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Abstract:

The Internet of Medical Things (IoMT) connects wearable devices, sensors, and
healthcare systems to enable continuous patient monitoring and intelligent diagnostics.
While offering significant benefits, this connectivity also exposes IoMT to cyberattacks
that threaten data integrity and patient safety. Intrusion detection is therefore essential,
but traditional centralized methods raise concerns of privacy leakage, high
communication cost, and single points of failure. To address these issues, we propose a
federated deep learning framework that employs a hybrid Convolutional Neural Network
and Long Short-Term Memory CNN-LSTM architecture for intrusion detection. The
federated approach allows collaborative model training across distributed clients without
sharing raw medical data, preserving privacy while enhancing scalability. Experiments
conducted on the CIC-loMT2024 dataset under both 11D and non-1I1D data distributions
demonstrate that the framework achieves up to 99% accuracy in binary classification and
strong robustness in multi-class scenarios. These findings confirm that federated deep
learning offers a robust and scalable solution for securing IoOMT networks while

safeguarding sensitive medical information.

1. Introduction

Healthcare systems are implementing digital
technologies to enhance diagnostic efficiency,
patient monitoring, and tailored care. The Internet of
Medical Things is central to this revolution, bringing
together wearable sensors, medical imaging devices,
and smart healthcare infrastructure. While IoMT
brings significant benefits, its highly connected and
distributed nature makes it wvulnerable to
cyberattacks, ranging from denial-of-service to data
manipulation, which can compromise both data
integrity and patient safety [1-2]. Traditional IDS
design follows CL architectures, where all the
training data are collected on a central server to be
employed for model training and inference. While
centralized models can ensure high detection

accuracy [5], they come with major limitations like
privacy concerns regarding data storage in a single
point, low scalability, and vulnerability to single
points of failure [6, 7]. Federated learning (FL) has
emerged as a decentralized method that eliminates
the aforementioned limitations [14]. FL improves
data privacy and communication overhead
minimization, and is competitive in terms of
detection performance in decentralized
environments [3,4]. This approach enhances data
privacy, reduces communication overhead, and
improves resilience. Despite its promise, FL in IoMT
environments  faces  challenges such  as
heterogeneous data across devices, varying resource
constraints, and adversarial conditions. To tackle
these challenges, this paper introduces a federated
deep learning framework for intrusion detection in
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IoMT networks. The framework employs a CNN—
LSTM model to capture both spatial features and
temporal dependencies in network traffic. By
distributing model training across loMT clients and
aggregating updates in a federated manner, the
framework preserves privacy, scales efficiently, and
maintains robustness under heterogeneous data
settings. We evaluate the framework on the CIC-
I0MT2024 dataset, comparing it against centralized
and baseline federated methods. The results
demonstrate that our approach achieves high
accuracy, and robustness, making it a practical
solution  for  next-generation medical loT
environments security. The remaining sections of
this work are organized as follows. Section 2
provides a review of related research on intrusion
detection and federated learning in IoMT systems.
Section 3 discusses the proposed federated deep
learning framework, which includes the CNN-
LSTM architecture and data distribution method.
Section 4 covers the experimental setup, dataset
description, evaluation measures, and
implementation parameters. Section 5 explains the
collected results and provides a comparison to
existing approaches. Finally, Section 6 summarizes
the paper and provides areas for future research.

