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Abstract:

Univariate Feature Selection (UFS) traditionally involves a labor-intensive process of
trial-and error, necessitating the selection of scoring functions and the determination of
feature numbers. These choices can inadvertently affect both the performance and
interpretability of the model. To address this challenge, we introduce Particle Swarm
Optimization for Univariate Feature Selection (PSO-UFS), an innovative method that
automates these crucial decisions. PSO-UFS leverages the power of Particle Swarm
Optimization (PSO) to autonomously identify the optimal scoring function and feature
subset that maximize a machine learning algorithm’s performance metric. Our empirical
evaluations across multiple datasets demonstrate that PSO-UFS significantly
outperforms traditional UFS in various performance metrics, including accuracy,
precision, recall, and F1-score. Importantly, PSO-UFS generates more interpretable
feature subsets, thereby enhancing the model’s comprehensibility. This advancement
paves the way for broader applications in real-world scenarios where feature reduction

and interpretability are paramount.

1. Introduction

The advent of high-dimensional data, characterized
by an abundance of features, presents both
opportunities and challenges for machine learning
[28]. The wealth of information harbors the
potential for deeper insights and more accurate
models. However, it also introduces issues such as
redundancy, noise, and irrelevant features, which
can negatively impact prediction performance
[16].Feature selection, a crucial step in data
analysis and machine learning, is a strategy
employed to navigate these challenges. It involves
identifying and selecting a subset of relevant
features, thereby enhancing model efficacy,
interpretability, and computational efficiency [17,
24, 33]. However, feature selection is not without
its own set of challenges [35]. One such challenge
is the manual selection of the scoring function and
the number of features in Univariate Feature
Selection (UFS), a type of filter-based feature
selection method. This introduces subjectivity and
uncertainty, potentially leading to suboptimal
results [10]. Filter-based feature selection methods,

including UFS, form a significant part of the
broader taxonomy of feature selection approaches.
These methods are known for their simplicity,
scalability, and efficiency in handling large
datasets. They evaluate individual features based on
statistical measures of relevance, such as
correlation or mutual information, independent of
any machine learning algorithm. This makes them
distinct from wrapper methods, which evaluate
subsets of features based on the performance of a
specific machine learning model [38], and
embedded methods, which perform feature
selection as part of the model training process. This
paper introduces a groundbreaking approach to
Univariate Feature Selection (UFS) in machine
learning, known as PSO-UFS. The novelty of this
method lies in its use of Particle Swarm
Optimization (PSO) to simultaneously optimize
both the scoring function and the number of
features, a task that was previously handled
separately.  This  simultaneous  optimization
addresses the limitations of existing UFS
techniques by considering feature interactions
indirectly, which was not possible when optimizing
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the scoring function and the number of features
separately. This innovative approach not only
enhances the efficiency of UFS but also improves
the interpretability of the selected features, paving
the way for a deeper understanding of model
predictions. This advancement represents a
significant leap in the field of feature selection,
underscoring the potential of bio-inspired
algorithms in automating and optimizing the
process. We evaluate PSO-UFS on multiple
datasets and compare it with traditional UFS
methods. Our results demonstrate the effectiveness
of PSO-UFS and highlight the potential of bio-
inspired algorithms in automating and optimizing
feature selection. We also underscore the improved
interpretability of features selected by PSO-UFS,
leading to a more profound understanding of model
predictions [30]. The main contributions of this
paper are:

e We propose PSO-UFS, a novel technique
that automates univariate feature selection
using PSO. This approach addresses
limitations in existing UFS techniques by
indirectly considering feature interactions.
We formulate univariate feature selection
as an optimization problem with two
decision variables: k and s. This
formulation allows us to automate what
was previously a manual process.

We evaluate our technique on three
benchmark datasets from diverse domains.
Our results show that PSO-UFS can
significantly improve UFS performance
across different types of data.

Our technique identifies an optimal subset
of features, denoted by S, that is more
interpretable than those obtained by
conventional manual methods.  This
improvement in interpretability can aid in
understanding model predictions.

This work represents a significant advancement in
the field of feature selection, demonstrating the
potential of bio-inspired algorithms to automate and
optimize the process. The rest of the paper is
organized as follows. Section 2 reviews the related
work in the field of univariate feature selection and
compares it with our proposed PSO-UFS method.
Section 3 provides a detailed explanation of the
UFS process, including commonly used scoring
functions and selection steps. Section 4 presents the
PSO-UFS algorithm, outlining the optimization
problem formulation and the PSO procedure.
Section 5 describes our experimental setup and
evaluation results on the chosen datasets. Finally,
Section 6 concludes the paper.
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2. Related Work

