

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7571-7586
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Blockchain-Integrated Support Vector Machine Framework for Privacy-

Preserving Predictive Analytics

Yojana1*, Yogesh Chaba2

1Research Scholar, Dept. of CSE, GJUS&T, Hisar, India

* Corresponding Author Email: yojana@jcboseust.ac.in - ORCID: 0000-0002-5247-0850

2Professor, Dept. of CSE, GJUS&T, Hisar, India

Email: yogeshchaba@yahoo.com - ORCID: 0000-0002-5247-0050

Article Info:

DOI: 10.22399/ijcesen.4055

Received : 01 August 2025

Accepted : 30 August 2025

Keywords

Machine Learning,

Blockchain Integration,

Privacy-Preserving Algorithms,

Sentiment Analysis,

Data Security.

Abstract:

This paper presents a blockchain-integrated Support Vector Machine (SVM) framework

that addresses the privacy, trust, and ownership limitations of conventional client–

server architectures. In the proposed design, clients train local SVM models and share

only encrypted parameters, while blockchain ensures secure aggregation, tamper-proof

logging, and transparent auditability.This study proposes a framework that combines

blockchain technology with Support Vector Machines (SVM) to improve privacy,

transparency, and accountability in predictive analytics. Experiments on MNIST and

CIFAR-10 show that the framework achieves accuracy comparable to conventional

SVMs (0.92 vs. 0.93), while enabling tamper-resistant predictions and verifiable model

operations. Blockchain integration introduces moderate overhead—latency of 18–19 ms

and transaction costs around 22,500 gas units—but these are outweighed by gains in

data security, decentralized control, and auditability. To the best of our knowledge, this

is among the first efforts to merge SVM with blockchain for secure predictive

modeling. The framework is scalable, reliable, and well-suited for sensitive domains

such as healthcare, finance, and intelligent transportation systems.

1. Introduction

Machine Learning (ML) has emerged as a

cornerstone of modern intelligent systems,

empowering organizations to derive actionable

insights and make data-driven decisions from

increasingly complex and diverse datasets [1], [2].

Its applications span a wide spectrum of critical

domains, including healthcare, finance,

transportation, cybersecurity, and social media—

areas where prediction accuracy and response

timeliness hold substantial operational and societal

significance [3].Among the family of supervised

learning algorithms, the Support Vector Machine

(SVM) remains one of the most reliable and

versatile methods. It excels at identifying optimal

decision boundaries that separate different classes

while preserving strong generalization, even in

high-dimensional data spaces [4]. Owing to these

properties, SVMs have gained widespread use in

diverse applications such as sentiment analysis, text

categorization, bioinformatics, and traffic

prediction [5], [6].However, when SVMs are

deployed through conventional client–server

architectures, a number of practical and security-

related issues arise. In a centralized setup, training

data must be transmitted to the main server, which

raises the likelihood of privacy breaches or

unauthorized access [7]. Additionally, because the

server is responsible for storing and managing the

trained model, any compromise at that level can

lead to manipulation or tampering of the model

parameters. The dependence on a single server also

introduces fragility into the system—any

malfunction, outage, or attack can disrupt the entire

operation [8].Researchers have explored several

privacy-preserving learning techniques to alleviate

these risks, including federated learning and secure

multiparty computation [9], [10]. While these

frameworks reduce direct data exposure, they often

fail to guarantee full transparency and verifiable

accountability—features that are essential in

sensitive domains such as finance, transportation,

and healthcare [11].To bridge these gaps,

blockchain technology has emerged as a promising

complementary approach. Owing to its

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7572

decentralized and tamper-resistant structure,

blockchain can maintain trustworthy records of

transactions and model updates [12], [13]. When

combined with SVM, it enables the system to

preserve predictive accuracy while ensuring that all

updates are traceable, verifiable, and securely

recorded, thereby strengthening both data

ownership and model integrity [14], [15].Motivated

by these challenges and opportunities, this study

introduces a blockchain-assisted Support Vector

Machine (SVM) framework designed to enhance

privacy protection, ensure transparent

accountability, and improve overall system

resilience. The proposed approach seeks to combine

the analytical strengths of SVM with the inherent

trust and immutability offered by blockchain

technology.The major contributions of this research

can be outlined as follows:

 Decentralized SVM architecture: Each

participating client independently trains a local

model and transmits only encrypted model

parameters to the shared network. This

approach prevents raw data exposure and

ensures that sensitive information remains

securely stored within the local environment.

 Blockchain-based transparency: The

framework leverages a tamper-proof

distributed ledger to record and validate model

updates. This mechanism provides an auditable

trail of all transactions, ensuring that any

modification or contribution can be traced and

verified in a decentralized manner.

 Comprehensive experimental evaluation:
The proposed blockchain-integrated SVM is

systematically evaluated against a

conventional client–server SVM using publicly

available benchmark datasets. The analysis

highlights trade-offs among model accuracy,

computational efficiency, latency, and security

enhancements, offering a balanced assessment

of performance under real-world conditions.

