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Abstract:  
 

This paper presents a blockchain-integrated Support Vector Machine (SVM) framework 

that addresses the privacy, trust, and ownership limitations of conventional client–

server architectures. In the proposed design, clients train local SVM models and share 

only encrypted parameters, while blockchain ensures secure aggregation, tamper-proof 

logging, and transparent auditability.This study proposes a framework that combines 

blockchain technology with Support Vector Machines (SVM) to improve privacy, 

transparency, and accountability in predictive analytics. Experiments on MNIST and 

CIFAR-10 show that the framework achieves accuracy comparable to conventional 

SVMs (0.92 vs. 0.93), while enabling tamper-resistant predictions and verifiable model 

operations. Blockchain integration introduces moderate overhead—latency of 18–19 ms 

and transaction costs around 22,500 gas units—but these are outweighed by gains in 

data security, decentralized control, and auditability. To the best of our knowledge, this 

is among the first efforts to merge SVM with blockchain for secure predictive 

modeling. The framework is scalable, reliable, and well-suited for sensitive domains 

such as healthcare, finance, and intelligent transportation systems. 

 

1. Introduction 
 

Machine Learning (ML) has emerged as a 

cornerstone of modern intelligent systems, 

empowering organizations to derive actionable 

insights and make data-driven decisions from 

increasingly complex and diverse datasets [1], [2]. 

Its applications span a wide spectrum of critical 

domains, including healthcare, finance, 

transportation, cybersecurity, and social media—

areas where prediction accuracy and response 

timeliness hold substantial operational and societal 

significance [3].Among the family of supervised 

learning algorithms, the Support Vector Machine 

(SVM) remains one of the most reliable and 

versatile methods. It excels at identifying optimal 

decision boundaries that separate different classes 

while preserving strong generalization, even in 

high-dimensional data spaces [4]. Owing to these 

properties, SVMs have gained widespread use in 

diverse applications such as sentiment analysis, text 

categorization, bioinformatics, and traffic 

prediction [5], [6].However, when SVMs are 

deployed through conventional client–server 

architectures, a number of practical and security-

related issues arise. In a centralized setup, training 

data must be transmitted to the main server, which 

raises the likelihood of privacy breaches or 

unauthorized access [7]. Additionally, because the 

server is responsible for storing and managing the 

trained model, any compromise at that level can 

lead to manipulation or tampering of the model 

parameters. The dependence on a single server also 

introduces fragility into the system—any 

malfunction, outage, or attack can disrupt the entire 

operation [8].Researchers have explored several 

privacy-preserving learning techniques to alleviate 

these risks, including federated learning and secure 

multiparty computation [9], [10]. While these 

frameworks reduce direct data exposure, they often 

fail to guarantee full transparency and verifiable 

accountability—features that are essential in 

sensitive domains such as finance, transportation, 

and healthcare [11].To bridge these gaps, 

blockchain technology has emerged as a promising 

complementary approach. Owing to its 
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decentralized and tamper-resistant structure, 

blockchain can maintain trustworthy records of 

transactions and model updates [12], [13]. When 

combined with SVM, it enables the system to 

preserve predictive accuracy while ensuring that all 

updates are traceable, verifiable, and securely 

recorded, thereby strengthening both data 

ownership and model integrity [14], [15].Motivated 

by these challenges and opportunities, this study 

introduces a blockchain-assisted Support Vector 

Machine (SVM) framework designed to enhance 

privacy protection, ensure transparent 

accountability, and improve overall system 

resilience. The proposed approach seeks to combine 

the analytical strengths of SVM with the inherent 

trust and immutability offered by blockchain 

technology.The major contributions of this research 

can be outlined as follows: 

 Decentralized SVM architecture: Each 

participating client independently trains a local 

model and transmits only encrypted model 

parameters to the shared network. This 

approach prevents raw data exposure and 

ensures that sensitive information remains 

securely stored within the local environment. 

 

 Blockchain-based transparency: The 

framework leverages a tamper-proof 

distributed ledger to record and validate model 

updates. This mechanism provides an auditable 

trail of all transactions, ensuring that any 

modification or contribution can be traced and 

verified in a decentralized manner. 

 

 Comprehensive experimental evaluation: 
The proposed blockchain-integrated SVM is 

systematically evaluated against a 

conventional client–server SVM using publicly 

available benchmark datasets. The analysis 

highlights trade-offs among model accuracy, 

computational efficiency, latency, and security 

enhancements, offering a balanced assessment 

of performance under real-world conditions. 