The domain of feature selection has witnessed
substantial advancements with the integration of
various optimization techniques. These techniques
strive to pinpoint the optimal subset of features that
maximize a predefined objective function. Among
these, Genetic Algorithms (GA), Ant Colony
Optimization (ACO), and Particle Swarm
Optimization (PSO) are particularly noteworthy.
Each of these techniques possesses unigue
advantages and can be effective in different
contexts. However, this paper underscores PSO due
to its inherent simplicity, adaptability, scalability,
and robustness [1, 20]. Recent studies have indeed
harnessed PSO for feature selection in various
contexts. For instance, an algorithm was proposed
that employs the best-worst multi-attribute
decision-making method for univariate feature
selection [2]. This method ranks features based on
their scores computed by different scoring
functions such as chi-square, ANOVA F-test,
mutual information, and t-test [2]. The algorithm
was evaluated on four UCI benchmark datasets and
was found to outperform other univariate feature
selection methods in terms of accuracy, precision,
recall, and F1-score [2]. Moreover, a study
proposed two PSO variants to undertake feature
selection tasks [37]. The aim was to overcome two
major shortcomings of the original PSO model, i.e.,
premature convergence and weak exploitation
around the near optimal solutions. The proposed
models illustrated statistical superiority for
discriminative feature selection for a total of 13
data sets [37].Another study applied the feature
selection-based Particle Swarm Optimization (PSO)
method to detect phishing websites [4]. The
experimental findings showed that the proposed
PSO-based feature selection model substantially
improved classification accuracy, sensitivity,
specificity, fl-score, and Matthew’s correlation
coefficient in machine learning models [4]. In
addition, a novel feature selection-based transfer
learning  approach  using  particle  swarm
optimization (PSO) for unsupervised transfer
learning (FSUTL-PSO) was implemented [32]. In
FSUTL-PSO, all objectives were incorporated into
one fitness function and common good features
from the source and target domains were selected
based on the fitness function for eliminating the
threat of degenerated features [32].Furthermore, a
study proposed efficient feature selection methods
using PSO with a fuzzy rough set as a fitness
function [19]. The proposed methods were
compared against two classical feature selection
methods, as well as three PSO and rough set-based
feature selection approaches. The results showed
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that using the proposed techniques, a small feature
subset may be automatically selected with better
classification accuracy than utilizing all features
[19]. Lastly, a study provided an overview of PSO
for feature selection in biomedical data analysis [3].
This study reviewed the applications, challenges,
and future directions of PSO for feature selection in
various biomedical domains, such as gene
expression, protein structure, medical image, and
clinical diagnosis. The study also discussed the
advantages and disadvantages of PSO for feature
selection and  suggested some  possible
improvements [3]. Univariate feature selection
(UFS) is a popular technique for reducing the
dimensionality and complexity of datasets. It ranks
features based on their individual relevance to the
target variable, without considering their
interactions. UFS is fast and scalable, making it
suitable for high-dimensional datasets. Previous
studies have shown that UFS is more stable in the
case of high-dimensional databases [12]. Scoring
functions are pivotal in univariate feature selection,
serving to independently assess the relevance of
each feature to the target variable [6, 21].
Commonly employed scoring functions include chi-
square, ANOVA F-test (Analysis of Variance),
mutual information, and Fisher score. These
functions, grounded in various statistical tests or
information theory measures, come with distinct
assumptions and properties. For instance, chi-
square and ANOVA F-test, based on the chi-square
distribution and F-distribution respectively, are apt
for categorical and numerical features. Mutual
information quantifies the mutual dependence
between two variables, while Fisher score gauges
the discriminative power of a feature for binary
classification. These scoring functions have found
extensive application across diverse domains such
as text mining, bioinformatics, and computer vision
[25]. However, the selection of the scoring function
and the number of features (k) often requires
manual tuning and domain knowledge, which can
be time-consuming and subjective [6]. Moreover,
these scoring functions do not consider the
interactions or dependencies among features, which
can lead to suboptimal feature subsets [6]. To
address these challenges, our proposed PSO-UFS
approach automates the selection of the scoring
function and k, and it considers feature interactions
indirectly by optimizing a performance metric of a
machine learning algorithm [6]. While existing
studies underscore the versatility and applicability
of PSO and univariate feature selection techniques
across different data types or tasks, they do not
specifically tackle the problem of automating
univariate feature selection using PSO. This is
precisely the focus of our paper, highlighting the
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novelty and significance of our proposed PSO-UFS
approach. Our method aims to bridge this gap in the
literature by introducing a technique that harnesses
the strengths of PSO to automate univariate feature
selection, thereby offering an efficient and effective
solution for feature selection tasks [8, 27].

3 Univariate Feature Selection: An In-depth
Analysis

Univariate feature selection (UFS) is a statistical
technique that evaluates the relevance of individual
features to a target variable, independent of other
features. This method is particularly beneficial for
high-dimensional datasets, as it can enhance the
interpretability and efficiency of machine learning
models by reducing noise, redundancy, and
irrelevance in the data. Despite its simplicity and
scalability, UFS has been successfully applied in
various domains, including text classification [7,
11], cancer prediction [31], and image retrieval
[25], thereby enhancing the transparency of the
models.

3.1 Scoring Functions: A Comparative Analysis

The effectiveness of Univariate Feature Selection
(UFS) largely hinges on the scoring function
employed to gauge the relevance of each feature to
the target variable. Different scoring functions
come with different assumptions and properties,
and may favor different types of features.
Consequently, the choice of scoring function is
pivotal for effective feature selection. Some of the
commonly used scoring functions encompass:

e Chi-square: This function tests the
independence between a categorical feature
and a categorical target wvariable. It
computes the difference between the
observed and expected frequencies of each
category, normalized by the expected
frequency. The higher the score, the more
dependent the feature is on the target
variable.

