

Copyright © IJCESEN

International Journal of Computational and Experimental Science and ENgineering (IJCESEN)

Vol. 10-No.4 (2024) pp. 2552-2564 http://www.ijcesen.com

Research Article

ISSN: 2149-9144

Nursing Support for Patients with Heart Failure Impact on Readmission and **Ouality of Life**

Sharifah Yahya Shami Alasiri^{1*}, Faizah Khalaf Qaryan Alanazi², Shuaa Khalaf Qaryan Alanazi³, Afrah Khalaf Qaryan Alanazi⁴, Manal Khalaf Qaryan Alanazi⁵, Maha Al-Komi Haran Al-Ruwaili⁶, Fuhaydah Fehaid Awban Alarmani⁷, Alanazi Nouf Eid H⁸, Fawziah Khlaf G Alruwaili⁹, Hind Musaad Olayan Alhazmi¹⁰

¹Senior Nursing Specialist – Ministry of Health – Jeddah – Makkah Region – Saudi Arabia * Corresponding Author Email: sharifah.y.alasiri@gmail.com- ORCID: 0000-0002-5247-8850

² Specialist Nursing – Northern Borders Health Cluster – Arar – Northern Borders – Saudi Arabia Email: fkalenzey@moh.gov.sa- ORCID: 0000-0002-5247-7070

³Technician Nursing – Northern Border Health – Arar – Northern Borders – Saudi Arabia **Email:** shuaaka@moh.gov.sa **- ORCID:** 0000-0002-5247-7060

⁴Nursing Technician – Al-Salhiyah Al-Awsat Primary Health Care Center – Arar – Northern Borders – Saudi Arabia **Email:** afrahka@moh.gov.sa - **ORCID:** 0000-0002-5247-7050

⁵Nursing Technician – Irada Complex for Mental Health – Arar – Northern Borders – Saudi Arabia **Email:** manalka@moh.gov.sa **- ORCID:** 0000-0002-5247-7040

⁶Nursing Technician – Eradah Complex for Mental Health – Arar – Northern Borders – Saudi Arabia **Email:** maalrowaily@moh.gov.sa **- ORCID:** 0000-0002-5247-7030

⁷Nursing Technician – Salah Al-Din Primary Health Care Center – Hail – Hail Region – Saudi Arabia **Email:** Falarmany@moh.gov.sa - **ORCID:** 0000-0002-5247-7020

⁸Nursing Technician – North Medical Tower – Arar – Northern Borders – Saudi Arabia **Email:** noufalenazi1432@gmail.com - **ORCID:** 0000-0002-5247-7850

⁹Nursing Technician – Al-Nafl Primary Health Care Center – Aljouf – Aljouf Region – Saudi Arabia **Email:** Fkalrowily@moh.gov.sa- **ORCID:** 0000-0002-5247-7000

¹⁰Nursing Technician – Prince Abdulaziz Bin Musaed Hospital – Arar – Northern Borders – Saudi Arabia Email: handd90035@gmail.com - ORCID: 0000-0002-5247-0001

Article Info:

DOI: 10.22399/ijcesen.4062 **Received:** 01 June 2024 **Accepted:** 29 June 2024

Keywords

Heart Failure, Nursing Support, Hospital Readmission, Quality of Life, Patient Education, Self-Care

Abstract:

Nursing support plays a pivotal role in managing patients with heart failure, significantly impacting their risk of readmission and overall quality of life. Effective nursing interventions—such as patient education, symptom monitoring, and medication management—equip patients with the knowledge and tools necessary to manage their condition effectively. Nurses serve as critical links between patients and the healthcare system, often providing personalized care plans that promote adherence to treatment regimens and lifestyle modifications. By fostering a supportive therapeutic relationship, nurses can engage patients in their own care, addressing barriers to adherence and facilitating early recognition of potential symptoms that may lead to exacerbations. Such proactive nursing support not only aims to minimize hospital readmissions but also empowers patients to take an active role in managing their heart failure. The influence of nursing support extends beyond clinical outcomes; it also significantly enhances patients' quality of life. By offering emotional support and counseling, nurses can address the psychological and social aspects of living with heart failure, which are often overlooked in clinical care. Patients frequently experience anxiety and depression due to the chronic nature of their condition, which can negatively affect their overall well-being. Through holistic care that includes education, encouragement of social support networks, and the promotion of heart-healthy lifestyles, nurses help improve patients' emotional resilience and coping strategies. Consequently, patients report increased satisfaction with their care, greater independence, and an enhanced sense of control over their health, contributing to a better quality of life. Overall, the comprehensive nursing support system not only reduces the likelihood of readmission but also fosters an environment where patients can thrive despite the challenges of heart failure.

