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Abstract:  
 

Univariate Feature Selection (UFS) traditionally involves a labor-intensive process of 

trial-and error, necessitating the selection of scoring functions and the determination of 

feature numbers. These choices can inadvertently affect both the performance and 

interpretability of the model. To address this challenge, we introduce Particle Swarm 

Optimization for Univariate Feature Selection (PSO-UFS), an innovative method that 

automates these crucial decisions. PSO-UFS leverages the power of Particle Swarm 

Optimization (PSO) to autonomously identify the optimal scoring function and feature 

subset that maximize a machine learning algorithm’s performance metric. Our empirical 

evaluations across multiple datasets demonstrate that PSO-UFS significantly 

outperforms traditional UFS in various performance metrics, including accuracy, 

precision, recall, and F1-score. Importantly, PSO-UFS generates more interpretable 

feature subsets, thereby enhancing the model’s comprehensibility. This advancement 

paves the way for broader applications in real-world scenarios where feature reduction 

and interpretability are paramount. 

 

1. Introduction 
 

The advent of high-dimensional data, characterized 

by an abundance of features, presents both 

opportunities and challenges for machine learning 

[28]. The wealth of information harbors the 

potential for deeper insights and more accurate 

models. However, it also introduces issues such as 

redundancy, noise, and irrelevant features, which 

can negatively impact prediction performance 

[16].Feature selection, a crucial step in data 

analysis and machine learning, is a strategy 

employed to navigate these challenges. It involves 

identifying and selecting a subset of relevant 

features, thereby enhancing model efficacy, 

interpretability, and computational efficiency [17, 

24, 33]. However, feature selection is not without 

its own set of challenges [35]. One such challenge 

is the manual selection of the scoring function and 

the number of features in Univariate Feature 

Selection (UFS), a type of filter-based feature 

selection method. This introduces subjectivity and 

uncertainty, potentially leading to suboptimal 

results [10]. Filter-based feature selection methods, 

including UFS, form a significant part of the 

broader taxonomy of feature selection approaches. 

These methods are known for their simplicity, 

scalability, and efficiency in handling large 

datasets. They evaluate individual features based on 

statistical measures of relevance, such as 

correlation or mutual information, independent of 

any machine learning algorithm. This makes them 

distinct from wrapper methods, which evaluate 

subsets of features based on the performance of a 

specific machine learning model [38], and 

embedded methods, which perform feature 

selection as part of the model training process. This 

paper introduces a groundbreaking approach to 

Univariate Feature Selection (UFS) in machine 

learning, known as PSO-UFS. The novelty of this 

method lies in its use of Particle Swarm 

Optimization (PSO) to simultaneously optimize 

both the scoring function and the number of 

features, a task that was previously handled 

separately. This simultaneous optimization 

addresses the limitations of existing UFS 

techniques by considering feature interactions 

indirectly, which was not possible when optimizing 
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the scoring function and the number of features 

separately. This innovative approach not only 

enhances the efficiency of UFS but also improves 

the interpretability of the selected features, paving 

the way for a deeper understanding of model 

predictions. This advancement represents a 

significant leap in the field of feature selection, 

underscoring the potential of bio-inspired 

algorithms in automating and optimizing the 

process. We evaluate PSO-UFS on multiple 

datasets and compare it with traditional UFS 

methods. Our results demonstrate the effectiveness 

of PSO-UFS and highlight the potential of bio-

inspired algorithms in automating and optimizing 

feature selection. We also underscore the improved 

interpretability of features selected by PSO-UFS, 

leading to a more profound understanding of model 

predictions [30]. The main contributions of this 

paper are: 

 We propose PSO-UFS, a novel technique 

that automates univariate feature selection 

using PSO. This approach addresses 

limitations in existing UFS techniques by 

indirectly considering feature interactions. 

 We formulate univariate feature selection 

as an optimization problem with two 

decision variables: k and s. This 

formulation allows us to automate what 

was previously a manual process. 

 We evaluate our technique on three 

benchmark datasets from diverse domains. 

Our results show that PSO-UFS can 

significantly improve UFS performance 

across different types of data. 

 Our technique identifies an optimal subset 

of features, denoted by S, that is more 

interpretable than those obtained by 

conventional manual methods. This 

improvement in interpretability can aid in 

understanding model predictions. 

This work represents a significant advancement in 

the field of feature selection, demonstrating the 

potential of bio-inspired algorithms to automate and 

optimize the process. The rest of the paper is 

organized as follows. Section 2 reviews the related 

work in the field of univariate feature selection and 

compares it with our proposed PSO-UFS method. 

Section 3 provides a detailed explanation of the 

UFS process, including commonly used scoring 

functions and selection steps. Section 4 presents the 

PSO-UFS algorithm, outlining the optimization 

problem formulation and the PSO procedure. 

Section 5 describes our experimental setup and 

evaluation results on the chosen datasets. Finally, 

Section 6 concludes the paper. 

2. Related Work 

The domain of feature selection has witnessed 

substantial advancements with the integration of 

various optimization techniques. These techniques 

strive to pinpoint the optimal subset of features that 

maximize a predefined objective function. Among 

these, Genetic Algorithms (GA), Ant Colony 

Optimization (ACO), and Particle Swarm 

Optimization (PSO) are particularly noteworthy. 

