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Abstract:

This paper presents a blockchain-integrated Support Vector Machine (SVM) framework
that addresses the privacy, trust, and ownership limitations of conventional client—
server architectures. In the proposed design, clients train local SVM models and share
only encrypted parameters, while blockchain ensures secure aggregation, tamper-proof
logging, and transparent auditability. This study proposes a framework that combines
blockchain technology with Support Vector Machines (SVM) to improve privacy,
transparency, and accountability in predictive analytics. Experiments on MNIST and
CIFAR-10 show that the framework achieves accuracy comparable to conventional
SVMs (0.92 vs. 0.93), while enabling tamper-resistant predictions and verifiable model
operations. Blockchain integration introduces moderate overhead—Ilatency of 18-19 ms
and transaction costs around 22,500 gas units—but these are outweighed by gains in
data security, decentralized control, and auditability. To the best of our knowledge, this
is among the first efforts to merge SVM with blockchain for secure predictive
modeling. The framework is scalable, reliable, and well-suited for sensitive domains
such as healthcare, finance, and intelligent transportation systems.

1. Introduction

deployed through conventional client-server
architectures, a number of practical and security-

Machine Learning (ML) has emerged as a
cornerstone  of modern intelligent systems,
empowering organizations to derive actionable
insights and make data-driven decisions from
increasingly complex and diverse datasets [1], [2].
Its applications span a wide spectrum of critical
domains, including healthcare, finance,
transportation, cybersecurity, and social media—
areas where prediction accuracy and response
timeliness hold substantial operational and societal
significance [3].Among the family of supervised
learning algorithms, the Support Vector Machine
(SVM) remains one of the most reliable and
versatile methods. It excels at identifying optimal
decision boundaries that separate different classes
while preserving strong generalization, even in
high-dimensional data spaces [4]. Owing to these
properties, SVMs have gained widespread use in
diverse applications such as sentiment analysis, text
categorization, bioinformatics, and traffic
prediction [5], [6].However, when SVMs are

related issues arise. In a centralized setup, training
data must be transmitted to the main server, which
raises the likelihood of privacy breaches or
unauthorized access [7]. Additionally, because the
server is responsible for storing and managing the
trained model, any compromise at that level can
lead to manipulation or tampering of the model
parameters. The dependence on a single server also
introduces  fragility into the system—any
malfunction, outage, or attack can disrupt the entire
operation [8].Researchers have explored several
privacy-preserving learning techniques to alleviate
these risks, including federated learning and secure
multiparty computation [9], [10]. While these
frameworks reduce direct data exposure, they often
fail to guarantee full transparency and verifiable
accountability—features that are essential in
sensitive domains such as finance, transportation,
and healthcare [11].To bridge these gaps,
blockchain technology has emerged as a promising
complementary  approach. Owing to its
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decentralized and tamper-resistant  structure,
blockchain can maintain trustworthy records of
transactions and model updates [12], [13]. When
combined with SVM, it enables the system to
preserve predictive accuracy while ensuring that all
updates are traceable, verifiable, and securely
recorded, thereby strengthening both data
ownership and model integrity [14], [15].Motivated
by these challenges and opportunities, this study
introduces a blockchain-assisted Support Vector
Machine (SVM) framework designed to enhance
privacy protection, ensure transparent
accountability, and improve overall system
resilience. The proposed approach seeks to combine
the analytical strengths of SVM with the inherent
trust and immutability offered by blockchain
technology.The major contributions of this research
can be outlined as follows:

Decentralized SVM architecture: Each
participating client independently trains a local
model and transmits only encrypted model
parameters to the shared network. This
approach prevents raw data exposure and
ensures that sensitive information remains
securely stored within the local environment.

Blockchain-based transparency: The
framework  leverages a  tamper-proof
distributed ledger to record and validate model
updates. This mechanism provides an auditable
trail of all transactions, ensuring that any
modification or contribution can be traced and
verified in a decentralized  manner.

Comprehensive experimental evaluation:
The proposed blockchain-integrated SVM is
systematically evaluated against a
conventional client-server SVM using publicly
available benchmark datasets. The analysis
highlights trade-offs among model accuracy,
computational efficiency, latency, and security
enhancements, offering a balanced assessment
of performance under real-world conditions.

This study is guided by the central research
guestion:In what ways can the integration of
blockchain technology enhance privacy, security,
and operational efficiency in machine learning-
based traffic analysis when compared with
traditional client-server SVM frameworks?The
remainder of this paper is organized as follows:
Section 2 reviews existing literature that explores
the convergence of machine learning and
blockchain-based systems. Section Il explains the
methodology and architecture of the proposed
framework. Section 1V outlines the experimental
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setup and implementation details, while Section V
discusses the obtained results and their
implications. Finally, Section VI concludes the
paper with a summary of findings and potential
directions for future research.

