines both information content and routing. 

Integrated frameworks—such as end-to-end multi-

agent deep reinforcement learning [8], the FC-MAS 

five-layer model [9], and nonlinear decision designs 

that balance speed with flexibility [10]—aim to 

unify communication and control under real-world 

constraints. Remaining challenges include scaling 

to hundreds or thousands of agents, preserving 

privacy and security during adaptation, and 

designing interpretable, trust-aware channels for 

human–agent interaction. Future research should 

co-design communication and control, develop 

privacy-preserving adaptive protocols, craft human-

interpretable interfaces, and explore quantum-

enhanced communication for greater bandwidth and 

security. 

 

2.   Communication Structures in MAS 

2.1 Topology Taxonomy 

http://dergipark.org.tr/en/pub/ijcesen
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Static topologies keep links fixed, simplifying 

analysis and ensuring predictable consensus via 

algebraic connectivity, but they cannot adapt to 

changes. In fixed graphs, connectivity directly 

influences convergence speed, while dynamic 

interaction graphs still achieve consensus if their 

union frequently contains a spanning tree. 

Undirected graphs use bidirectional links and yield 

symmetric Laplacians with favorable convergence, 

whereas directed graphs introduce asymmetric 

constraints—e.g., power limits or interference—

that complicate analysis, requiring event‑triggered 

schemes for leader–follower consensus in directed 

settings [12]. Hierarchical structures assign roles to 

reduce communication complexity yet risk single‑
point failures; multi‑level cliques can confine 

failures in very‑large‑scale systems. Peer‑to‑peer 

architectures treat all agents equally, relying on 

local interactions; sequence‑averaging consensus 

over quantized data maintains convergence, 

emphasizing robustness and scalability despite 

increased communication [13,15]. Sparse 

topologies limit each agent’s neighbors—lowering 

communication burdens but slowing information 

spread—while high‑pass filters let agents estimate 

connectivity in sparse directed graphs and 

autonomously adjust links [16]. Dense topologies 

speed data dissemination but raise overhead; 

integrating differential privacy into distributed 

optimization demonstrates that privacy and 

convergence can coexist even in dense networks 

[14,16]. 

 

2.2 Connectivity and Efficiency Metrics 

. 

Algebraic connectivity—the second‑smallest 

Laplacian eigenvalue—quantifies network 

connectedness and correlates strongly with 

consensus convergence rate [3]. Distributed high‑
pass filters allow agents to estimate true 

connectivity without global knowledge and 

optimize links in real time [16]. Trust‑based 

consensus algorithms adjust weights across 

multiple channels to enhance reliability under 

uncertain communications [14,17], as shown in 

Figure 1. Communication cost comprises 

bandwidth, energy, and computational complexity; 

sequence averaging in quantized scenarios reduces 

bandwidth usage while preserving convergence, 

and balancing heterogeneous energy costs can 

optimize second‑order consensus–based clock 

synchronization [6]. Integrating differential privacy 

into optimization need not impose prohibitive 

computational loads, enabling real‑time 

performance [15,16]. Redundancy and resilience—

measured via edge connectivity—determine a 

network’s ability to withstand failures: dynamic 

event‑triggered strategies reduce communication 

while bolstering robustness under node failures in 

directed graphs [12], hierarchical clustering 

localizes failures to prevent cascading breakdowns 

[13], and privacy mechanisms can be integrated 

without significantly degrading resilience [16]. 

 

2.3 Topological Influences and Design 

Considerations 

 

Topology directly affects consensus: higher 

algebraic connectivity yields faster agreement [3], 

yet even limited but well‑designed connectivity can 

achieve timely clock synchronization under energy 

constraints [6]. Asynchronous reinforcement‑
learning approaches adapt topologies to maintain 

stability in dynamic networks [11]. In distributed 

optimization, topology influences both convergence 

speed and solution quality: strong connectivity is 

crucial for privacy‑preserving optimization, where 

perturbing states and directions ensures 

convergence under differential privacy, and 

sequence averaging over quantized links prevents 

divergence, enabling efficient optimization in 

sparse, low‑bandwidth environments [15,16]. 