Each of these techniques possesses unique 

advantages and can be effective in different 

contexts. However, this paper underscores PSO due 

to its inherent simplicity, adaptability, scalability, 

and robustness [1, 20]. Recent studies have indeed 

harnessed PSO for feature selection in various 

contexts. For instance, an algorithm was proposed 

that employs the best-worst multi-attribute 

decision-making method for univariate feature 

selection [2]. This method ranks features based on 

their scores computed by different scoring 

functions such as chi-square, ANOVA F-test, 

mutual information, and t-test [2]. The algorithm 

was evaluated on four UCI benchmark datasets and 

was found to outperform other univariate feature 

selection methods in terms of accuracy, precision, 

recall, and F1-score [2]. Moreover, a study 

proposed two PSO variants to undertake feature 

selection tasks [37]. The aim was to overcome two 

major shortcomings of the original PSO model, i.e., 

premature convergence and weak exploitation 

around the near optimal solutions. The proposed 

models illustrated statistical superiority for 

discriminative feature selection for a total of 13 

data sets [37].Another study applied the feature 

selection-based Particle Swarm Optimization (PSO) 

method to detect phishing websites [4]. The 

experimental findings showed that the proposed 

PSO-based feature selection model substantially 

improved classification accuracy, sensitivity, 

specificity, f1–score, and Matthew’s correlation 

coefficient in machine learning models [4]. In 

addition, a novel feature selection-based transfer 

learning approach using particle swarm 

optimization (PSO) for unsupervised transfer 

learning (FSUTL-PSO) was implemented [32]. In 

FSUTL-PSO, all objectives were incorporated into 

one fitness function and common good features 

from the source and target domains were selected 

based on the fitness function for eliminating the 

threat of degenerated features [32].Furthermore, a 

study proposed efficient feature selection methods 

using PSO with a fuzzy rough set as a fitness 

function [19]. The proposed methods were 

compared against two classical feature selection 

methods, as well as three PSO and rough set-based 

feature selection approaches. The results showed 
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that using the proposed techniques, a small feature 

subset may be automatically selected with better 

classification accuracy than utilizing all features 

[19]. Lastly, a study provided an overview of PSO 

for feature selection in biomedical data analysis [3]. 

This study reviewed the applications, challenges, 

and future directions of PSO for feature selection in 

various biomedical domains, such as gene 

expression, protein structure, medical image, and 

clinical diagnosis. The study also discussed the 

advantages and disadvantages of PSO for feature 

selection and suggested some possible 

improvements [3]. Univariate feature selection 

(UFS) is a popular technique for reducing the 

dimensionality and complexity of datasets. It ranks 

features based on their individual relevance to the 

target variable, without considering their 

interactions. UFS is fast and scalable, making it 

suitable for high-dimensional datasets. Previous 

studies have shown that UFS is more stable in the 

case of high-dimensional databases [12]. Scoring 

functions are pivotal in univariate feature selection, 

serving to independently assess the relevance of 

each feature to the target variable [6, 21]. 

Commonly employed scoring functions include chi-

square, ANOVA F-test (Analysis of Variance), 

mutual information, and Fisher score. These 

functions, grounded in various statistical tests or 

information theory measures, come with distinct 

assumptions and properties. For instance, chi-

square and ANOVA F-test, based on the chi-square 

distribution and F-distribution respectively, are apt 

for categorical and numerical features. Mutual 

information quantifies the mutual dependence 

between two variables, while Fisher score gauges 

the discriminative power of a feature for binary 

classification. These scoring functions have found 

extensive application across diverse domains such 

as text mining, bioinformatics, and computer vision 

[25]. However, the selection of the scoring function 

and the number of features (k) often requires 

manual tuning and domain knowledge, which can 

be time-consuming and subjective [6]. Moreover, 

these scoring functions do not consider the 

interactions or dependencies among features, which 

can lead to suboptimal feature subsets [6]. To 

address these challenges, our proposed PSO-UFS 

approach automates the selection of the scoring 

function and k, and it considers feature interactions 

indirectly by optimizing a performance metric of a 

machine learning algorithm [6]. While existing 

studies underscore the versatility and applicability 

of PSO and univariate feature selection techniques 

across different data types or tasks, they do not 

specifically tackle the problem of automating 

univariate feature selection using PSO. This is 

precisely the focus of our paper, highlighting the 

novelty and significance of our proposed PSO-UFS 

approach. Our method aims to bridge this gap in the 

literature by introducing a technique that harnesses 

the strengths of PSO to automate univariate feature 

selection, thereby offering an efficient and effective 

solution for feature selection tasks [8, 27]. 

3 Univariate Feature Selection: An In-depth 

Analysis  

Univariate feature selection (UFS) is a statistical 

technique that evaluates the relevance of individual 

features to a target variable, independent of other 

features. This method is particularly beneficial for 

high-dimensional datasets, as it can enhance the 

interpretability and efficiency of machine learning 

models by reducing noise, redundancy, and 

irrelevance in the data. Despite its simplicity and 

scalability, UFS has been successfully applied in 

various domains, including text classification [7, 

11], cancer prediction [31], and image retrieval 

[25], thereby enhancing the transparency of the 

models. 

3.1 Scoring Functions: A Comparative Analysis 

The effectiveness of Univariate Feature Selection 

(UFS) largely hinges on the scoring function 

employed to gauge the relevance of each feature to 

the target variable. Different scoring functions 

come with different assumptions and properties, 

and may favor different types of features. 