1. Introduction

Heart failure (HF) represents a profound and growing global health challenge, characterized by the heart's inability to pump blood sufficiently to meet the body's metabolic demands. It is not a single disease but a complex clinical syndrome, often the end-stage of various cardiovascular pathologies such as coronary artery disease, hypertension, and cardiomyopathy. The prevalence of HF is escalating worldwide, driven by an aging population and improved survival rates from acute cardiac events, placing an immense and sustained burden on healthcare systems [1]. This syndrome is marked by a relentless trajectory of symptoms, including debilitating dyspnea, profound fatigue, and fluid retention, which severely impede a patient's functional capacity and overall sense of well-being.

Despite significant advancements in pharmacological and device-based therapies, the clinical course of HF remains notoriously unpredictable and is frequently punctuated by episodes of acute decompensation. These episodes often necessitate hospitalization, which are not only distressing for patients and their families but also represent a primary driver of the exorbitant costs associated with HF management [2]. A critical and persistent issue within the HF care continuum is the high rate of hospital readmissions. It is estimated that nearly 25% of patients hospitalized for HF are readmitted within 30 days, and approximately 50% are readmitted within six months of discharge [3]. These readmissions are frequently indicative of gaps in the transition of care from the inpatient to outpatient setting, suboptimal self-care management, and poor adherence to complex treatment regimens.

The consequences of HF extend far beyond mere clinical metrics and economic costs. The chronic, progressive, and symptomatic nature of the disease inflicts a significant toll on patients' Quality of Life multi-dimensional (OoL). OoL, a concept encompassing physical, emotional, social, and mental health domains, is often drastically compromised in HF patients [4]. The constant struggle with symptoms, the fear of disease progression, the necessity for lifelong medication, and dietary restrictions, and the frequent hospitalizations contribute to a high prevalence of

anxiety and depression, further diminishing their life satisfaction and functional status [5]. Therefore, the overarching goals of modern HF management are dual-pronged: not only to prolong life and reduce hospitalizations but also to enhance the patient's QoL, allowing them to live as fully and comfortably as possible.

Within this complex landscape, the role of nursing has evolved from a task-oriented profession to a central, pivotal force in the management of chronic illnesses like HF. Nurses are positioned at the frontline of patient care, serving as the primary coordinators, educators, and supporters throughout the patient's journey. The concept of "nursing support" in this context is multifaceted and holistic. It transcends the traditional boundaries administering medications and monitoring vital signs. Instead, it encompasses a comprehensive approach that includes structured patient education, empowerment for self-care, meticulous symptom monitoring, psychosocial support, and ensuring seamless care transitions [6]. This robust support system is fundamentally grounded in the principles of chronic care models, which emphasize productive patient-provider interactions prepared, proactive practice teams to improve clinical outcomes [7].

The theoretical underpinning for effective nursing support in HF is robust, drawing from several key models. Orem's Self-Care Deficit Nursing Theory is particularly relevant, as it posits that nursing is required when patients are incapable of continuous self-care to maintain life, health, and well-being [8]. HF patients often experience a self-care deficit due to the complexity of their regimen, which includes daily weight monitoring, fluid restriction, sodium limitation, and recognizing signs of worsening condition. Nurses, operating within this framework, identify these deficits and provide the necessary assistance and education to help patients develop self-care agency. Furthermore, the Chronic Care Model (CCM) provides a structural blueprint for improving chronic illness care within healthcare systems [7]. The CCM highlights essential elements such as self-management support, delivery system redesign, and clinical information systems, all of which are areas where nursing support is instrumental. By acting as the bridge between the healthcare system and the patient, nurses operationalize the CCM, ensuring that care is not only evidence-based but also patient-centered and continuous.