This study is guided by the central research 

question:In what ways can the integration of 

blockchain technology enhance privacy, security, 

and operational efficiency in machine learning-

based traffic analysis when compared with 

traditional client–server SVM frameworks?The 

remainder of this paper is organized as follows: 

Section 2 reviews existing literature that explores 

the convergence of machine learning and 

blockchain-based systems. Section III explains the 

methodology and architecture of the proposed 

framework. Section IV outlines the experimental 

setup and implementation details, while Section V 

discusses the obtained results and their 

implications. Finally, Section VI concludes the 

paper with a summary of findings and potential 

directions for future research. 
 

2. Literature Survey 
 

This section reviews the progression of machine 

learning (ML) algorithms, with particular emphasis 

on the evolution of Support Vector Machines 

(SVM) and their adaptations for privacy-preserving 

and distributed environments, such as federated 

learning and blockchain-based frameworks. 

Over the years, ML has advanced from simple 

statistical models to sophisticated algorithms 

capable of addressing complex, real-world 

challenges across diverse domains. Early 

milestones include Samuel’s checkers-playing 

program [16] and Rosenblatt’s Perceptron [17], 

which marked the foundation of supervised 

learning by showing that machines could learn from 

experience and improve performance over time. 

Despite their pioneering nature, these early models 

were limited by their inability to capture non-linear 

relationships, restricting their use in more intricate 

applications.A major breakthrough came with the 

introduction of the Support Vector Machine by 

Cortes and Vapnik [18]. The SVM framework 

optimized classification boundaries by maximizing 

the margin between classes, thereby enhancing 

generalization and robustness. By leveraging kernel 

functions, SVMs effectively handled non-linear 

transformations while maintaining computational 

efficiency. These properties made SVM particularly 

useful for high-dimensional datasets and scenarios 

with limited samples. Although alternative 

algorithms such as decision trees, random forests, 

and ensemble models emerged [19], SVM remained 

a preferred choice in tasks requiring precision, 

robustness, and strong generalization [20].In recent 

years, research has shifted toward privacy-

preserving variants of SVM, driven by concerns 

over data confidentiality in centralized systems. 

Federated SVM models [21] represent one such 

approach, allowing distributed clients to train local 

models while sharing only aggregated or encrypted 

parameters instead of raw data. This 

decentralization protects privacy and mitigates risks 

of data exposure. Further enhancements have been 

achieved through cryptographic techniques, 

including homomorphic encryption and secure 

multiparty computation [22], [23], which enable 

computations to be performed directly on encrypted 

data while safeguarding sensitive information 

during both training and inference.Parallel to these 

advances, blockchain integration into ML 
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workflows has introduced new dimensions of trust, 

transparency, and auditability [24]. Blockchain’s 

immutable and distributed ledger ensures that 

model updates and transactions are verifiable and 

resistant to tampering. This integration bridges the 

gap between decentralized computation and 

transparent governance, fostering secure and 

accountable machine learning ecosystems [25]. 

 
Figure 1: Framework for Blockchain-Enhanced SVM 

Table 1 summarizes the chronological progression 

of key ML developments, tracing the path from 

early statistical models to privacy-preserving and 

blockchain-enabled SVM frameworks. 

The progression from conventional SVM to 

blockchain-integrated SVM illustrates successive 

adaptations for privacy preservation, including 

federated learning and secure multiparty 

computation, as depicted in Figure 1. 

In summary, the literature confirms that SVM is a 

robust and versatile algorithm. While federated 

learning and blockchain-based frameworks provide 

promising solutions for privacy, security, and 

auditability, there is still a lack of research 

evaluating their combined effectiveness in 

applications such as traffic analysis. This gap forms 

the motivation for the proposed blockchain-

integrated SVM framework,  

In conclusion, the literature establishes that SVM 

remains a highly robust and versatile algorithm. 

While federated learning and blockchain-based 

approaches offer promising solutions for privacy, 

security, and auditability, there remains a gap in 

evaluating their combined effectiveness in traffic 

analysis applications. This gap motivates the 

development of the proposed blockchain-integrated 

SVM framework, aiming to achieve secure, 

decentralized, and high-performance traffic 

prediction.designed to enable secure, decentralized, 

and high-performance predictive analytics. 

3. Methodology 

This research proposes a client–server architecture 

using Support Vector Machines (SVM) for 

analyzing social-based datasets while ensuring 

privacy preservation. The methodology 

encompasses multiple stages, ranging from data 

acquisition to secure model aggregation and 

evaluation, integrating cryptographic techniques 

and blockchain to enhance trust, transparency, and 

accountability [26]. 

