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Abstract:  
The Internet of Medical Things (IoMT) connects wearable devices, sensors, and 

healthcare systems to enable continuous patient monitoring and intelligent diagnostics. 

While offering significant benefits, this connectivity also exposes IoMT to cyberattacks 

that threaten data integrity and patient safety. Intrusion detection is therefore essential, 

but traditional centralized methods raise concerns of privacy leakage, high 

communication cost, and single points of failure. To address these issues, we propose a 

federated deep learning framework that employs a hybrid Convolutional Neural Network 

and Long Short-Term Memory CNN–LSTM architecture for intrusion detection. The 

federated approach allows collaborative model training across distributed clients without 

sharing raw medical data, preserving privacy while enhancing scalability. Experiments 

conducted on the CIC-IoMT2024 dataset under both IID and non-IID data distributions 

demonstrate that the framework achieves up to 99% accuracy in binary classification and 

strong robustness in multi-class scenarios. These findings confirm that federated deep 

learning offers a robust and scalable solution for securing IoMT networks while 

safeguarding sensitive medical information. 

 

1. Introduction 

 
Healthcare systems are implementing digital 

technologies to enhance diagnostic efficiency, 

patient monitoring, and tailored care. The Internet of 

Medical Things is central to this revolution, bringing 

together wearable sensors, medical imaging devices, 

and smart healthcare infrastructure. While IoMT 

brings significant benefits, its highly connected and 

distributed nature makes it vulnerable to 

cyberattacks, ranging from denial-of-service to data 

manipulation, which can compromise both data 

integrity and patient safety [1-2]. Traditional IDS 

design follows CL architectures, where all the 

training data are collected on a central server to be 

employed for model training and inference. While 

centralized models can ensure high detection 

accuracy [5], they come with major limitations like 

privacy concerns regarding data storage in a single 

point, low scalability, and vulnerability to single 

points of failure [6, 7]. Federated learning (FL) has 

emerged as a decentralized method that eliminates 

the aforementioned limitations [14]. FL improves 

data privacy and communication overhead 

minimization, and is competitive in terms of 

detection performance in decentralized 

environments [3,4]. This approach enhances data 

privacy, reduces communication overhead, and 

improves resilience. Despite its promise, FL in IoMT 

environments faces challenges such as 

heterogeneous data across devices, varying resource 

constraints, and adversarial conditions. To tackle 

these challenges, this paper introduces a federated 

deep learning framework for intrusion detection in 

http://www.ijcesen.com/
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IoMT networks. The framework employs a CNN–

LSTM model to capture both spatial features and 

temporal dependencies in network traffic. By 

distributing model training across IoMT clients and 

aggregating updates in a federated manner, the 

framework preserves privacy, scales efficiently, and 

maintains robustness under heterogeneous data 

settings. We evaluate the framework on the CIC-

IoMT2024 dataset, comparing it against centralized 

and baseline federated methods. The results 

demonstrate that our approach achieves high 

accuracy, and robustness, making it a practical 

solution for next-generation medical IoT 

environments security. The remaining sections of 

this work are organized as follows. Section 2 

provides a review of related research on intrusion 

detection and federated learning in IoMT systems. 

Section 3 discusses the proposed federated deep 

learning framework, which includes the CNN-

LSTM architecture and data distribution method. 

Section 4 covers the experimental setup, dataset 

description, evaluation measures, and 

implementation parameters. Section 5 explains the 

collected results and provides a comparison to 

existing approaches. Finally, Section 6 summarizes 

the paper and provides areas for future research. 

 

2. Related Works 

 

Recent research in IoMT security has increasingly 

focused on leveraging artificial intelligence and 

machine learning to detect and mitigate cyber 

threats. Traditional centralized intrusion detection 

systems (IDS) have demonstrated strong detection 

capabilities but suffer from privacy risks and 

scalability issues due to centralized data aggregation. 