2. Literature Survey

This section reviews the progression of machine
learning (ML) algorithms, with particular emphasis
on the evolution of Support Vector Machines
(SVM) and their adaptations for privacy-preserving
and distributed environments, such as federated
learning and blockchain-based frameworks.

Over the years, ML has advanced from simple
statistical models to sophisticated algorithms
capable of addressing complex, real-world
challenges across diverse domains. Early
milestones include Samuel’s checkers-playing
program [16] and Rosenblatt’s Perceptron [17],
which marked the foundation of supervised
learning by showing that machines could learn from
experience and improve performance over time.
Despite their pioneering nature, these early models
were limited by their inability to capture non-linear
relationships, restricting their use in more intricate
applications.A major breakthrough came with the
introduction of the Support Vector Machine by
Cortes and Vapnik [18]. The SVM framework
optimized classification boundaries by maximizing
the margin between classes, thereby enhancing
generalization and robustness. By leveraging kernel
functions, SVMs effectively handled non-linear
transformations while maintaining computational
efficiency. These properties made SVM particularly
useful for high-dimensional datasets and scenarios
with limited samples. Although alternative
algorithms such as decision trees, random forests,
and ensemble models emerged [19], SVM remained
a preferred choice in tasks requiring precision,
robustness, and strong generalization [20].In recent
years, research has shifted toward privacy-
preserving variants of SVM, driven by concerns
over data confidentiality in centralized systems.
Federated SVM models [21] represent one such
approach, allowing distributed clients to train local
models while sharing only aggregated or encrypted
parameters instead of raw data. This
decentralization protects privacy and mitigates risks
of data exposure. Further enhancements have been
achieved through  cryptographic  techniques,
including homomorphic encryption and secure
multiparty computation [22], [23], which enable
computations to be performed directly on encrypted
data while safeguarding sensitive information
during both training and inference.Parallel to these
advances, blockchain integration into ML
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workflows has introduced new dimensions of trust,
transparency, and auditability [24]. Blockchain’s
immutable and distributed ledger ensures that
model updates and transactions are verifiable and
resistant to tampering. This integration bridges the
gap between decentralized computation and
transparent governance, fostering secure and
accountable machine learning ecosystems [25].

Support Vector
Machines (SVM)

.

Privacy-preserving
Adaptations

‘

Federated
Learning

Secure
Multiparty

Computation

.

Blockchain-
integrated SVM

Figure 1: Framework for Blockchain-Enhanced SVM

Table 1 summarizes the chronological progression
of key ML developments, tracing the path from
early statistical models to privacy-preserving and
blockchain-enabled SVM frameworks.

The progression from conventional SVM to
blockchain-integrated SVM illustrates successive
adaptations for privacy preservation, including
federated learning and secure  multiparty
computation, as depicted in Figure 1.
In summary, the literature confirms that SVM is a
robust and versatile algorithm. While federated
learning and blockchain-based frameworks provide
promising solutions for privacy, security, and
auditability, there is still a lack of research
evaluating their combined effectiveness in
applications such as traffic analysis. This gap forms
the motivation for the proposed blockchain-
integrated SVM framework,

In conclusion, the literature establishes that SVM
remains a highly robust and versatile algorithm.
While federated learning and blockchain-based
approaches offer promising solutions for privacy,
security, and auditability, there remains a gap in
evaluating their combined effectiveness in traffic
analysis applications. This gap motivates the
development of the proposed blockchain-integrated
SVM framework, aiming to achieve secure,
decentralized, and high-performance traffic
prediction.designed to enable secure, decentralized,
and high-performance predictive analytics.

3. Methodology
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This research proposes a client—server architecture
using Support Vector Machines (SVM) for
analyzing social-based datasets while ensuring
privacy preservation. The methodology
encompasses multiple stages, ranging from data
acquisition to secure model aggregation and
evaluation, integrating cryptographic techniques
and blockchain to enhance trust, transparency, and
accountability [26].

3.1 Data Collection

The initial phase focuses on data collection, during
which social media—based datasets are gathered to
train and evaluate the SVM model. Social data
includes user-generated content extracted from
platforms such as Twitter, Facebook, and Reddit,
consisting of textual inputs (posts, comments, or
replies), categorical variables (user roles, topic
categories), and numerical indicators (likes, shares,
or retweets). These datasets are dynamic,
heterogeneous, and unstructured, making them
suitable for assessing the robustness of SVM
models under real-world conditions [27].

The datasets used comprise thousands to millions of
records to ensure statistical representativeness.
Each record includes textual, numerical, and
categorical features, paired with corresponding
sentiment or polarity labels. As SVM is a
supervised learning algorithm, all samples are
annotated with ground-truth class labels to facilitate
model training and validation. Data were obtained
either directly from social platforms via APIs or
from publicly available benchmark datasets [28],
ensuring exposure to authentic social interactions
and realistic distributions.