ANOVA F-test (Analysis of Variance):
This function tests the equality of the
means of a numerical feature across
different groups defined by a categorical
target variable. It computes the ratio of the
between-group variance to the within-
group variance. The higher the score, the
more disparate the feature means are across
the groups.

Mutual information: This function
quantifies the mutual dependence between
a feature and a target variable, irrespective
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of their types. It computes the reduction in
uncertainty about one variable given the
knowledge of the other variable. The higher
the score, the more information the feature
and the target variable share.

Pearson correlation:  This  function
measures the linear relationship between a
numerical feature and a numerical target
variable. It computes the covariance
between the feature and the target variable,
normalized by their standard deviations.
The higher the absolute value of the score,
the stronger the linear relationship is.
Fisher score: This function measures the
discriminative power of a feature for binary
classification. It computes the ratio of the
between-class variance to the within-class
variance. The higher the score, the more
discriminative the feature is.

To illustrate the differences among these scoring
functions, we use the Iris dataset [14] as an
example. The Iris dataset comprises 150 samples of
three types of iris flowers (setosa, versicolor, and
virginica) with four features: sepal length, sepal
width, petal length, and petal width. The target
variable is the type of iris flower. We apply the four
scoring functions to rank the features according to
their relevance to the target variable. Table 1
presents the normalized scores of each feature for
each scoring function.The results reveal that while
all four scoring functions concur that petal length
and petal width are the most relevant features, they
differ in the ranking of sepal length and sepal
width. This demonstrates that different scoring
functions may have different preferences or
sensitivities for different features. For instance,
Pearson correlation assigns a high score to sepal
length due to its strong linear relationship with the
target variable, while chi-square assigns a low score
to sepal width due to its weak dependence with the
target variable.

3.2 Determining the Optimal Number of
Features (k)

Determining the optimal number of features (k) to
select is a critical and challenging decision in UFS.
Selecting too few features may lead to loss of
valuable information, while selecting too many
features may introduce noise and redundancy.
Therefore, striking the right balance between
simplicity and accuracy is essentia. A common
method for selecting k is the iterative approach,
which involves the following steps:

1. Start with a small k value.
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2. Train a machine learning model with the
selected features.

3. Evaluate the model’s performance on a
validation set.

4. Incrementally increase k.

5. Repeat steps 2-4 until model performance

plateaus for the accuracy and declines for
the loss.

The iterative approach aims to find the smallest k
that maximizes the model performance, assuming
that the most relevant features are selected first.
However, this method has several drawbacks that
limit its effectiveness and efficiency:

e It requires manual selection of the initial
and incremental values of k, which can
introduce subjectivity and uncertainty into
the process. For example, if the initial value
of k is too high, the model may overfit the
training data and perform poorly on the
validation set. If the incremental value of k
is too small, the model may take too long to
reach the optimal performance, or never
reach it at all.

It limits the exploration of the vast search
space of possible feature combinations,
which may result in suboptimal solutions.
For example, if the features are ranked by
their individual scores, the iterative
approach may miss some features that have
low scores but high synergies with other
features.

It is time-consuming and computationally
expensive, especially for large datasets and
complex models. For example, if the
dataset has 100 features and the optimal k
is 50, the iterative approach would require
training and evaluating 50 models, each
with a different subset of features.

These drawbacks can affect the quality and validity
of UFS, leading to biased or inconsistent results, or
missed opportunities for improvement. For
example, in a study on text classification, the
authors found that the iterative approach with chi-
square scoring function selected a suboptimal
number of features, resulting in lower accuracy
than using all features or using a different scoring
function [29]. In another study on gene selection,
the authors found that the iterative approach with
ANOVA F-test scoring function selected a different
number of features for different datasets, making it
difficult to compare the results across different
studies [18]. Therefore, there is a need for a more
efficient and objective method for selecting k in
UFS, one that can automatically and systematically
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explore the search space of feature combinations
and find the optimal solution. In this paper, we
propose such a method, called PSO-UFS, which
uses Particle Swarm Optimization (PSO) to select
the optimal number of features and the
corresponding feature subset. We will describe the
details of our method in the next section.

3.3 Algorithm for Univariate Feature Selection

The following algorithm delineates the steps
involved in univariate feature selection. The input
is a dataset matrix X with n features and a target
variable vector y, a scoring function f, and a
number of features to select k. The output is a
subset of features S with k features.This algorithm
calculates the scores for each feature using a
scoring function f, which measures the relevance of
each feature to the target variable. The scoring
function can be any statistical test that evaluates the
relationship between a feature and a target variable,
such as chi-square, mutual information, ANOVA F-
test, or Fisher score. The features are then sorted by
their scores in descending order, as higher scores
indicate higher relevance. The algorithm then
selects the top k features with the highest scores as
the subset for subsequent analysis. The number of
features to select is often based on prior knowledge,
domain expertise, or through experimentation. This
simple process reduces dimensionality and retains
only the most predictive features. However, manual
selection of the scoring function and k can be
suboptimal and time-consuming, as it may
introduce biases and inconsistencies in the feature
selection process. Moreover, manual selection does
not consider the interactions among features or the
impact of feature selection on the classifier
performance. Therefore, there is a need for
automating these choices and optimizing the feature
selection process. In the next section, we present an
optimization approach to automate the selection of
the scoring function and the number of features k in
univariate feature selection. This approach
leverages Particle Swarm Optimization (PSO) to
search for the optimal solution in the vast and
complex space of scoring functions and feature
combinations. PSO-UFS, as we call our approach,
aims to optimize both the scoring function and the
number of features simultaneously, based on the
performance metric of a classifier trained on the
selected features. PSO-UFS also offers a flexible
and tunable framework, as it can accommodate
different scoring functions, classifiers, and
performance metrics, and can adjust the
exploration-exploitation trade-off by tuning the
PSO parameters. We will describe the details of our
approach in the following subsections.
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4 Methodology