This study is guided by the central research

question:In what ways can the integration of

blockchain technology enhance privacy, security,

and operational efficiency in machine learning-

based traffic analysis when compared with

traditional client–server SVM frameworks?The

remainder of this paper is organized as follows:

Section 2 reviews existing literature that explores

the convergence of machine learning and

blockchain-based systems. Section III explains the

methodology and architecture of the proposed

framework. Section IV outlines the experimental

setup and implementation details, while Section V

discusses the obtained results and their

implications. Finally, Section VI concludes the

paper with a summary of findings and potential

directions for future research.

2. Literature Survey

This section reviews the progression of machine

learning (ML) algorithms, with particular emphasis

on the evolution of Support Vector Machines

(SVM) and their adaptations for privacy-preserving

and distributed environments, such as federated

learning and blockchain-based frameworks.

Over the years, ML has advanced from simple

statistical models to sophisticated algorithms

capable of addressing complex, real-world

challenges across diverse domains. Early

milestones include Samuel’s checkers-playing

program [16] and Rosenblatt’s Perceptron [17],

which marked the foundation of supervised

learning by showing that machines could learn from

experience and improve performance over time.

Despite their pioneering nature, these early models

were limited by their inability to capture non-linear

relationships, restricting their use in more intricate

applications.A major breakthrough came with the

introduction of the Support Vector Machine by

Cortes and Vapnik [18]. The SVM framework

optimized classification boundaries by maximizing

the margin between classes, thereby enhancing

generalization and robustness. By leveraging kernel

functions, SVMs effectively handled non-linear

transformations while maintaining computational

efficiency. These properties made SVM particularly

useful for high-dimensional datasets and scenarios

with limited samples. Although alternative

algorithms such as decision trees, random forests,

and ensemble models emerged [19], SVM remained

a preferred choice in tasks requiring precision,

robustness, and strong generalization [20].In recent

years, research has shifted toward privacy-

preserving variants of SVM, driven by concerns

over data confidentiality in centralized systems.

Federated SVM models [21] represent one such

approach, allowing distributed clients to train local

models while sharing only aggregated or encrypted

parameters instead of raw data. This

decentralization protects privacy and mitigates risks

of data exposure. Further enhancements have been

achieved through cryptographic techniques,

including homomorphic encryption and secure

multiparty computation [22], [23], which enable

computations to be performed directly on encrypted

data while safeguarding sensitive information

during both training and inference.Parallel to these

advances, blockchain integration into ML

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7573

workflows has introduced new dimensions of trust,

transparency, and auditability [24]. Blockchain’s

immutable and distributed ledger ensures that

model updates and transactions are verifiable and

resistant to tampering. This integration bridges the

gap between decentralized computation and

transparent governance, fostering secure and

accountable machine learning ecosystems [25].

Figure 1: Framework for Blockchain-Enhanced SVM

Table 1 summarizes the chronological progression

of key ML developments, tracing the path from

early statistical models to privacy-preserving and

blockchain-enabled SVM frameworks.

The progression from conventional SVM to

blockchain-integrated SVM illustrates successive

adaptations for privacy preservation, including

federated learning and secure multiparty

computation, as depicted in Figure 1.

In summary, the literature confirms that SVM is a

robust and versatile algorithm. While federated

learning and blockchain-based frameworks provide

promising solutions for privacy, security, and

auditability, there is still a lack of research

evaluating their combined effectiveness in

applications such as traffic analysis. This gap forms

the motivation for the proposed blockchain-

integrated SVM framework,

In conclusion, the literature establishes that SVM

remains a highly robust and versatile algorithm.

While federated learning and blockchain-based

approaches offer promising solutions for privacy,

security, and auditability, there remains a gap in

evaluating their combined effectiveness in traffic

analysis applications. This gap motivates the

development of the proposed blockchain-integrated

SVM framework, aiming to achieve secure,

decentralized, and high-performance traffic

prediction.designed to enable secure, decentralized,

and high-performance predictive analytics.

3. Methodology

This research proposes a client–server architecture

using Support Vector Machines (SVM) for

analyzing social-based datasets while ensuring

privacy preservation. The methodology

encompasses multiple stages, ranging from data

acquisition to secure model aggregation and

evaluation, integrating cryptographic techniques

and blockchain to enhance trust, transparency, and

accountability [26].

3.1 Data Collection

The initial phase focuses on data collection, during

which social media–based datasets are gathered to

train and evaluate the SVM model. Social data

includes user-generated content extracted from

platforms such as Twitter, Facebook, and Reddit,

consisting of textual inputs (posts, comments, or

replies), categorical variables (user roles, topic

categories), and numerical indicators (likes, shares,

or retweets). These datasets are dynamic,

heterogeneous, and unstructured, making them

suitable for assessing the robustness of SVM

models under real-world conditions [27].

The datasets used comprise thousands to millions of

records to ensure statistical representativeness.

Each record includes textual, numerical, and

categorical features, paired with corresponding

sentiment or polarity labels. As SVM is a

supervised learning algorithm, all samples are

annotated with ground-truth class labels to facilitate

model training and validation. Data were obtained

either directly from social platforms via APIs or

from publicly available benchmark datasets [28],

ensuring exposure to authentic social interactions

and realistic distributions.