3.1 Data Collection 

The initial phase focuses on data collection, during 

which social media–based datasets are gathered to 

train and evaluate the SVM model. Social data 

includes user-generated content extracted from 

platforms such as Twitter, Facebook, and Reddit, 

consisting of textual inputs (posts, comments, or 

replies), categorical variables (user roles, topic 

categories), and numerical indicators (likes, shares, 

or retweets). These datasets are dynamic, 

heterogeneous, and unstructured, making them 

suitable for assessing the robustness of SVM 

models under real-world conditions [27]. 

The datasets used comprise thousands to millions of 

records to ensure statistical representativeness. 

Each record includes textual, numerical, and 

categorical features, paired with corresponding 

sentiment or polarity labels. As SVM is a 

supervised learning algorithm, all samples are 

annotated with ground-truth class labels to facilitate 

model training and validation. Data were obtained 

either directly from social platforms via APIs or 

from publicly available benchmark datasets [28], 

ensuring exposure to authentic social interactions 

and realistic distributions. 

 

3.2 Data Preprocessing 

 

Following acquisition, preprocessing is performed 

to convert raw, unstructured data into a format 

suitable for SVM training. Social datasets often 

contain missing values, duplicates, and irrelevant 

information that can reduce model accuracy. A 

systematic cleaning process removes such noise 

and standardizes the dataset [29]. 

Textual attributes undergo Natural Language 

Processing (NLP) operations such as tokenization, 

stopword removal, and lemmatization [30]. 

Categorical variables are transformed into 

numerical vectors using one-hot encoding, while 

text features are represented using TF-IDF or 

Word2Vec embeddings [31]. To balance 

contributions across variables, numerical features 

are normalized via min–max scaling or z-score 

standardization. The dataset is then divided into 

training, validation, and testing subsets (70:15:15) 
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for model training, hyperparameter tuning, and 

evaluation [32]. 

 

3.3 Client–Server SVM Architecture 

 

The central innovation of this research is the design 

of a client–server SVM framework that balances 

scalability, efficiency, and data privacy. Clients 

independently train local SVMs without 

transferring raw data. Instead, they share only 

model-related parameters, such as support vectors 

or gradients. The central server aggregates these 

parameters via weighted averaging or secure 

multiparty computation (SMC) [33]. he updated 

global model is redistributed to all clients, allowing 

iterative refinement through multiple training 

rounds. 

The central server then aggregates these 

contributions using a weighted averaging 

mechanism or secure multiparty computation 

(SMC) techniques to form a unified global model, 

as illustrated conceptually by Equation (1): 

 

wglobal= 
1

N
∑ wi

N
i=1    

where wi represents the local model parameters 

from the ith client, and N denotes the total number 

of participating clients. T 

This process resembles federated learning 

principles but preserves SVM’s structural 

efficiency, demonstrating that distributed training 

can maintain accuracy and confidentiality while 

mitigating risks of centralization [34]. 

 

3.4 Privacy-Preserving Enhancements 

 

To reinforce privacy and trust, cryptographic 

techniques and blockchain are integrated into the 

architecture: 

 Homomorphic Encryption (HE): Clients 

encrypt model parameters before sharing. 

Aggregation occurs directly on ciphertext, 

ensuring confidentiality even if the server is 

compromised [35]. 

 Blockchain Integration: Each model update 

is recorded as a blockchain transaction, 

providing tamper-proof logging, auditable 

trails, and transparent verification. Smart 

contracts automate aggregation, enforce 

consensus, and validate contributions [36], 

[37]. 

Together, these mechanisms establish a secure, 

decentralized, and verifiable learning ecosystem. 

 

3.5 Tools and Environment 

 

The methodology is implemented using Python 

3.11 with the following frameworks and libraries: 

 Scikit-learn for linear and kernel-based SVM. 

 Pandas, NumPy for data manipulation and 

preprocessing. 

 NLTK, SpaCy for NLP tasks. 

 PySyft, TenSEAL for homomorphic 

encryption and federated learning simulation. 

 Web3.py for Ethereum-based blockchain 

integration. 

 Matplotlib, Seaborn for visualization of 

performance metrics. 

This toolset ensures reproducibility, scalability, 

and compatibility with modern privacy-preserving 

machine learning pipelines. 