This section introduces our proposed methodology,
which employs Particle Swarm Optimization (PSO)
to automate the selection of the scoring function
and the number of features k in univariate feature
selection. This approach aims to surmount the
limitations of manual processes and provide a more
efficient and effective solution for feature selection
tasks.

4.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a
population-based stochastic optimization technique
inspired by the social behavior of bird flocking or
fish schooling [23, 15, 26]. In PSO, each solution in
the search space is represented as a ”particle”. Each
particle has fitness values, which are evaluated by
the fitness function to be optimized, and velocities,
which guide the movement of the particles. The
particles navigate through the problem space by
following the currently optimal particles.

The velocity update rule in PSO is given by:

Viij(t+ 1) =w-v (t) + C1 - 11 - (pbestij — xjj
1) +c2-r2 - (gbest; — xij (1)) )

where vij (t + 1) represents the velocity vector of
particle i in dimension j at time t + 1, w is the
inertia weight, c1 and c; are cognitive and social
parameters, respectively, r; and r, are random
numbers between 0 and 1, pbest;j is the personal
best position of particle i in dimension j, gbest; is
the global best position in dimension j, and xij (t) is
the position of particle i in dimension j at time t.
The position update rule is given by:

Xij (t+ 1) =xi (1) +vi (t + 1)
(2)

This rule updates the position of each particle based
on its current position and velocity. The updated
position then serves as the new point in the search
space for the next iteration. This iterative process
continues until a stopping criterion is met, such as
reaching a maximum number of iterations or
achieving a desired level of fitness. The best
position found by the swarm during the search
process is returned as the optimal solution. In the
context of univariate feature selection, the optimal
solution represents the optimal scoring function and
the optimal number of features k. This sets the
stage for the application of PSO in univariate
feature selection, which we discuss in the next
subsection.
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4.2 PSO for Univariate Feature Selection (PSO-
UFS)

Building upon the principles of Particle Swarm
Optimization (PSO) outlined in Section 4.1 and the
Univariate Feature Selection (UFS) method
described in Section 3, we propose the PSO-UFS
approach to automate the selection of the optimal
scoring function and the number of features. This
section provides a detailed explanation of the
algorithm, including its formulation,
implementation, and key components

4.2.1 Problem Formulation

The PSO-UFS approach formulates univariate
feature selection as an optimization problem with
two decision variables: the scoring function (s) and
the number of features (k). The scoring function s
assigns a score to each feature based on its
relevance to the target variable. The set of available
scoring functions F includes Chi-square, ANOVA
F-test (Analysis of Variance), Mutual Information,
and Fisher Score. The number of features k is an
integer representing the number of top-ranked
features to select, constrained by kmin < k& < kmax,
where Kmin = 1 and kmax = n (total number of
features). The objective function is defined as the
performance metric of a classifier trained on the
selected features. This metric can be accuracy,
precision, recall, F1-score, or area under the ROC
curve (AUCROC). The optimization problem is
formally defined as:

maximize sx (s, K)

subjecttos €F,

kmin S k S kmax,
where f(s, k) is the objective function, F is the set of
available scoring functions, and kmin and kmax are the
lower and upper bounds for k, respectively.

4.2.2 Particle Representation

Each particle in the swarm represents a potential
solution to the optimization problem. A particle’s
position is encoded as a two-dimensional vector (s,
k), where s is an integer representing the index of
the scoring function in the set F, and K is an integer
representing the number of features to select. The
particle’s velocity is represented as a two-
dimensional vector (vs, vi), which determines its
movement in the search space. This representation
allows the algorithm to explore the search space
efficiently and converge to an optimal solution.

4.2 .3 Fitness Function
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The fitness function evaluates the quality of a
particle’s solution. It is defined as the 5-fold cross-
validation accuracy of a classifier trained on the
selected features. To compute the fitness function,
the algorithm first decodes the particle’s position to
extract the scoring function s and the number of
features k. It then applies UFS to score all features
using s and selects the top k features. Next, a
classifier (e.g., KNN or Logistic Regression) is
trained on the selected features, and its performance
is evaluated using 5-fold cross-validation. The
cross-validation accuracy is returned as the fitness
value for the particle. This approach ensures that
the selected features generalize well to unseen data.

4.2.4 PSO Initialization

The PSO algorithm begins by initializing a swarm
of particles. The swarm size n, (e.g., 10) determines
the number of particles. Each particle is initialized
with a random scoring function s and a random
number of features k within the bounds [Kmin, Kmax].
The particles’ velocities are also initialized
randomly to guide their movement in the search
space. This random initialization ensures diversity
in the swarm, enabling the algorithm to explore a
wide range of solutions.

