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Abstract:  
 

Underwater Wireless Sensor Networks (UWSNs) are a pivotal technology for ocean 

monitoring, underwater surveillance, and environmental sensing. However, these 

networks are vulnerable to numerous faults caused by adverse aquatic environments, 

scarce node resources, and unreliable acoustic communication. This paper presents an 

adaptive fault detection and tolerance mechanism specially designed for UWSNs. The 

proposed system integrates a hybrid fault detection approach, combining explicit and 

implicit approaches with a light-weight tolerance strategy leveraging multi-path 

rerouting and load-aware decision-making. A dynamic thresholding mechanism is used 

to enhance fault detection sensitivity and accuracy while ensuring energy efficiency. 

The mechanism is implemented and evaluated using MATLAB simulations with 

different fault densities and node behaviors. The findings show significant improvement 

in detection accuracy, less false alarm, lower latency, and better network lifetime when 

compared with traditional fault management schemes. This research is a step toward 

constructing fault-tolerant UWSNs that can maintain operations under the rough and 

uncertain nature of underwater environments. 

 

1. Introduction 
 

Underwater Wireless Sensor Networks (UWSNs) 

are increasingly used for vital applications such as 

seabed monitoring, underwater seismic detection, 

tracking of pollution, and naval defense systems. 

These networks consist of dispersed sensor nodes 

deployed underwater that work together to sense 

physical or environmental parameters and relay the 

information to surface stations through acoustic 

signals. Despite their strategic significance, 

underwater networks sensor face serious challenges 

such as limited node reliability, high 

communication delay, energy limitations, and 

dynamic environmental interference.Among the 

primary challenges, occurrence of faults in sensor 

nodes is one of the most critical issues. Nodes may 

fail because of battery exhaustion, physical 

damage, harsh environmental conditions, or 

hardware malfunction. A node failure may lead to 

bigger problems, i.e., damaged data paths, network 

overload on surrounding nodes, and coverage 

reduction, ultimately degrading network quality. 

Since underwater nodes tend to be inaccessible and 

expensive to substitute, fault detection and 

tolerance mechanisms are essential elements of a 

resilient UWSN.Classic fault management methods 

for terrestrial UWSNs are unsuitable for UWSNs 

because of varying factors, including 

communication media (acoustic vs. RF), latency, 

energy constraints, and mobility patterns. 

Numerous fault detection methods available, for 

terrestrial network are either energy-constrained or 

do not respond adaptively to varying network 

conditions. Additionally, only a few tolerance 

mechanisms guarantee continued functionality 

despite node failures.To address these challenges, 

this paper introduces a hybrid and adaptive fault 

detection and tolerance mechanism particularly 

designed for UWSNs. The new approach integrates 

both explicit (event-based) and implicit (keep-alive 
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based) detection methods backed with a dynamic 

thresholding algorithm. Moreover, a light-weight 

tolerance module provides data transmission via 

alternative routes and balance s energy 

consumption to maximize network longevity. 

The key contributions of this paper are: 

 Development of a hybrid detection 

mechanism combining explicit and implicit 

models. 

 Dynamic threshold adjustment for 

improving detection accuracy with minimal 

false alarms. 

 Integration of an energy-aware fault 

tolerance strategy to maintain data flow. 

 Comprehensive simulation and 

performance comparison with existing fault 

management techniques. 

The remainder of this paper is structured as follows. 

Section 2 reviews related work and highlights 

existing research gaps. Section 3 defines the 

problem and formalizes fault scenarios relevant to 

underwater wireless sensor networks. Section 4 

introduces the proposed hybrid fault detection and 

tolerance framework. Section 5 describes the 

experimental setup and simulation environment 

used to evaluate the system. Section 6 presents the 

performance results along with a detailed 

discussion. Finally, Section 7 concludes the paper 

and outlines future research directions. 

2. Related Work 

The fault management mechanism design in 

Underwater Wireless Sensor Networks (UWSNs) 

has been a focus of active research, motivated by 

the requirement of network reliability in harsh and 

remote underwater environments. Previous work 

has primarily centered on fault detection, diagnosis, 

tolerance, and recovery. But all these methods are 

borrowed from land Wireless Sensor Networks 

(WSNs) and tend to fail when used in underwater 

environments because of high delay of propagation, 

limited bandwidth, node fixedness, and energy 

constraint. 

Fault Detection Techniques: 

A number of detection models have been proposed 

to detect abnormal node behavior in UWSNs. Pu 

Wang [1] presented an agreement-based cluster-

head failure detection system which relies on 

mutual verification among the nodes to minimize 

false alarms. Another technique for fault detection 

was proposed by Min Ding [2]. In this article, the 

author proposed localized detection algorithms with 

an emphasis on detecting faulty nodes close to 

event boundaries to preserve detection accuracy in 

the absence of centralized coordination. To 

enhances detection accuracy Jiang [3] introduced 

the Distributed Fault Detection (DFD) scheme, 

which determines a node's status based on energy 

and data consistency checks. These methods, 

however, entail high communication overheads or 

are non-adaptive in dynamic environments. 