A substantial body of evidence has begun to illuminate the critical connection between structured nursing interventions and improved HF outcomes. For instance, nurse-led educational programs focusing on medication adherence, dietary compliance, and symptom recognition have been consistently linked to increased patient knowledge and improved self-care behaviors [9]. Enhanced self-care is a crucial mediator in preventing fluid overload and other complications that lead to acute decompensation and subsequent readmission. Moreover, nursing support that extends beyond the hospital walls—through telephone follow-up, telehealth monitoring, and specialized HF clinics—has shown promise in creating a safety net for patients during the vulnerable post-discharge period [10]. These transitional care interventions, often orchestrated by advanced practice nurses, involve comprehensive discharge planning, post-discharge follow-up, and coordination with community services, directly addressing the fragmentation of care that contributes to high readmission rates.

When considering Quality of Life, the influence of nursing support is equally significant. By providing empathetic listening, counseling, and managing symptoms effectively, nurses directly address the physical and emotional distress associated with HF. Studies have demonstrated that patients who feel supported and well-informed by their nurses report lower levels of anxiety and depression and a greater sense of control over their illness [11]. This psychosocial support is not an ancillary service but an integral component of holistic care that can significantly alter the patient's illness experience. For example, nurse-led symptom management programs that proactively address dyspnea and fatigue can lead to tangible improvements in a patient's ability to perform daily activities, thereby directly enhancing their physical QoL [12]. The nurse's role in facilitating social support, either by engaging family caregivers or connecting patients with support groups, further bolsters the patient's resilience and coping mechanisms, positively impacting their social well-being [13].

2. The Burden of Heart Failure:

Heart failure (HF) represents one of the most significant and escalating public health challenges of the 21st century, posing a substantial burden on healthcare systems, economies, and societies worldwide. This burden is multifaceted, encompassing a high and growing prevalence, staggering economic costs, and a profound impact

on patient survival and well-being. From an epidemiological perspective, HF is often termed a "modern epidemic," with an estimated global prevalence exceeding 64 million people [14]. This number is projected to rise steadily due to several converging factors. Primarily, the aging of populations in many countries is a key driver, as HF is predominantly a condition of the elderly, with prevalence doubling with each decade after the age of 45 [15]. Furthermore, improvements in the survival rates of acute cardiovascular events, such as myocardial infarction, mean that more individuals are living long enough to develop HF as a sequelae of their initial cardiac injury. This creates a growing pool of patients requiring longterm, complex management for a chronic and debilitating condition.

The economic burden of HF is colossal and consumes a significant portion of national healthcare budgets. The costs are driven predominantly by frequent hospitalizations, which account for 60-70% of the total direct costs associated with the syndrome [16]. In the United States alone, the total cost for managing HF is projected to reach \$70 billion by 2030, a figure that includes direct medical costs, lost productivity, and the costs of informal caregiving [17]. These expenditures are not limited to high-income nations; low- and middle-income countries are also experiencing a rapid increase in HF-related costs as they undergo epidemiological transitions and face the double burden of communicable and noncommunicable diseases. The financial strain extends beyond formal healthcare systems to patients and their families, who often face high outof-pocket expenses for medications, devices, and repeated clinic visits, leading to potential financial

The clinical trajectory of heart failure is notoriously variable and unpredictable, but it is generally characterized by a progressive decline in cardiac function and functional capacity over time. The classic model for understanding this progression is the four-stage model developed by the American College of Cardiology and American Heart Association (ACC/AHA). This model begins with Stage A, which includes patients at high risk for HF but without structural heart disease or symptoms (e.g., patients with hypertension or diabetes), and progresses to Stage B (structural heart disease present but no symptoms), Stage C (structural heart disease with prior or current symptoms), and finally Stage D (refractory HF requiring specialized interventions) [18]. This staging system is crucial as it emphasizes that intervention can and should begin early, even before symptoms manifest, to slow the progression of the syndrome.

Complementing the ACC/AHA stages is the New York Heart Association (NYHA) Functional Classification, which is used to categorize the symptomatic status of patients in Stages C and D. NYHA Class I involves no limitation of physical activity, while Class IV describes patients who are unable to carry out any physical activity without discomfort and have symptoms even at rest [19]. A patient's journey through HF is often not a linear decline but is marked by periods of stability interrupted by acute episodes of decompensation, frequently leading to hospitalization. These exacerbations are typically triggered by factors such as non-adherence to medication or diet. uncontrolled arrhythmias, infections, or hypertension. Each hospitalization for acute decompensated HF represents a critical event in the disease trajectory, often signaling a permanent stepdown in overall cardiac function and a worsening long-term prognosis.