System robustness to disturbances and attacks also 

depends on topology: dynamic event‑triggered 

strategies maintain stability in directed networks 

despite communication disruptions [12], while 

hierarchical clustering confines failures locally to 

sustain large‑scale operation [13]. Practical MAS 

topologies must balance task requirements, 

resource constraints, scalability, and security—high 

connectivity accelerates information flow for time‑
critical tasks, whereas long‑term monitoring may 

prioritize energy efficiency. Combining multiple 

communication channels can boost performance 

without additional hardware [17], efficient 

connectivity estimation helps large‑scale networks 

maintain performance as they grow [16], and 

integrating differential privacy into optimization 

addresses security concerns without unduly 

sacrificing resilience [14,16]. 

 

3. Adaptive Control Techniques 

3.1 Model-Free Adaptive Control 

 

Model-free methods enable agents to optimize 

coordination without explicit system models, fitting 

complex, uncertain multi-agent settings. 

Backstepping constructs controllers recursively for 

strict-feedback nonlinear systems, ensuring stability 

via Lyapunov functions and virtual controls; when 

combined with neural-network-based reinforcement 

learning, it adapts both communication and control 

parameters to achieve synchronized tracking 
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without solving the full HJB [18,19,21,20]. Despite 

rigorous stability guarantees, backstepping’s 

“explosion of terms” and reliance on full-state 

feedback complicate implementation in high-order 

or partially observed systems. Reinforcement 

learning (RL) lets agents discover optimal policies 

through trial-and-error, removing dependence on 

known dynamics. Multi-agent RL architectures mix 

Q-values with macro-action fusion to manage 

heterogeneity and asynchrony, using attention and 

value-decomposition to tailor communication 

strategies locally [11,22]. However, RL’s high 

computational cost, uncertain convergence in 

safety-critical contexts, and the exploration–

exploitation trade-off remain challenges for 

resource-limited MAS. 

 

3.2 Learning-Based Topology Adaptation 

 

Machine learning can directly adapt communication 

topologies by operating on graph structures or 

leveraging semantic understanding. Graph Neural 

Networks (GNNs) learn communication patterns 

from graph-structured data, using edge-enhanced 

attention to weigh neighbor influences and update 

link weights end-to-end [23,24]. GNNs naturally 

handle heterogeneous agents and often scale with 

the number of edges, but training and inference 

overheads may exceed individual agent capabilities, 

and ensuring learned topologies preserve 

connectivity and robustness is still unresolved. 

Large-scale language models (LLMs) promise 

semantic-aware communication—enabling agents 

to compress, prioritize, and contextually interpret 

messages. Early work combining deep RL with 

GNNs for traffic engineering foreshadows LLM-

based methods that use semantic insights to reduce 

redundancy and prioritize critical information [25]. 

Potential applications include semantic 

compression of observations, context-aware 

message scheduling, cross-domain translation 

among heterogeneous agents, and intent inference 

to minimize explicit communication. Practical 

hurdles involve large model sizes, inference 

latency, and limited interpretability. Hybrid designs 

that employ LLMs for semantic preprocessing 

alongside lightweight real-time protocols may be 

required for safety-critical MAS. 

 

3.3 Fault-Tolerant & Resilient Control 

 

Real-world MAS must withstand actuator faults, 

communication disruptions, and cyberattacks. 

Adaptive fault-tolerant controllers use virtual 

actuator frameworks and fuzzy logic to 

approximate unknown nonlinearities, guaranteeing 

bounded tracking errors even under DoS attacks 

and intermittent failures [21,26,27]. Common 

strategies include adaptive parameter estimation, 

virtual actuator reconfiguration, and distributed 

observers for joint fault estimation. However, 

handling simultaneous faults across multiple 

agents—where errors propagate through coupled 

dynamics—and balancing redundancy against 

resource constraints remain open challenges. 

Cyber-attack mitigation must address threats like 

Denial-of-Service (DoS), which can block 

communication and disrupt coordination. 

Distributed observer-based adaptive consensus 

controllers employ secure observers to estimate 

unavailable data and integrate filters with 

backstepping to robustly handle concurrent DoS 

attacks and actuator faults [20,21]. Modeling the 

MAS as a switched system under various attack 

scenarios, with average dwell-time analysis, can 

guarantee stability [27]. Effective mitigation relies 

on resilient estimators, event-triggered 

communication to reduce attack surfaces, secure 

consensus protocols robust to adversarial 

manipulation, and trust-based mechanisms to 

discount compromised agents. Detecting subtle 

data-manipulation attacks and quantifying the 

trade-off between security measures and 

performance remain active research areas, 

underscoring the importance of co-designing 

physical fault tolerance with cyber-resilience. 

 

4. Collaborative Optimization Strategies 

4.1 Distributed Consensus and Optimization 

 

Consensus protocols iteratively align agents’ local 

estimates through neighbor interactions. 