3.6 Expected Results 

The proposed methodology is expected to deliver a 

secure, scalable, and efficient SVM framework 
for large-scale social datasets. Key outcomes 

include: 

 High classification accuracy due to SVM’s 

margin-based optimization. 

 Minimized privacy risks, as only encrypted 

model parameters are shared. 

 Transparent, tamper-proof logging of client 

contributions via blockchain 

 Scalability to multiple clients with 

heterogeneous dataset. 

The framework is particularly suitable for 

applications like sentiment analysis, traffic 

prediction, or healthcare analytics. 

3.7 Algorithm 

Algorithm 1 : Blockchain-Assisted SVM 

Workflow 

Input: 

Dataset D = {xi,yi
}, where xi are feature vectors and 

y
i
 ∈{-1,+1} are class lables. 

Encryption key k. 

Blockchain ledger B. 

Output: 
Trained SVM model M. 

Prediction y 

Immutable blockchain records for auditability. 

Step 1 : Data Preprocessing 

 1.1 Clean and normalize dataset D. 

 1.2 Extract features and scale them to a 

uniform range. 

 1.3 Encrypt sensitive client data using 

homomorphic encryption: 

     

E(xi)= Enck(xi), E(y
i
)= Enck(y

i
), 

 

Step 2 : Model Training (Server-Side) 

 2.1 Receive encrypted data from clients. 

 2.2 Train SVM classfier on encypted 

inputs: 
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M = arg 
min

w,b
 
1

2
 ||w||2+ C ∑ max(0,1-y

i
(w.xi+b))

n

i=1

 

 2.3 Generate model hash H(M). 

 2.4 Record H(M) on blockchain ledger B. 

 

𝑬𝒏𝒄(𝒘𝒈) =  
𝟏

𝑵
∑ 𝑬𝒏𝒄(𝒘𝐢),        

𝑵

𝒊=𝟏

 

𝑬𝒏𝒄(𝒃𝒈) =  
𝟏

𝑵
∑ 𝑬𝒏𝒄(𝒃𝒊),

𝑵

𝒊=𝟏

 

 3.3 Store aggregation transaction on 

blockchain ledger for auditability. 

 3.4 Update global SVM model Mg. 

4. Distribution 

 Server sends updated global model Mgto all 

clients. 

 Clients update olcal copies for the next 

iteration. 

5. Termination Condiiton: 
Repeat Steps 2-4nuntil convergence criteria are met 

(e.g, accuracy threshold or  max iterations). 

Final global model Mg is deployed for prediction 

tasks. 

Now In Table 2 , summarizes the key challenges of 

conventional client–server SVM 

systems that the proposed framework seeks to 

overcome. 

The table 2 above summarizes the critical 

challenges inherent in traditional client-server ML 

systems, underscoring the necessity for secure, 

trustworthy, and decentralized approaches. In the 

following section, we present a detailed analysis of 

the proposed framework and its workflow. 

 

3.8 Workflow Analysis 

 

The proposed framework integrates both 

centralized and decentralized components to ensure 

secure, transparent, and auditable machine learning 

operations. At the initial stage, data submission and 

local computations are performed in a centralized 

manner, which is then cross-verified through 

blockchain nodes for audit and integrity checks. 

The blockchain layer interacts with three major 

registries: the Dataset Registry for dataset 

verification, the Model Registry for model audit 

and validation, and the Prediction Logger for 

maintaining an immutable audit trail of predictions. 

Feedback and updates are continuously propagated 

back to the client node, ensuring traceability and 

reliability of the system. 

As illustrated in Figure 2, the workflow progresses 

in four major steps. 

 Data Submission (Centralized): Clients 

submit datasets or queries to the server/local 

computation layer. 

 

 Dataset Logging: The system records datasets 

into the Dataset Registry for verification 

checkpoints. 

 

 Audit and Validation (Decentralized): 

Blockchain nodes audit both datasets and 

models, ensuring transparency and 

consistency. 

 

 Feedback and Updates: Prediction outcomes 

and audit logs are fed back into the Prediction 

Logger and made available to the client node. 

In figure 2, itillustrates the workflow or 

architectural design of the proposed framework, 

integrating machine learning with blockchain. A 

client node interacts with the system by submitting 

data and receiving prediction outputs. The local 

computation unit or server handles preprocessing, 

training, and prediction tasks, as outlined in the 

process flow diagram. To ensure transparency and 

trust, a blockchain layer is incorporated, consisting 

of dedicated smart contracts: the Dataset Registry 

for verifying dataset authenticity, the Model 

Registry for preserving model integrity, and the 

Prediction Logger for recording inference results. 