2. Related Works

Recent research in IoMT security has increasingly
focused on leveraging artificial intelligence and
machine learning to detect and mitigate cyber
threats. Traditional centralized intrusion detection
systems (IDS) have demonstrated strong detection
capabilities but suffer from privacy risks and
scalability issues due to centralized data aggregation.
Berguiga et al. [6] introduced HIDS-1oMT, a CNN-
LSTM hybrid model executed on fog nodes with
Raspberry Pi, achieving 99.92% accuracy with
I0TID20 and Edge-lloT datasets. Zachos et al. [8]
described a lightweight anomaly based IDS, host-
and network-level monitoring combined with KNN,
decision tree (DT), and random forests (RF), with
over 99.6% accuracy with the TON loT and Power
trace datasets. Areia et al. [9] presented IOMT
Traffic Data, traffic flow-level dataset for loMT with
emphasis on feature representation but without
implementing an IDS model or taking privacy into
account. Alalhareth and Hong [11] proposed ME-
IDS, a meta-learning ensemble wherein stacking and
dynamic voting are implemented, achieving 98%
accuracy on the WUSTL dataset. Yet, the system
remains centralized and energy and privacy are not
considered. Thamilarasu et al. [10] presented a
hierarchical IDS using mobile agents and machine
learning for network and device-level defense,
achieving a detection accuracy of approximately
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99.6% in
Hernandez-Jaimes et al.
mechanisms and natural language processing
techniques to achieve unsupervised anomaly
detection using OC-SVMs. Their model attained a
95.53% F1-score on CIC- IoMT-2024 and MQTT-
10T-1DS2020, but remained centralized. Dadkhah et
al. [17] introduced the CIC-loMT- 2024 dataset with
18 attack classes suitable for benchmarking but
based on centralized models without any privacy-
preserving techniques. The issue stood of privacy
and scalability of centralized models. That is why the
FL-based ID systems had been receiving attention in
recent years. Otoum et al. [7] propose a federated
transfer learning system that trains deep neural
networks across edge devices. Evaluation using
CIC-1DS-2017 has shown that their model improved
on personalization while maintaining data locality.
Fahim Islam et al. [12] proposed FedloMT, a
federated framework based on KANConvNet with
cluster based aggregation. It exhibited an
outstanding performance profile with over 99.2%
accuracy on four benchmark datasets with little
computational overhead. Albahri et al. [13]
presented a decision framework using fuzzy logic to
choose the best classifier to be deployed for
federated IDS within loMT. Although complete, this
fails to incorporate temporal architectures, such as
LSTM, combined with federated learning-based
defenses, thereby limiting robustness in the face of
adversarial attacks.

CastaliayOMNeT++  simulations.
[16] wused attention

3. Material and Methods

This section focuses on reviewing and analyzing
pivotal technologies that play a key component in
the development of intrusion detection systems:
Centralized Learning and Federated Learning. It
begins by presenting the traditional approach based
on centralized data processing, highlighting its
advantages and limitations. Then transitions to
federated learning as an alternative paradigm that
enhances data privacy and enables collaboration
between multiple entities without the need to share
raw data to create decentralized and secure learning
environments.

3.1. Dataset Description

This study used the CIC-loM-T2024 dataset
developed Dby the Canadian Institute for
Cybersecurity at the University of New Brunswick
[18]. It is regarded as one of the top datasets in the
field of IoMT security. The data was acquired in a
realistic testbed environment with 40 medical
equipment, both genuine and simulated. These
devices communicated using several protocols. The
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dataset includes 18 different forms of cyberattacks,
divided into five categories: Denial of Service
(DoS), Distributed Denial of Service (DDoS),
reconnaissance, and MQTT.

Figure 1. Distribution of attack types and benign in the
CIC-1oMT-2024 Dataset.

3.2. Data Preprocessing

This step is important in preparing data for deep
learning models since it directly affects model
correctness and reliability? Noise, missing values,
and class imbalances are common in raw data, and
they all have a negative impact on model
performance.

e Step 1- Data Collection: The dataset was
obtained directly from the official Canadian
Institute for Cybersecurity [18] repository and
subsequently uploaded to Google Drive to ensure
streamlined access and centralized management
throughout the preprocessing and analysis
pipeline.

e Step 2- Feature and Target Selection: Columns
(0-45) were selected as input features, and
column 46 was used as the target variable.

e Step 3- Removal of Non-Numeric and
Constant Features: Non-numeric features were
excluded. Additionally, features with only a
single unique value were removed, as they do not
contribute discriminative information.

e Step 4- Standardization: Each feature was
standardized to have zero mean and unit variance,
where p represent the mean and o the standard
deviation.

X—p

Xstandardized = o

(1)
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Step 5- Data Balancing: Two complementary
strategies were employed to address class
imbalance in the data set: Synthetic Minority
Oversampling Technique (SMOTE) and Random
Undersampling. SMOTE generates synthetic
instances for minority classes by interpolating
between existing points and their nearest
neighbors in feature space, thereby enhancing the
minority class without duplication. Conversely,
Random Under-sampling reduces majority
classes in size by randomly removing instances,
which balances the class distribution but has the
possibility of losing potentially useful samples.
Both techniques help generate a more balanced
and representative training data set.
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Figure 2. Data Balancing using SMOTE.