Consequently, the choice of scoring function is 

pivotal for effective feature selection. Some of the 

commonly used scoring functions encompass: 

 Chi-square: This function tests the 

independence between a categorical feature 

and a categorical target variable. It 

computes the difference between the 

observed and expected frequencies of each 

category, normalized by the expected 

frequency. The higher the score, the more 

dependent the feature is on the target 

variable. 

 ANOVA F-test (Analysis of Variance): 
This function tests the equality of the 

means of a numerical feature across 

different groups defined by a categorical 

target variable. It computes the ratio of the 

between-group variance to the within-

group variance. The higher the score, the 

more disparate the feature means are across 

the groups. 

 Mutual information: This function 

quantifies the mutual dependence between 

a feature and a target variable, irrespective 
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of their types. It computes the reduction in 

uncertainty about one variable given the 

knowledge of the other variable. The higher 

the score, the more information the feature 

and the target variable share. 

 Pearson correlation: This function 

measures the linear relationship between a 

numerical feature and a numerical target 

variable. It computes the covariance 

between the feature and the target variable, 

normalized by their standard deviations. 

The higher the absolute value of the score, 

the stronger the linear relationship is. 

  Fisher score: This function measures the 

discriminative power of a feature for binary 

classification. It computes the ratio of the 

between-class variance to the within-class 

variance. The higher the score, the more 

discriminative the feature is. 

To illustrate the differences among these scoring 

functions, we use the Iris dataset [14] as an 

example. The Iris dataset comprises 150 samples of 

three types of iris flowers (setosa, versicolor, and 

virginica) with four features: sepal length, sepal 

width, petal length, and petal width. The target 

variable is the type of iris flower. We apply the four 

scoring functions to rank the features according to 

their relevance to the target variable. Table 1 

presents the normalized scores of each feature for 

each scoring function.The results reveal that while 

all four scoring functions concur that petal length 

and petal width are the most relevant features, they 

differ in the ranking of sepal length and sepal 

width. This demonstrates that different scoring 

functions may have different preferences or 

sensitivities for different features. For instance, 

Pearson correlation assigns a high score to sepal 

length due to its strong linear relationship with the 

target variable, while chi-square assigns a low score 

to sepal width due to its weak dependence with the 

target variable. 

3.2 Determining the Optimal Number of 

Features (k) 

Determining the optimal number of features (k) to 

select is a critical and challenging decision in UFS. 

Selecting too few features may lead to loss of 

valuable information, while selecting too many 

features may introduce noise and redundancy. 

Therefore, striking the right balance between 

simplicity and accuracy is essential.A common 

method for selecting k is the iterative approach, 

which involves the following steps: 

1. Start with a small k value. 

2.  Train a machine learning model with the 

selected features. 

3. Evaluate the model’s performance on a 

validation set. 

4.  Incrementally increase k. 

5. Repeat steps 2-4 until model performance 

plateaus for the accuracy and declines for 

the loss. 

The iterative approach aims to find the smallest k 

that maximizes the model performance, assuming 

that the most relevant features are selected first. 

However, this method has several drawbacks that 

limit its effectiveness and efficiency: 

 It requires manual selection of the initial 

and incremental values of k, which can 

introduce subjectivity and uncertainty into 

the process. For example, if the initial value 

of k is too high, the model may overfit the 

training data and perform poorly on the 

validation set. If the incremental value of k 

is too small, the model may take too long to 

reach the optimal performance, or never 

reach it at all.  

 It limits the exploration of the vast search 

space of possible feature combinations, 

which may result in suboptimal solutions. 

For example, if the features are ranked by 

their individual scores, the iterative 

approach may miss some features that have 

low scores but high synergies with other 

features. 

 It is time-consuming and computationally 

expensive, especially for large datasets and 

complex models. For example, if the 

dataset has 100 features and the optimal k 

is 50, the iterative approach would require 

training and evaluating 50 models, each 

with a different subset of features. 

These drawbacks can affect the quality and validity 

of UFS, leading to biased or inconsistent results, or 

missed opportunities for improvement. For 

example, in a study on text classification, the 

authors found that the iterative approach with chi-

square scoring function selected a suboptimal 

number of features, resulting in lower accuracy 

than using all features or using a different scoring 

function [29]. In another study on gene selection, 

the authors found that the iterative approach with 

ANOVA F-test scoring function selected a different 

number of features for different datasets, making it 

difficult to compare the results across different 

studies [18]. Therefore, there is a need for a more 

efficient and objective method for selecting k in 

UFS, one that can automatically and systematically 
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explore the search space of feature combinations 

and find the optimal solution. In this paper, we 

propose such a method, called PSO-UFS, which 

uses Particle Swarm Optimization (PSO) to select 

the optimal number of features and the 

corresponding feature subset. We will describe the 

details of our method in the next section. 