3.2 Data Preprocessing

Following acquisition, preprocessing is performed

to convert raw, unstructured data into a format

suitable for SVM training. Social datasets often

contain missing values, duplicates, and irrelevant

information that can reduce model accuracy. A

systematic cleaning process removes such noise

and standardizes the dataset [29].

Textual attributes undergo Natural Language

Processing (NLP) operations such as tokenization,

stopword removal, and lemmatization [30].

Categorical variables are transformed into

numerical vectors using one-hot encoding, while

text features are represented using TF-IDF or

Word2Vec embeddings [31]. To balance

contributions across variables, numerical features

are normalized via min–max scaling or z-score

standardization. The dataset is then divided into

training, validation, and testing subsets (70:15:15)

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7574

for model training, hyperparameter tuning, and

evaluation [32].

3.3 Client–Server SVM Architecture

The central innovation of this research is the design

of a client–server SVM framework that balances

scalability, efficiency, and data privacy. Clients

independently train local SVMs without

transferring raw data. Instead, they share only

model-related parameters, such as support vectors

or gradients. The central server aggregates these

parameters via weighted averaging or secure

multiparty computation (SMC) [33]. he updated

global model is redistributed to all clients, allowing

iterative refinement through multiple training

rounds.

The central server then aggregates these

contributions using a weighted averaging

mechanism or secure multiparty computation

(SMC) techniques to form a unified global model,

as illustrated conceptually by Equation (1):

wglobal=
1

N
∑ wi

N
i=1

where wi represents the local model parameters

from the ith client, and N denotes the total number

of participating clients. T

This process resembles federated learning

principles but preserves SVM’s structural

efficiency, demonstrating that distributed training

can maintain accuracy and confidentiality while

mitigating risks of centralization [34].

3.4 Privacy-Preserving Enhancements

To reinforce privacy and trust, cryptographic

techniques and blockchain are integrated into the

architecture:

 Homomorphic Encryption (HE): Clients

encrypt model parameters before sharing.

Aggregation occurs directly on ciphertext,

ensuring confidentiality even if the server is

compromised [35].

 Blockchain Integration: Each model update

is recorded as a blockchain transaction,

providing tamper-proof logging, auditable

trails, and transparent verification. Smart

contracts automate aggregation, enforce

consensus, and validate contributions [36],

[37].

Together, these mechanisms establish a secure,

decentralized, and verifiable learning ecosystem.

3.5 Tools and Environment

The methodology is implemented using Python

3.11 with the following frameworks and libraries:

 Scikit-learn for linear and kernel-based SVM.

 Pandas, NumPy for data manipulation and

preprocessing.

 NLTK, SpaCy for NLP tasks.

 PySyft, TenSEAL for homomorphic

encryption and federated learning simulation.

 Web3.py for Ethereum-based blockchain

integration.

 Matplotlib, Seaborn for visualization of

performance metrics.

This toolset ensures reproducibility, scalability,

and compatibility with modern privacy-preserving

machine learning pipelines.

3.6 Expected Results

The proposed methodology is expected to deliver a

secure, scalable, and efficient SVM framework
for large-scale social datasets. Key outcomes

include:

 High classification accuracy due to SVM’s

margin-based optimization.

 Minimized privacy risks, as only encrypted

model parameters are shared.

 Transparent, tamper-proof logging of client

contributions via blockchain

 Scalability to multiple clients with

heterogeneous dataset.

The framework is particularly suitable for

applications like sentiment analysis, traffic

prediction, or healthcare analytics.

3.7 Algorithm

Algorithm 1 : Blockchain-Assisted SVM

Workflow

Input:

Dataset D = {xi,yi
}, where xi are feature vectors and

y
i
 ∈{-1,+1} are class lables.

Encryption key k.

Blockchain ledger B.

Output:
Trained SVM model M.

Prediction y

Immutable blockchain records for auditability.

Step 1 : Data Preprocessing

 1.1 Clean and normalize dataset D.

 1.2 Extract features and scale them to a

uniform range.

 1.3 Encrypt sensitive client data using

homomorphic encryption:

E(xi)= Enck(xi), E(y
i
)= Enck(y

i
),

Step 2 : Model Training (Server-Side)

 2.1 Receive encrypted data from clients.

 2.2 Train SVM classfier on encypted

inputs:

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7575

M = arg
min

w,b

1

2
 ||w||2+ C ∑ max(0,1-y

i
(w.xi+b))

n

i=1

 2.3 Generate model hash H(M).

 2.4 Record H(M) on blockchain ledger B.

𝑬𝒏𝒄(𝒘𝒈) =
𝟏

𝑵
∑ 𝑬𝒏𝒄(𝒘𝐢),

𝑵

𝒊=𝟏

𝑬𝒏𝒄(𝒃𝒈) =
𝟏

𝑵
∑ 𝑬𝒏𝒄(𝒃𝒊),

𝑵

𝒊=𝟏

 3.3 Store aggregation transaction on

blockchain ledger for auditability.