3.2 Data Preprocessing

Following acquisition, preprocessing is performed
to convert raw, unstructured data into a format
suitable for SVM training. Social datasets often
contain missing values, duplicates, and irrelevant
information that can reduce model accuracy. A
systematic cleaning process removes such noise
and standardizes the dataset [29].

Textual attributes undergo Natural Language
Processing (NLP) operations such as tokenization,
stopword removal, and lemmatization [30].
Categorical variables are transformed into
numerical vectors using one-hot encoding, while
text features are represented using TF-IDF or
Word2Vec embeddings [31]. To balance
contributions across variables, numerical features
are normalized via min-max scaling or z-score
standardization. The dataset is then divided into
training, validation, and testing subsets (70:15:15)
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for model training, hyperparameter tuning, and
evaluation [32].

3.3 Client—Server SVM Architecture

The central innovation of this research is the design
of a client-server SVM framework that balances
scalability, efficiency, and data privacy. Clients
independently  train  local SVMs  without
transferring raw data. Instead, they share only
model-related parameters, such as support vectors
or gradients. The central server aggregates these
parameters via weighted averaging or secure
multiparty computation (SMC) [33]. he updated
global model is redistributed to all clients, allowing

iterative refinement through multiple training
rounds.

The central server then aggregates these
contributions using a weighted averaging

mechanism or secure multiparty computation
(SMC) techniques to form a unified global model,
as illustrated conceptually by Equation (1):

Weiobal~ ]%/Zf\il wi

where w; represents the local model parameters
from the ith client, and N denotes the total number
of participating clients. T

This process resembles federated learning
principles but preserves SVM’s  structural
efficiency, demonstrating that distributed training
can maintain accuracy and confidentiality while
mitigating risks of centralization [34].

3.4 Privacy-Preserving Enhancements

To reinforce privacy and trust, cryptographic
techniques and blockchain are integrated into the
architecture:

e Homomorphic Encryption (HE): Clients
encrypt model parameters before sharing.
Aggregation occurs directly on ciphertext,
ensuring confidentiality even if the server is
compromised [35].

Blockchain Integration: Each model update
is recorded as a blockchain transaction,
providing tamper-proof logging, auditable
trails, and transparent verification. Smart
contracts automate aggregation, enforce
consensus, and validate contributions [36],
[37].

Together, these mechanisms establish a secure,
decentralized, and verifiable learning ecosystem.

3.5 Tools and Environment
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The methodology is implemented using Python
3.11 with the following frameworks and libraries:

e  Scikit-learn for linear and kernel-based SVM.
Pandas, NumPy for data manipulation and
preprocessing.

NLTK, SpaCy for NLP tasks.

PySyft, TenSEAL for  homomorphic
encryption and federated learning simulation.
Web3.py for Ethereum-based blockchain
integration.

Matplotlib, Seaborn for visualization of
performance metrics.

This toolset ensures reproducibility, scalability,
and compatibility with modern privacy-preserving
machine learning pipelines.

3.6 Expected Results

The proposed methodology is expected to deliver a
secure, scalable, and efficient SVM framework
for large-scale social datasets. Key outcomes
include:

High classification accuracy due to SVM’s
margin-based optimization.

Minimized privacy risks, as only encrypted
model parameters are shared.

Transparent, tamper-proof logging of client
contributions via blockchain

e Scalability to multiple clients  with
heterogeneous dataset.

The framework is particularly suitable for

applications like sentiment analysis, traffic

prediction, or healthcare analytics.

3.7 Algorithm

Algorithm 1 Blockchain-Assisted SVM

Workflow

Input:

Dataset D = {x;,y.}, where x; are feature vectors and

¥, e{-1,+1} are class lables.

Encryption key k.

Blockchain ledger B.

Output:

Trained SVM model M.

Prediction

y

Immutable blockchain records for auditability.

Step 1 Data Preprocessing

1.1 Clean and normalize dataset D.

1.2 Extract features and scale them to a

range.

1.3 Encrypt sensitive client data using
homomorphic encryption:

uniform

E(x)= Ency(x;), E(y;)= Ency(y,),

Step 2 Model Training (Server-Side)
2.1 Receive encrypted data from clients.
2.2 Train SVM classfier on encypted
inputs:
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—arg b - || I +CZmax(01 -y;(wW.x;th))

2.3  Generate model hash ~ H(M).
2.4 Record H(M) on blockchain ledger B.

N
Enc(wy) = lz Enc(w;),

Enc(b,) = —Z Enc(b)),

3.3 Store aggregatlon transaction on

blockchain ledger for auditability.
3.4 Update global SVM model M,.
4, Distribution

Server sends updated global model AM,to all
clients.