Step 6 - MinMaxScaler: The MinMaxScaler
was applied to the balanced dataset in order to
normalize the feature values and ensuring that all
feature values fall within a specified range,

typically [0, 1].

Step 7 - Data Splitting: The data was split into
training, testing, and validation sets according to
the specified proportions. 70% of the data was
allocated to the training set, while the remaining
30% was split into validation and test sets, each
receiving 50%.
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3.3. CL for Baseline Model Evaluation

During the CL phase, three deep learning
architectures were tested to see which one could
provide the intrusion detection baseline for loMT
settings. The first CNN architecture included three
convolutional layers plus a fully connected layer
wherein the objective was to draw spatial features
from the network traffic data. The second model, an
LSTM network, consisted of two LSTM layers and
two fully connected layers. This model could learn
long-term temporal dependencies in sequential
inputs. The third architecture, namely the CNN-
LSTM, consists of two convolution layers inside a
single LSTM layer; the output from the LSTM units
then connected to a fully output layer for jointly
modeling spatial and temporal features. This allowed
CNN-LSTM to learn complex patterns present in
IoOMT traffic data in scenarios where spatial
correlations and temporal sequences were equally
relevant. This model, benefiting from its
architectural suitability for addressing aspects in
spatiotemporal loMT data, was tested in both binary
and multiclass classification scenarios.
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Figure 3. Centralized Learning model.
3.4. Federated Learning

To keep going based on what was learned during the
centralized training, the CNN-LSTM model,
selected for its ability to grasp spatial and temporal
properties, was deployed in a federate learning setup.
Federate Learning is a decentralized setup whereby
many clients cooperate to train a common model
without the exchange of any raw data between them,
thus preserving privacy. In this phase, the CNN-
LSTM model was trained across distributed clients,
both under independent and identically distributed
(1ID) as well as Non-11D data distribution setups to
better simulate realistic deployment scenarios in
IoMT environments. Two different aggregation
strategies were used: one is FedAvg [15], which
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averages client updates in a weighted fashion; the
second is FedProx [20], which stabilizes the training
in heterogeneous settings by imposing a proximal
term. This whole setup aimed at improving privacy
of data across clients, addressing statistical
heterogeneity in the client system, and ultimately
incrementing the performance of the global model in
its intrusion-detection capacity within diverse
distributed loMT systems.
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Figure 4. Federated Learning model.
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3.5. Data Distribution

To evaluate the strength of the proposed IDS, we
experimented under both 1ID and non-lID data
settings. This enables end-to-end exploration of the
impact of heterogeneity of data, common in real
[oOMT settings, on model performance and
behaviour. In the IID scenario, data samples were
distributed evenly across all contributing clients in a
way that each client received a representative sample
of the worldwide dataset. This ensured faster
convergence and stable training dynamics. In the
non-l1D scenario, the simulation was closer to real-
world conditions where the clients had data whose
statistical features were distinct. To generate non-
11D distributions, we used the Dirichlet distribution
by changing the concentration parameter o, which
controls the heterogeneity. The Dirichlet distribution
is a simple multi-dimensional continuous probability
distribution that allowed us to capture various
degrees of data skewness and fragmentation. Non-
IID settings represent real federated learning
scenarios with heterogeneous data usage and
ownership and are different from I1D distributions.
Combining these environments with our test
platform guaranteed not just that the IDS is effective
in ideal, even situations but also resilient against the
decentralized, non-uniform data environments found
in actual loMT deployments.
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Figure 5. Data Distributions 11D and Non-1ID.
3.6. Performance Metrics

The effectiveness of the IDS classifiers within
Internet of Medical Things environments was
assessed using several widely performance metrics.
These metrics provide a comprehensive view of the
classifiers’ capabilities in identifying intrusion
attempts [19]. Such evaluations are critical for
optimizing the classifiers to ensure high reliability
and robustness of the intrusion detection systems in
real-world IoMT deployments.