Convergence depends on algebraic connectivity, 

and event-triggered bipartite-consensus schemes 

use saturation functions and resilient laws to 

maintain agreement under DoS attacks, provided 

attack duration and frequency remain bounded [34]. 

For convex optimization with state uncertainties, 

gradient-tracking methods with projection-error 

compensation ensure deterministic linear 

convergence under fixed step sizes, despite noise 

[30]. In directed graphs, “optimize-then-agree” 

schemes decouple optimization and consensus, 

achieving convergence to an O(η) neighborhood of 

the global optimum for any η>0 [29]. 

In competitive settings, Nash-equilibrium 

algorithms identify stable strategies where no agent 

benefits from deviation. Timestamped inertial best-

response dynamics handle asynchronous updates 

and delays, offering almost-sure convergence under 

mild network switching and connectivity conditions 

[33], while surveys classify equilibrium methods by 
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convergence rate, information needs, and game 

structure [32]. 

For distributed optimization without central 

coordination, agents with private costs cooperate 

using event-triggered schemes that respond to state 

errors, neighbor deviations, or exponential 

thresholds. These converge globally while avoiding 

Zeno behavior [28]. In binary, ultra-low-bandwidth 

systems, efficient encoding/decoding enables 

bounded consensus error with single-bit exchanges, 

proving effective under strict communication limits 

[31]. 

 

4.2 Event-Triggered and Quantized 

Communication 

 

Event-triggered control fires only when state-

dependent thresholds are crossed, cutting 

transmissions by ~80% in bipartite consensus and 

vibration suppression under time-varying actuator 

faults while preserving stability [35]. Combining 

neural approximation with barrier-Lyapunov 

designs yields an event-triggered battery controller 

that enforces state-of-charge and temperature limits 

with far fewer messages [36]. Most triggers use 

Lyapunov-based thresholds; security arises by 

treating DoS attacks as communication disruptions 

and compensating to maintain stability [34]. 

Quantized communication maps continuous signals 

to discrete levels, reducing transmission size. In 

binary-only networks, encoding/decoding schemes 

achieve bounded consensus errors with single-bit 

exchanges [31]. Paired with event-triggering, only 

compressed data is sent on triggers, often cutting 

communication by orders of magnitude. Learning-

based methods tune thresholds and quantization 

using historical data for added efficiency. 

Practical deployment must handle delays, packet 

loss, and synchronization. Robust triggers account 

for time-varying delays, and modeling DoS-

induced delays with compensation preserves 

stability [34]. Since asynchronous triggers can 

destabilize, self- or predictive-triggered schemes 

schedule transmissions in advance, and minimum 

inter-event intervals prevent Zeno behavior. 

So, we unifies fragmented efficiency claims in Sec 

4.1/4.2 into one comparable framework, covering 

all major strategies (event-triggered, quantized, 

gradient-tracking), as shown in Table 1. 

 

5. Integrated Adaptive–Collaborative 

Frameworks 

5.1 Co-Design Architectures 

 

Co-design recognizes that fixing topology before 

designing controllers can be suboptimal. One 

approach uses a graph‑recurrent neural 

parameterization to model both a distributed 

controller and its communication graph compactly, 

formulating a joint ℓ₁‑regularized empirical‑risk 

problem solved via stochastic gradient descent. By 

explicitly balancing communication sparsity against 

control accuracy as shown in Figure 2, these 

controllers match more complex alternatives while 

using far fewer parameters, illustrating the 

resource–performance tradeoff [38]. 

In systems with flexible manipulators subject to 

actuator faults and parametric uncertainties, a 

unified consensus framework reconstructs fault 

terms and estimates unknown dynamics online. A 

Lyapunov‑based design then ensures rigid‑body 

synchronization and vibration suppression remain 

uniformly ultimately bounded despite 

disturbances—demonstrating how co-design can 

satisfy multi‑objective demands (coordination + 

mitigation) within a single optimization loop [39]. 

For linear agents over directed graphs, a fully 

distributed optimal‑control scheme lets each agent 

use only neighbor information—assuming a 

spanning tree exists—to solve local optimization 

equations that collectively minimize a global cost. 

This implicitly identifies necessary links without 

requiring global topology knowledge, reducing 

information exchange while preserving optimal 

behavior [43]. 

Across these examples, co-design architectures 

share three core traits: 

1. Communication topology and control gains 

are tuned concurrently rather than 

sequentially. 