These components collectively create a 

decentralized and immutable audit trail, ensuring 

secure data handling, verifiable model usage, and 

reliable prediction outcomes. As illustrated in 

Figure 3, the proposed framework operates through 

a series of sequential stages. The process begins 

with data preprocessing, during which the raw 

input undergoes cleaning, normalization, and 

transformation into a structured format appropriate 

for model training. In the subsequent training 

phase, a Support Vector Machine (SVM) or an 

equivalent learning algorithm is employed to 

construct a predictive model capable of identifying 

underlying data patterns. Once the model is trained, 

it proceeds to the prediction phase, where new or 

unseen data samples are analyzed and categorized 

based on the patterns learned during training. The 

final integration phase incorporates a blockchain 

layer that securely records all essential outputs and 

model-related transactions. This component ensures 

data integrity, immutability, and traceable 

verification, effectively mitigating the privacy and 

reliability challenges commonly encountered in 

traditional client–server architectures.In Figure 3, 

the sequential workflow of the proposed framework 

is presented, encompassing the stages of data 

preprocessing, model training, prediction, and 

blockchain-assisted termination. The diagram 

demonstrates the logical progression between these 

stages, emphasizing how each phase contributes to 
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maintaining data integrity, model reliability, and 

secure transaction logging across the pipeline. In 

contrast, Figure 4 extends this understanding by 

examining the trade-offs and performance 

dynamics, particularly the interplay among 

latency, computational complexity, and 

accuracy. The directional flow within the figures 

clearly conveys how improvements in one 

parameter can influence others, offering a 

comprehensive perspective on system efficiency 

under varying operational conditions. Together, 

these visual representations provide a unified 

understanding of the framework’s architectural 

structure and functional behavior. The following 

section further elaborates on the communication 

process, detailing the client–server handshake 

mechanism that governs interaction, 

synchronization, and secure data exchange during 

implementation. 

 

3.8.1 Client–Server SVM Workflow 
The operational workflow of the Support Vector 

Machine (SVM) within a client–server environment 

follows a structured sequence of communication 

and computation steps. 

 Handshake: The client begins by establishing 

a connection request, and the server responds 

to confirm readiness for communication. 

 Training Phase: The client transmits the 

training dataset to the server, where 

preprocessing and model training are 

conducted. The server then builds and stores 

the SVM model parameters. 

 Prediction Phase: The client provides input 

feature vectors, which the server processes 

through the trained model to generate 

predictions and return the corresponding 

results. 

 Termination: Finally, the client initiates a 

disconnect request, which the server 

acknowledges, marking the end of the session. 

 

As illustrated in Figure 4, the conventional client–

server setup for machine learning operates through 

a straightforward exchange—where the client sends 

data, and the server handles all training and 

inference tasks.This design has been widely 

adopted due to its simplicity, centralized control, 

and efficiency in computational management. 

However, it introduces several fundamental 

limitations concerning data privacy, model 

integrity, and trustworthiness. One of the most 

significant drawbacks of this approach is the 

absence of transparency in the training process. 

Since model training is entirely executed on the 

server side, clients have no mechanism to verify 

whether their data was correctly processed or 

whether the resulting predictions are based on an 

untampered and legitimate model. This opacity can 

lead to potential trust issues, particularly in sectors 

such as healthcare, finance, or cybersecurity, 

where accountability and model reliability are vital. 

Furthermore, once the training data leaves the 

client’s domain, data ownership is effectively lost. 

There are no cryptographic guarantees preventing 

the modification, misuse, or deletion of client data. 

The lack of an audit mechanism means clients 

cannot prove that their data was used ethically or 

that the resulting model reflects genuine and 

unaltered information. Consequently, traditional 

client–server SVM architectures, though efficient, 

remain vulnerable to data manipulation and 

unauthorized access, underscoring the need for 

privacy-preserving and verifiable alternatives such 

as blockchain-assisted learning frameworks. 

 

3.8.2 Limitations in Client–Server SVM 

As outlined in Table 2, several inherent problems 

exist within the conventional client-server machine 

learning model. Among these, the most critical 

limitations—Model Integrity & Trust and Data 

Ownership—directly undermine the reliability and 

transparency of the system. These core issues are 

effectively mitigated in the proposed blockchain-

integrated framework, which introduces 

mechanisms for verifiability, immutability, and 

decentralized control. 