Berguiga et al. [6] introduced HIDS-IoMT, a CNN-

LSTM hybrid model executed on fog nodes with 

Raspberry Pi, achieving 99.92% accuracy with 

IoTID20 and Edge-IIoT datasets. Zachos et al. [8] 

described a lightweight anomaly based IDS, host- 

and network-level monitoring combined with KNN, 

decision tree (DT), and random forests (RF), with 

over 99.6% accuracy with the TON IoT and Power 

trace datasets. Areia et al. [9] presented IoMT 

Traffic Data, traffic flow-level dataset for IoMT with 

emphasis on feature representation but without 

implementing an IDS model or taking privacy into 

account. Alalhareth and Hong [11] proposed ME-

IDS, a meta-learning ensemble wherein stacking and 

dynamic voting are implemented, achieving 98% 

accuracy on the WUSTL dataset. Yet, the system 

remains centralized and energy and privacy are not 

considered. Thamilarasu et al. [10] presented a 

hierarchical IDS using mobile agents and machine 

learning for network and device-level defense, 

achieving a detection accuracy of approximately 

99.6% in Castalia/OMNeT++ simulations. 

Hernandez-Jaimes et al. [16] used attention 

mechanisms and natural language processing 

techniques to achieve unsupervised anomaly 

detection using OC-SVMs. Their model attained a 

95.53% F1-score on CIC- IoMT-2024 and MQTT-

IoT-IDS2020, but remained centralized. Dadkhah et 

al. [17] introduced the CIC-IoMT- 2024 dataset with 

18 attack classes suitable for benchmarking but 

based on centralized models without any privacy-

preserving techniques. The issue stood of privacy 

and scalability of centralized models. That is why the 

FL-based ID systems had been receiving attention in 

recent years. Otoum et al. [7] propose a federated 

transfer learning system that trains deep neural 

networks across edge devices. Evaluation using 

CIC-IDS-2017 has shown that their model improved 

on personalization while maintaining data locality. 

Fahim Islam et al. [12] proposed FedIoMT, a 

federated framework based on KANConvNet with 

cluster based aggregation. It exhibited an 

outstanding performance profile with over 99.2% 

accuracy on four benchmark datasets with little 

computational overhead. Albahri et al. [13] 

presented a decision framework using fuzzy logic to 

choose the best classifier to be deployed for 

federated IDS within IoMT. Although complete, this 

fails to incorporate temporal architectures, such as 

LSTM, combined with federated learning-based 

defenses, thereby limiting robustness in the face of 

adversarial attacks. 

 

3. Material and Methods 
 

This section focuses on reviewing and analyzing 

pivotal technologies that play a key component in 

the development of intrusion detection systems: 

Centralized Learning and Federated Learning. It 

begins by presenting the traditional approach based 

on centralized data processing, highlighting its 

advantages and limitations. Then transitions to 

federated learning as an alternative paradigm that 

enhances data privacy and enables collaboration 

between multiple entities without the need to share 

raw data to create decentralized and secure learning 

environments. 

 

3.1. Dataset Description 

 

This study used the CIC-IoM-T2024 dataset 

developed by the Canadian Institute for 

Cybersecurity at the University of New Brunswick 

[18]. It is regarded as one of the top datasets in the 

field of IoMT security. The data was acquired in a 

realistic testbed environment with 40 medical 

equipment, both genuine and simulated. These 

devices communicated using several protocols. The 
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dataset includes 18 different forms of cyberattacks, 

divided into five categories: Denial of Service 

(DoS), Distributed Denial of Service (DDoS), 

reconnaissance, and MQTT. 

 

 
Figure 1. Distribution of attack types and benign in the 

CIC-IoMT-2024 Dataset. 

 

3.2. Data Preprocessing 

 

This step is important in preparing data for deep 

learning models since it directly affects model 

correctness and reliability? Noise, missing values, 

and class imbalances are common in raw data, and 

they all have a negative impact on model 

performance. 