Fault Tolerance Mechanisms: 

In order to provide operational continuity upon 

detection of faults, various studies have proposed 

tolerance techniques. Guo [4]   proposed a fault-

tolerant routing method in terms of network coding 

and multipath transmission. In this paper Goyal [5] 

proposed the FDRT (Fault Detection and Recovery 

Technique) scheme that effectively integrates fault 

detection with a cluster-based routing scheme to 

divert traffic from failed nodes. Das and Thampi [6] 

also designed a fault-tolerant localization algorithm 

that allows nodes to self-correct based on past 

neighbor behaviors and can keep the network 

operational even during failures in anchor nodes. 

 

Energy-Aware Designs: 

UWSNs require energy-saving approaches to 

extend network lifetime. Asim [7] proposed a 

virtual grid-based fault management structure for 

WSNs targeting localized fault detection and 

reducing energy consumption. Yuvaraja and 

Sabrigiriraj [8] developed an agent-based recovery 

protocol in which the sink sends agents at periodic 

intervals to track faulty nodes, although this incurs 

overhead. In recent times, machine learning and 

optimization techniques (e.g., CNN, SVM) have 

been used to predict and segregate faults more 

accurately, but these are not computationally cheap 

for underwater sensor nodes [9]. 

Underwater Wireless Sensor Networks (UWSNs) 

are susceptible to frequent faults due to harsh 

environments, communication noise, and hardware 

failures. Traditional fault detection approaches like 

heartbeat monitoring or ping-based checking 

impose significant communication overhead and 

may be insufficient for real-time systems. Various 

mechanisms have been proposed for fault detection, 

including rule-based diagnosis, statistical 

thresholding, and local consensus-based anomaly 

detection.For instance, Wang [10] introduced a 

residual energy and connectivity-based fault 

detection algorithm that showed improved 

localization of faulty nodes with reduced latency. 

Similarly, El-Tantawy and El-Mahdy [11] 

developed a trust-aware hybrid scheme that 

combined neighborhood voting and signal strength 
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to detect abnormal node behavior. However, these 

approaches either lacked real-time adaptability or 

imposed excessive overhead on network 

lifetime.Recent advancements in lightweight 

machine learning models for distributed detection 

have also shown. Raza [12] proposed a federated 

learning-based anomaly detection system for WSNs 

that maintained privacy while improving fault 

diagnosis accuracy. Zhang [13] extended this by 

applying edge-based adaptive thresholding, which 

reduced false positives in energy-constrained 

underwater deployments.In terms of tolerance, 

many frameworks have explored energy-aware 

routing to bypass faulty nodes. Rehman [14] 

proposed fault-tolerant depth-based routing with 

clustering, though it required frequent route 

maintenance. Ahmad [15] introduced recovery path 

estimation using reinforcement learning, but this 

approach struggled under high-fault densities. Fault 

recovery through distributed voting was explored 

by Nadeem [16], although convergence delays 

limited responsiveness.Table 1 summarizes key 

existing methods, highlighting their limitations in 

detection precision, energy overhead, and 

adaptability.Even with these developments, most of 

the current schemes are plagued by one or more of 

the following: unadaptability in dynamic network 

topologies, incapacity to cope with multiple 

concurrent faults, or wasteful energy utilization. In 

addition, there are few techniques that integrate 

both detection and tolerance into a lightweight, 

integrated scheme applicable for energy-limited 

underwater settings.To overcome such challenges, 

the paper formulates a hybrid, adaptive scheme that 

combines explicit and implicit detection with an 

optimal fault-tolerant approach, all optimized for 

the specific limitations of UWSNs. 

3. Problem Definition 

Underwater Wireless Sensor Networks (UWSNs) 

are inherently susceptible to a variety of faults 

owing to unstable environments, low energy levels, 

and noise in communication. These faults, if left 

undetected or uncontrolled, can cause catastrophic 

degradation in network performance, such as data 

loss, decreased sensing coverage, incorrect 

information delivery, and early network death. 

Hence, the paramount challenge is to devise a 

lightweight, energy-conscious, and adaptive fault 

management approach that can detect, diagnose, 

and endure faults in real time. 

3.1 Fault Scenario in UWSNs 

In a typical UWSN, sensor nodes are deployed in 

inaccessible underwater environments to monitor 

parameters such as temperature, pressure, and 

pollution. These nodes communicate acoustically 

and are often deployed for long durations without 

maintenance. Due to harsh conditions and resource 

constraints, nodes are susceptible to multiple types 

of faults, such as: 

 Crash Faults – Complete node failure due to 

power depletion or hardware damage. 