3.3 Algorithm for Univariate Feature Selection 

The following algorithm delineates the steps 

involved in univariate feature selection. The input 

is a dataset matrix X with n features and a target 

variable vector y, a scoring function f, and a 

number of features to select k. The output is a 

subset of features S with k features.This algorithm 

calculates the scores for each feature using a 

scoring function f, which measures the relevance of 

each feature to the target variable. The scoring 

function can be any statistical test that evaluates the 

relationship between a feature and a target variable, 

such as chi-square, mutual information, ANOVA F-

test, or Fisher score. The features are then sorted by 

their scores in descending order, as higher scores 

indicate higher relevance. The algorithm then 

selects the top k features with the highest scores as 

the subset for subsequent analysis. The number of 

features to select is often based on prior knowledge, 

domain expertise, or through experimentation. This 

simple process reduces dimensionality and retains 

only the most predictive features. However, manual 

selection of the scoring function and k can be 

suboptimal and time-consuming, as it may 

introduce biases and inconsistencies in the feature 

selection process. Moreover, manual selection does 

not consider the interactions among features or the 

impact of feature selection on the classifier 

performance. Therefore, there is a need for 

automating these choices and optimizing the feature 

selection process. In the next section, we present an 

optimization approach to automate the selection of 

the scoring function and the number of features k in 

univariate feature selection. This approach 

leverages Particle Swarm Optimization (PSO) to 

search for the optimal solution in the vast and 

complex space of scoring functions and feature 

combinations. PSO-UFS, as we call our approach, 

aims to optimize both the scoring function and the 

number of features simultaneously, based on the 

performance metric of a classifier trained on the 

selected features. PSO-UFS also offers a flexible 

and tunable framework, as it can accommodate 

different scoring functions, classifiers, and 

performance metrics, and can adjust the 

exploration-exploitation trade-off by tuning the 

PSO parameters. We will describe the details of our 

approach in the following subsections. 

4 Methodology 

This section introduces our proposed methodology, 

which employs Particle Swarm Optimization (PSO) 

to automate the selection of the scoring function 

and the number of features k in univariate feature 

selection. This approach aims to surmount the 

limitations of manual processes and provide a more 

efficient and effective solution for feature selection 

tasks. 

4.1 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a 

population-based stochastic optimization technique 

inspired by the social behavior of bird flocking or 

fish schooling [23, 15, 26]. In PSO, each solution in 

the search space is represented as a ”particle”. Each 

particle has fitness values, which are evaluated by 

the fitness function to be optimized, and velocities, 

which guide the movement of the particles. The 

particles navigate through the problem space by 

following the currently optimal particles. 

The velocity update rule in PSO is given by: 

vij (t + 1) = w · vij (t) + c1 · r1 · (pbestij − xij 

(t)) + c2 · r2 · (gbestj − xij (t))                          (1) 

where vij (t + 1) represents the velocity vector of 

particle i in dimension j at time t + 1, w is the 

inertia weight, c1 and c2 are cognitive and social 

parameters, respectively, r1 and r2 are random 

numbers between 0 and 1, pbestij is the personal 

best position of particle i in dimension j, gbestj is 

the global best position in dimension j, and xij (t) is 

the position of particle i in dimension j at time t. 

The position update rule is given by: 

xij (t + 1) = xij (t) + vij (t + 1)                                                                                            

(2) 

This rule updates the position of each particle based 

on its current position and velocity. The updated 

position then serves as the new point in the search 

space for the next iteration. This iterative process 

continues until a stopping criterion is met, such as 

reaching a maximum number of iterations or 

achieving a desired level of fitness. The best 

position found by the swarm during the search 

process is returned as the optimal solution. In the 

context of univariate feature selection, the optimal 

solution represents the optimal scoring function and 

the optimal number of features k. This sets the 

stage for the application of PSO in univariate 

feature selection, which we discuss in the next 

subsection. 
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4.2 PSO for Univariate Feature Selection (PSO-

UFS) 

Building upon the principles of Particle Swarm 

Optimization (PSO) outlined in Section 4.1 and the 

Univariate Feature Selection (UFS) method 

described in Section 3, we propose the PSO-UFS 

approach to automate the selection of the optimal 

scoring function and the number of features. This 

section provides a detailed explanation of the 

algorithm, including its formulation, 

implementation, and key components 

4.2.1 Problem Formulation 

The PSO-UFS approach formulates univariate 

feature selection as an optimization problem with 

two decision variables: the scoring function (s) and 

the number of features (k). The scoring function s 

assigns a score to each feature based on its 

relevance to the target variable. The set of available 

scoring functions F includes Chi-square, ANOVA 

F-test (Analysis of Variance), Mutual Information, 

and Fisher Score. The number of features k is an 

integer representing the number of top-ranked 

features to select, constrained by kmin ≤ k ≤ kmax, 

where kmin = 1 and kmax = n (total number of 

features). The objective function is defined as the 

performance metric of a classifier trained on the 

selected features. This metric can be accuracy, 

precision, recall, F1-score, or area under the ROC 

curve (AUCROC). The optimization problem is 

formally defined as: 

maximize s,k     f (s, k)  

subject to s ∈ F,  

                              kmin ≤ k ≤ kmax, 

where f(s, k) is the objective function, F is the set of 

available scoring functions, and kmin and kmax are the 

lower and upper bounds for k, respectively. 

4.2.2 Particle Representation 

Each particle in the swarm represents a potential 

solution to the optimization problem. A particle’s 

position is encoded as a two-dimensional vector (s, 

k), where s is an integer representing the index of 

the scoring function in the set F, and k is an integer 

representing the number of features to select. The 

particle’s velocity is represented as a two-

dimensional vector (vs, vk), which determines its 

movement in the search space. This representation 

allows the algorithm to explore the search space 

efficiently and converge to an optimal solution. 