2. Performance–communication tradeoffs are 

modeled explicitly, often via sparsity 

regularization. 

3. Implementation remains fully distributed, 

relying solely on local data. 

By treating communication and control as 

interdependent decision variables, co-design 

frameworks achieve better resource efficiency and 

robustness than decoupled designs. 

 

5.2 Data-Driven and Online Adaptation 

 

Even a co‑designed system can suffer from 

unexpected topology changes, failures, or 

disturbances. Data‑driven adaptation monitors 

metrics—like algebraic connectivity or tracking 

error—and adjusts links or control parameters in 

real time. A distributed connectivity estimator lets 

agents gauge network robustness despite packet 

loss and varying link quality; by tuning 

convergence and robustness parameters, they add or 

prune links to maintain optimal connectivity [40]. 

Adaptive dynamic programming uses only real‑
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time I/O data to compute near‑optimal controls, 

compensating actuator faults and disturbances 

without explicit models or full‑state measurements, 

thus preserving performance under uncertainty 

[41]. In competitive games, first‑ and zeroth‑order 

Nash‑equilibrium dynamics achieve fixed‑time 

convergence using only cost‑function 

measurements; this model‑free, multi‑time‑scale 

scheme reaches equilibrium within a bounded time 

regardless of initial conditions, suiting rapidly 

changing, partially observable settings [42]. Type‑2 

fuzzy controllers for flexible robots without full‑
state feedback solve LMIs or use fuzzy inference to 

compute compensation gains; simulations on a 

four‑robot network show significant performance 

gains under uncertainty, illustrating how fuzzy 

adaptation refines controllers with limited 

information [44]. Together, these methods update 

parameters from observed data, embed fault 

resilience in learning, and rely solely on local 

computations. Integrated with co‑design, they form 

a holistic paradigm: co‑design sets communication–

control tradeoffs, while online learning sustains 

optimal performance in dynamic, uncertain, and 

resource‑constrained environments. 

 

6. Application Domains 

6.1 Autonomous Vehicles and Platooning 

 

CACC leverages vehicle-to-vehicle communication 

for safe distances and traffic stability. Cui et al. 

(2022) developed robust CACC addressing 

malware, phishing, and DNS tunneling attacks [45]. 

Their hybrid All-Predecessor Following and 

Predecessor-Leader Following topology enhances 

robustness, with simulations validating cruising 

capabilities and time delay switch attack resistance. 

Yu et al. (2022) analyzed communication 

interruption impacts on heterogeneous traffic [51]. 

Modeling bogus messages and delays with driver 

takeover responses, they demonstrated failure 

propagation causing potential instability. Middle-

position degraded vehicles proved safer during 

partial failures. 

 

6.2 Networked Robotics and Formation Control 

 

Formation control coordinates robots maintaining 

spatial configurations, balancing communication 

efficiency with performance as shown in Figure 3. 

Zhan et al. (2023) addressed nonholonomic 

coordination via event-triggered finite-time control 

under DoS attacks [46]. Their distributed observers 

narrow error boundaries using projection 

operations; event-triggered mechanisms identify 

attacks through timestamp verification, maintaining 

robust formation despite disruptions. 

 

Kratky et al. (2025) introduced CAT-ORA for 

three-dimensional coordination [52]. Using 

Hungarian algorithm for robot-to-goal assignment 

with collision avoidance, this minimizes transition 

time—valuable for battery-powered UAVs where 

operation time impacts endurance. 

 

6.3 Smart Grids and Microgrids 

 

Smart grids implement multi-agent coordination in 

critical infrastructure. IEEE 2030.5-2023 

standardizes grid-user interfaces enabling demand 

response, load control, and energy storage [48]. Qiu 

and Wang (2023) achieved stability through 

adaptive event-triggered regulation for islanded AC 

microgrids with communication faults [47]. 

Fathima and Premalatha (2025) developed resilient 

schemes protecting DC microgrids, interrupting 

faults in 2.64 milliseconds [49]. Sarker et al. (2023) 

created security testbeds ensuring essential loads 

remain served despite contingencies [50]. 

 

7 Challenges and Future Directions 

7.1 Scalability and Complexity 

 

Large-scale systems face exponential 

computational growth. Ma et al. (2024) addressed 

this via decentralized policy optimization enabling 

local agents to infer global dynamics [53]. Their ξ-

dependent networked MDP achieved performance 

across domains with up to 436 agents. Xie et al. 