 3.4 Update global SVM model Mg.

4. Distribution

 Server sends updated global model Mgto all

clients.

 Clients update olcal copies for the next

iteration.

5. Termination Condiiton:
Repeat Steps 2-4nuntil convergence criteria are met

(e.g, accuracy threshold or max iterations).

Final global model Mg is deployed for prediction

tasks.

Now In Table 2 , summarizes the key challenges of

conventional client–server SVM

systems that the proposed framework seeks to

overcome.

The table 2 above summarizes the critical

challenges inherent in traditional client-server ML

systems, underscoring the necessity for secure,

trustworthy, and decentralized approaches. In the

following section, we present a detailed analysis of

the proposed framework and its workflow.

3.8 Workflow Analysis

The proposed framework integrates both

centralized and decentralized components to ensure

secure, transparent, and auditable machine learning

operations. At the initial stage, data submission and

local computations are performed in a centralized

manner, which is then cross-verified through

blockchain nodes for audit and integrity checks.

The blockchain layer interacts with three major

registries: the Dataset Registry for dataset

verification, the Model Registry for model audit

and validation, and the Prediction Logger for

maintaining an immutable audit trail of predictions.

Feedback and updates are continuously propagated

back to the client node, ensuring traceability and

reliability of the system.

As illustrated in Figure 2, the workflow progresses

in four major steps.

 Data Submission (Centralized): Clients

submit datasets or queries to the server/local

computation layer.

 Dataset Logging: The system records datasets

into the Dataset Registry for verification

checkpoints.

 Audit and Validation (Decentralized):

Blockchain nodes audit both datasets and

models, ensuring transparency and

consistency.

 Feedback and Updates: Prediction outcomes

and audit logs are fed back into the Prediction

Logger and made available to the client node.

In figure 2, itillustrates the workflow or

architectural design of the proposed framework,

integrating machine learning with blockchain. A

client node interacts with the system by submitting

data and receiving prediction outputs. The local

computation unit or server handles preprocessing,

training, and prediction tasks, as outlined in the

process flow diagram. To ensure transparency and

trust, a blockchain layer is incorporated, consisting

of dedicated smart contracts: the Dataset Registry

for verifying dataset authenticity, the Model

Registry for preserving model integrity, and the

Prediction Logger for recording inference results.

These components collectively create a

decentralized and immutable audit trail, ensuring

secure data handling, verifiable model usage, and

reliable prediction outcomes. As illustrated in

Figure 3, the proposed framework operates through

a series of sequential stages. The process begins

with data preprocessing, during which the raw

input undergoes cleaning, normalization, and

transformation into a structured format appropriate

for model training. In the subsequent training

phase, a Support Vector Machine (SVM) or an

equivalent learning algorithm is employed to

construct a predictive model capable of identifying

underlying data patterns. Once the model is trained,

it proceeds to the prediction phase, where new or

unseen data samples are analyzed and categorized

based on the patterns learned during training. The

final integration phase incorporates a blockchain

layer that securely records all essential outputs and

model-related transactions. This component ensures

data integrity, immutability, and traceable

verification, effectively mitigating the privacy and

reliability challenges commonly encountered in

traditional client–server architectures.In Figure 3,

the sequential workflow of the proposed framework

is presented, encompassing the stages of data

preprocessing, model training, prediction, and

blockchain-assisted termination. The diagram

demonstrates the logical progression between these

stages, emphasizing how each phase contributes to

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7576

maintaining data integrity, model reliability, and

secure transaction logging across the pipeline. In

contrast, Figure 4 extends this understanding by

examining the trade-offs and performance

dynamics, particularly the interplay among

latency, computational complexity, and

accuracy. The directional flow within the figures

clearly conveys how improvements in one

parameter can influence others, offering a

comprehensive perspective on system efficiency

under varying operational conditions. Together,

these visual representations provide a unified

understanding of the framework’s architectural

structure and functional behavior. The following

section further elaborates on the communication

process, detailing the client–server handshake

mechanism that governs interaction,

synchronization, and secure data exchange during

implementation.

3.8.1 Client–Server SVM Workflow
The operational workflow of the Support Vector

Machine (SVM) within a client–server environment

follows a structured sequence of communication

and computation steps.

 Handshake: The client begins by establishing

a connection request, and the server responds

to confirm readiness for communication.

 Training Phase: The client transmits the

training dataset to the server, where

preprocessing and model training are

conducted. The server then builds and stores

the SVM model parameters.

 Prediction Phase: The client provides input

feature vectors, which the server processes

through the trained model to generate

predictions and return the corresponding

results.

 Termination: Finally, the client initiates a

disconnect request, which the server

acknowledges, marking the end of the session.

As illustrated in Figure 4, the conventional client–

server setup for machine learning operates through

a straightforward exchange—where the client sends

data, and the server handles all training and

inference tasks.This design has been widely

adopted due to its simplicity, centralized control,

and efficiency in computational management.

However, it introduces several fundamental

limitations concerning data privacy, model

integrity, and trustworthiness. One of the most

significant drawbacks of this approach is the

absence of transparency in the training process.