4.2.3 Fitness Function  

The fitness function evaluates the quality of a 

particle’s solution. It is defined as the 5-fold cross-

validation accuracy of a classifier trained on the 

selected features. To compute the fitness function, 

the algorithm first decodes the particle’s position to 

extract the scoring function s and the number of 

features k. It then applies UFS to score all features 

using s and selects the top k features. Next, a 

classifier (e.g., KNN or Logistic Regression) is 

trained on the selected features, and its performance 

is evaluated using 5-fold cross-validation. The 

cross-validation accuracy is returned as the fitness 

value for the particle. This approach ensures that 

the selected features generalize well to unseen data. 

4.2.4 PSO Initialization 

The PSO algorithm begins by initializing a swarm 

of particles. The swarm size np (e.g., 10) determines 

the number of particles. Each particle is initialized 

with a random scoring function s and a random 

number of features k within the bounds [kmin, kmax]. 

The particles’ velocities are also initialized 

randomly to guide their movement in the search 

space. This random initialization ensures diversity 

in the swarm, enabling the algorithm to explore a 

wide range of solutions. 

4.2.5 PSO Update Rules 

At each iteration, the particles’ positions and 

velocities are updated based on their personal best 

and the global best positions. The velocity update 

rule is defined as: 

vij (t + 1) = w · vij (t) + c1 · r1 · (pbestij − xij (t)) + c2 

· r2 · (gbestj − xij (t)), 

where vij (t + 1) is the velocity of particle i in 

dimension j at iteration t + 1, w is the inertia weight 

(e.g., 0.5), c1 and c2 are cognitive and social 

parameters (e.g., 0.5), r1 and r2 are random numbers 

between 0 and 1, pbestij is the personal best position 

of particle i in dimension j, gbestj is the global best 

position in dimension j, and xij (t) is the position of 

particle i in dimension j at iteration t. The position 

update rule is defined as: 

 xij (t + 1) = xij (t) + vij (t + 1).  

These update rules balance exploration and 

exploitation, allowing the swarm to converge to an 

optimal solution efficiently. 

4.2.6 Termination Criteria 

The PSO algorithm terminates when one of the 

following conditions is met: (1) a predefined 

number of iterations (e.g., 110) is reached, or (2) 
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the global best fitness value does not improve 

significantly over a number of iterations. These 

criteria ensure that the algorithm stops when further 

iterations are unlikely to yield better solutions. 

4.2.7 Output 

The algorithm returns the optimal scoring 

function (s∗), the optimal number of features (k∗), 

and the optimal feature subset (S∗). These represent 

the best solution found by the swarm to the feature 

selection problem. The optimal feature subset S∗ is 

obtained by applying the scoring function s∗ and 

selecting the top k∗ features. 

4.2.8 Algorithm Steps    

The PSO-UFS algorithm is outlined in Algorithm 2. 

The input includes a dataset matrix X with n 

features and a target variable vector y, a set of 

scoring functions F, a number of particles p, a 

number of iterations t, and a classifier C. The 

output is an optimal scoring function s∗ and an 

optimal number of features k∗. 

4.2.9 Key Advantages 

The PSO-UFS approach offers several key 

advantages. Unlike traditional methods that 

optimize the scoring function and the number of 

features separately, PSO-UFS simultaneously 

optimizes both, leading to better feature subsets. 

The algorithm is highly flexible, as it can 

accommodate different scoring functions, 

classifiers, and performance metrics. Additionally, 

PSO-UFS reduces the manual effort and 

subjectivity involved in feature selection, making it 

suitable for high-dimensional datasets. Its ability to 

consider feature interactions indirectly further 

enhances its effectiveness. 

4.2.10 Reproducibility 

To ensure reproducibility, the following steps are 

recommended: (1) use a fixed random seed for 

initializing particle positions and velocities, (2) 

clearly specify all hyperparameters (e.g., swarm 

size, inertia weight, cognitive and social 

parameters), (3) use the same dataset splits for 

cross-validation across all experiments, and (4) 

provide the source code and implementation details 

in a public repository. These measures enable other 

researchers to replicate the results and build upon 

the proposed method. 

5 Experiments 

In this section, we delve into the empirical 

evaluation of our proposed PSO-based univariate 

feature selection (PSO-UFS) approach. We 

meticulously examine its performance across 

diverse datasets and classifiers, demonstrating its 

effectiveness in enhancing model accuracy and 

efficiency. 

5.1 Datasets and Classifiers 

The datasets utilized in this study are publicly 

sourced from reputable platforms such as the UCI 

Machine Learning Repository [13] and Kaggle. 

These datasets are commonly used within the 

machine learning community for empirical analysis 

of machine learning algorithms. 

 UCI Heart Disease: This dataset includes 

information about patients diagnosed with 

heart disease, encompassing variables such 

as age, sex, type of chest pain, resting 

blood pressure, serum cholesterol, and 

more. The target variable signifies the 

presence or absence of heart disease in the 

patient [22]. The complexity of this dataset 

arises from the combination of categorical 

and numerical features, as well as the 

critical nature of the prediction task. 

 Breast Cancer Wisconsin: This dataset 

consists of 569 instances of cancer 

biopsies, each with 32 features. It contains 

an identification number, cancer diagnosis 

(malignant or benign), and 30 numeric-

valued laboratory measurements derived 

from cell nuclei of the biopsies [36]. The 

high dimensionality of this dataset makes it 

an excellent candidate for feature selection. 

 Adult Census Income: This dataset, 

extracted from the 1994 Census bureau 

database, contains demographic 

information about adults from various 

countries. The prediction task is to 

determine whether a person earns over 50K 

a year [5]. This dataset is challenging due 

to its large number of instances and 

features, as well as the mix of categorical 

and numerical features. 