 Omission Faults – Loss of data packets or 

inability to respond within deadlines. 

 Timing Faults – Late or early response beyond 

allowable thresholds. 

 Incorrect Computation Faults – Corrupted or 

incorrect sensor readings due to hardware or 

software malfunction. 

 Byzantine Faults – Malicious or unpredictable 

node behavior (out of scope for this study). 

Existing detection mechanisms often rely on static 

thresholding, centralized monitoring, or 

assumptions of uniform fault behavior. However, 

these techniques are inefficient under dynamic 

underwater conditions, where node behavior and 

environmental interference vary frequently. 

3.2 Objectives of the Fault Management 

Framework 

Given the nature of UWSNs, the primary objectives 

of the proposed fault detection and tolerance 

mechanism are: 

3.2.1 Timely Fault Detection 

The primary objective is to enable prompt and 

accurate detection of various fault types—such as 

hardware failures, communication anomalies, and 

node malfunctions—within the network. The 

system aims to function in a decentralized 

manner, eliminating reliance on a central controller 

and ensuring that faults are detected as they occur. 

This real-time responsiveness is critical in 

Underwater Wireless Sensor Networks (UWSNs), 

where delayed detection can compromise data 

integrity and operational continuity. 

 

3.2.2 Energy Efficiency 

Given the resource-constrained nature of 

underwater sensor nodes, energy conservation is a 

core design goal. The framework is developed to 

minimize both communication and computational 

overhead during the fault detection and tolerance 

processes. By optimizing message exchange 

patterns and decision-making operations, the 

system ensures that detection and recovery 

mechanisms consume minimal energy, thereby 

prolonging the network's operational lifetime. 

 

3.2.3 Scalability and Adaptability 
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The proposed system is designed to maintain high 

performance across varying scales and 

environmental conditions. It adapts dynamically to 

changes in network topology, fault densities, and 

node distribution, ensuring consistent fault 

management even in large-scale deployments. This 

adaptability makes the approach suitable for diverse 

underwater scenarios, including marine monitoring, 

environmental sensing, and offshore infrastructure 

surveillance. 

 

3.2.4 Fault Tolerance and Recovery 

Beyond detection, the framework aims to ensure 

network resilience by tolerating faults through 

efficient recovery mechanisms. When a fault is 

detected, the system reroutes data through alternate 

healthy nodes or clusters using adaptive 

reconfiguration strategies. This ensures 

uninterrupted communication, reduces packet loss, 

and maintains quality of service (QoS), even in the 

presence of node or link failures. 

3.3. Assumptions 

To simplify the system design while maintaining 

practical relevance, the following assumptions are 

considered: 

 The network comprises stationary sensor nodes 

and one or more sink nodes. 

 Nodes communicate through acoustic channels 

with limited bandwidth and high latency. 

 Nodes can send periodic "keep-alive" signals 

(implicit detection) and respond to event-based 

queries (explicit detection). 

 Nodes have basic computation ability to perform 

local fault checks and routing decisions. 

 Nodes do not possess location awareness or GPS 

due to underwater deployment constraints. 

3.4.  Performance Metrics 

To evaluate the effectiveness of the proposed 

mechanism, the following performance metrics are 

defined: 

3.4.1 Detection Accuracy (DA) 
Detection Accuracy measures the system's ability to 

correctly identify faulty nodes. A high DA indicates 

that most actual faulty nodes are accurately 

detected by the framework. It is defined as: 

True Positive (TP): A sensor really is faulty, and 

the system correctly says “faulty.” 

False Positive (FP): A sensor is actually healthy, 

but the system wrongly says “faulty.” 

False Negative (FN): A sensor really is faulty, but 

the system fails to catch it. 

DA =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

× 100% 
 

3.4.2 False Alarm Rate (FAR) 
False Alarm Rate represents the percentage of 

healthy nodes that are mistakenly classified as 

faulty. A lower FAR indicates better precision and 

fewer unnecessary recovery operations. It is 

calculated as 

True Negative (TN): Sensor is healthy, and the 

system correctly identifies it as healthy. 

FAR =
False Positives (FP)

False Positives (FP) + True Negatives (TN)

× 100% 

 

3.4.3 Latency (L) 
Latency refers to the time delay between the actual 

occurrence of a fault and its detection by the 

system. It is a crucial indicator of the 

responsiveness of the framework. Mathematically, 

it can be represented as: 

𝐿 = 𝑇detection − 𝑇fault 
 

Where  𝑇detection is the timestamp when the fault is 

detected and 𝑇fault is the actual time of fault 

occurrence. 

3.4.4 Energy Consumption (EC) 

This metric quantifies the average energy 

consumed per node for executing fault detection 

and recovery protocols. It includes energy spent on 

computation, communication, and re-routing, and is 

calculated as: 

EC =
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛
 

 Where 𝐸𝑖 is the energy consumed by 

node i, and n is the total number of nodes. 