 

 Step 1- Data Collection: The dataset was 

obtained directly from the official Canadian 

Institute for Cybersecurity [18] repository and 

subsequently uploaded to Google Drive to ensure 

streamlined access and centralized management 

throughout the preprocessing and analysis 

pipeline. 

 

 Step 2- Feature and Target Selection: Columns 

(0-45) were selected as input features, and 

column 46 was used as the target variable. 

 

 Step 3- Removal of Non-Numeric and 

Constant Features: Non-numeric features were 

excluded. Additionally, features with only a 

single unique value were removed, as they do not 

contribute discriminative information. 

 

 Step 4- Standardization: Each feature was 

standardized to have zero mean and unit variance, 

where µ represent the mean and 𝞂  the standard 

deviation.  

 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
X−µ

σ
           (1) 

 

 Step 5- Data Balancing: Two complementary 

strategies were employed to address class 

imbalance in the data set: Synthetic Minority 

Oversampling Technique (SMOTE) and Random 

Undersampling. SMOTE generates synthetic 

instances for minority classes by interpolating 

between existing points and their nearest 

neighbors in feature space, thereby enhancing the 

minority class without duplication. Conversely, 

Random Under-sampling reduces majority 

classes in size by randomly removing instances, 

which balances the class distribution but has the 

possibility of losing potentially useful samples. 

Both techniques help generate a more balanced 

and representative training data set. 

 

 
(a) Before balancing 

 

(b) After balancing 

 
Figure 2.  Data Balancing using SMOTE. 

 

 Step 6 - MinMaxScaler: The MinMaxScaler 

was applied to the balanced dataset in order to 

normalize the feature values and ensuring that all 

feature values fall within a specified range, 

typically [0, 1].  

 

 Step 7 - Data Splitting: The data was split into 

training, testing, and validation sets according to 

the specified proportions. 70% of the data was 

allocated to the training set, while the remaining 

30% was split into validation and test sets, each 

receiving 50%. 
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3.3. CL for Baseline Model Evaluation 

 

During the CL phase, three deep learning 

architectures were tested to see which one could 

provide the intrusion detection baseline for IoMT 

settings. The first CNN architecture included three 

convolutional layers plus a fully connected layer 

wherein the objective was to draw spatial features 

from the network traffic data. The second model, an 

LSTM network, consisted of two LSTM layers and 

two fully connected layers. This model could learn 

long-term temporal dependencies in sequential 

inputs. The third architecture, namely the CNN–

LSTM, consists of two convolution layers inside a 

single LSTM layer; the output from the LSTM units 

then connected to a fully output layer for jointly 

modeling spatial and temporal features. This allowed 

CNN–LSTM to learn complex patterns present in 

IoMT traffic data in scenarios where spatial 

correlations and temporal sequences were equally 

relevant. This model, benefiting from its 

architectural suitability for addressing aspects in 

spatiotemporal IoMT data, was tested in both binary 

and multiclass classification scenarios. 

 

 
 

Figure 3. Centralized Learning model. 

 

3.4. Federated Learning 

 

To keep going based on what was learned during the 

centralized training, the CNN-LSTM model, 

selected for its ability to grasp spatial and temporal 

properties, was deployed in a federate learning setup. 

Federate Learning is a decentralized setup whereby 

many clients cooperate to train a common model 

without the exchange of any raw data between them, 

thus preserving privacy. In this phase, the CNN-

LSTM model was trained across distributed clients, 

both under independent and identically distributed 

(IID) as well as Non-IID data distribution setups to 

better simulate realistic deployment scenarios in 

IoMT environments. Two different aggregation 

strategies were used: one is FedAvg [15], which 

averages client updates in a weighted fashion; the 

second is FedProx [20], which stabilizes the training 

in heterogeneous settings by imposing a proximal 

term. This whole setup aimed at improving privacy 

of data across clients, addressing statistical 

heterogeneity in the client system, and ultimately 

incrementing the performance of the global model in 

its intrusion-detection capacity within diverse 

distributed IoMT systems. 