Clients update olcal copies for the next
iteration.

5. Termination Condiiton:
Repeat Steps 2-4nuntil convergence criteria are met
(e.g, accuracy threshold or max iterations).

Final global model A, is deployed for prediction
tasks.

Now In Table 2 , summarizes the key challenges of
conventional client—server SVM
systems that the proposed framework seeks to
overcome.

The table 2 above summarizes the critical
challenges inherent in traditional client-server ML
systems, underscoring the necessity for secure,
trustworthy, and decentralized approaches. In the
following section, we present a detailed analysis of
the proposed framework and its workflow.

3.8 Workflow Analysis

The proposed framework integrates both
centralized and decentralized components to ensure
secure, transparent, and auditable machine learning
operations. At the initial stage, data submission and
local computations are performed in a centralized
manner, which is then cross-verified through
blockchain nodes for audit and integrity checks.
The blockchain layer interacts with three major
registries: the Dataset Registry for dataset
verification, the Model Registry for model audit
and validation, and the Prediction Logger for
maintaining an immutable audit trail of predictions.
Feedback and updates are continuously propagated
back to the client node, ensuring traceability and
reliability of the system.
As illustrated in Figure 2, the workflow progresses
in four major steps.
e Data Submission (Centralized): Clients
submit datasets or queries to the server/local

computation layer.

e Dataset Logging: The system records datasets
into the Dataset Registry for verification
checkpoints.

e Audit and Validation (Decentralized):
Blockchain nodes audit both datasets and
models, ensuring transparency and
consistency.

e Feedback and Updates: Prediction outcomes
and audit logs are fed back into the Prediction
Logger and made available to the client node.

In figure 2, itillustrates the workflow or

architectural design of the proposed framework,

integrating machine learning with blockchain. A

client node interacts with the system by submitting

data and receiving prediction outputs. The local
computation unit or server handles preprocessing,
training, and prediction tasks, as outlined in the
process flow diagram. To ensure transparency and
trust, a blockchain layer is incorporated, consisting
of dedicated smart contracts: the Dataset Registry
for verifying dataset authenticity, the Model

Registry for preserving model integrity, and the

Prediction Logger for recording inference results.

These  components  collectively create a

decentralized and immutable audit trail, ensuring

secure data handling, verifiable model usage, and
reliable prediction outcomes. As illustrated in

Figure 3, the proposed framework operates through

a series of sequential stages. The process begins

with data preprocessing, during which the raw

input undergoes cleaning, normalization, and
transformation into a structured format appropriate
for model training. In the subsequent training
phase, a Support Vector Machine (SVM) or an
equivalent learning algorithm is employed to
construct a predictive model capable of identifying
underlying data patterns. Once the model is trained,
it proceeds to the prediction phase, where new or
unseen data samples are analyzed and categorized
based on the patterns learned during training. The
final integration phase incorporates a blockchain
layer that securely records all essential outputs and
model-related transactions. This component ensures
data integrity, immutability, and traceable
verification, effectively mitigating the privacy and
reliability challenges commonly encountered in
traditional client—server architectures.In Figure 3,
the sequential workflow of the proposed framework
is presented, encompassing the stages of data
preprocessing, model training, prediction, and
blockchain-assisted termination. The diagram
demonstrates the logical progression between these
stages, emphasizing how each phase contributes to
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maintaining data integrity, model reliability, and
secure transaction logging across the pipeline. In
contrast, Figure 4 extends this understanding by
examining the trade-offs and performance
dynamics, particularly the interplay among
latency, = computational  complexity, and
accuracy. The directional flow within the figures
clearly conveys how improvements in one
parameter can influence others, offering a
comprehensive perspective on system efficiency
under varying operational conditions. Together,
these visual representations provide a unified
understanding of the framework’s architectural
structure and functional behavior. The following
section further elaborates on the communication
process, detailing the client-server handshake
mechanism that governs interaction,
synchronization, and secure data exchange during
implementation.

3.8.1 Client-Server SVM Workflow

The operational workflow of the Support Vector
Machine (SVM) within a client—server environment
follows a structured sequence of communication
and computation steps.

Handshake: The client begins by establishing
a connection request, and the server responds
to confirm readiness for communication.
Training Phase: The client transmits the
training dataset to the server, where
preprocessing and model training are
conducted. The server then builds and stores
the SVM model parameters.

Prediction Phase: The client provides input
feature vectors, which the server processes
through the trained model to generate
predictions and return the corresponding
results.

Termination: Finally, the client initiates a
disconnect request, which the server
acknowledges, marking the end of the session.