The K-Nearest Neighbors (KNN) and 

Logistic Regression classifiers were chosen 

for this study due to their unique 

characteristics, which make them suitable 

for a wide range of problems: 

 K-Nearest Neighbors (KNN): KNN is a 

non-parametric, instance-based learning 

algorithm that is straightforward to 

understand and implement. It can handle 

complex decision boundaries, making it 

suitable for problems where the decision 

boundary is not linear. However, KNN has 
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some limitations. It is sensitive to noise and 

irrelevant features, which can negatively 

impact its performance. Also, KNN suffers 

from the curse of dimensionality, meaning 

its performance degrades rapidly as the 

number of features (dimensions) increases. 

This makes feature selection particularly 

important when using KNN [34].  

 Logistic Regression: Logistic Regression 

is a parametric, probabilistic classifier that 

can provide interpretable coefficients, 

making it useful when interpretability is 

important. It assumes a linear relationship 

between the features and the log-odds of 

the positive class, which allows it to 

estimate the probability of a particular class 

membership. However, this linearity 

assumption is a limitation if the actual 

relationship is not linear. Also, Logistic 

Regression may underfit the data if the 

decision boundary is complex [9]. 

5.2 Evaluation Methodology  

For the evaluation methodology, we employ both a 

hold-out method and 5-fold cross-validation. In the 

hold-out method, the dataset is partitioned into a 

training set (70% of the data) and a test set (30% of 

the data). The model is trained on the training set 

and evaluated on the test set. This method is simple 

and computationally efficient, but its performance 

estimate can be sensitive to how the data is split. 

On the other hand, 5-fold cross-validation provides 

a more robust performance estimate. In this 

method, the dataset is divided into 5 equal-sized 

folds. The model is trained and evaluated 5 times, 

each time using a different fold as the test set and 

the remaining folds as the training set. The final 

performance estimate is the average of the 

performance measures from the 5 folds. While this 

method is more computationally intensive than the 

hold-out method, it provides a more reliable and 

less biased performance estimate. It is particularly 

useful when the dataset is small, as it effectively 

uses the available data. The classifiers and 

evaluation methods, along with the PSO-UFS 

feature selection method, form a comprehensive 

framework for assessing the effectiveness of feature 

selection in machine learning tasks. The 

performance of the classifiers is evaluated using 

several key metrics: 

 Accuracy: This is the proportion of true 

results (both true positives and true 

negatives) among the total number of cases 

examined. It is a fundamental metric for 

classification problems, providing a 

baseline measure of a model’s overall 

correctness. 

 Precision: Precision measures the 

proportion of true positive predictions 

(relevant instances that are correctly 

identified) among all positive predictions. 

It is particularly important when the cost of 

a false positive is high. 

 Recall: Recall, also known as sensitivity, 

measures the proportion of true positive 

predictions among all actual positive 

instances. It is crucial when the cost of a 

false negative is high. 

 F1-score: The F1-score is the harmonic 

mean of precision and recall. It provides a 

single metric that balances both precision 

and recall, useful when you want to 

compare two or more models and need a 

single measurement. 

These metrics were chosen because they provide a 

comprehensive view of the model’s performance. 

Accuracy alone can be misleading, especially in 

imbalanced datasets. Precision, recall, and F1-score 

offer additional perspectives, helping us understand 

the trade-off between identifying as many relevant 

instances as possible (high recall) and keeping the 

number of irrelevant instances low (high precision).  

In the context of the PSO-UFS method, these 

metrics allow us to evaluate how well the selected 

features contribute to the performance of the 

classifiers. By optimizing these metrics, the PSO-

UFS method aims to find a feature subset that 

maximizes the classifier’s ability to make correct 

predictions and balances precision and recall. This 

is particularly important in real-world applications 

where both false positives and false negatives can 

have significant implications.For UFS, we consider 

four candidate scoring functions: Chi-square, F-

statistic, Mutual information, and Fisher score. 

These scoring functions rank the features based on 

their relevance to the target variable, irrespective of 

their types (numeric or categorical features). We 

also set a lower bound of kmin = 1 and an upper 

bound of kmax = n, where n is the total number of 

features in the dataset. The objective function for 

Particle Swarm Optimization (PSO) is defined as 

the 5-fold classification accuracy of a classifier 

trained on the selected features. The PSO 

hyperparameters are set as follows: swarm size (np) 

of 10, inertia weight (ω) of 0.5, cognitive and social 

parameters (χ and ϕ) of 0.5, and a maximum 

number of iterations (maxiters) of 110. These 

parameters are chosen to strike a balance between 

exploration and exploitation during the 

optimization process. This balance is crucial to 

ensure that the PSO algorithm can find an optimal 
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solution within a reasonable time frame. The 

selected datasets, classifiers, performance metrics, 

and PSO parameters collectively constitute a 

comprehensive framework for evaluating the 

efficacy of our feature selection approach. 

 

5.3 Results and Discussions 

Our study involved the implementation of the PSO-UFS method in Python. The source code for this method is publicly accessible and can be reviewed and reused. It is available at the following location: The results presented in Tables 2 and 3 provide a comprehensive comparison of the performance of the PSO-UFS approach and the original feature set 

across different datasets using KNN and Logistic 

Regression classifiers. The metrics used for 

evaluation are accuracy, precision, recall, and F1-

score. For the UCI Heart Disease dataset, the 

accuracy improved by 11.11 percentage points 

(from 70.00% to 81.11%) with the KNN classifier 

and by 1.11 percentage points (from 87.78% to 

88.89%) with the Logistic Regression classifier. 