TP+ TN

Accuracy = ——————— (2)
TP+ FN +FP+TN
.. TP
Precision = 3
TP+ FP
TP
Recall = (4)
TP + FN
Recall x Precisi
F1 —score = 2 x ——_X"T¢Z80N (5

Recall + Precision

4. Experiments, Results and Discussions
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This section outlines the outcomes of the data
preprocessing stage, including dimensionality
reduction and class balancing applied to the datasets.
In this context, the study addressed two types of
classification tasks: a multiclass classification
problem consisting of six classes, and a binary
classification problem. The centralized model was
first evaluated as a baseline, followed by an
assessment of the performance of various federated
learning strategies under different experimental
conditions, including variations in the number of
clients, training rounds, and data partitioning
methods.

4.1. Centralized Learning Result

In the Centralized Learning setting, three types of
models were evaluated: CNN, LSTM, and a hybrid
CNN-LSTM. These models were compared based
on their performance using several evaluation
metrics in order to determine the most effective
architecture. In all implemented models, the
Rectified Linear Unit(ReLU) activation function
was utilized. The Cross-Entropy Loss function was
adopted as the training criterion. Each model was
trained for 20 epochs under a centralized learning
setup.

In binary classification, all models demonstrated
excellent performance, with the LSTM model
slightly outperforming the others in terms of
accuracy, loss, and F1-score, highlighting its
strength in capturing temporal dependencies in the
data. The CNN-LSTM model ranked second,
benefiting from its combined spatial and temporal
learning capabilities. Although the CNN model
ranked last, it still achieved very high performance,
confirming its effectiveness in feature extraction for
this type of task. In the multiclass classification task,
a slight decrease in performance was observed
across all models, which is expected due to the
increased complexity of the task. Nevertheless, the
CNN-LSTM model achieved the best overall
balance among the

Table 1. Binary classification parameter Model.

Model | No. of CNN Sequence | No. of
Layers | Channels | Length | Classes
CNN | 3Conv | 64,128, 45 2
+FC 256
LSTM | 2LSTM — 45 2
+2FC
CNN- | 2 Conv 64, 128 45 2
LSTM +1
LSTM +
FC
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Table 2. Binary Classification Results.

Model Loss Acc | Precision | Recall | F1-
score
CNN | 0.0097 | 0.997 0.997 0.997 | 0.997
CNN- | 0.0085 | 0.997 0.997 0.997 | 0.997
LSTM
LSTM | 0.0049 | 0.998 0.998 0.998 | 0.998

evaluation metrics, followed by the CNN model,
while the LSTM model recorded the lowest
performance among the three. These results indicate
that combining convolutional and recurrent layers is
particularly beneficial in complex multiclass tasks.
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Figure 7. Performance of Multi-class Classification.

4.2. Federated Learning implementation

In this study, two federated learning aggregation
strategies FedAvg and FedProx were implemented
and evaluated under both 1ID) and Non-lID data
settings. The primary objective was to assess how
varying the number of clients (5, 10, and 20) and
communication rounds (5, 10, and 20) impacts the
performance and stability of each strategy. The
CNN-LSTM model, which demonstrated the highest
accuracy during centralized training, was selected
for the federated setup.

Table 3. Federated Learning Accuracy (Clients = 5).

11D Non-11D
Number
of FedAvg | FedProx | FedAvg | FedProx
Rounds
5 0.824 0.823 0.829 0.831
10 0.831 0.831 0.842 0.845
20 0.835 0.835 0.854 0.863
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Table .3 presents the accuracy results when the
number of clients is set to 5. Both strategies show a
clear improvement in accuracy as the number of
communication rounds increases. Under the IID
setting, FedProx slightly outperforms FedAvg,
especially at higher rounds. In contrast, under Non-
IID conditions, FedAvg shows marginally better
results, particularly at 20 rounds. As the number of
clients increases to 10, shown in Table 4, both
FedAvg and FedProx maintain stable performance
under 11D conditions, with nearly
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Table 4. Federated Learning Accuracy (Clients = 10).

Number 11D Non-11D

Roﬁl; ds FedAvg) | FedProx | FedAvg | FedProx
5 0.817 0.816 0.832 0.833
10 0.836 0.826 0.838 0.834
20 0.837 0.837 0.864 0.864

identical accuracy values across different

communication rounds. Under the Non-11D setting,
FedProx maintains a slight and consistent advantage
over FedAvg, particularly as the communication
rounds increase.