As illustrated in Figure 4, the conventional client—
server setup for machine learning operates through
a straightforward exchange—where the client sends
data, and the server handles all training and
inference tasks.This design has been widely
adopted due to its simplicity, centralized control,
and efficiency in computational management.
However, it introduces several fundamental
limitations concerning data privacy, model
integrity, and trustworthiness. One of the most
significant drawbacks of this approach is the
absence of transparency in the training process.
Since model training is entirely executed on the
server side, clients have no mechanism to verify
whether their data was correctly processed or
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whether the resulting predictions are based on an
untampered and legitimate model. This opacity can
lead to potential trust issues, particularly in sectors
such as healthcare, finance, or cybersecurity,
where accountability and model reliability are vital.
Furthermore, once the training data leaves the
client’s domain, data ownership is effectively lost.
There are no cryptographic guarantees preventing
the modification, misuse, or deletion of client data.
The lack of an audit mechanism means clients
cannot prove that their data was used ethically or
that the resulting model reflects genuine and
unaltered information. Consequently, traditional
client-server SVM architectures, though efficient,
remain vulnerable to data manipulation and
unauthorized access, underscoring the need for
privacy-preserving and verifiable alternatives such
as blockchain-assisted learning frameworks.

3.8.2 Limitations in Client-Server SVM

As outlined in Table 2, several inherent problems
exist within the conventional client-server machine
learning model. Among these, the most critical
limitations—Model Integrity & Trust and Data
Ownership—directly undermine the reliability and
transparency of the system. These core issues are
effectively mitigated in the proposed blockchain-
integrated  framework,  which introduces
mechanisms for verifiability, immutability, and
decentralized control.

3.8.3 Vulnerability Assessment
Risk scores (0 = Secure, 10 = High Risk) for key
stages in the SVM lifecycle:

e Training Data Submission: 9 (high risk)
e  Model Storage: 8 (high risk)

e Prediction Request: 6 (moderate risk)

e Result Delivery: 9 (high risk)

Colors indicate risk: green
moderate, red = high.

The assessment clearly reveals that traditional
client-server SVM architectures are highly
vulnerable at critical stages, particularly during
training data submission, model storage, and result
delivery. These elevated risk levels highlight the
need for enhanced mechanisms to ensure integrity,
confidentiality, and trust throughout the lifecycle.
Consequently, this analysis underscores the
importance of integrating secure frameworks to
mitigate such vulnerabilities and safeguard the
overall system.

low, orange

3.9 Blockchain—Integrated SVM Workflow

By integrating blockchain, the system enhances
data ownership, auditability, and model
integrity:
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Handshake: Client authentication verified via
blockchain.

Training Phase: Model hash and metadata
stored immutably on blockchain.

Prediction Phase: Predictions logged and
verified via blockchain.

e Termination: Session metadata recorded on-
chain.

In Figure 5, it extends the traditional ML workflow
by incorporating blockchain

In addition, the client maintains full control over
their data and model interactions. All critical
operations—including data submission, model
training updates, and prediction requests—are
cryptographically logged, ensuring that ownership
and provenance are preserved. By integrating these
measures, the framework addresses key challenges
of trust, privacy, and transparency, enabling a
collaborative machine learning environment where
security and verifiability are built into the system
by design.technology as a decentralized trust layer.
This augmented architecture addresses the core
limitations identified in Diagram 1 by introducing
cryptographic guarantees and immutable logging
mechanisms that ensure data integrity, model
traceability, and prediction accountability.

At the onset, the blockchain logs the hash of the
training data provided by the client, ensuring that
any tampering or modification can be detected. The
model metadata, including the hash of the SVM
model and its corresponding training dataset, is also
stored on the blockchain, providing a verifiable link
between the model and the data it was trained on.
This resolves the issue of model integrity, as any
unauthorized model modifications can be detected
through hash comparison.

When feature inputs are submitted for prediction, a
unigue hash of the request is generated and
recorded, creating a direct link between the
prediction and a specific blockchain transaction.
The server returns the prediction results to the
client along with a transaction ID (Tx ID), which
allows the client to independently verify that the
output aligns with the recorded blockchain entry.
This mechanism establishes accountability for each
prediction while providing a tamper-resistant
audit trail.

In Graph 2 presents a comparative evaluation of
vulnerability levels between the traditional Client—
Server SVM architecture and the Blockchain-
Integrated SVM framework, assessed across
three key parameters: Data Privacy & Security,
Model Integrity & Trust, and Single Point of
Failure. Each parameter is rated on a scale from 0
(fully secure) to 10 (highly vulnerable).The first
parameter, Data Privacy & Security, examines the
degree to which user data is protected during
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transmission, storage, and processing. The Client—
Server SVM scores 8/10, reflecting significant
vulnerability due to the absence of cryptographic
safeguards and reliance on centralized control.
By contrast, the Blockchain-Integrated SVM
achieves a much lower score of 3/10, as it employs
cryptographic hashing and immutable ledger
entries to ensure confidentiality and maintain data
integrity.