The prognosis for patients diagnosed with HF remains sobering, underscoring the severe nature of the syndrome. Despite therapeutic advances, the mortality rates for HF are comparable to those of many common cancers. Data from large population studies indicate that approximately 50% of patients diagnosed with HF will die within 5 years, a statistic that highlights the condition's lethal potential [20]. For patients with advanced (Stage D) HF, the one-year mortality rate can exceed 50% [21]. This poor prognosis is influenced by a multitude of factors, including the patient's age, the underlying etiology of HF, the presence of comorbid conditions like chronic kidney disease and diabetes, and the overall functional capacity as measured by metrics like peak consumption. The high mortality rate intertwines with the significant symptom burden, creating a profound palliative care need that is often addressed too late in the disease course.

Beyond the stark statistics of prevalence and mortality lies the immense personal burden borne by patients, which fundamentally defines their quality of life. The cardinal symptoms of HFincluding dyspnea (shortness of breath) from pulmonary congestion, fatigue and weakness from low cardiac output, and peripheral edema from fluid retention—are physically debilitating. This symptom complex leads to a vicious cycle of exercise intolerance, muscle deconditioning, and cachexia, a condition known as cardiac cachexia, which further worsens prognosis and functional status [22]. The relentless nature of these symptoms severely limits a patient's ability to perform activities of daily living, such as walking, climbing stairs, or even dressing, leading to a loss of independence and a growing reliance on caregivers.

The personal burden is not solely physical; the psychological and social dimensions are equally devastating. The unpredictable nature of the disease fosters a constant state of uncertainty and fear, particularly the fear of suffocation from dyspnea or the fear of sudden cardiac death. This contributes to a high prevalence of psychological comorbidities, with studies indicating that 20-30% of HF patients experience clinical depression and up to 45% experience significant anxiety [23]. These mood disorders are not merely reactive; they are associated with worse clinical outcomes, including increased mortality and hospitalization rates, potentially through mechanisms like reduced adherence to treatment and dysregulation of the autonomic nervous system.

Socially, heart failure can lead to profound isolation and role disruption. The physical limitations and frequent hospitalizations often prevent patients from participating in social activities, hobbies, and family events. Many are forced to retire early or reduce their work hours, leading to financial insecurity and a loss of professional identity. The disease also places a heavy strain on family members and informal caregivers, who must provide emotional support, assist with daily activities, and help manage complex medical regimens. Caregiver burden is a well-documented phenomenon in HF, associated with increased stress, depression, and even poorer health outcomes for the caregivers themselves [24]. This holistic view of the burden—epidemiological, economic, clinical, and personal—makes it unequivocally clear that HF is not just a cardiac condition but a systemic syndrome that ravages every aspect of a patient's life. Understanding this comprehensive burden is the essential first step in justifying the critical need for effective, multi-component interventions, such as robust nursing support, aimed at mitigating its impact.

3. The Challenge of Hospital Readmissions: Causes and Consequences

Hospital readmissions following an index hospitalization for acute decompensated heart failure represent one of the most persistent and costly challenges in modern cardiovascular care. They serve as a critical, albeit imperfect, indicator of gaps in the quality of the healthcare continuum. Despite significant efforts to improve outpatient management, readmission rates remain alarmingly high, with nearly one in four patients readmitted within 30 days of discharge and approximately half readmitted within six months [25]. This revolving door phenomenon is not merely a statistical concern; it is a profound clinical failure that signifies patient distress, system-wide inefficiencies, and substantial financial waste. The challenge of reducing these readmissions has become a central focus for clinicians, healthcare administrators, and policymakers alike, leading to the implementation of financial penalties for hospitals with excess readmission rates under programs like the Hospital Readmissions Reduction Program (HRRP) in the United States [26]. Understanding the multifaceted causes behind these readmissions is the essential first step toward designing effective interventions to break the cycle of rehospitalization.

The etiology of heart failure (HF) readmissions is complex and multifactorial, rarely stemming from a single cause but rather from a confluence of patient-related, provider-related, and system-related factors. At the patient level, a primary driver is the inadequate self-care and management of a complex chronic condition. The HF regimen is notoriously demanding, requiring strict adherence to a lowsodium diet, fluid restriction, daily weight monitoring, and a complex pharmacologic regimen that often includes diuretics, ACE inhibitors, betablockers, and other medications [27]. Factors such as cognitive impairment, low health literacy, depression, and limited social support can severely hinder a patient's ability to successfully implement these behaviors. For instance, a patient may not recognize a two-pound weight gain over two days as a critical warning sign of fluid overload, or they may struggle to remember the correct timing and dosage of multiple medications. This gap in selfcare knowledge and execution directly leads to clinical deterioration and readmission.