3.4.5 Network Lifetime (NL) 
Network Lifetime is defined as the duration until a 

certain threshold (e.g., 30%) of the total nodes 

becomes non-functional due to energy depletion or 

failure. This metric reflects the sustainability of the 

network under prolonged operation and fault 

handling. 

 NL = 𝑇30% dead nodes 

3.4.6 Packet Delivery Ratio (PDR) 
PDR evaluates the reliability of data transmission in 

the presence of faults. It is the ratio of the total 
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number of successfully received packets to the total 

number of packets sent across the network. 

PDR =
𝑃received

𝑃sent

× 100% 

Where  𝑃received and  𝑃sent  denote the number of 

packets received and sent, respectively. 
 

3.5 Problem Statement 

"To develop and evaluate an adaptive, hybrid fault 

detection and tolerance framework for UWSNs that 

ensures high detection accuracy, reduced latency, 

low false alarms, and energy-efficient operation 

under varying fault scenarios and environmental 

conditions." 

4.  Experimental Setup 

To measure the performance of the proposed 

framework for fault tolerance and detection, a 

sequence of simulated experiments was conducted 

under controlled underwater network scenarios. 

The experiment was designed to measure the 

essential performance parameters, such as detection 

accuracy, fault tolerance capacity, latency, false 

alarm count, energy consumption, and network 

lifespan.The simulation platform was created in 

MATLAB R2023a, using in-house functions to 

simulate the underwater acoustic communication 

channel, node activity, and fault events on the 

network. The simulation environment simulates a 

static, two-dimensional underwater sensor network 

where nodes are placed at random on a 500 m × 

500 m square field.For fault reproduction, nodes 

were randomly exposed to three fundamental fault 

types crash, omission, and wrong computation. The 

rate of fault injection was changed across various 

simulations (5%, 10%, 20%, and 30%) to study the 

robustness and scalability of the proposed 

methodology. Each simulation run was of 500 time 

units, and each case was run 10 times for statistical 

significance.The proposed algorithm was 

benchmarked against two existing fault 

management schemes: 

1. Distributed Fault Detection (DFD) – Jiang et 

al., 2009 

The Distributed Fault Detection (DFD) approach 

proposed by Jiang et al. (2009) is one of the early 

benchmark models for node-level fault detection in 

wireless sensor networks. DFD operates by 

implementing static thresholding for parameters 

like energy consumption, communication 

frequency, and sensing data variance. Each node 

independently monitors its own behaviour and that 

of its immediate neighbours using passive 

observation techniques.When a node's behaviour 

deviates beyond the pre-defined thresholds—such 

as transmitting anomalous sensor readings or 

failing to participate in periodic data exchanges—it 

is flagged as faulty. The system then isolates the 

suspected node from the routing path. However, the 

method lacks adaptability to dynamic underwater 

environments where varying conditions (e.g., noise, 

fading) may cause false positives or negatives. 

Furthermore, the fixed thresholds may not scale 

effectively with node heterogeneity or fault types. 

Key Strengths: 

 Lightweight and distributed in nature 

 No centralized coordination needed 

 Low communication overhead 

Key Limitations: 

 Fixed thresholds lead to poor adaptability 

 High false alarm rate in noisy underwater 

conditions 

 No built-in fault recovery or rerouting 

mechanism 

2. Fault Detection and Recovery Technique 

(FDRT) – Goyal et al., 2017 

The Fault Detection and Recovery Technique 

(FDRT) developed by Goyal et al. (2017) 

introduces a cluster-based hybrid strategy for both 

detection and recovery of faults. It first organizes 

the network into hierarchical clusters where cluster 

heads (CHs) are responsible for local monitoring 

and intra-cluster diagnosis. Faults are detected 

based on metrics such as packet drop rate, energy 

depletion rate, and silence period monitoring.Once 

a fault is detected, FDRT initiates a localized 

recovery phase where alternate CHs or paths are 

used to maintain communication. This approach 

reduces overall energy consumption by restricting 

the detection process within local clusters, and 

ensures routing resilience by providing backup 

paths.However, FDRT still suffers under high node 

mobility and dense topologies, where the clustering 

overhead and frequent reformation of clusters can 

significantly affect real-time responsiveness. The 

protocol also requires predefined thresholds and 

control messages for coordination, which may 

impact scalability. 