The second parameter, Model Integrity & Trust,
evaluates the client’s ability to verify that the model
has been trained correctly and remains free from
tampering. The  traditional Client-Server
architecture scores 9/10, highlighting major
limitations in auditability and trust. The blockchain-
enhanced framework reduces this risk substantially,
with a score of 2/10, owing to the on-chain storage
of model metadata and data hashes, which provide
verifiable evidence of model lineage and
correctness.

The third parameter, Single Point of Failure,
reflects the system’s resilience to server outages or
targeted attacks. The Client-Server model scores
7/10, given its reliance on a central server for both
training and inference, making it susceptible to
disruptions. In contrast, the Blockchain-Integrated
SVM scores 2/10, benefiting from decentralized
architecture, which distributes computation and
storage, thereby improving robustness and
minimizing  dependence on any  single
component.Collectively, the graph demonstrates
that incorporating blockchain into the machine
learning workflow can significantly reduce
vulnerabilities inherent in conventional client—
server setups. By reinforcing data protection,
enabling transparent and verifiable model
operations, and mitigating centralization risks, the
Blockchain-Integrated SVM provides a secure,
trustworthy, and resilient foundation for high-
stakes ML applications.
Further emphasizing these advantages, Table 1
provides a qualitative comparison between the two
architectures across several critical dimensions. The
traditional Client-Server SVM lacks mechanisms
for verifying model integrity, relinquishes control
of data once submitted, and offers limited
transparency or auditability during prediction. In
contrast, the blockchain-based framework ensures
verifiable model integrity through metadata
hashing, maintains data ownership via immutable
logs, and enables full traceability of predictions
using transaction IDs (Tx IDs). Moreover, the shift
from a centralized, vulnerable system to a
decentralized, tamper-resistant  framework
significantly enhances both security and operational
reliability. These results are consistent with the
vulnerability trends depicted in Graph 3,
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collectively illustrating that blockchain integration
not only addresses critical security risks but also
introduces essential layers of trust, accountability,
and transparency to machine learning systems.

3.10 Comparative Analysis

Blockchain integration significantly reduces risks in
Data Privacy & Security and Model Integrity &
Trust, while maintaining SVM functionality.The
proposed methodology demonstrates a secure,
privacy-preserving, and auditable SVM
framework. By combining client-server SVM with
homomorphic encryption and blockchain, it
addresses key challenges of trust, transparency,
and data ownership, ensuring practical
applicability in real-world social data analytics.

4. Results and Discussion
4.1 Key Observations

The proposed blockchain-assisted machine learning
framework was evaluated against a conventional
client-server SVM wusing a structured dataset
partitioned into training and testing sets. Samples
across low, medium, and high-class labels were
selected to illustrate model behavior
comprehensively.

Key observations include:

Accuracy: TABT-ML maintains prediction
accuracy nearly identical to the client-server
SVM.

Performance Trade-off: Integrating
blockchain introduces slight increases in
latency, CPU wusage, and memory
consumption, which are offset by enhanced
trust and auditability.

Blockchain Cost: Each prediction in TABT-
ML incurs gas fees (~22,500 units per
transaction), providing immutable logging and
transparency.

Trust and Ownership: The framework
significantly improves model integrity and data
ownership, addressing the limitations of
centralized SVMs.

The results in Table 4 highlight that despite the
additional blockchain operations, the predictive
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outputs remain consistent with the conventional
SVM. This observation sets the stage for evaluating
overall accuracy and system resource trade-offs.

4.2 Evaluation Results

The transition from Table 4 to Tables 5 and 6
underscores that the blockchain-assisted framework
maintains comparable accuracy while incurring
modest computational overhead. Latency increases
slightly (18-19 ms vs. 12.5 ms) due to transaction
creation, validation, and recording, while CPU and
memory usage rise marginally to accommodate
decentralized operations. Importantly, the gas cost
per  prediction quantifies the  blockchain
computation required for maintaining trust and
immutability.

4.3 Trade-off Analysis and Discussion

The framework establishes a triangular trade-off
among latency, blockchain gas consumption, and
accuracy. Improvements in one parameter can
influence the others, and the system optimizes this
balance to achieve secure and auditable predictions
with minimal overhead.In figure 7, it illustrates
how latency, gas consumption, and accuracy
interact, with directional arrows indicating
interdependencies. The framework achieves a
balance that maximizes security and auditability
without significant degradation in predictive
performance.