Furthermore, the clinical status of the patient at discharge plays a crucial role. Patients who are discharged prematurely, before achieving adequate clinical stability (e.g., with persistent congestion or unresolved renal dysfunction), are at a significantly risk for early readmission Comorbidities also heavily influence readmission risk. The presence of chronic kidney disease, diabetes, chronic obstructive pulmonary disease (COPD), and anemia can complicate management and create competing demands that increase the likelihood of clinical instability [29]. For example, an infection like pneumonia (a common comorbidity) can increase metabolic demand and heart rate, precipitating HF decompensation in a previously stable patient. The interplay between these comorbidities and heart failure creates a vulnerable patient profile that requires meticulous, coordinated care.

Transitioning from the patient level to the provider and system levels reveals another layer of causative factors. A major contributor to readmissions is the phenomenon of fragmented care, particularly during the high-risk transition from hospital to home. Discharge processes are often rushed and incomplete, with patients and their families receiving inadequate education or failing to comprehend the discharge instructions provided. A lack of timely follow-up with a primary care physician or cardiologist after discharge leaves patients without professional guidance during the most vulnerable period [30]. This gap in care continuity means that early signs decompensation, which could be managed in an outpatient setting, go unnoticed and unaddressed until they escalate into a crisis requiring emergency care and hospitalization. The discharge summary, a critical communication tool, often fails to reach the outpatient physician in a timely manner, or may lack key information about in-hospital events and medication changes, leading to therapeutic misadventures.

The consequences of this revolving door of hospital readmissions are severe and far-reaching, impacting patients, healthcare systems, and society at large. For the patient, the consequences are profoundly personal and clinical. Each hospitalization represents a traumatic event, often involving intense symptoms like severe dyspnea and a fear of death. The cycle of repeated hospitalizations accelerates the physical decline associated with HF, contributing to muscle wasting (sarcopenia), functional dependency, and a condition known as "post-hospitalization syndrome," a generalized state of vulnerability and heightened stress [31]. This syndrome leaves patients physically psychologically weakened, making them even more susceptible to subsequent readmissions. From a quality-of-life perspective, the constant disruption of hospital stays prevents patients from engaging in normal life activities, deepens psychological distress, and reinforces a sense of hopelessness and loss of control over their lives.

From a healthcare system perspective, the financial consequences are staggering. Readmissions for HF account for a disproportionate share of the total cost of HF care, estimated to be in the tens of billions of dollars annually in the United States alone [32]. These costs stem from the expenses of the emergency department visit, the inpatient stay, diagnostic tests, and repeated procedures. In response to this economic burden, payers, particularly government insurers like the Centers for Medicare & Medicaid Services (CMS), have shifted towards value-based purchasing models. The HRRP financially penalizes hospitals with higher-than-expected risk-standardized readmission rates for HF and other conditions, withholding millions of dollars in Medicare payments [26]. These penalties create significant financial strain for hospitals, particularly those serving vulnerable populations, and have intensified the institutional focus on reducing readmissions as a matter of financial survival.

However, the focus on reducing readmissions has also had unintended consequences that must be acknowledged. The pressure to avoid penalties has, in some cases, led to risk-averse behaviors, such as the observation status, where patients are held in the hospital for treatment without being formally "admitted." This practice can shift costs to patients, as observation stays are often billed under outpatient rules, resulting in higher out-of-pocket expenses [33]. Furthermore, there is concern that an excessive focus on the 30-day readmission metric may lead to "gaming" of the system or even to the withholding of necessary care for critically ill patients who genuinely require rehospitalization. This highlights the ethical tension between a desirable quality metric and the imperative to provide appropriate care for acutely ill individuals. Beyond the immediate clinical and financial impacts, high readmission rates signal fundamental failure in the chronic care model. They indicate a system that is still predominantly reactive, focused on treating acute episodes, rather than proactive, focused on preventing them. This failure underscores the critical need for a paradigm shift in HF management—a shift from episodic, hospital-centric care to continuous, patient-centered care that extends seamlessly into the home and community. It is within this gap that comprehensive nursing support finds its most powerful rationale. nurse-led Interventions such as education, medication reconciliation, scheduled telephone follow-up, and home visiting programs are specifically designed to address the root causes of readmissions [34].