 

3.8.3 Vulnerability Assessment 
Risk scores (0 = Secure, 10 = High Risk) for key 

stages in the SVM lifecycle: 

 Training Data Submission: 9 (high risk) 

 Model Storage: 8 (high risk) 

 Prediction Request: 6 (moderate risk) 

 Result Delivery: 9 (high risk) 

Colors indicate risk: green = low, orange = 

moderate, red = high. 

The assessment clearly reveals that traditional 

client–server SVM architectures are highly 

vulnerable at critical stages, particularly during 

training data submission, model storage, and result 

delivery. These elevated risk levels highlight the 

need for enhanced mechanisms to ensure integrity, 

confidentiality, and trust throughout the lifecycle. 

Consequently, this analysis underscores the 

importance of integrating secure frameworks to 

mitigate such vulnerabilities and safeguard the 

overall system. 

 

3.9 Blockchain–Integrated SVM Workflow 
 

By integrating blockchain, the system enhances 

data ownership, auditability, and model 

integrity: 
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 Handshake: Client authentication verified via 

blockchain. 

 Training Phase: Model hash and metadata 

stored immutably on blockchain. 

 Prediction Phase: Predictions logged and 

verified via blockchain. 

 Termination: Session metadata recorded on-

chain. 

In Figure 5, it extends the traditional ML workflow 

by incorporating blockchain  

In addition, the client maintains full control over 

their data and model interactions. All critical 

operations—including data submission, model 

training updates, and prediction requests—are 

cryptographically logged, ensuring that ownership 

and provenance are preserved. By integrating these 

measures, the framework addresses key challenges 

of trust, privacy, and transparency, enabling a 

collaborative machine learning environment where 

security and verifiability are built into the system 

by design.technology as a decentralized trust layer. 

This augmented architecture addresses the core 

limitations identified in Diagram 1 by introducing 

cryptographic guarantees and immutable logging 

mechanisms that ensure data integrity, model 

traceability, and prediction accountability. 

At the onset, the blockchain logs the hash of the 

training data provided by the client, ensuring that 

any tampering or modification can be detected. The 

model metadata, including the hash of the SVM 

model and its corresponding training dataset, is also 

stored on the blockchain, providing a verifiable link 

between the model and the data it was trained on. 

This resolves the issue of model integrity, as any 

unauthorized model modifications can be detected 

through hash comparison. 

When feature inputs are submitted for prediction, a 

unique hash of the request is generated and 

recorded, creating a direct link between the 

prediction and a specific blockchain transaction. 

The server returns the prediction results to the 

client along with a transaction ID (Tx ID), which 

allows the client to independently verify that the 

output aligns with the recorded blockchain entry. 

This mechanism establishes accountability for each 

prediction while providing a tamper-resistant 

audit trail. 

In Graph 2 presents a comparative evaluation of 

vulnerability levels between the traditional Client–

Server SVM architecture and the Blockchain-

Integrated SVM framework, assessed across 

three key parameters: Data Privacy & Security, 

Model Integrity & Trust, and Single Point of 

Failure. Each parameter is rated on a scale from 0 

(fully secure) to 10 (highly vulnerable).The first 

parameter, Data Privacy & Security, examines the 

degree to which user data is protected during 

transmission, storage, and processing. The Client–

Server SVM scores 8/10, reflecting significant 

vulnerability due to the absence of cryptographic 

safeguards and reliance on centralized control. 

By contrast, the Blockchain-Integrated SVM 

achieves a much lower score of 3/10, as it employs 

cryptographic hashing and immutable ledger 

entries to ensure confidentiality and maintain data 

integrity. 

The second parameter, Model Integrity & Trust, 

evaluates the client’s ability to verify that the model 

has been trained correctly and remains free from 

tampering. The traditional Client–Server 

architecture scores 9/10, highlighting major 

limitations in auditability and trust. The blockchain-

enhanced framework reduces this risk substantially, 

with a score of 2/10, owing to the on-chain storage 

of model metadata and data hashes, which provide 

verifiable evidence of model lineage and 

correctness. 

The third parameter, Single Point of Failure, 

reflects the system’s resilience to server outages or 

targeted attacks. The Client–Server model scores 

7/10, given its reliance on a central server for both 

training and inference, making it susceptible to 

disruptions. In contrast, the Blockchain-Integrated 

SVM scores 2/10, benefiting from decentralized 

architecture, which distributes computation and 

storage, thereby improving robustness and 

minimizing dependence on any single 

component.Collectively, the graph demonstrates 

that incorporating blockchain into the machine 

learning workflow can significantly reduce 

vulnerabilities inherent in conventional client–

server setups. By reinforcing data protection, 

enabling transparent and verifiable model 

operations, and mitigating centralization risks, the 

Blockchain-Integrated SVM provides a secure, 

trustworthy, and resilient foundation for high-

stakes ML applications. 