For the Breast Cancer Wisconsin dataset, the 

accuracy improved slightly from 95.91% to 96.49% 

with both classifiers. This indicates that even for 

datasets where the original feature set already 

allows for high classification accuracy, the PSO-

UFS approach can still find room for improvement. 

For the Adult Census Income dataset, the accuracy 

improved by 6.58 percentage points (from 76.01% 

to 82.59%) with the KNN classifier and by 3.73 

percentage points (from 78.00% to 81.73%) with 

the Logistic Regression classifier. These 

improvements demonstrate the effectiveness of the 

PSO-UFS approach in identifying informative 

features, leading to enhanced performance metrics 

and thereby creating more effective and efficient 

automating and optimizing the feature selection 

process. This leads to more advanced and efficient 

machine learning models, paving the way for 

significant advancements in the field of machine 

learning. The key takeaway is that automation in 

feature selection, as demonstrated by PSO-UFS, 

can lead to significant improvements in model 

performance across various datasets and classifiers. 

This underscores the importance and potential of 

automated feature selection in machine learning. 

Future work could explore the application of this 

approach to other types of datasets and machine 

learning tasks.The figures 1 and 2 illustrate the 

performance of two models, K-Nearest Neighbors 

(KNN) and Logistic Regression, using features 

selected by the Particle Swarm Optimization - 

Univariate Feature Selection (PSO-UFS) method 

across different iterations on three datasets: UCI 

Heart Disease, Breast Cancer Wisconsin, and Adult 

Census Income.The red dots in these figures 

indicate the best average validation accuracy 

achieved across all iterations, while the blue dots 

represent the global best position for each iteration, 

which contains the optimal scoring function and 

number of features. For the UCI Heart Disease 

dataset, the best iteration was 33 for both KNN and 

Logistic Regression. For the Breast Cancer 

Wisconsin dataset, the best iteration was 51 for 

both models. For the Adult Census Income dataset, 

the best iteration was 33 for both KNN and Logistic 

Regression. These results underscore the 

effectiveness of the PSO-UFS method in selecting 

the optimal number of features and scoring function 

to achieve high cross-validation accuracy. The 

method’s adaptability and efficiency are evident in 

the relatively low number of iterations needed to 

achieve these results, making the PSO-UFS method 

a promising tool for feature selection in various 

real-world applications.The PSO-UFS method 

demonstrates a promising performance across all 

three datasets. The method’s ability to achieve high 

cross-validation accuracy underscores its 

effectiveness. The accuracy achieved on the UCI 

Heart Disease and Breast Cancer Wisconsin 

datasets is particularly noteworthy, given the 

complexity and high dimensionality of these 

datasets. Moreover, the method’s performance 

remains relatively stable across multiple iterations, 

suggesting that it is robust to different 

initializations and can reliably find good solutions. 

The PSO-UFS method’s effectiveness is further 

highlighted when compared to traditional 

Univariate Feature Selection (UFS) methods. 

Unlike traditional UFS methods, which often rely 

on a fixed scoring function and feature number, the 

PSO-UFS method adaptively selects the optimal 

scoring function and feature number based on the 

data. This adaptability allows the method to better 

capture the underlying structure of the data and 

leads to improved cross-validation accuracy. In 

conclusion, the PSO-UFS method offers a robust 

and effective solution for feature selection. Its 

ability to achieve high cross-validation accuracy 

across multiple datasets and its adaptability to 

different data structures make it a promising tool 

for various real-world applications. The figures 

presented in the paper provide empirical evidence 

supporting the effectiveness of the PSO method. 

One additional point to note is that the PSO method 

does not require a large number of iterations to find 

the best combination of features and scoring 

function. This efficiency is evident from the 

relatively low number of iterations needed to 

achieve the best scores in all three datasets. This 

characteristic further enhances the practical utility 

of the PSO method, as it allows for quick and 

efficient feature selection, which is particularly 

beneficial in scenarios where computational 

resources or time are limited. Beyond the figures, 

the underlying trend within the data sets is the 

consistent performance of the PSO-UFS method 

across different datasets and models. This is not 
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explicitly addressed in the paper but is evident from 

the figures. Additional analyses or visualizations 

that could provide deeper insights into the data and 

enhance the understanding of the research could 

include a comparison of the PSOUFS method with 

other feature selection methods, or a breakdown of 

the performance of the models on each feature 

selected by the PSO-UFS method. Based on the 

presented data, potential future research directions 

could include applying the PSO-UFS method to 

other models and datasets, exploring the impact of 

different scoring functions on the performance of 

the PSO-UFS method, or investigating ways to 

further improve the efficiency of the PSO-UFS 

method.The table 4 presents the feature reduction 

rates achieved by our PSO-UFS approach on each 

dataset. The feature reduction rate is calculated as 
𝑛−𝑘

𝑢
, where n is the number of original features and 

k is the number of selected features by our PSO-

UFS approach. The feature reduction rate ranges 

from 0% (no reduction) to 70% (a substantial 

reduction), indicating that our PSO-UFS approach 

can effectively reduce the dimensionality of the 

data while maintaining or even improving model 

performance.This table shows that the PSO-UFS 

approach can significantly reduce the number of 

features needed for classification without 

sacrificing performance. For instance, in the case of 

the UCI Heart Disease dataset, the feature reduction 

rate for the Logistic Regression (LR) classifier is 

23.08%, and for the K-Nearest Neighbors (KNN) 