4. Defining Quality of Life in the Context of Chronic Heart Failure

In the management of chronic heart failure (HF), the traditional focus on hard clinical endpoints such as mortality and hospital readmission rates while critically important, provides an incomplete picture of the patient's experience. A more holistic and patient-centered approach necessitates a deep understanding of Quality of Life (QoL). For individuals living with the daily realities of HF, QoL is often the paramount concern, sometimes even outweighing the goal of longevity itself. Defining QoL, however, is a complex endeavor, as it transcends mere physical health to encompass a multidimensional construct reflecting individual's perception of their position in life, in

the context of the culture and value systems in which they live, and in relation to their goals, expectations, standards, and concerns [35].

The multidimensional nature of QoL in HF is best understood by dissecting its core domains. The physical domain is often the most immediately apparent and is heavily influenced by the classic symptoms of the disease. Debilitating dyspnea on exertion, or even at rest in advanced stages, severely limits functional capacity, making simple activities like walking, climbing stairs, or carrying groceries profoundly challenging. Profound fatigue and lethargy, resulting from low cardiac output and poor peripheral perfusion, rob patients of their energy, leading to a sedentary lifestyle that further promotes muscle deconditioning and a downward spiral of physical decline [36]. Other physical symptoms such as peripheral edema, chest pain, and anorexia contribute to discomfort and a general state of physical malaise. This direct assault on physical capabilities fundamentally alters a patient's independence and their ability to perform basic and instrumental activities of daily living, forming a core component of their perceived QoL.

Closely intertwined with the physical domain is the psychological dimension, which represents a significant HF patients. burden for unpredictable nature of the disease—where a "good be swiftly followed decompensation—creates a constant undercurrent of uncertainty and fear. Patients often live with the anxiety of experiencing suffocating dyspnea or the fear of sudden cardiac death. This pervasive worry contributes to a high prevalence of clinical depression and anxiety disorders, with studies indicating that up to one in five HF patients suffer from major depression and an even larger proportion experience significant anxiety symptoms [37]. These mood disorders are not merely secondary reactions; they have a bidirectional relationship with the physical disease. Depression, for instance, is associated with poor adherence to medication and diet, increased inflammation, and neurohormonal activation, all of which can worsen HF prognosis and further degrade QoL, creating a vicious, self-perpetuating cycle of physical and psychological distress.

The social domain of quality of life is equally vulnerable to the ravages of chronic heart failure. The physical limitations and pervasive fatigue often force patients to withdraw from social activities, hobbies, and community engagements they once enjoyed. This can lead to profound social isolation and loneliness. Furthermore, the demanding self-care regimen—involving daily weight monitoring, fluid restriction, and complex medication schedules—can make leaving the home for

extended periods logistically difficult and anxiety-provoking [38]. The disease frequently disrupts social roles and identities; a breadwinner may be forced into early retirement, or a grandparent may be unable to play with their grandchildren. This role strain can lead to feelings of uselessness, guilt, and a loss of personal identity. The financial strain of chronic illness, from the cost of medications to lost income, adds another layer of stress that can destabilize family dynamics and further impair social well-being.

Given its subjective and multidimensional nature, quantifying QoL requires robust and validated instruments. In heart failure research and clinical practice, two primary types of tools are used: generic and disease-specific. Generic instruments, such as the Medical Outcomes Study Short-Form 36 (SF-36) or the EuroQol-5 Dimension (EQ-5D), allow for comparisons across different disease populations [39]. The SF-36, for example, measures eight health concepts including functioning, role limitations due to physical health, bodily pain, and general mental health. While useful for broad comparisons, these tools may lack the sensitivity to detect changes specifically relevant to the HF experience. To address this limitation, disease-specific instruments have been developed. Among the most prominent is the Minnesota Living with Heart Failure Questionnaire (MLHFQ), a 21-item instrument that asks patients to rate how much their HF has prevented them from living as they wanted in physical, psychological, and social domains over the past month [40]. Its specificity makes it a gold standard in HF research for capturing the nuanced impact of the disease and the effectiveness of interventions aimed at improving patient-centered outcomes.