Key Strengths: 
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 Combines detection and recovery in one 

framework 

 Energy-efficient via cluster-based structure 

 Maintains data flow through alternate 

routing paths 

Key Limitations: 

 Sensitive to high network dynamics 

 Overhead in frequent cluster re-formation 

 Detection latency in large-scale 

deployments 

Performance metrics were calculated as discussed 

in section 3.4. Figure 1 illustrates the node 

deployment layout in the simulated Underwater 

Wireless Sensor Network (UWSN). A total of 100 

sensor nodes are randomly distributed across a two-

dimensional area of 500 m × 500 m, forming a 

semi-dense network topology. The node placement 

ensures partial communication overlap, with each 

node assigned a uniform transmission range of 75 

meters. This overlap facilitates redundant paths for 

data forwarding and increases the likelihood of 

fault-tolerant routing. The sink node, responsible 

for data collection and monitoring, is strategically 

positioned at one corner of the field, reflecting a 

realistic base station deployment in coastal or 

anchored monitoring scenarios. This spatial 

configuration supports the evaluation of the 

proposed fault detection and tolerance mechanism 

under conditions representative of real-world 

underwater monitoring tasks, including uneven 

node density, limited connectivity, and acoustic 

propagation delays.For the purpose of ensuring 

uniformity, all the algorithms under comparison 

were run under identical network parameters, fault 

rates, and initial energy values. Results were 

recorded and averaged over multiple iterations to 

guarantee that the impact of randomness and outlier 

data was minimized.The next section introduces the 

comparative results and discusses the implications 

of the proposed solution for different fault scenarios 

and network topologies. 

8. Results and Discussion 

To analyze the effectiveness of the introduced 

hybrid fault tolerance and detection framework, an 

exhaustive set of simulations was carried out and 

compared with two well-known benchmark 

schemes: Distributed Fault Detection (DFD) and 

Fault Detection and Recovery Technique (FDRT). 

The experiments were carried out under various 

fault densities and under different underwater 

network environments in order to reflect real‐world 

variability. Six key performance indicators—

detection accuracy, false alarm rate, detection 

latency, residual energy, network lifetime, and 

packet delivery ratio—were measured to estimate 

the fault-diagnosis capability and the overall 

sustainability of the network. The experiments were 

executed multiple times for each scenario to ensure 

that the obtained results represent averaged trends 

instead of random fluctuations. This section 

provides the comparative results, demonstrating 

how the suggested framework enhances fault 

detection accuracy, reduces energy expenditure, 

and extends network lifetime compared to current 

approaches.Distributed Fault Detection (DFD) is a 

class of algorithms designed to identify faulty 

nodes in a network without relying on centralized 

monitoring. In the context of Underwater Wireless 

Sensor Networks (UWSNs), DFD works by 

enabling each node to monitor its own status and 

that of its immediate neighbors using passive 

observation or active probe exchanges. The 

technique proposed by Jiang et al. (2009) uses 

static threshold-based evaluation of parameters 

such as residual energy, packet delivery rate, and 

sensing data consistency.When a parameter 

deviates beyond the pre-defined threshold, the node 

is flagged as faulty and is logically excluded from 

the routing path. This approach minimizes 

dependency on a central control node, thereby 

reducing the single point of failure risk. However, 

the reliance on static thresholds makes it less 

adaptable to environmental changes such as 

acoustic noise, variable latency, or dynamic 

topology alterations. This can result in increased 

false alarms in noisy conditions and reduced 

detection accuracy under high network 

dynamics.The Fault Detection and Recovery 

Technique (FDRT) extends fault management by 

incorporating both detection and recovery phases 

within a single protocol. Proposed by Goyal et al. 

(2017), FDRT uses a cluster-based architecture, 

where each cluster head (CH) monitors the health 

of member nodes using performance metrics such 

as packet drop rate, inactivity period, and energy 

consumption patterns. When a faulty node is 

identified, the CH initiates a localized recovery 

phase by selecting an alternative route or backup 

node within the cluster.FDRT’s primary advantage 

is that it not only identifies faulty nodes but also 

maintains network connectivity by initiating 

immediate recovery actions. The localized nature of 

the recovery process reduces overall energy 

consumption compared to network-wide rerouting. 

However, FDRT requires periodic cluster re-

formation, which introduces control overhead and 

delays, especially in dynamic underwater 

environments where node movement or link 
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instability is frequent.Figure 2 demonstrates the 