 

 
Figure 4. Federated Learning model. 

 

3.5. Data Distribution 

 

To evaluate the strength of the proposed IDS, we 

experimented under both IID and non-IID data 

settings. This enables end-to-end exploration of the 

impact of heterogeneity of data, common in real 

IoMT settings, on model performance and 

behaviour. In the IID scenario, data samples were 

distributed evenly across all contributing clients in a 

way that each client received a representative sample 

of the worldwide dataset. This ensured faster 

convergence and stable training dynamics. In the 

non-IID scenario, the simulation was closer to real-

world conditions where the clients had data whose 

statistical features were distinct. To generate non-

IID distributions, we used the Dirichlet distribution 

by changing the concentration parameter α, which 

controls the heterogeneity. The Dirichlet distribution 

is a simple multi-dimensional continuous probability 

distribution that allowed us to capture various 

degrees of data skewness and fragmentation. Non-

IID settings represent real federated learning 

scenarios with heterogeneous data usage and 

ownership and are different from IID distributions. 

Combining these environments with our test 

platform guaranteed not just that the IDS is effective 

in ideal, even situations but also resilient against the 

decentralized, non-uniform data environments found 

in actual IoMT deployments. 
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(a) IID Data 

 

 
(b) Non-IID Data 

 
Figure 5.  Data Distributions  IID and Non-IID. 

 

3.6. Performance Metrics  

 

The effectiveness of the IDS classifiers within 

Internet of Medical Things environments was 

assessed using several widely performance metrics. 

These metrics provide a comprehensive view of the 

classifiers’ capabilities in identifying intrusion 

attempts [19]. Such evaluations are critical for 

optimizing the classifiers to ensure high reliability 

and robustness of the intrusion detection systems in 

real-world IoMT deployments. 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =     
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
           (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    
𝑇𝑃 

𝑇𝑃+ 𝐹𝑃 
                            (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁 
                                      (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
     (5) 

 

4. Experiments, Results and Discussions 
 

This section outlines the outcomes of the data 

preprocessing stage, including dimensionality 

reduction and class balancing applied to the datasets. 

In this context, the study addressed two types of 

classification tasks: a multiclass classification 

problem consisting of six classes, and a binary 

classification problem. The centralized model was 

first evaluated as a baseline, followed by an 

assessment of the performance of various federated 

learning strategies under different experimental 

conditions, including variations in the number of 

clients, training rounds, and data partitioning 

methods.  

 

4.1. Centralized Learning Result 

 

In the Centralized Learning setting, three types of 

models were evaluated: CNN, LSTM, and a hybrid 

CNN-LSTM. These models were compared based 

on their performance using several evaluation 

metrics in order to determine the most effective 

architecture. In all implemented models, the 

Rectified Linear Unit(ReLU) activation function 

was utilized. The Cross-Entropy Loss function was 

adopted as the training criterion. Each model was 

trained for 20 epochs under a centralized learning 

setup. 

In binary classification, all models demonstrated 

excellent performance, with the LSTM model 

slightly outperforming the others in terms of 

accuracy, loss, and F1-score, highlighting its 

strength in capturing temporal dependencies in the 

data. The CNN-LSTM model ranked second, 

benefiting from its combined spatial and temporal 

learning capabilities. Although the CNN model 

ranked last, it still achieved very high performance, 

confirming its effectiveness in feature extraction for 

this type of task. In the multiclass classification task, 

a slight decrease in performance was observed 

across all models, which is expected due to the 

increased complexity of the task. Nevertheless, the 

CNN-LSTM model achieved the best overall 

balance among the 

 

Table 1.  Binary classification parameter Model. 