Table 5. Federated Learning Accuracy (Clients = 20).

11D Non-11D
Number
of FedAvg | FedProx | FedAvg | FedProx
Rounds
5 0.802 0.799 0.834 0.835
10 0.818 0.819 0.843 0.844
20 0.825 0.826 0.863 0.864

When the number of clients reaches 20, as illustrated
in Table 5, a slight decline in accuracy under the 11D
setting is observed for both strategies. This is likely
due to increased data fragmentation across more
clients, which makes local training less effective.
However, in the Non-IID setting, both strategies
maintain high accuracy, with FedProx again
demonstrating a marginal advantage, especially at
higher communication rounds.Overall, both FedAvg
and FedProx demonstrate strong and stable
performance across various configurations. FedProx
shows a slight advantage in Non-1ID settings across
all client numbers, whereas performance differences
under 11D settings are minimal. The results highlight
the robustness of both strategies and the influence of
communication rounds and client count on federated
model accuracy. Based on the experimental results,
the following observations can be made:« The results
show a gradual improvement in model accuracy as
the number of communication rounds increases,
indicating that the model becomes more stable and
effective with repeated interactions between clients
and the central server.

* When comparing the FedAvg and FedProx
strategies, FedProx demonstrates slightly better
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performance in the Non-1ID data scenario, which
aligns with its design objective to address data
heterogeneity across clients.

* Despite the slight performance difference, the
results indicate a general similarity in effectiveness
between FedAvg and FedProx under the conditions
of this study.

* Increasing the number of clients in a noticeable
decrease in model accuracy, especially in the 11D
data setting. This can be attributed to the reduced
amount of data available per client, which may
negatively impact the quality of local model updates.

4.3 Comparison and Discussion

The proposed framework was evaluated in
comparison to others techniques with different
learning patterns and task categorizations. In
centralized learning, our CNN-LSTM classifier
showed great results in the binary task, attaining
99% accuracy, a 0.96 F1-score, and 0.98 recall. With
more difficulty, our model still maintained its
robustness in the multi-class task with 86.6%
accuracy, a 0.92 Fl-score, and 0.97 recall,
outperforming several existing centralized ones. A
DNN-based approach [16], for example, achieved
too little accuracy (84.41%) and F1-score (91.02%)
while having a good recall (98.73%), whereas a
Random Forest approach [22] fared much worse
with 73% accuracy and a 0.676 F1-score. Under 11D
data, our model gave great performance of 86%
accuracy and a 0.919 F1 score; under non-1ID
scenarios, it remained pretty competitive, with an
85% accuracy rate and an F1 score of
0.90.Compared to the previous federated Random
Forest-based binary classifier [23], which was
absolutely perfect with 99% accuracy, our approach
offers a better-targeted and more generalized
solution that works well in multi-class scenarios,
thereby ensuring better applicability and robustness
to real-world intrusion detection tasks.The
comprehensive experimental results of centralized,
and federated learning models demonstrate a holistic
view of their respective performances in intrusion
detection tasks. The CNN-LSTM model performed
optimally for binary and multi-class classification in
the centralized learning setting, serving as a strong
baseline for comparison. Shifting to the federated
learning configuration, both the FedProx and
FedAvg aggregation methods attained stable and
progressively improved accuracy with increasing
communication rounds, reflecting the utility of
iterated client-server interactions for enhancing
global model convergence. FedProx slightly
outperformed FedAvg, particularly under non-11D
conditions, confirming its robustness to client data
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heterogeneity. Yet, while the number of clients
increased, a loss in accuracy was observed due to the
fragmentation of local datasets, which limits the
usefulness of local updates and results in a
scalability-accuracy trade-off.

5. Conclusions

This study presented a federated deep learning
framework for intrusion detection in IoMT. The
proposed system leverages the strengths of CNN-—
LSTM architectures to effectively capture
spatiotemporal features of IoMT traffic, while
federated learning enables collaborative training
without  sharing  sensitive  medical data.
Experimental results on the CIC-loMT2024 dataset
confirmed that the framework achieves up to 99%
accuracy in binary classification and maintains high
performance under challenging non-l1ID data
distributions. By eliminating the need for centralized
data aggregation, the framework reduces privacy
risks and enhances scalability, making it well-suited
for real-world healthcare deployments. Moreover,
the results highlight the robustness of federated deep
learning against heterogeneous data and adversarial
conditions, demonstrating its potential as a reliable
defense mechanism for loMT security.