detection accuracy of the proposed system in 

comparison with benchmark methods across 

varying fault injection rates (5% to 30%). The 

proposed hybrid detection mechanism consistently 

outperformed DFD and FDRT approaches, 

maintaining a detection accuracy above 90% even 

at higher fault rates. This robustness can be 

attributed to the integration of both local and 

cooperative monitoring layers, which allowed early 

and precise identification of faults without relying 

on rigid thresholds. Unlike static models that 

degrade significantly under stress, the proposed 

framework exhibited resilience to increased fault 

density, confirming its suitability for unpredictable 

underwater environments.Figure 3 False Alarm 

Rate (FAR): The false alarm rate graph 

demonstrates that the proposed method consistently 

outperforms both DFD and FDRT across all fault 

injection rates. At 10% fault rate, the proposed 

scheme records only 3.2%, compared to 9.1% for 

DFD and 6.4% for FDRT. The increasing slope for 

each approach shows that higher fault densities lead 

to more false positives; however, the proposed 

mechanism rises at a slower pace. This reflects its 

robust discrimination between genuine faults and 

transient communication delays, achieved through 

dynamic thresholding. Consequently, unnecessary 

isolation of healthy nodes is minimized, ensuring 

network stability under varying stress 

conditions.Figure 4 Detection Latency: The 

detection latency graph illustrates the response 

efficiency of the three approaches. The proposed 

method maintains the lowest latency values across 

all fault injection rates, averaging 4.8 time units at 

10%, while FDRT records 5.9 and DFD remains 

the slowest at 7.2. As fault density increases, all 

models show a gradual increase in latency, yet the 

gap between them remains consistent. The superior 

performance of the proposed framework stems 

from distributed consensus and localized decision-

making, which reduce detection and reaction 

delays. This ensures faster fault isolation, timely 

recovery, and enhances overall system 

responsiveness during both transient and permanent 

fault events.Figure 5 presents the energy 

consumption trends over the simulation period. The 

proposed model sustained higher residual energy 

levels across nodes when compared to DFD and 

FDRT. This efficiency stems from the use of 

energy-aware routing and minimal communication 

overhead during detection and recovery. While all 

models experienced energy decay over time, the 

proposed method conserved node energy by 

avoiding redundant transmissions and activating 

recovery paths only when necessary. The results 

affirm that the design is not only accurate but also 

energy-efficient—an essential requirement in 

underwater networks where energy replenishment 

is impractical.Figure 6 Network Lifetime: The 

network lifetime graph highlights the resilience of 

the proposed system compared to baseline schemes. 

At 10% fault rate, the proposed method extends the 

network lifetime to 438 units, significantly longer 

than FDRT at 394 and DFD at 371. As the fault rate 

increases, the lifetime of all methods declines, but 

the proposed approach consistently maintains 

higher longevity. This improvement, amounting to 

an 18% gain over DFD and 11% over FDRT, is 

attributed to balanced energy consumption and 

efficient rerouting. By preventing overload on 

remaining nodes, the architecture sustains reliable 

operations and delays network degradation under 

stressful fault conditions.Figure 7 illustrates the 

Packet Delivery Ratio (PDR) under increasing fault 

rates. The proposed system consistently delivered a 

higher PDR than competing models, showing 

effective fault mitigation and route adaptation. As 

fault density increased, traditional methods showed 

a steep decline in PDR due to routing disruptions 

and lack of recovery handling. In contrast, the 

proposed framework maintained stable data 

delivery by rerouting around faulty nodes and 

clusters in real time. These findings reinforce the 

system’s fault-tolerant nature and its capability to 

uphold communication reliability under degraded 

network conditions.In short, the outcome confirms 

that the suggested hybrid and adaptive method not 

only improves the efficiency of fault detection but 

also greatly improves the resilience and lifetime of 

UWSNs without compromising energy efficiency.

 

Table 1: Summary of Key Related Works 

Author(s) Year Methodology Focus Limitation 

Pu Wang et 

al.  

2007 Cluster Faults Mutual validation for 

accurate detection 

High latency in large 

networks 

Ding et al.  2005 Event Boundaries Low computation 

overhead 

Poor fault tolerance 

Jiang et al.  2009 Node Status Considers energy and 

data consistency 

No recovery mechanism 

Guo et al.  2009 Routing Faults Reliable error recovery Increased overhead 

Goyal et al.  2017 Cluster Routing Combined detection and Limited scalability 
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recovery 

Das & 

Thampi  

2017 Anchor Failures Predictive self-

adjustment 

Requires stable neighbor 

behavior 

Asim et al.  2008 Architecture Level Localized fault 

detection 

Grid rigidity, less 

adaptive 

Zidi et al.  2018 Classification High accuracy in 

diverse faults 

Computationally heavy 

for sensor nodes 

Wang et al. 2021 Energy-aware fault 

detection 

Localized detection Lacks adaptive 

thresholds 

El-Tantawy 

& El-Mahdy 

2020 Trust-based hybrid 

scheme 

Behavioral analysis High control packet 

overhead 

Raza et al. 2022 Federated anomaly 

detection 

Distributed learning Requires training 

coordination 

Zhang et al. 2023 Edge-thresholding 

hybrid model 

False positive reduction Accuracy drops in 

dynamic topology 

Rehman et 

al. 

2021 Cluster-based depth-

aware routing 

Fault-tolerant routing High reconfiguration 

delay 

Ahmad et al. 2022 Reinforcement 

learning for recovery 

Proactive rerouting Computationally 

expensive 

Nadeem et 

al. 