4.2.5 PSO Update Rules

At each iteration, the particles’ positions and
velocities are updated based on their personal best
and the global best positions. The velocity update
rule is defined as:

Vij (t + 1) =w - vijj (t) + C1 - r1 - (pbestij — xij () + C2
“r2 - (gbestj — xij (1)),

where v; (t + 1) is the velocity of particle i in
dimension j at iteration t + 1, w is the inertia weight
(e.g., 0.5), c1 and c, are cognitive and social
parameters (e.g., 0.5), r1 and r, are random numbers
between 0 and 1, pbest;; is the personal best position
of particle i in dimension j, gbestj is the global best
position in dimension j, and x; (t) is the position of
particle i in dimension j at iteration t. The position
update rule is defined as:

Xij (t + 1) = xij (£) + vij (t + 1)

These update rules balance exploration and
exploitation, allowing the swarm to converge to an
optimal solution efficiently.

4.2.6 Termination Criteria

The PSO algorithm terminates when one of the
following conditions is met: (1) a predefined
number of iterations (e.g., 110) is reached, or (2)
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the global best fitness value does not improve
significantly over a number of iterations. These
criteria ensure that the algorithm stops when further
iterations are unlikely to yield better solutions.

4.2.7 Output

The algorithm returns the optimal scoring
function (s*), the optimal number of features (k*),
and the optimal feature subset (S*). These represent
the best solution found by the swarm to the feature
selection problem. The optimal feature subset S+ is
obtained by applying the scoring function s+ and
selecting the top k- features.

4.2.8 Algorithm Steps

The PSO-UFS algorithm is outlined in Algorithm 2.
The input includes a dataset matrix X with n
features and a target variable vector y, a set of
scoring functions F, a number of particles p, a
number of iterations t, and a classifier C. The
output is an optimal scoring function s and an
optimal number of features k.

4.2.9 Key Advantages

The PSO-UFS approach offers several key
advantages. Unlike traditional methods that
optimize the scoring function and the number of
features separately, PSO-UFS simultaneously
optimizes both, leading to better feature subsets.
The algorithm is highly flexible, as it can
accommodate  different  scoring  functions,
classifiers, and performance metrics. Additionally,
PSO-UFS reduces the manual effort and
subjectivity involved in feature selection, making it
suitable for high-dimensional datasets. Its ability to
consider feature interactions indirectly further
enhances its effectiveness.

4.2.10 Reproducibility

To ensure reproducibility, the following steps are
recommended: (1) use a fixed random seed for
initializing particle positions and velocities, (2)
clearly specify all hyperparameters (e.g., swarm
size, inertia weight, cognitive and social
parameters), (3) use the same dataset splits for
cross-validation across all experiments, and (4)
provide the source code and implementation details
in a public repository. These measures enable other
researchers to replicate the results and build upon
the proposed method.

5 Experiments

In this section, we delve into the empirical
evaluation of our proposed PSO-based univariate
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feature selection (PSO-UFS) approach. We
meticulously examine its performance across
diverse datasets and classifiers, demonstrating its
effectiveness in enhancing model accuracy and
efficiency.

5.1Datasets and Classifiers

The datasets utilized in this study are publicly
sourced from reputable platforms such as the UCI
Machine Learning Repository [13] and Kaggle.
These datasets are commonly used within the
machine learning community for empirical analysis
of machine learning algorithms.

UCI Heart Disease: This dataset includes
information about patients diagnosed with
heart disease, encompassing variables such
as age, sex, type of chest pain, resting
blood pressure, serum cholesterol, and
more. The target variable signifies the
presence or absence of heart disease in the
patient [22]. The complexity of this dataset
arises from the combination of categorical
and numerical features, as well as the
critical nature of the prediction task.

Breast Cancer Wisconsin: This dataset
consists of 569 instances of cancer
biopsies, each with 32 features. It contains
an identification number, cancer diagnosis
(malignant or benign), and 30 numeric-
valued laboratory measurements derived
from cell nuclei of the biopsies [36]. The
high dimensionality of this dataset makes it
an excellent candidate for feature selection.
Adult Census Income: This dataset,
extracted from the 1994 Census bureau
database, contains demographic
information about adults from various
countries. The prediction task is to
determine whether a person earns over 50K
a year [5]. This dataset is challenging due
to its large number of instances and
features, as well as the mix of categorical
and numerical features.

The K-Nearest Neighbors (KNN) and
Logistic Regression classifiers were chosen
for this study due to their unique
characteristics, which make them suitable
for a wide range of problems:

K-Nearest Neighbors (KNN): KNN is a
non-parametric, instance-based learning
algorithm that is straightforward to
understand and implement. It can handle
complex decision boundaries, making it
suitable for problems where the decision
boundary is not linear. However, KNN has
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some limitations. It is sensitive to noise and
irrelevant features, which can negatively
impact its performance. Also, KNN suffers
from the curse of dimensionality, meaning
its performance degrades rapidly as the
number of features (dimensions) increases.
This makes feature selection particularly
important when using KNN [34].