Since model training is entirely executed on the

server side, clients have no mechanism to verify

whether their data was correctly processed or

whether the resulting predictions are based on an

untampered and legitimate model. This opacity can

lead to potential trust issues, particularly in sectors

such as healthcare, finance, or cybersecurity,

where accountability and model reliability are vital.

Furthermore, once the training data leaves the

client’s domain, data ownership is effectively lost.

There are no cryptographic guarantees preventing

the modification, misuse, or deletion of client data.

The lack of an audit mechanism means clients

cannot prove that their data was used ethically or

that the resulting model reflects genuine and

unaltered information. Consequently, traditional

client–server SVM architectures, though efficient,

remain vulnerable to data manipulation and

unauthorized access, underscoring the need for

privacy-preserving and verifiable alternatives such

as blockchain-assisted learning frameworks.

3.8.2 Limitations in Client–Server SVM

As outlined in Table 2, several inherent problems

exist within the conventional client-server machine

learning model. Among these, the most critical

limitations—Model Integrity & Trust and Data

Ownership—directly undermine the reliability and

transparency of the system. These core issues are

effectively mitigated in the proposed blockchain-

integrated framework, which introduces

mechanisms for verifiability, immutability, and

decentralized control.

3.8.3 Vulnerability Assessment
Risk scores (0 = Secure, 10 = High Risk) for key

stages in the SVM lifecycle:

 Training Data Submission: 9 (high risk)

 Model Storage: 8 (high risk)

 Prediction Request: 6 (moderate risk)

 Result Delivery: 9 (high risk)

Colors indicate risk: green = low, orange =

moderate, red = high.

The assessment clearly reveals that traditional

client–server SVM architectures are highly

vulnerable at critical stages, particularly during

training data submission, model storage, and result

delivery. These elevated risk levels highlight the

need for enhanced mechanisms to ensure integrity,

confidentiality, and trust throughout the lifecycle.

Consequently, this analysis underscores the

importance of integrating secure frameworks to

mitigate such vulnerabilities and safeguard the

overall system.

3.9 Blockchain–Integrated SVM Workflow

By integrating blockchain, the system enhances

data ownership, auditability, and model

integrity:

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7577

 Handshake: Client authentication verified via

blockchain.

 Training Phase: Model hash and metadata

stored immutably on blockchain.

 Prediction Phase: Predictions logged and

verified via blockchain.

 Termination: Session metadata recorded on-

chain.

In Figure 5, it extends the traditional ML workflow

by incorporating blockchain

In addition, the client maintains full control over

their data and model interactions. All critical

operations—including data submission, model

training updates, and prediction requests—are

cryptographically logged, ensuring that ownership

and provenance are preserved. By integrating these

measures, the framework addresses key challenges

of trust, privacy, and transparency, enabling a

collaborative machine learning environment where

security and verifiability are built into the system

by design.technology as a decentralized trust layer.

This augmented architecture addresses the core

limitations identified in Diagram 1 by introducing

cryptographic guarantees and immutable logging

mechanisms that ensure data integrity, model

traceability, and prediction accountability.

At the onset, the blockchain logs the hash of the

training data provided by the client, ensuring that

any tampering or modification can be detected. The

model metadata, including the hash of the SVM

model and its corresponding training dataset, is also

stored on the blockchain, providing a verifiable link

between the model and the data it was trained on.

This resolves the issue of model integrity, as any

unauthorized model modifications can be detected

through hash comparison.

When feature inputs are submitted for prediction, a

unique hash of the request is generated and

recorded, creating a direct link between the

prediction and a specific blockchain transaction.

The server returns the prediction results to the

client along with a transaction ID (Tx ID), which

allows the client to independently verify that the

output aligns with the recorded blockchain entry.

This mechanism establishes accountability for each

prediction while providing a tamper-resistant

audit trail.

In Graph 2 presents a comparative evaluation of

vulnerability levels between the traditional Client–

Server SVM architecture and the Blockchain-

Integrated SVM framework, assessed across

three key parameters: Data Privacy & Security,

Model Integrity & Trust, and Single Point of

Failure. Each parameter is rated on a scale from 0

(fully secure) to 10 (highly vulnerable).The first

parameter, Data Privacy & Security, examines the

degree to which user data is protected during

transmission, storage, and processing. The Client–

Server SVM scores 8/10, reflecting significant

vulnerability due to the absence of cryptographic

safeguards and reliance on centralized control.

By contrast, the Blockchain-Integrated SVM

achieves a much lower score of 3/10, as it employs

cryptographic hashing and immutable ledger

entries to ensure confidentiality and maintain data

integrity.

The second parameter, Model Integrity & Trust,

evaluates the client’s ability to verify that the model

has been trained correctly and remains free from

tampering. The traditional Client–Server

architecture scores 9/10, highlighting major

limitations in auditability and trust. The blockchain-

enhanced framework reduces this risk substantially,

with a score of 2/10, owing to the on-chain storage

of model metadata and data hashes, which provide

verifiable evidence of model lineage and

correctness.