The relationship between Quality of Life and clinical outcomes in HF is profound and bidirectional. Importantly, a patient's self-reported OoL is a powerful independent predictor of future events. Numerous studies clinical demonstrated that poorer scores on instruments like the MLHFQ are significantly associated with an increased risk of hospitalization and mortality, even after adjusting for traditional risk factors like ejection fraction and functional class [41]. This suggests that the patient's subjective experience of their illness captures elements of disease severity and personal resilience that are not reflected in standard clinical metrics. The mechanisms underlying this link are multifactorial; for instance, depression (a key component of poor QoL) is linked to non-adherence and physiological dysregulation, while severe physical limitation increases vulnerability to complications. Therefore, assessing and addressing QoL is not merely a compassionate endeavor but a critical component of comprehensive prognostic assessment and effective clinical management.

Improving Quality of Life must be considered a therapeutic goal in heart primary management, on par with reducing mortality and hospitalizations. This requires a paradigm shift a purely biomedical model biopsychosocial model of care. Effective management begins with aggressive guidelinedirected medical and device therapy to alleviate the underlying physical symptoms. For example, diuretics can rapidly relieve dyspnea and edema, while beta-blockers and ACE inhibitors can improve long-term cardiac function and exercise tolerance [42]. However, pharmacological alone is insufficient. Structured physical activity cardiac rehabilitation programs are cornerstone interventions for breaking the cvcle deconditioning, improving functional capacity, and, consequently, boosting physical and psychological aspects of QoL [43].

Crucially, interventions must explicitly target the psychological and social domains. Integrating psychological support, such as cognitive-behavioral therapy (CBT) or mindfulness-based stress reduction, can equip patients with skills to manage anxiety, depression, and the fear associated with their illness. Palliative care, which should be introduced early in the disease trajectory rather than reserved for end-of-life, plays a vital role in addressing refractory symptoms, facilitating advanced care planning, and providing psychosocial and spiritual support for both patients and their families [44].

5. The Evolving Role of Nursing in Chronic Disease Management

The landscape of global health has undergone a profound shift over the past century, moving from a predominance of acute, infectious diseases to a reality dominated by chronic, non-communicable conditions such as heart failure, diabetes, and hypertension. This epidemiological transition has necessitated a parallel evolution in the roles and responsibilities of healthcare professionals, most notably nurses. The model of nursing, once largely confined to a hospital-based, task-oriented, and physician-directed paradigm, has dramatically expanded into a dynamic, autonomous, and patientcentered practice, particularly in the realm of chronic disease management. This evolution has been driven by the understanding that managing a lifelong condition like heart failure requires continuous, holistic support that extends far beyond episodic acute care. The contemporary nurse is no longer merely a caregiver who implements treatments but has become a central coordinator, educator, advocate, and coach, essential for guiding patients through the complex journey of living with a chronic illness [45]. This transformed role is critical for improving patient outcomes, enhancing quality of life, and ensuring the sustainability of healthcare systems overwhelmed by the demands of chronic care.

The limitations of the traditional, acute-care model when applied to chronic conditions like heart failure are starkly apparent. This model is inherently reactive, designed to diagnose, treat, and discharge patients after an acute episode. It often fails to address the ongoing needs that patients face upon returning home, such as medication management, lifestyle adjustments, and recognizing early signs of deterioration. This fragmentation between hospital and community care is a primary driver of the poor outcomes and high readmission rates seen in HF. In response to this inadequacy, new models of care have emerged that provide the structural framework for the evolving nursing role. The Chronic Care Model (CCM), for instance, outlines six essential elements for high-quality chronic illness care: the community, the health system, self-management support, delivery system design, decision support, and clinical information systems [46]. Within this framework, nurses are uniquely positioned to operationalize nearly every component, particularly self-management support and delivery system redesign. They are the key agents in creating productive interactions between informed, activated patients and prepared, proactive practice teams.

Furthermore, the theoretical foundation for this evolved practice is robustly supported by nursing theories that emphasize patient autonomy and holistic care. Dorothea Orem's Self-Care Deficit Nursing Theory is particularly salient in the context of heart failure. Orem posits that the purpose of nursing is to help individuals meet their self-care needs when they are unable to do so independently due to health-related limitations [47]. For a HF patient, the "self-care deficit" is evident in the challenges of managing a complex regimen. The nurse's role, guided by this theory, is to assess this deficit, design a supportive-intervention system, and empower the patient through education and skill-building to gradually resume their self-care agency. This theoretical perspective moves nursing from a dependent role to an independent, scholarly discipline, providing a rationale for interventions that are fundamentally educational and empowering rather than purely procedural.