(2022) developed sector-based neighbor selection 

with d-subgraph connectivity, reducing overhead 

while accelerating convergence [57]. 

Future directions include hierarchical architectures, 

heterogeneous computation distribution, and 

modular designs leveraging "six degrees of 

separation" for minimal communication achieving 

global awareness [53]. 

 

7.2 Security and Privacy 

 

Critical infrastructure deployment raises privacy 

and attack concerns. Ye et al. (2024) developed 

privacy-preserving consensus integrating 

differential privacy into distributed optimization, 

characterizing privacy-accuracy tradeoffs [54]. 

Systems must resist DoS and data-manipulation 

through resilient estimators and secure protocols. 

Future research includes secure multi-party 

computation, privacy-aware reinforcement learning, 

and lightweight mechanisms for constrained agents. 
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7.3 Human-Robot Collaboration 

 

Systems increasingly integrate human collaborators 

requiring new communication and trust approaches. 

Zahedi et al. (2023) developed trust models 

enabling robots to build/maintain trust over 

extended horizons [55]. Loizaga et al. (2024) used 

physiological monitoring showing initial 

interactions critically influence long-term trust [58]. 

Ning et al. (2023) surveyed fixed-time consensus 

providing predictable convergence for human-robot 

coordination [56].Future directions encompass 

explainable AI, adaptive interfaces, and mixed-

initiative planning. 

 

7.4 Integration Challenges 

 

Isolated solutions prove insufficient; integrated 

approaches simultaneously addressing multiple 

challenges are essential. Fixed-time methods 

enhance predictability and robustness [56]; model-

based frameworks incorporate efficiency and 

robustness within scalable designs [53]. Future 

research requires multi-objective optimization, 

cross-disciplinary collaboration, standardized 

benchmarks, and adaptive meta-controllers 

dynamically balancing objectives. 
 

 

 

 
Figure 1.Multi-channel switching improves algebraic connectivity (λ₂) with minimal resource overhead 

Note. (a) λ₂ values under single-channel vs. multi-channel configurations; (b) Resource consumption 

(bandwidth/energy) versus λ₂ gain. Switching 2–4 channels elevates λ₂ by 40–60% while limiting resource costs to 

<15% increase. Source: Griparić et al. (2021). 

Table 1.Communication efficiency gains across optimization strategies.( Note. Sources: Tang et al. (2023); Guo & Tang 

(2022); Khatana et al. (2020); Alanwar et al. (2020).) 

Strategy 
Communication 

Reduction 
Convergence Guarantee Key Metric 

Event-triggered control 80–86% 
Global convergence, no Zeno 

behavior 

Trigger frequency, state 

error 

Binary-valued 

consensus 

50% bandwidth 

reduction 

Bounded error (single-bit 

exchange) 

Convergence error, frame 

count 

Gradient-consensus (G-

CON) 
1.7× faster convergence O(η) near optimum Iterations to ε-error 

Event-triggered filtering 86% overhead saving 16% performance loss 
MSE vs. communication 

cost 



Bangyin Xiang, Jinchun Liu, Yi Wang/ IJCESEN 11-4(2025)7561-7570 

 

7567 

 

 

Figure 2. Trade-off between communication sparsity and control performance.(Note. Normalized LQR cost vs. number 

of directed edges |E|. Dense topologies (|E|=120) achieve optimal control but incur high communication overhead; 

sparse topologies (|E|=30) preserve 92% performance with 75% less resources. Source: Yang & Matni (2021).) 

 

Figure 3.Event-triggered control enables 87% vibration suppression under faults (Note. Amplitude reduction from 0.06 

m to 0.008 m in flexible Timoshenko manipulators using bipartite consensus. Trigger timestamps (lower plot) show 

sparse communication. Source: Yao et al. (2024).) 

 

8. Conclusions 

 
This review has surveyed recent advances in 

communication control and collaborative 

optimization for multi-agent systems. As such 

systems see broader deployment, addressing 

scalability, coordination, security, and human 

integration has become increasingly vital. 

Emerging solutions—including decentralized 

learning, privacy-aware consensus, and trust-based 

human–robot models—have enhanced both task 

performance and system adaptability. Yet, real-

world deployment still calls for more robust, 

integrative approaches that unite technical rigor 

with human-centric design and resilience. 
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Future progress hinges on continued theoretical 

innovation, empirical validation, and 

interdisciplinary collaboration to ensure these 

systems perform reliably in complex, unpredictable 

environments and fulfill their full societal and 

industrial potential. 
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