classifier, it is as high as 69.23%. This 

demonstrates the efficiency of our PSO-UFS 

approach in handling high-dimensional data. The 

ability to reduce dimensionality is particularly 

beneficial in real-world applications where 

computational resources are limited. It not only 

speeds up the learning process but also helps to 

mitigate the risk of overfitting by eliminating 

irrelevant or redundant features. Thus, the PSO-

UFS approach proves to be a valuable tool for 

feature selection in machine learning tasks. The 

highest reduction rate (69.23% for the KNN 

classifier on the UCI Heart Disease dataset) 

underscores the maximum efficiency of the PSO-

UFS approach. This significant reduction in 

features can lead to substantial computational gains, 

especially in scenarios involving large-scale 

datasets or resource-constrained environments. In 

terms of real-world applications, the PSO-UFS 

approach could be particularly useful in healthcare 

for patient risk prediction, where high-dimensional 

patient data is common, or in finance for credit 

scoring or fraud detection, where interpretability 

and efficiency are crucial. Future work could 

explore the application of this approach to other 

types of datasets and machine-learning tasks, such 

as deep learning models or genomic data analysis. 

This could potentially lead to even more efficient 

and effective models, further advancing the field of 

machine learning. 

6 Conclusion 

This paper has introduced a novel approach for 

automating univariate feature selection (UFS) using 

Particle Swarm Optimization (PSO). Feature 

selection is a pivotal technique that simplifies 

datasets and enhances model performance. 

However, the manual selection of the scoring 

function and the number of features can be both 

time-consuming and suboptimal. Our PSO-based 

approach addresses these issues by automatically 

identifying the optimal subset of features and 

scoring function that maximize the accuracy of a 

logistic regression classifier. Our PSO-UFS 

approach was evaluated on multiple benchmark 

datasets and compared with the original feature 

sets. The results demonstrated that our approach 

consistently improved model performance across 

various metrics, including accuracy, precision, 

recall, and F1-score. By leveraging PSO, our 

approach significantly reduced the time and effort 

required in the feature selection process. It also 

considered a range of scoring functions, making it 

adaptable to different data characteristics and 

complexities. Moreover, the PSO-UFS approach 

selected subsets of features that were more 

interpretable, providing valuable insights into the 

underlying patterns and factors in the classification 

task.In conclusion, our PSO-based automated 

feature selection method represents a significant 

contribution to the field of machine learning and 

data analysis. It generates more effective and 

interpretable classification models by streamlining 

the feature selection process. This method holds 

potential for broader applications in various real-

world scenarios where feature dimensionality 

reduction and model interpretability are crucial. 

Future research directions may include extending 

the PSO-based feature selection to other machine 

learning algorithms and adapting the method to 

handle high-dimensional and imbalanced datasets. 

Overall, our proposed method lays the groundwork 

for more efficient and accurate feature selection 

techniques in data-driven decision-making 

processes. 
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Table 1: Normalized scores from different scoring functions for each feature in the Iris dataset. 

Feature Chi-square  ANOVA F-test  Mutual information  Pearson correlation 

Sepal Length 0.27 0.06 0.29 0.87 

Sepal Width 0.00 0.00 0.00 0.00 

Petal Length 0.86 1.00 1.00 0.99 

Petal Width 1.00 0.81 0.99 1.00 
 

Table 2: Performance Metrics of KNN Classifier. 

Dataset Metric Without feature selection (%) PSO-UFS (%) 

UCI Heart Disease 

Accuracy 

Precision 

Recall 

score 

70.00 

69.79 

69.46 

69.55 

81.11 

80.95 

81.06 

81.00 

Breast Cancer Wisconsin Accuracy 95.91 96.49 
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Precision 

Recall 

F1-score 

96.48 

94.78 

95.52 

96.23 

96.23 

96.23 

Adult Census Income 

Accuracy Precision 

Recall 

F1-score 

76.01 

66.95 

60.59 

61.69 

82.59 

77.35 

74.52 

75.72 
 

Table 3: Performance Metrics of Logistic Regression Classifier. 

Dataset Metric Without feature selection (%) PSO-UFS (%) 

UCI Heart Disease 

Accuracy  
Precision  

Recall  
F1-score 

87.78  
88.01  
87.38 
87.59 

88.89  
89.34 

88.40 

88.69 

Breast Cancer Wisconsin 

Accuracy 

Precision 

Recall 

F1-score 

95.91 

96.48 

94.78 

95.52 

96.49 

96.23 

96.23 

96.23 

Adult Census Income 

Accuracy Precision 

Recall 

F1-score 

78.00 

72.33 

61.24 

62.60 

81.73 

78.08 

69.21 

71.69 
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Figure 1: Cross-validation accuracy of KNN classifier vs PSO iteration. 
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Figure 2: Cross-validation accuracy of Logistic regression classifier vs PSO iteration. 

 

Table 4: Feature reduction rate of PSO-based univariate feature selection approach on different datasets. 

Dataset Name Feature Reduction Rate (LR) (%) Feature Reduction Rate (KNN) (%) 

UCI Heart Disease 23.08% 69.23% 

Breast Cancer Wisconsin 3.33% 3.33% 

Adult Census Income 42.86% 14.29% 
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