Model No. of 

Layers 

CNN 

Channels 

Sequence 

Length 

No. of 

Classes 

CNN 3 Conv 

+ FC 

64, 128, 

256 

45 2 

LSTM 2 LSTM 

+ 2 FC 

— 45 2 

CNN-

LSTM 

2 Conv 

+ 1 

LSTM + 

FC 

64, 128 45 2 
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Table 2.  Binary Classification Results. 
 

Model Loss Acc Precision Recall F1-

score 

CNN 0.0097 0.997 0.997 0.997 0.997 
 

CNN-

LSTM 

0.0085 0.997 0.997 0.997 0.997 

LSTM 0.0049 0.998 0.998 0.998 0.998 
 

 

evaluation metrics, followed by the CNN model, 

while the LSTM model recorded the lowest 

performance among the three. These results indicate 

that combining convolutional and recurrent layers is 

particularly beneficial in complex multiclass tasks. 

(a) Accuracy. 

(b) Precision. 

(c) Recall 

 
(d) F1-score 

Figure 7.  Performance of Multi-class Classification. 

4.2. Federated Learning implementation 

In this study, two federated learning aggregation 

strategies FedAvg and FedProx were implemented 

and evaluated under both IID) and Non-IID data 

settings. The primary objective was to assess how 

varying the number of clients (5, 10, and 20) and 

communication rounds (5, 10, and 20) impacts the 

performance and stability of each strategy. The 

CNN-LSTM model, which demonstrated the highest 

accuracy during centralized training, was selected 

for the federated setup. 

Table 3. Federated Learning Accuracy (Clients = 5). 

 

Table .3 presents the accuracy results when the 

number of clients is set to 5. Both strategies show a 

clear improvement in accuracy as the number of 

communication rounds increases. Under the IID 

setting, FedProx slightly outperforms FedAvg, 

especially at higher rounds. In contrast, under Non-

IID conditions, FedAvg shows marginally better 

results, particularly at 20 rounds. As the number of 

clients increases to 10, shown in Table 4, both 

FedAvg and FedProx maintain stable performance 

under IID conditions, with nearly 

 

Number 

of 

Rounds 

 

IID Non-IID 

 

FedAvg FedProx FedAvg FedProx 

 

5 0.824 0.823 0.829 0.831 

10 0.831 0.831 0.842 0.845 

20 0.835 0.835 0.854 0.863 
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Table 4. Federated Learning Accuracy (Clients = 10). 

Number 

of 

Rounds 

IID Non-IID 

FedAvg) FedProx FedAvg FedProx 

5 0.817 0.816 0.832 0.833 
 

10 0.836 0.826 0.838 0.834 
 

20 0.837 0.837 0.864 0.864 
 

 

identical accuracy values across different 

communication rounds. Under the Non-IID setting, 

FedProx maintains a slight and consistent advantage 

over FedAvg, particularly as the communication 

rounds increase. 

Table 5. Federated Learning Accuracy (Clients = 20). 

 

Number 

of 

Rounds 

IID Non-IID 

FedAvg FedProx FedAvg FedProx 

5 0.802 0.799 0.834 0.835 
 

10 0.818 0.819 0.843 0.844 
 

20 0.825 0.826 0.863 0.864 
 

 

When the number of clients reaches 20, as illustrated 

in Table 5, a slight decline in accuracy under the IID 

setting is observed for both strategies. This is likely 

due to increased data fragmentation across more 

clients, which makes local training less effective. 

However, in the Non-IID setting, both strategies 

maintain high accuracy, with FedProx again 

demonstrating a marginal advantage, especially at 

higher communication rounds.Overall, both FedAvg 

and FedProx demonstrate strong and stable 

performance across various configurations. FedProx 

shows a slight advantage in Non-IID settings across 

all client numbers, whereas performance differences 

under IID settings are minimal. The results highlight 

the robustness of both strategies and the influence of 

communication rounds and client count on federated 

model accuracy. Based on the experimental results, 

the following observations can be made:• The results 

show a gradual improvement in model accuracy as 

the number of communication rounds increases, 

indicating that the model becomes more stable and 

effective with repeated interactions between clients 

and the central server. 