Further emphasizing these advantages, Table 1 

provides a qualitative comparison between the two 

architectures across several critical dimensions. The 

traditional Client–Server SVM lacks mechanisms 

for verifying model integrity, relinquishes control 

of data once submitted, and offers limited 

transparency or auditability during prediction. In 

contrast, the blockchain-based framework ensures 

verifiable model integrity through metadata 

hashing, maintains data ownership via immutable 

logs, and enables full traceability of predictions 

using transaction IDs (Tx IDs). Moreover, the shift 

from a centralized, vulnerable system to a 

decentralized, tamper-resistant framework 
significantly enhances both security and operational 

reliability. These results are consistent with the 

vulnerability trends depicted in Graph 3, 
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collectively illustrating that blockchain integration 

not only addresses critical security risks but also 

introduces essential layers of trust, accountability, 

and transparency to machine learning systems. 

 

3.10 Comparative Analysis 
 

Blockchain integration significantly reduces risks in 

Data Privacy & Security and Model Integrity & 

Trust, while maintaining SVM functionality.The 

proposed methodology demonstrates a secure, 

privacy-preserving, and auditable SVM 

framework. By combining client–server SVM with 

homomorphic encryption and blockchain, it 

addresses key challenges of trust, transparency, 

and data ownership, ensuring practical 

applicability in real-world social data analytics. 

 

4. Results and Discussion 

4.1 Key Observations 

The proposed blockchain-assisted machine learning 

framework was evaluated against a conventional 

client-server SVM using a structured dataset 

partitioned into training and testing sets. Samples 

across low, medium, and high-class labels were 

selected to illustrate model behavior 

comprehensively. 

Key observations include: 

 Accuracy: TABT-ML maintains prediction 

accuracy nearly identical to the client-server 

SVM. 

 

 Performance Trade-off: Integrating 

blockchain introduces slight increases in 

latency, CPU usage, and memory 

consumption, which are offset by enhanced 

trust and auditability. 

 

 Blockchain Cost: Each prediction in TABT-

ML incurs gas fees (~22,500 units per 

transaction), providing immutable logging and 

transparency. 

 

 Trust and Ownership: The framework 

significantly improves model integrity and data 

ownership, addressing the limitations of 

centralized SVMs. 

The results in Table 4 highlight that despite the 

additional blockchain operations, the predictive 

outputs remain consistent with the conventional 

SVM. This observation sets the stage for evaluating 

overall accuracy and system resource trade-offs. 

 

4.2 Evaluation Results 

 

The transition from Table 4 to Tables 5 and 6 

underscores that the blockchain-assisted framework 

maintains comparable accuracy while incurring 

modest computational overhead. Latency increases 

slightly (18–19 ms vs. 12.5 ms) due to transaction 

creation, validation, and recording, while CPU and 

memory usage rise marginally to accommodate 

decentralized operations. Importantly, the gas cost 

per prediction quantifies the blockchain 

computation required for maintaining trust and 

immutability. 

4.3 Trade-off Analysis and Discussion 

The framework establishes a triangular trade-off 

among latency, blockchain gas consumption, and 

accuracy. Improvements in one parameter can 

influence the others, and the system optimizes this 

balance to achieve secure and auditable predictions 

with minimal overhead.In figure 7, it illustrates 

how latency, gas consumption, and accuracy 

interact, with directional arrows indicating 

interdependencies. The framework achieves a 

balance that maximizes security and auditability 

without significant degradation in predictive 

performance. 

Beyond computational metrics, the blockchain-

assisted framework substantially enhances trust and 

governance. Unlike conventional SVMs, which 

lack verifiable prediction logs and require clients to 

share raw data, the blockchain-assisted framework: 

The blockchain-assisted framework introduces a 

modest increase in latency and resource 

consumption to enable immutable logging and 

decentralized data control. This trade-off 

significantly enhances model integrity, auditability, 

and privacy guarantees compared to traditional 

client-server architectures.  

By leveraging on-chain verification, it mitigates 

risks associated with single points of failure and 

model tampering. Future optimizations should 

target reducing transaction costs and improving 

throughput to scale decentralized AI systems 

without sacrificing security or performance. 
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Table 1: Timeline of ML methods and their relevance to SVM and privacy 

 

Table 2: Centralized AI: Security risks, unverifiable outputs, and loss of data control. 