The third parameter, Single Point of Failure,

reflects the system’s resilience to server outages or

targeted attacks. The Client–Server model scores

7/10, given its reliance on a central server for both

training and inference, making it susceptible to

disruptions. In contrast, the Blockchain-Integrated

SVM scores 2/10, benefiting from decentralized

architecture, which distributes computation and

storage, thereby improving robustness and

minimizing dependence on any single

component.Collectively, the graph demonstrates

that incorporating blockchain into the machine

learning workflow can significantly reduce

vulnerabilities inherent in conventional client–

server setups. By reinforcing data protection,

enabling transparent and verifiable model

operations, and mitigating centralization risks, the

Blockchain-Integrated SVM provides a secure,

trustworthy, and resilient foundation for high-

stakes ML applications.

Further emphasizing these advantages, Table 1

provides a qualitative comparison between the two

architectures across several critical dimensions. The

traditional Client–Server SVM lacks mechanisms

for verifying model integrity, relinquishes control

of data once submitted, and offers limited

transparency or auditability during prediction. In

contrast, the blockchain-based framework ensures

verifiable model integrity through metadata

hashing, maintains data ownership via immutable

logs, and enables full traceability of predictions

using transaction IDs (Tx IDs). Moreover, the shift

from a centralized, vulnerable system to a

decentralized, tamper-resistant framework
significantly enhances both security and operational

reliability. These results are consistent with the

vulnerability trends depicted in Graph 3,

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7578

collectively illustrating that blockchain integration

not only addresses critical security risks but also

introduces essential layers of trust, accountability,

and transparency to machine learning systems.

3.10 Comparative Analysis

Blockchain integration significantly reduces risks in

Data Privacy & Security and Model Integrity &

Trust, while maintaining SVM functionality.The

proposed methodology demonstrates a secure,

privacy-preserving, and auditable SVM

framework. By combining client–server SVM with

homomorphic encryption and blockchain, it

addresses key challenges of trust, transparency,

and data ownership, ensuring practical

applicability in real-world social data analytics.

4. Results and Discussion

4.1 Key Observations

The proposed blockchain-assisted machine learning

framework was evaluated against a conventional

client-server SVM using a structured dataset

partitioned into training and testing sets. Samples

across low, medium, and high-class labels were

selected to illustrate model behavior

comprehensively.

Key observations include:

 Accuracy: TABT-ML maintains prediction

accuracy nearly identical to the client-server

SVM.

 Performance Trade-off: Integrating

blockchain introduces slight increases in

latency, CPU usage, and memory

consumption, which are offset by enhanced

trust and auditability.

 Blockchain Cost: Each prediction in TABT-

ML incurs gas fees (~22,500 units per

transaction), providing immutable logging and

transparency.

 Trust and Ownership: The framework

significantly improves model integrity and data

ownership, addressing the limitations of

centralized SVMs.

The results in Table 4 highlight that despite the

additional blockchain operations, the predictive

outputs remain consistent with the conventional

SVM. This observation sets the stage for evaluating

overall accuracy and system resource trade-offs.

4.2 Evaluation Results

The transition from Table 4 to Tables 5 and 6

underscores that the blockchain-assisted framework

maintains comparable accuracy while incurring

modest computational overhead. Latency increases

slightly (18–19 ms vs. 12.5 ms) due to transaction

creation, validation, and recording, while CPU and

memory usage rise marginally to accommodate

decentralized operations. Importantly, the gas cost

per prediction quantifies the blockchain

computation required for maintaining trust and

immutability.

4.3 Trade-off Analysis and Discussion

The framework establishes a triangular trade-off

among latency, blockchain gas consumption, and

accuracy. Improvements in one parameter can

influence the others, and the system optimizes this

balance to achieve secure and auditable predictions

with minimal overhead.In figure 7, it illustrates

how latency, gas consumption, and accuracy

interact, with directional arrows indicating

interdependencies. The framework achieves a

balance that maximizes security and auditability

without significant degradation in predictive

performance.

Beyond computational metrics, the blockchain-

assisted framework substantially enhances trust and

governance. Unlike conventional SVMs, which

lack verifiable prediction logs and require clients to

share raw data, the blockchain-assisted framework:

The blockchain-assisted framework introduces a

modest increase in latency and resource

consumption to enable immutable logging and

decentralized data control. This trade-off

significantly enhances model integrity, auditability,

and privacy guarantees compared to traditional

client-server architectures.

By leveraging on-chain verification, it mitigates

risks associated with single points of failure and

model tampering. Future optimizations should

target reducing transaction costs and improving

throughput to scale decentralized AI systems

without sacrificing security or performance.

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7579

Table 1: Timeline of ML methods and their relevance to SVM and privacy

Table 2: Centralized AI: Security risks, unverifiable outputs, and loss of data control.