2021 Consensus-based 

voting 

Fault tolerance Slow convergence 

Singh & 

Kaushik 

2023 Multi-agent fault 

management 

Reactive recovery Lacks scalability 

Basnet et al. 2022 SVM-based node 

failure detection 

Classification Feature selection is 

manual 

Shaikh et al. 2024 Lightweight CNN for 

node anomaly 

Fast anomaly detection Memory-intensive in 

dense deployments 

  

Table 2: Simulation Parameters 

Parameter Value / Description 

Deployment Area 500 m × 500 m (2D static underwater field) 

Number of Sensor Nodes 100 nodes 

Transmission Range 75 meters (with partial communication overlap) 

Sink Node Position Located at one corner of the deployment grid 

Initial Energy per Node Randomly between 2.5 – 3.0 Joules (uniform distribution) 

Energy Consumption Model Based on standard UWSN formulas (Tx, Rx, sensing energy costs) 

Propagation Delay 1.5 seconds per kilometer (acoustic model) 

Bit Error Rate (BER) 0.05 (nominal underwater acoustic channel) 

 

 
Figure 1: UWSN Node Deployment 
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Table 3: Summary of Key Performance Metrics (at 10% Fault Rate) 

Metric Proposed 

Method 

DFD 

Scheme 

FDRT 

Scheme 

Detection Accuracy (%) 96.3 89.7 91.5 

False Alarm Rate (%) 3.2 9.1 6.4 

Detection Latency (time units) 4.8 7.2 5.9 

Avg. Residual Energy (J) 1.28 1.02 1.15 

Network Lifetime (units) 438 371 394 

Packet Delivery Ratio (%) 91.4 80.7 86.9 

 

 

Figure 2: Detection Accuracy vs. Fault Rate 

 

Figure 3: False Alarm Rate 
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Figure 4: Detection Latency 

 

Figure 5: Energy Consumption 

 

Figure 6: Network Lifetime 
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Figure 7: PDR Comparison 

8. Conclusion and Future Work 

This research presents a hybrid and adaptive fault 

tolerance and detection mechanism designed to 

address the specific limitations of Underwater 

Wireless Sensor Networks (UWSNs). The method 

integrates the implicit and explicit detection 

methods with dynamic thresholding and local 

consensus, ensuring high fault detection accuracy 

with low latency and minimal false alarm rate. 

Moreover, the employment of efficient fault 

tolerance techniques like energy-aware cluster 

repair and multipath rerouting provides fault-free 

data transmission and network lifetime despite 

faults. 

Simulation results demonstrate that the proposed 

framework presented significant better performance 

than other conventional methods such as DFD and 

FDRT in terms of detection accuracy, energy 

efficiency, and fault tolerance against growing fault 

densities. These outcomes highlight the 

effectiveness of distributed, locally adaptive fault 

handling approach for UWSNs where centralized 

management is impractical and energy conservation 

is critical. 

While these encouraging results exist, there are a 

few limitations of this modal. The present model 

presumes fixed node arrangements and lacks 

support for mobile or depth-variable sensor 

arrangements. Further, while Byzantine faults and 

sophisticated intrusion detection strategies were not 

deemed within scope for this work, these faults 

become increasingly pertinent to critical systems. 

As future work, the proposed mechanism can be 

extended in the following directions: 

 Integrating machine learning for 

predictive fault diagnosis and early 

anomaly detection. 

 Adapting the model for mobile UWSNs 

with dynamic topologies and 3D 

deployments. 

 Incorporating cross-layer optimization to 

further reduce communication overhead. 

 Designing a secure, trust-aware fault 

management module to handle malicious 

behavior in adversarial environments. 

Overall, this work contributes toward building more 

resilient and self-sustaining underwater sensor 

networks capable of reliable long-term operation in 

challenging underwater conditions. 

 

Author Statements: 

 

 Ethical approval: The conducted research is 

not related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial 

interests or personal relationships that could 

have appeared to influence the work reported in 

this paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available 

on request from the corresponding author. The 



Sharshika, Yogesh Chaba , Sanjeev Khambra / IJCESEN 11-4(2025)7587-7598 

 

7598 

 

data are not publicly available due to privacy or 

ethical restrictions. 
 

References 
 

[1] Wang, P., Zheng, J., & Li, C. (2007). An 

agreement-based fault detection mechanism for 

underwater sensor networks. IEEE International 

Conference on Communications, 1195–1200 

[2] Ding, M., & Chen, D. (2005). Localized fault-

tolerant event boundary detection in sensor 

networks. Proceedings IEEE INFOCOM 2005, 

902–913. 

[3] Jiang, P. (2009). A new method for node fault 

detection in wireless sensor networks. Sensors, 

9(2), 1282–1294. 

[4] Guo, Z., Wang, B., Xie, P., Zeng, W., & Cui, J. 

(2009). Efficient error recovery with network 

coding in underwater sensor networks. Ad Hoc 

Networks, 7(4), 791–802. 

[5] Goyal, N., Dave, M., & Verma, A. K. (2017). A 

novel fault detection and recovery technique for 

cluster-based underwater wireless sensor networks. 