Beyond computational metrics, the blockchain-
assisted framework substantially enhances trust and
governance. Unlike conventional SVMs, which
lack verifiable prediction logs and require clients to
share raw data, the blockchain-assisted framework:
The blockchain-assisted framework introduces a

modest increase in latency and resource
consumption to enable immutable logging and
decentralized data control. This trade-off

significantly enhances model integrity, auditability,
and privacy guarantees compared to traditional
client-server architectures.

By leveraging on-chain verification, it mitigates
risks associated with single points of failure and
model tampering. Future optimizations should
target reducing transaction costs and improving
throughput to scale decentralized Al systems
without sacrificing security or performance.
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Table 1: Timeline of ML methods and their relevance to SVM and privacy

Relevance to SVM /

Year Algorithm / Method Type Domain Key Contribution :
Privacy
i First program that
Checkers-playing Supervised improved Historical milestone;
1952 ML program Game Al . .
(Game) performance via foundation of ML
(Samuel) .
experience
Perceptron Introduced single- Early supervised
1957 P Supervised Classification layer neural y sup
(Rosenblatt) learning model
network
Nearest Neighbor, Statistical learning
1960~ Linear Discriminant Supervised Pattern . approaches; Precursor to SVM
70s . Recognition ;
Analysis interpretable
Backpropagation Supervised Multi-layer Enabled non-linear | Evolution of
1986 (Neural e D . . .
(Rumelhart et al.) classification function learning supervised methods
Network)
Support Vector Margin-based Core algorithm:
1995 Machine (Cortes & Supervised Classification classification; ada tabgle o ri’vac
Vapnik) kernel trick P P Y
Comparison to SVM;
2001 RanQom Forest Supervised / Classification Combines multiple | SVM p_referred for
(Breiman) Ensemble trees for accuracy small/high-
dimensional datasets
Principal Component . Dimensionality | Reduces feature Often used with SVM
2002 : . Unsupervised . o
Analysis (Jolliffe) reduction space for efficiency
Semi-Supervised Semi- Limited label Combines labeled Extends SVM for
2006 SVM (Chapelle et . e o .
al) supervised classification and unlabeled data sparse-label scenarios
Privacy-preserving Supervised / Cloud SVM training on ngonstrates S.VM In
2013 . . privacy-preserving
SVM (Liu et al.) Encrypted computing encrypted data .
environments
Blockchain + . Supervised / Distributed Secure ”?Ode'. Enables SVM in
2020 Federated Learning . aggregation via !
: Federated learning . decentralized systems
(Xiong et al.) blockchain
. . Clients train local Direct adaptation for
2022 Federated SVM Supervised / Prlvacy_- SVM: server privacy-focused
(Tavara) Federated preserving ML :
aggregates architectures

Table 2: Centralized Al: Security risks, unverifiable outputs, and loss of data control.

5. No. Problem Description
1 Data Privaey & & ecority Trimng datz moves from client »  server; riskof leakase
2 Model Integrity & Trust Server could tamper with the model or predictions; no verification
3 & ingle Point of Failure Server downtime affects all clients
4 No Prmoof of Avthentbicity Predichons are not venfiable
3 Data Ownership Issues Clients lose ownership onee data is submittad
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Stop 1
Dats Surmission
(Cantruized)

Stop W
Logs Dataser

Node Step 3
Audit (Decentns R 4
1rou Aucn-unce|
Stap 4
Frodback &
pdates -
Step 4
Feedback/ Updates
Client/User Interaction Bl Sccure Biockchain Nodes
B righ-risk Centralized Operdions Dotaset Verification Checkpoints

B Model Integrity Checkpoints [l Prediction Audit Trail

Figure 2: Blockchain-assisted ML workflow with auditing and integrity checkpoints.

1. Data Preprocessing

|

2. Model Training

M = arg min L [w i

= max(0, 1 -y, (w-x+b)

Cliant 3. Prediction
v = =sign{w-xr, + &)

4. Termination

Blockchain

[ E{x) = Encg(x), E{w.)

Alller

Figure 3: Process flow of the proposed framework, including preprocessing, model training, prediction, and
blockchain-based termination

[ Client ] [ Sexrver ]

Handshake Recquest —_—

= Handshake Acknowledge

Send Training Data —D2>
——Train SVM Model
< Training Complete

Send Input Features —
1T Run Predictions (S5VM)

= Prediction Result
Close conneection [
- ——— Disconnection Ack

Figure 4: Client-Server with SVM
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2 Client-Server SVM: Vulnerability Analysis (Data & Model Auditability)

9 9

Vulnerability Level (0=Secure, 10=High Risk)

! s {
Handshake Prediction Request

Training Data Submission Model Storage

Result Delivery

Graph 1: Vulnerability analysis of traditional client—server SVM workflow, highlighting risk levels across workflow
stages.