Year Algorithm / Method Type Domain Key Contribution
Relevance to SVM /

Privacy

1952

Checkers-playing

ML program

(Samuel)

Supervised

(Game)
Game AI

First program that

improved

performance via

experience

Historical milestone;

foundation of ML

1957
Perceptron

(Rosenblatt)
Supervised Classification

Introduced single-

layer neural

network

Early supervised

learning model

1960s–

70s

Nearest Neighbor,

Linear Discriminant

Analysis

Supervised
Pattern

Recognition

Statistical learning

approaches;

interpretable

Precursor to SVM

1986
Backpropagation

(Rumelhart et al.)

Supervised

(Neural

Network)

Multi-layer

classification

Enabled non-linear

function learning

Evolution of

supervised methods

1995

Support Vector

Machine (Cortes &

Vapnik)

Supervised Classification

Margin-based

classification;

kernel trick

Core algorithm;

adaptable to privacy

2001
Random Forest

(Breiman)

Supervised /

Ensemble
Classification

Combines multiple

trees for accuracy

Comparison to SVM;

SVM preferred for

small/high-

dimensional datasets

2002
Principal Component

Analysis (Jolliffe)
Unsupervised

Dimensionality

reduction

Reduces feature

space

Often used with SVM

for efficiency

2006

Semi-Supervised

SVM (Chapelle et

al.)

Semi-

supervised

Limited label

classification

Combines labeled

and unlabeled data

Extends SVM for

sparse-label scenarios

2013
Privacy-preserving

SVM (Liu et al.)

Supervised /

Encrypted

Cloud

computing

SVM training on

encrypted data

Demonstrates SVM in

privacy-preserving

environments

2020

Blockchain +

Federated Learning

(Xiong et al.)

Supervised /

Federated

Distributed

learning

Secure model

aggregation via

blockchain

Enables SVM in

decentralized systems

2022
Federated SVM

(Tavara)

Supervised /

Federated

Privacy-

preserving ML

Clients train local

SVM; server

aggregates

Direct adaptation for

privacy-focused

architectures

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7580

 Figure 2: Blockchain-assisted ML workflow with auditing and integrity checkpoints.

Figure 3: Process flow of the proposed framework, including preprocessing, model training, prediction, and

blockchain-based termination

 Figure 4: Client–Server with SVM

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7581

Graph 1: Vulnerability analysis of traditional client–server SVM workflow, highlighting risk levels across workflow

stages.

Figure 5 : Client-Blockchain Enhanced ML Flow – Addressing Trust and Integrity through Decentralization

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7582

Graph 2: Risk mitigation achieved by blockchain-enhanced SVM, showing reduced vulnerabilities in model integrity,

privacy, and trust.

Table 3: Comparative evaluation of client–server and blockchain-integrated SVM architectures across privacy,

transparency, and reliability.

 Figure 6 : Client-server vs. blockchain-enabled AI: Centralized training vs. decentralized, auditable, and tamper-

proof workflows.

Aspect Client-Server Blockchain-Enhanced

Model Integrity Not verifiable Verified via metadata hashing

Data Ownership Lost after submission Preserved via immutable logs

Prediction Trust No audit trail Full traceability (Tx ID)

Security Centralized, vulnerable Decentralized, tamper-resistant

Transparency Opaque Transparent and auditable

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7583

Table 4.: Representative Predictions of Client-Server SVM and Blockchain-Assisted Framework

Sample
True

Label

Client-Server SVM

Prediction

Blockchain-Assisted

Prediction

Latency

(ms)

Gas

(units)

1 3 3 3 18 22,500

2 7 7 7 19 22,600

3 1 1 1 18 22,450

Figure 7 : Trade-off among latency, blockchain gas consumption, and accuracy in the blockchain-assisted framework

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7584

Figure 7 : Comparison of Client-Server SVM and Blockchain-Assisted Framework

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7585

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] A. L. Samuel, “Some studies in machine learning

using the game of checkers,” IBM Journal of

Research and Development, vol. 3, no. 3, pp. 210–

229, 1959.

[2] F. Rosenblatt, “The perceptron: A probabilistic

model for information storage and organization in

the brain,” Psychological Review, vol. 65, no. 6, pp.

386–408, 1958.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning representations by back-propagating

errors,” Nature, vol. 323, no. 6088, pp. 533–536,

1986.

[4] C. Cortes and V. Vapnik, “Support-vector networks,”

Machine Learning, vol. 20, no. 3, pp. 273–297,

1995.

[5] L. Breiman, “Random forests,” Machine Learning,

vol. 45, no. 1, pp. 5–32, 2001.

[6] I. T. Jolliffe, Principal Component Analysis, 2nd ed.

New York: Springer, 2002.

[7] O. Chapelle, B. Schölkopf, and A. Zien, “Semi-

supervised learning using Gaussian fields and

harmonic functions,” Machine Learning, vol. 62,

pp. 239–259, 2006.

[8] K. Liu and T. Yu, “Privacy-preserving SVM

classification on vertically partitioned data,” in

Proc. IEEE Int. Conf. Data Mining Workshops

(ICDMW), 2013, pp. 647–654.

[9] S. Tavara, “Federated SVM: A privacy-preserving

support vector machine for decentralized learning,”

Future Generation Computer Systems, vol. 132, pp.

231–242, 2022.