International Journal of Communication Systems, 

31(4), e3485. 

[6] Das, A. P., & Thampi, S. M. (2017). Fault-resilient 

localization for underwater sensor networks. Ad 

Hoc Networks, 55, 132–142. 

[7] Asim, M., Mokhtar, H. M., & Merabti, M. (2008). 

A fault management architecture for wireless 

sensor network. 2008 IEEE International 

Conference on Sensor Networks, Ubiquitous, and 

Trustworthy Computing, 779–785. 

[8] Yuvaraja, M., & Sabrigiriraj, M. (2015). Fault 

detection and recovery scheme for routing and 

lifetime enhancement in WSN. Wireless Networks, 

23(1), 267–277. 

[9] Zidi, S., Moulahi, T., & Alaya, B. (2018). Fault 

detection in wireless sensor networks through SVM 

classifier. IEEE Sensors Journal, 18(1), 340–347. 

[10] Wang, Y., Li, F., & Chen, Z. (2021). Energy-aware 

fault detection in underwater sensor networks. 

Sensors, 21(2), 478–490. 

[11] El-Tantawy, A., & El-Mahdy, H. (2020). A hybrid 

trust-based fault detection scheme for UWSNs. Ad 

Hoc Networks, 102, 102127. 

[12] Raza, S., Khalid, S., & Nawaz, M. (2022). 

Federated learning for anomaly detection in 

distributed WSNs. IEEE Access, 10, 59813–59825. 

[13] Zhang, H., Liu, T., & Ma, K. (2023). Adaptive 

hybrid thresholding for underwater anomaly 

detection. Wireless Networks, 29, 2113–2125. 

[14] Rehman, A., Ahmed, T., & Khan, M. (2021). 

Cluster-based routing with fault tolerance for 

UWSNs. Journal of Network and Computer 

Applications, 178, 102983. 

[15] Ahmad, Z., Usman, M., & Qadir, R. (2022). 

Reinforcement learning-based recovery in 

underwater sensor networks. Sensors, 22(5), 2050. 

[16] Nadeem, Q., Farooq, M., & Iqbal, S. (2021). Fault-

tolerant routing using consensus voting in UWSNs. 

Computer Communications, 170, 144–155. 

[17] Goyal, N., Dave, M., & Verma, A. K. (2017). A 

novel fault detection and recovery technique for 

cluster-based underwater wireless sensor networks. 

International Journal of Communication Systems, 

31(4), e3485. 

[18] Guo, Z., Wang, B., Xie, P., Zeng, W., & Cui, J. 

(2009). Efficient error recovery with network 

coding in underwater sensor networks. Ad Hoc 

Networks, 7(4), 791–802. 

[19] Pu Wang, Jun Zheng, & Chunxiao Li. (2007). An 

agreement-based fault detection mechanism for 

underwater sensor networks. 2007 International 

Conference on Communications, 1195–1200. 

[20] Ding, M., & Chen, D. (2005). Localized fault-

tolerant event boundary detection in sensor 

networks. Proceedings of IEEE INFOCOM, 902–

913. 

[21] Jiang, P. (2009). A new method for node fault 

detection in wireless sensor networks. Sensors, 

9(2), 1282–1294. 

[22] Asim, M., Mokhtar, H. M., & Merabti, M. (2008). 

A fault management architecture for wireless 

sensor network. IEEE International Conference on 

Sensor Networks, 779–785. 

[23] Zidi, S., Moulahi, T., & Alaya, B. (2018). Fault 

detection in wireless sensor networks through SVM 

classifier. IEEE Sensors Journal, 18(1), 340–347. 

[24] Das, A. P., & Thampi, S. M. (2017). Fault-resilient 

localization for underwater sensor networks. Ad 

Hoc Networks, 55, 132–142. 

[25] Chirdchoo, N., Soh, W. S., & Chua, K. C. (2008). 

Aloha-based MAC protocols with collision 

avoidance for underwater acoustic networks. 

INFOCOM 2007, 2271–2275. 

[26] Ayaz, M., Baig, I., Abdullah, A., & Faye, I. (2011). 

A survey on fault tolerance techniques in 

underwater sensor networks. International Journal 

of Distributed Sensor Networks, 2011, 1–12. 

[27] Singh, R., & Kaushik, B. (2023). Multi-agent 

architecture for fault management in UWSNs. 

International Journal of Communication Systems, 

36(1), e5162. 

[28] Basnet, B., Shrestha, M., & Kim, J. (2022). Fault 

detection using SVM in energy-constrained 

wireless sensor networks. Sensors, 22(14), 5231. 

[29] Shaikh, A., Hussain, F., & Chen, L. (2024). A 

CNN-based lightweight model for real-time 

anomaly detection in UWSNs. IEEE Internet of 

Things Journal, 11(2), 1139–1150. 

 

 

 

 

 

 

 