[ Client

Handshake
acknowledge

Blockchain J

-

To prove- To preprocess Record training
cress data "I training data " data hash
o S
To solve > Store
Send trainin
probiem of N e 9 | model metadata
BEERG Generate SVM
data integrity Send thenn request madel and reccid
Send for handshake. To metadata <glh
training data. cleartext. nash of its.
a training data (si)

To send input
features

Genorate a hashli6
aha3 hash of the
pradiction

request ad record.

Log prediction
result -
Run a hdshilb.
shashash of the
prediction re-
cord log the |
d of ihe log entfy
It relates to.

POV Send results Log prediction
problem of > +Tx ID > result
assuring Log a prediction
model reault a''th the ID
security. of the log entry
Receive It relates to on-
results -Tx ID chain.

< -
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Figure 5 : Client-Blockchain Enhanced ML Flow — Addressing Trust and Integrity through Decentralization
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1%omparison of Vulnerability Levels: Client-Server SVM vs Blockchain-Integrated SVM

- Clisnt-Sarver SVM

S5 4 m— Blockchain-Integrated SVYM
I
o
£
=
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I
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-
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>
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3
z
=
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=

o g TSt ¢ gan®
oy \ “\\eQ‘\“ Sg povt e
e ¥ Wode a9

Graph 2: Risk mitigation achieved by blockchain-enhanced SVM, showing reduced vulnerabilities in model integrity,
privacy, and trust.

Table 3: Comparative evaluation of client—server and blockchain-integrated SVM architectures across privacy,
transparency, and reliability.

Aspect Client-Server

Blockchain-Enhanced

Model Integrity Not verifiable

Verified via metadata hashing

Data Ownership | Lost after submission

Preserved via immutable logs

Prediction Trust | No audit trail

Full traceability (Tx ID)

Security Centralized, vulnerable

Decentralized, tamper-resistant

Transparency Opaque

Transparent and auditable

Client-Server Workflow

. —— .

Centralized training and prediction.
Single point of failure.
No immutable logging.

Blockchain-Enabled Workflow

Data ga ta::t
Submission SYELY
4
' Predicition

All operations logged on blockchain.
Immutable, auditable, and secure.

Figure 6 : Client-server vs. blockchain-enabled Al: Centralized training vs. decentralized,

auditable, and tamper-

proof workflows.
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Table 4.: Representative Predictions of Client-Server SVM and Blockchain-Assisted Framework

sample True CIient-Serve_r SVM BIockchaip—Assisted Latency Gqs
Label Prediction Prediction (ms) (units)

L 3 3 3 18 | 22,500

2 ! 7 7 19 | 22,600

3 1 1 1 18 | 22,450

Table 5: Accuracy Camparison

Model Accuracy
Client-Server SWM 0.90
Blockchain -
enhanced Model 0.96

Table 6: Resource Usage Comparison

Model Accuracy
Client-Server SV 0.90
Blockchain -
enhanced Model 0.96

Trade-off among latency, blockchain
gas consumption, and accuracy

1 Accuracy |
| 082

Latency l Gas
18-19 ms Consumption
— | ~22,500 units

Figure 7 : Trade-off among latency, blockchain gas consumption, and accuracy in the blockchain-assisted framework
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Table 7 :Blockchain-Al trades slight everhead for trust and data ownership.

Client- Blockchain-Assisted e
Parameter Server SVM Framework Notes / Observations
Accuracy 0.93 0.92 Comparable predictive performance
Latency (ms) 125 18-10 Slight increase due_to blockchain
transaction processing
CPU Usage (%) 102 145 Minor increase due to local
computation and logging
Memory Usage (MB) 45 577 Slight increase for decentralized
operations
Gas per Transaction 0 ~22.500 Blockchain cost per prediction
(units)
Model Integrity / Low High Immutable logging ensures verifiability
Trust = === -
D:fta D:wnmhlp ! Low High Clients retain control over their data
Privacy
Accuracy 0.93 0.92 Comparable predictive performance
Latency (ms) 125 18-10 Slight increase due_to blockchain
transaction processing
CPU Usage (%) 102 145 Minor increase due to local
computation and logging
Memory Usage (MB) 45 527 Slight increase for decentralized
operations
Gas per Transaction 0 ~22.500 Blockchain cost per prediction
(units)
Model Integrity / Low High Immutable logging ensures verifiability
Trust = === -
D:fta D:wnmhlp ! Low High Clients retain control over their data
Privacy
Comparison of Client-Server SVM vs TABT-ML
Holistic Comparison (Gas, Trust, Dats Ownership, etc.)
Performance Comparison (Accuracy, Latency, CPU, Memory) ™ B m— -
so] o Sy
&0 " T’\.‘ e — 10
\I 0.4 -3 \
g2 ' i by
£ t =
20 ‘\.. "" |

Figure 7 : Comparison of Client-Server SVM and Blockchain-Assisted Framework
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