Logistic Regression: Logistic Regression
is a parametric, probabilistic classifier that
can provide interpretable coefficients,
making it useful when interpretability is
important. It assumes a linear relationship
between the features and the log-odds of
the positive class, which allows it to
estimate the probability of a particular class
membership. However, this linearity
assumption is a limitation if the actual
relationship is not linear. Also, Logistic
Regression may underfit the data if the
decision boundary is complex [9].

5.2 Evaluation Methodology

For the evaluation methodology, we employ both a
hold-out method and 5-fold cross-validation. In the
hold-out method, the dataset is partitioned into a
training set (70% of the data) and a test set (30% of
the data). The model is trained on the training set
and evaluated on the test set. This method is simple
and computationally efficient, but its performance
estimate can be sensitive to how the data is split.
On the other hand, 5-fold cross-validation provides
a more robust performance estimate. In this
method, the dataset is divided into 5 equal-sized
folds. The model is trained and evaluated 5 times,
each time using a different fold as the test set and
the remaining folds as the training set. The final
performance estimate is the average of the
performance measures from the 5 folds. While this
method is more computationally intensive than the
hold-out method, it provides a more reliable and
less biased performance estimate. It is particularly
useful when the dataset is small, as it effectively
uses the available data. The classifiers and
evaluation methods, along with the PSO-UFS
feature selection method, form a comprehensive
framework for assessing the effectiveness of feature
selection in  machine learning tasks. The
performance of the classifiers is evaluated using
several key metrics:

e Accuracy: This is the proportion of true
results (both true positives and true
negatives) among the total number of cases
examined. It is a fundamental metric for
classification  problems, providing a
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baseline measure of a model’s overall
correctness.

Precision:  Precision = measures  the
proportion of true positive predictions
(relevant instances that are correctly
identified) among all positive predictions.
It is particularly important when the cost of
a false positive is high.

Recall: Recall, also known as sensitivity,
measures the proportion of true positive
predictions among all actual positive
instances. It is crucial when the cost of a
false negative is high.

F1-score: The Fl-score is the harmonic
mean of precision and recall. It provides a
single metric that balances both precision
and recall, useful when you want to
compare two or more models and need a
single measurement.

These metrics were chosen because they provide a
comprehensive view of the model’s performance.
Accuracy alone can be misleading, especially in
imbalanced datasets. Precision, recall, and F1-score
offer additional perspectives, helping us understand
the trade-off between identifying as many relevant
instances as possible (high recall) and keeping the
number of irrelevant instances low (high precision).
In the context of the PSO-UFS method, these
metrics allow us to evaluate how well the selected
features contribute to the performance of the
classifiers. By optimizing these metrics, the PSO-
UFS method aims to find a feature subset that
maximizes the classifier’s ability to make correct
predictions and balances precision and recall. This
is particularly important in real-world applications
where both false positives and false negatives can
have significant implications.For UFS, we consider
four candidate scoring functions: Chi-square, F-
statistic, Mutual information, and Fisher score.
These scoring functions rank the features based on
their relevance to the target variable, irrespective of
their types (numeric or categorical features). We
also set a lower bound of kmin = 1 and an upper
bound of kmax = n, where n is the total number of
features in the dataset. The objective function for
Particle Swarm Optimization (PSO) is defined as
the 5-fold classification accuracy of a classifier
trained on the selected features. The PSO
hyperparameters are set as follows: swarm size (np)
of 10, inertia weight (w) of 0.5, cognitive and social
parameters (y and ¢) of 0.5, and a maximum
number of iterations (maXiers) Of 110. These
parameters are chosen to strike a balance between
exploration and  exploitation  during  the
optimization process. This balance is crucial to
ensure that the PSO algorithm can find an optimal
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solution within a reasonable time frame. The
selected datasets, classifiers, performance metrics,
and PSO parameters collectively constitute a
comprehensive framework for evaluating the
efficacy of our feature selection approach.

5.3 Results and Discussions

Our study involved the implementation of the PSO-UFS imeti el . drbessquIteatiene fecthtzynethpd is publicly

across different datasets using KNN and Logistic
Regression classifiers. The metrics used for
evaluation are accuracy, precision, recall, and F1-
score. For the UCI Heart Disease dataset, the
accuracy improved by 11.11 percentage points
(from 70.00% to 81.11%) with the KNN classifier
and by 1.11 percentage points (from 87.78% to
88.89%) with the Logistic Regression classifier.
For the Breast Cancer Wisconsin dataset, the
accuracy improved slightly from 95.91% to 96.49%
with both classifiers. This indicates that even for
datasets where the original feature set already
allows for high classification accuracy, the PSO-
UFS approach can still find room for improvement.
For the Adult Census Income dataset, the accuracy
improved by 6.58 percentage points (from 76.01%
to 82.59%) with the KNN classifier and by 3.73
percentage points (from 78.00% to 81.73%) with
the Logistic Regression classifier.  These
improvements demonstrate the effectiveness of the
PSO-UFS approach in identifying informative
features, leading to enhanced performance metrics
and thereby creating more effective and efficient
automating and optimizing the feature selection
process. This leads to more advanced and efficient
machine learning models, paving the way for
significant advancements in the field of machine
learning. The key takeaway is that automation in
feature selection, as demonstrated by PSO-UFS,
can lead to significant improvements in model
performance across various datasets and classifiers.
This underscores the importance and potential of
automated feature selection in machine learning.
Future work could explore the application of this
approach to other types of datasets and machine
learning tasks.The figures 1 and 2 illustrate the
performance of two models, K-Nearest Neighbors
(KNN) and Logistic Regression, using features
selected by the Particle Swarm Optimization -
Univariate Feature Selection (PSO-UFS) method
across different iterations on three datasets: UCI
Heart Disease, Breast Cancer Wisconsin, and Adult
Census Income.The red dots in these figures
indicate the best average validation accuracy
achieved across all iterations, while the blue dots
represent the global best position for each iteration,
which contains the optimal scoring function and
number of features. For the UCI Heart Disease
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dataset, the best iteration was 33 for both KNN and
Logistic Regression. For the Breast Cancer
Wisconsin dataset, the best iteration was 51 for
both models. For the Adult Census Income dataset,
the best iteration was 33 for both KNN and Logistic
Regression.  These results underscore the
effectiveness of the PSO-UFS method in selecting
the optimal number of features and scoring function