[10] Z. Xiong, Y. Zhang, D. Niyato, J. Kang, and P.

Wang, “Blockchain for secure and efficient data

sharing in vehicular edge computing and

networks,” IEEE Internet of Things Journal, vol. 7,

no. 4, pp. 2449–2462, Apr. 2020.

[11] C. Gentry, “Fully homomorphic encryption using

ideal lattices,” in Proc. 41st ACM Symp. Theory

Comput., 2009, pp. 169–178.

[12] K. Bonawitz et al., “Practical secure aggregation for

privacy-preserving machine learning,” in Proc.

ACM SIGSAC Conf. Computer and

Communications Security (CCS), 2017, pp. 1175–

1191.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic

cash system,” 2008. [Online]. Available:

https://bitcoin.org/bitcoin.pdf

[14] G. Wood, “Ethereum: A secure decentralised

generalised transaction ledger,” Ethereum Project

Yellow Paper, 2014.

[15] Y. Zhang and H. A. Jacobsen, “Towards

dependable, scalable, and pervasive distributed

ledgers with Blockchains,” Proc. VLDB

Endowment, vol. 10, no. 12, pp. 1730–1731, 2018.

[16] P. Kairouz et al., “Advances and open problems in

federated learning,” Foundations and Trends® in

Machine Learning, vol. 14, nos. 1–2, pp. 1–210,

2021.

[17] R. Shokri and V. Shmatikov, “Privacy-preserving

deep learning,” in Proc. 22nd ACM SIGSAC Conf.

Computer and Communications Security (CCS),

2015, pp. 1310–1321.

[18] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith,

“Federated learning: Challenges, methods, and

future directions,” IEEE Signal Processing

Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[19] M. Abadi et al., “Deep learning with differential

privacy,” in Proc. 2016 ACM SIGSAC Conf.

Computer and Communications Security (CCS),

2016, pp. 308–318.

[20] A. C. Yao, “Protocols for secure computations,” in

Proc. 23rd Annu. Symp. Foundations of Computer

Science (SFCS), 1982, pp. 160–164.

[21] R. Zhang, R. Xue, and L. Liu, “Security and privacy

on blockchain,” ACM Computing Surveys, vol. 52,

no. 3, pp. 1–34, 2019.

[22] K. Christidis and M. Devetsikiotis, “Blockchains

and smart contracts for the Internet of Things,”

IEEE Access, vol. 4, pp. 2292–2303, 2016.

[23] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and

F. Y. Wang, “Blockchain-enabled smart contracts:

Architecture, applications, and future trends,” IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, vol. 49, no. 11, pp. 2266–2277, Nov.

2019.

[24] G. Zyskind, O. Nathan, and A. Pentland,

“Decentralizing privacy: Using blockchain to

protect personal data,” in Proc. IEEE Security and

Privacy Workshops (SPW), 2015, pp. 180–184.

[25] M. Risius and K. Spohrer, “A blockchain research

framework,” Business & Information Systems

Engineering, vol. 59, no. 6, pp. 385–409, 2017.

[26] J. Han, M. Kamber, and J. Pei, Data Mining:

Concepts and Techniques, 3rd ed. Elsevier, 2012.

[27] C. Aggarwal and C. Zhai, Mining Text Data. New

York: Springer, 2012.

Yojana, Yogesh Chaba / IJCESEN 11-4(2025)7571-7586

7586

[28] Y. Kim, “Convolutional neural networks for

sentence classification,” in Proc. EMNLP, 2014,

pp. 1746–1751.

[29] A. Huang, “Similarity measures for text document

clustering,” in Proc. Sixth NZ Computer Science

Research Student Conf., 2008, pp. 49–56.

[30] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why

should I trust you?: Explaining the predictions of

any classifier,” in Proc. ACM SIGKDD Int. Conf.

Knowledge Discovery and Data Mining (KDD),

2016, pp. 1135–1144.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean,

“Efficient estimation of word representations in

vector space,” arXiv preprint arXiv:1301.3781,

2013.

[32] P. Domingos, “A few useful things to know about

machine learning,” Communications of the ACM,

vol. 55, no. 10, pp. 78–87, 2012.

[33] B. McMahan et al., “Communication-efficient

learning of deep networks from decentralized data,”

in Proc. AISTATS, 2017, pp. 1273–1282.

[34] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik,

A. T. Suresh, and D. Bacon, “Federated learning:

Strategies for improving communication

efficiency,” in Proc. NIPS Workshop on Private

Multi-Party Machine Learning, 2016.

[35] R. Rivest, L. Adleman, and M. Dertouzos, “On data

banks and privacy homomorphisms,” Foundations

of Secure Computation, vol. 4, no. 11, pp. 169–180,

1978.

[36] K. Christidis, “Blockchain-based trust management

in IoT,” IEEE Internet of Things Journal, vol. 4,

no. 6, pp. 2292–2303, 2017.

[37] H. W. Lim, M. R. Asghar, and H. B. Kang,

“Blockchain technology for machine learning: A

survey,” Electronics, vol. 12, no. 3, pp. 1–21, 2023.