Future work will focus on extending the model to
more complex multi-class intrusion detection,
improving efficiency for resource-constrained
devices, and validating the framework in real clinical
environments. Ultimately, this research contributes
to building safer and more resilient digital healthcare
systems where patient trust and data integrity are
preserved.

Author Statements:

e Ethical approval: The conducted research is not
related to either human or animal use.

Conflict of interest: The authors declare that
they have no known competing financial interests
or personal relationships that could have
appeared to influence the work reported in this
paper

Author contributions: The article was prepared
by Mohammed Kamel Benkaddour, Malika
Abid, Abbazi Zineb and Bouhnik Katia.
Mohammed Kamel Benkaddour and Malika
Abid contributed to the literature review,
conceptualization, methodology, visualization,
investigation and writing original draft. Zineb
Abbazi and Katia Bouhnik were responsible for
the design and execution of field studies, data
collection, as well as the analysis and
interpretation of the data. All authors reviewed

8929

the results and approved the final version of the
manuscript.

Funding information: The authors declare that
there is no funding to be acknowledged.

Data availability statement: The data that
support the findings of this study are available on
request from the corresponding author.

References

[1] Yang, W., Zhang, J., Wang, C., & Mo, X. (2019).
Situation prediction of large-scale Internet of Things
network security. EURASIP Journal on Information
Security, 2019(1), 1-12.
https://doi.org/10.1186/s13635-019-0095-5
Sicari, S., Grieco, L. A., & Coen-Porisini, A. (2015).
Security, privacy and trust in Internet of Things: The
road ahead. Computer Networks, 76, 146-164.
https://doi.org/10.1016/j.comnet.2014.11.008
Ashfag, Z., et al. (2022). A review of enabling
technologies for Internet of Medical Things (IloMT)
ecosystem. Ain Shams Engineering Journal, 13(4),
101660. https://doi.org/10.1016/j.asej.2021.10.017
Khezr, S., Moniruzzaman, M., Yassine, A., &
Benlamri, R. (2019). Blockchain technology in
healthcare: A comprehensive review and directions
for future research. Applied Sciences, 9(9), 1736.
https://doi.org/10.3390/app9091736
Hernandez-Jaimes, M. L., Martinez-Cruz, A.,
Ramirez-Gutiérrez, K. A., & Feregrino-Uribe, C.
(2023). Artificial intelligence for IloMT security: A
review of intrusion detection systems, attacks,
datasets and Cloud-Fog-Edge architectures. Internet
of Things, 21, 100887.
https://doi.org/10.1016/j.i0t.2023.100887
Berguiga, A., Harchay, A., & Massaoudi, A. (2025).
HIDS-IoMT: A deep learning-based intelligent
intrusion detection system for the Internet of
Medical Things. IEEE Access.
https://doi.org/10.1109/ACCESS.2025.XXXXX
Otoum, Y., Wan, Y., & Nayak, A. (2021). Federated
transfer learning-based IDS for the Internet of
Medical Things (IoMT). In IEEE Globecom
Workshops (GC Wkshps) (pp. 1-6). IEEE.
https://doi.org/10.1109/GCWkshps52748.2021.968
2067
Zachos, G., Essop, I., Mantas, G., Porfyrakis, K.,
Ribeiro, J. C., & Rodriguez, J. (2021). An anomaly-
based intrusion detection system for Internet of
Medical Things networks. Electronics, 10(21),
2562. https://doi.org/10.3390/electronics10212562

Areia, J., Bispo, I., Santos, L., & Costa, R. L. D. C.
(2024). loMT-TrafficData: Dataset and tools for
benchmarking intrusion detection in Internet of
Medical Things. IEEE Access.
https://doi.org/10.1109/ACCESS.2024 .XXXXX

[10] Thamilarasu, G., Odesile, A., & Hoang, A. (2020).