method’s adaptability and efficiency are evident in
the relatively low number of iterations needed to
achieve these results, making the PSO-UFS method
a promising tool for feature selection in various
real-world applications.The PSO-UFS method
demonstrates a promising performance across all
three datasets. The method’s ability to achieve high
cross-validation ~ accuracy  underscores  its
effectiveness. The accuracy achieved on the UCI
Heart Disease and Breast Cancer Wisconsin
datasets is particularly noteworthy, given the
complexity and high dimensionality of these
datasets. Moreover, the method’s performance
remains relatively stable across multiple iterations,
suggesting that it is robust to different
initializations and can reliably find good solutions.
The PSO-UFS method’s effectiveness is further
highlighted when compared to traditional
Univariate Feature Selection (UFS) methods.
Unlike traditional UFS methods, which often rely
on a fixed scoring function and feature number, the
PSO-UFS method adaptively selects the optimal
scoring function and feature number based on the
data. This adaptability allows the method to better
capture the underlying structure of the data and
leads to improved cross-validation accuracy. In
conclusion, the PSO-UFS method offers a robust
and effective solution for feature selection. Its
ability to achieve high cross-validation accuracy
across multiple datasets and its adaptability to
different data structures make it a promising tool
for various real-world applications. The figures
presented in the paper provide empirical evidence
supporting the effectiveness of the PSO method.
One additional point to note is that the PSO method
does not require a large number of iterations to find
the best combination of features and scoring
function. This efficiency is evident from the
relatively low number of iterations needed to
achieve the best scores in all three datasets. This
characteristic further enhances the practical utility
of the PSO method, as it allows for quick and
efficient feature selection, which is particularly
beneficial in scenarios where computational
resources or time are limited. Beyond the figures,
the underlying trend within the data sets is the
consistent performance of the PSO-UFS method
across different datasets and models. This is not
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explicitly addressed in the paper but is evident from
the figures. Additional analyses or visualizations
that could provide deeper insights into the data and
enhance the understanding of the research could
include a comparison of the PSOUFS method with
other feature selection methods, or a breakdown of
the performance of the models on each feature
selected by the PSO-UFS method. Based on the
presented data, potential future research directions
could include applying the PSO-UFS method to
other models and datasets, exploring the impact of
different scoring functions on the performance of
the PSO-UFS method, or investigating ways to
further improve the efficiency of the PSO-UFS
method.The table 4 presents the feature reduction
rates achieved by our PSO-UFS approach on each
dataset. The feature reduction rate is calculated as

-k ) .
"T, where nis the number of original features and

k is the number of selected features by our PSO-
UFS approach. The feature reduction rate ranges
from 0% (no reduction) to 70% (a substantial
reduction), indicating that our PSO-UFS approach
can effectively reduce the dimensionality of the
data while maintaining or even improving model
performance.This table shows that the PSO-UFS
approach can significantly reduce the number of
features needed for classification  without
sacrificing performance. For instance, in the case of
the UCI Heart Disease dataset, the feature reduction
rate for the Logistic Regression (LR) classifier is
23.08%, and for the K-Nearest Neighbors (KNN)
classifier, it is as high as 69.23%. This
demonstrates the efficiency of our PSO-UFS
approach in handling high-dimensional data. The
ability to reduce dimensionality is particularly
beneficial in real-world applications where
computational resources are limited. It not only
speeds up the learning process but also helps to
mitigate the risk of overfitting by eliminating
irrelevant or redundant features. Thus, the PSO-
UFS approach proves to be a valuable tool for
feature selection in machine learning tasks. The
highest reduction rate (69.23% for the KNN
classifier on the UCI Heart Disease dataset)
underscores the maximum efficiency of the PSO-
UFS approach. This significant reduction in
features can lead to substantial computational gains,
especially in scenarios involving large-scale
datasets or resource-constrained environments. In
terms of real-world applications, the PSO-UFS
approach could be particularly useful in healthcare
for patient risk prediction, where high-dimensional
patient data is common, or in finance for credit
scoring or fraud detection, where interpretability
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and efficiency are crucial. Future work could
explore the application of this approach to other
types of datasets and machine-learning tasks, such
as deep learning models or genomic data analysis.
This could potentially lead to even more efficient
and effective models, further advancing the field of
machine learning.