• When comparing the FedAvg and FedProx 

strategies, FedProx demonstrates slightly better 

performance in the Non-IID data scenario, which 

aligns with its design objective to address data 

heterogeneity across clients. 

• Despite the slight performance difference, the 

results indicate a general similarity in effectiveness 

between FedAvg and FedProx under the conditions 

of this study. 

• Increasing the number of clients in a noticeable 

decrease in model accuracy, especially in the IID 

data setting. This can be attributed to the reduced 

amount of data available per client, which may 

negatively impact the quality of local model updates. 

 

4.3 Comparison and Discussion 

The proposed framework was evaluated in 

comparison to others techniques with different 

learning patterns and task categorizations. In 

centralized learning, our CNN-LSTM classifier 

showed great results in the binary task, attaining 

99% accuracy, a 0.96 F1-score, and 0.98 recall. With 

more difficulty, our model still maintained its 

robustness in the multi-class task with 86.6% 

accuracy, a 0.92 F1-score, and 0.97 recall, 

outperforming several existing centralized ones. A 

DNN-based approach [16], for example, achieved 

too little accuracy (84.41%) and F1-score (91.02%) 

while having a good recall (98.73%), whereas a 

Random Forest approach [22] fared much worse 

with 73% accuracy and a 0.676 F1-score. Under IID 

data, our model gave great performance of 86% 

accuracy and a 0.919 F1 score; under non-IID 

scenarios, it remained pretty competitive, with an 

85% accuracy rate and an F1 score of 

0.90.Compared to the previous federated Random 

Forest-based binary classifier [23], which was 

absolutely perfect with 99% accuracy, our approach 

offers a better-targeted and more generalized 

solution that works well in multi-class scenarios, 

thereby ensuring better applicability and robustness 

to real-world intrusion detection tasks.The 

comprehensive experimental results of centralized, 

and federated learning models demonstrate a holistic 

view of their respective performances in intrusion 

detection tasks. The CNN-LSTM model performed 

optimally for binary and multi-class classification in 

the centralized learning setting, serving as a strong 

baseline for comparison. Shifting to the federated 

learning configuration, both the FedProx and 

FedAvg aggregation methods attained stable and 

progressively improved accuracy with increasing 

communication rounds, reflecting the utility of 

iterated client-server interactions for enhancing 

global model convergence. FedProx slightly 

outperformed FedAvg, particularly under non-IID 

conditions, confirming its robustness to client data 
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heterogeneity. Yet, while the number of clients 

increased, a loss in accuracy was observed due to the 

fragmentation of local datasets, which limits the 

usefulness of local updates and results in a 

scalability-accuracy trade-off.  

 

5. Conclusions 

 
This study presented a federated deep learning 

framework for intrusion detection in IoMT. The 

proposed system leverages the strengths of CNN–

LSTM architectures to effectively capture 

spatiotemporal features of IoMT traffic, while 

federated learning enables collaborative training 

without sharing sensitive medical data. 

Experimental results on the CIC-IoMT2024 dataset 

confirmed that the framework achieves up to 99% 

accuracy in binary classification and maintains high 

performance under challenging non-IID data 

distributions. By eliminating the need for centralized 

data aggregation, the framework reduces privacy 

risks and enhances scalability, making it well-suited 

for real-world healthcare deployments. Moreover, 

the results highlight the robustness of federated deep 

learning against heterogeneous data and adversarial 

conditions, demonstrating its potential as a reliable 

defense mechanism for IoMT security. 

Future work will focus on extending the model to 

more complex multi-class intrusion detection, 

improving efficiency for resource-constrained 

devices, and validating the framework in real clinical 

environments. Ultimately, this research contributes 

to building safer and more resilient digital healthcare 

systems where patient trust and data integrity are 

preserved. 
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