An intrusion detection system for Internet of
Medical Things. IEEE Access, 8, 181560-181576.
https://doi.org/10.1109/ACCESS.2020.3027983

(2]

3]

[4]

(5]

[6]

(7]

(8l

[9]



Mohammed Kamel Benkaddour, Malika Abid, Zineb Abbazi, Katia Bouhnik/ IJCESEN 11-4(2025)8922-8930

[11] Alalhareth, M., & Hong, S. C. (2024). Enhancing the
Internet of Medical Things (IoMT) security with
meta-learning: A performance-driven approach for
ensemble intrusion detection systems. Sensors,
24(11), 3519.
https://doi.org/10.3390/s24113519

[12] Fahim-Ul-Islam, M., Chakrabarty, A., Alam, M. G.
R., & Maidin, S. S. (2025). A resource-efficient
federated learning framework for intrusion detection
in loMT networks. IEEE Transactions on Consumer
Electronics.
https://doi.org/10.1109/TCE.2025.XXXXX

[13] Albahri, O. S., et al. (2023). Rough Fermatean fuzzy
decision-based approach for modelling IDS
classifiers in the federated learning of IoMT
applications. Neural Computing and Applications,
35(30), 22531-22549.
https://doi.org/10.1007/s00521-023-08962-2

[14] Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., & Zhang,
W. (2023). A survey on federated learning:
Challenges and applications. International Journal
of Machine Learning and Cybernetics, 14(2), 513—
535. https://doi.org/10.1007/s13042-022-01621-4

[15] Li, X., Huang, K., Yang, W., Wang, S., & Zhang, Z.
(2019). On the convergence of FedAvg on non-I1D
data. arXiv preprint arXiv:1907.02189.
https://arxiv.org/abs/1907.02189

[16] Hernandez-Jaimes, M. L., Martinez-Cruz, A,
Ramirez-Gutiérrez, K. A., & Morales-Reyes, A.
(2025). Network traffic inspection to enhance
anomaly detection in the Internet of Things using
attention-driven deep learning. Integration, 103,
102398. https://doi.org/10.1016/j.vlsi.2023.102398

[17] Dadkhah, S., Neto, E. C. P., Ferreira, R., Molokwu,
R. C., Sadeghi, S., & Ghorbani, A. A. (2024).
CICIoMT2024: Attack vectors in healthcare
devices—A multi-protocol dataset for assessing
IoMT device security. Internet of Things, 28,
101234. https://doi.org/10.1016/j.i0t.2024.101234

[18] Canadian Institute for Cybersecurity. (2024).

CICIoMT2024: A benchmark dataset for multi-

protocol security assessment in loMT. University of

New Brunswick.

https://www.unb.ca/cic/datasets/iomt-dataset-

2024.html

Deng, Y., Eden, M. R., & Cremaschi, S. (2023).

Metrics for evaluating machine learning models’

prediction accuracy and uncertainty. In A. C.

Kokossis, M. C. Georgiadis, & E. N. Pistikopoulos

(Eds.), Computer Aided Chemical Engineering (Vol.

52, pp. 1325-1330). Elsevier.

https://doi.org/10.1016/B978-0-443-15274-

0.50211-0

[20] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M.,
Talwalkar, A., & Smith, V. (2020). Federated
optimization in heterogeneous  networks.
Proceedings of Machine Learning and Systems, 2,
429-450.

[21] zhu, J., Cao, J., Saxena, D., Jiang, S., & Ferradi, H.
(2023). Blockchain-empowered federated learning:
Challenges, solutions, and future directions. ACM
Computing Surveys, 55(11), 1-31.
https://doi.org/10.1145/3555801

[19]

8930

[22] Misbah, A., Sebbar, A., & Hafidi, 1. (2025).
Innovative federated learning approach to secure
Internet of Medical Things. Innovative Technologies
in Electrical Power Systems and Smart Cities
Infrastructure (ICESST 2024) (pp. 315-327).
Springer. https://doi.org/10.1007/978-3-031-86705-
721

[23] Ali, M., Saleem, Y., Hina, S., & Shah, G. A. (2025).
DDoSViT: loT DDoS attack detection for fortifying
firmware over-the-air (OTA) updates using vision
transformer. Internet of Things, 30, 101527.
https://doi.org/10.1016/j.i0t.2025.101527


https://www.unb.ca/cic/datasets/iomt-dataset-2024.html
https://www.unb.ca/cic/datasets/iomt-dataset-2024.html