6 Conclusion

This paper has introduced a novel approach for
automating univariate feature selection (UFS) using
Particle Swarm Optimization (PSO). Feature
selection is a pivotal technique that simplifies
datasets and enhances model performance.
However, the manual selection of the scoring
function and the number of features can be both
time-consuming and suboptimal. Our PSO-based
approach addresses these issues by automatically
identifying the optimal subset of features and
scoring function that maximize the accuracy of a
logistic regression classifier. Our PSO-UFS
approach was evaluated on multiple benchmark
datasets and compared with the original feature
sets. The results demonstrated that our approach
consistently improved model performance across
various metrics, including accuracy, precision,
recall, and F1-score. By leveraging PSO, our
approach significantly reduced the time and effort
required in the feature selection process. It also
considered a range of scoring functions, making it
adaptable to different data characteristics and
complexities. Moreover, the PSO-UFS approach
selected subsets of features that were more
interpretable, providing valuable insights into the
underlying patterns and factors in the classification
task.In conclusion, our PSO-based automated
feature selection method represents a significant
contribution to the field of machine learning and
data analysis. It generates more effective and
interpretable classification models by streamlining
the feature selection process. This method holds
potential for broader applications in various real-
world scenarios where feature dimensionality
reduction and model interpretability are crucial.
Future research directions may include extending
the PSO-based feature selection to other machine
learning algorithms and adapting the method to
handle high-dimensional and imbalanced datasets.
Overall, our proposed method lays the groundwork
for more efficient and accurate feature selection
techniques in  data-driven  decision-making
processes.
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Algorithm 1: Univariate Feature Selection (UFS)
Result: Return the optimal feature subset S
Function UnivariateFeatureSelection(X, y. f. k):

Initialize an empty list L;

foreach feature z; in X do

Compute the score s; = f(z;,y):
Append (z;,s;) to L;

end

Sort L in descending order based on the scores;

Initialize an empty set S;

for j=1to k do

Select the feature z; with the highest score from L;
Add z; to S;
Remove (z;,s;) from L;

end
return S

Algorithm 2: Particle Swarm Optimization for Univariate Feature Selection (PSO-UFS)

Result: Return the optimal scoring function s* and the optimal number of features k*

Function PSO-UFS(X., y, F', p. t, C):

Initialize a swarm of p particles with random positions and velocities in the search space;

fori=1tot do

foreach particle j in the swarm do

Decode the position of particle j to obtain the scoring function s; and the number of
features k;:

Apply UFS on the dataset X using the scoring function s; and select the top k;
features to obtain the feature subset Sj;

Train the classifier C' on the feature subset S; and evaluate its performance P; using
5-fold cross-validation;

If P; is better than the personal best of particle j, update the personal best position;

end

Update the global best position of the swarm based on the best personal performances of
all particles;

Update the velocity and position of each particle using the personal best and global best
positions;

end

Decode the global best position to obtain the optimal scoring function s* and the optimal
number of features k*;

return s*, k*:

Table 1: Normalized scores from different scoring functions for each feature in the Iris dataset.

Feature Chi-square | ANOVA F-test | Mutual information | Pearson correlation
Sepal Length 0.27 0.06 0.29 0.87
Sepal Width 0.00 0.00 0.00 0.00
Petal Length 0.86 1.00 1.00 0.99
Petal Width 1.00 0.81 0.99 1.00
Table 2: Performance Metrics of KNN Classifier.
Dataset Metric Without feature selection (%) | PSO-UFS (%)

Accuracy 70.00 81.11

. Precision 69.79 80.95

UCT Heart Disease Recall 69.46 81.06

score 69.55 81.00

Breast Cancer Wisconsin Accuracy 9591 96.49
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Precision 96.48 96.23
Recall 94.78 96.23
F1-score 95.52 96.23
.. 76.01 82.59
Accuracy Precision 66.95 7735
Adult Census Income Ffl(_esccagie 60.59 7457
61.69 75.72
Table 3: Performance Metrics of Logistic Regression Classifier.
Dataset Metric Without feature selection (%) | PSO-UFS (%)
Accuracy 87.78 88.89
. Precision 88.01 89.34
UCI Heart Disease Recall 3738 38 40
Fl-score 87.59 88.69
Accuracy 9591 96.49
. . Precision 96.48 96.23
Breast Cancer Wisconsin Recall 94.78 96.23
F1-score 95.52 96.23
Accuracy Precision 78.00 81.73
Recall 72.33 78.08
Adult Census Income Fl-score 61.24 6921
62.60 71.69
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Figure 1: Cross-validation accuracy of KNN classifier vs PSO iteration.
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Dataset Name: Breast Cancer Wisconsin
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Figure 2: Cross-validation accuracy of Logistic regression classifier vs PSO iteration.

Table 4: Feature reduction rate of PSO-based univariate feature selection approach on different datasets.

Dataset Name Feature Reduction Rate (LR) (%) | Feature Reduction Rate (KNN) (%)
UCI Heart Disease 23.08% 69.23%
Breast Cancer Wisconsin 3.33% 3.33%
Adult Census Income 42.86% 14.29%
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