 

Year Algorithm / Method Type Domain  Key Contribution 
Relevance to SVM / 

Privacy 

1952 

Checkers-playing 

ML program 

(Samuel) 

Supervised 

(Game) 
Game AI 

First program that 

improved 

performance via 

experience 

Historical milestone; 

foundation of ML 

1957 
Perceptron 

(Rosenblatt) 
Supervised Classification 

Introduced single-

layer neural 

network 

Early supervised 

learning model 

1960s–

70s 

Nearest Neighbor, 

Linear Discriminant 

Analysis 

Supervised 
Pattern 

Recognition 

Statistical learning 

approaches; 

interpretable 

Precursor to SVM 

1986 
Backpropagation 

(Rumelhart et al.) 

Supervised 

(Neural 

Network) 

Multi-layer 

classification 

Enabled non-linear 

function learning 

Evolution of 

supervised methods 

1995 

Support Vector 

Machine (Cortes & 

Vapnik) 

Supervised Classification 

Margin-based 

classification; 

kernel trick 

Core algorithm; 

adaptable to privacy 

2001 
Random Forest 

(Breiman) 

Supervised / 

Ensemble 
Classification 

Combines multiple 

trees for accuracy 

Comparison to SVM; 

SVM preferred for 

small/high-

dimensional datasets 

2002 
Principal Component 

Analysis (Jolliffe) 
Unsupervised 

Dimensionality 

reduction 

Reduces feature 

space 

Often used with SVM 

for efficiency 

2006 

Semi-Supervised 

SVM (Chapelle et 

al.) 

Semi-

supervised 

Limited label 

classification 

Combines labeled 

and unlabeled data 

Extends SVM for 

sparse-label scenarios 

2013 
Privacy-preserving 

SVM (Liu et al.) 

Supervised / 

Encrypted 

Cloud 

computing 

SVM training on 

encrypted data 

Demonstrates SVM in 

privacy-preserving 

environments 

2020 

Blockchain + 

Federated Learning 

(Xiong et al.) 

Supervised / 

Federated 

Distributed 

learning 

Secure model 

aggregation via 

blockchain 

Enables SVM in 

decentralized systems 

2022 
Federated SVM 

(Tavara) 

Supervised / 

Federated 

Privacy-

preserving ML 

Clients train local 

SVM; server 

aggregates 

Direct adaptation for 

privacy-focused 

architectures 
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        Figure 2: Blockchain-assisted ML workflow with auditing and integrity checkpoints. 

 

 
 

Figure 3: Process flow of the proposed framework, including preprocessing, model training, prediction, and 

blockchain-based termination 

 

 
 

                            Figure 4: Client–Server with SVM 
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Graph 1: Vulnerability analysis of traditional client–server SVM workflow, highlighting risk levels across workflow 

stages. 

 
Figure 5 : Client-Blockchain Enhanced ML Flow – Addressing Trust and Integrity through Decentralization 
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Graph 2: Risk mitigation achieved by blockchain-enhanced SVM, showing reduced vulnerabilities in model integrity, 

privacy, and trust. 

 

Table 3: Comparative evaluation of client–server and blockchain-integrated SVM architectures across privacy, 

transparency, and reliability. 

  

 

 

 

 

 

 

 
 

 Figure 6 : Client-server vs. blockchain-enabled AI: Centralized training vs. decentralized,     auditable, and tamper-

proof workflows. 

Aspect Client-Server Blockchain-Enhanced 

Model Integrity Not verifiable Verified via metadata hashing 

Data Ownership Lost after submission Preserved via immutable logs 

Prediction Trust No audit trail Full traceability (Tx ID) 

Security Centralized, vulnerable Decentralized, tamper-resistant 

Transparency Opaque Transparent and auditable 
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Table 4.: Representative Predictions of Client-Server SVM and Blockchain-Assisted Framework 

Sample 
True 

Label 

Client-Server SVM 

Prediction 

Blockchain-Assisted 

Prediction 

Latency 

(ms) 

Gas 

(units) 

1 3 3 3 18 22,500 

2 7 7 7 19 22,600 

3 1 1 1 18 22,450 

 

 
 

 

 
Figure 7 : Trade-off among latency, blockchain gas consumption, and accuracy in the blockchain-assisted framework 
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Figure 7 : Comparison of Client-Server SVM and Blockchain-Assisted Framework 
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