The specific components of the modern nurse's role in managing chronic heart failure are multifaceted

and interwoven, forming a comprehensive support system for patients. One of the most critical and evidence-based roles is that of the educator and self-management facilitator. HF patients are required to perform a complex set of daily self-care behaviors, including adhering to a low-sodium diet, restricting fluid intake, monitoring daily weights and symptoms, and taking multiple medications correctly. Nurses provide the structured, repetitive, and tailored education necessary for patients to understand the "why" and "how" behind these behaviors [48]. This goes beyond simply handing a patient a leaflet; it involves assessing their health literacy, using teach-back methods to ensure comprehension, and collaboratively developing a feasible self-care plan. By empowering patients with knowledge and skills, nurses transform them from passive recipients of care into active partners in managing their own health, which is a cornerstone of improving clinical outcomes and reducing readmissions.

Another pivotal role is that of care coordinator and transition manager. The period following hospital discharge is a time of extreme vulnerability for HF patients. The nurse ensures a safe transition by conducting comprehensive discharge planning, which includes reconciling medications, scheduling timely follow-up appointments, and communicating a clear plan to the patient's primary care provider or cardiologist. This role often extends into the community through transitional care programs, many of which are nurse-led. Advanced Practice Nurses (APNs), such as Clinical Nurse Specialists or Nurse Practitioners, may conduct home visits or telephone follow-ups to monitor the patient's status, reinforce education, and identify early warning signs of decompensation before they necessitate an emergency department visit [49]. This seamless continuity of care, bridged by the nurse, directly addresses the systemic fragmentation that so often leads to poor outcomes.

In addition to education and coordination, the nurse's role as a provider of psychosocial and emotional support is indispensable. Living with a chronic, life-limiting illness like HF generates significant anxiety, depression, and fear. Nurses, by virtue of spending more time at the patient's bedside—whether in the hospital, clinic, or via telehealth—are ideally positioned build therapeutic relationships based on trust and empathy. They can screen for psychological distress, provide active listening and counseling, and connect patients and their families with appropriate resources, such as social workers or mental health professionals [50]. This aspect of care is not a soft skill but a critical intervention; by addressing the emotional and mental burden of the disease, nurses improve coping mechanisms, which in turn can positively influence adherence to medical therapy and overall quality of life.

The evolution of the nursing role has been further and formalized through accelerated development of specialized nursing roles and innovative care models. The Advanced Practice Nurse (APN) embodies the highest level of this evolution, possessing the graduate-level education and clinical training to diagnose, prescribe medications, order tests, and manage complex patient caseloads with a high degree of autonomy. In HF care, APNs often lead specialized heart failure clinics, where they provide comprehensive follow-up, titrate medications according guidelines, and serve as a consistent point of contact for patients [51]. Furthermore, telehealth and remote patient monitoring have created a new frontier for nursing practice. Nurses are central to these models, reviewing transmitted data like daily weights and blood pressure, triaging alerts, and conducting virtual visits to provide timely interventions, thereby extending their supportive reach directly into the patient's home [52].

This expanded scope of practice, however, is not without its challenges. Role ambiguity and resistance from other healthcare professionals can sometimes create interdisciplinary friction. Furthermore, the implementation of these advanced nursing roles is often hindered by regulatory barriers, restrictive scopes of practice defined by local legislation, and a lack of sustainable reimbursement models [53]. Despite these hurdles, the evidence for the effectiveness of this evolved nursing role is compelling. Numerous systematic reviews and meta-analyses have demonstrated that nurse-led interventions and multidisciplinary heart failure management programs that feature nurses prominently are associated with significant all-cause HF-specific reductions in and readmissions, improvements in patients' quality of life, and enhanced self-care behaviors [54].

6. Components of Comprehensive Nursing Support for HF Patients

Comprehensive nursing support for patients with heart failure (HF) is not a single intervention but a multifaceted, integrated approach designed to address the complex biopsychosocial needs of this population. It represents a systematic framework that moves beyond task-oriented care to embrace a holistic model focused on patient empowerment, education, and continuous engagement. The efficacy of nursing support in improving outcomes such as reduced readmissions and enhanced quality of life is contingent upon the effective

implementation of its core components. These components work synergistically to bridge the gap between the hospital and the home, transform patients from passive recipients into active managers of their health, and provide a safety net that mitigates the risks inherent in a chronic, unpredictable condition. The key elements of this comprehensive support system include structured patient education, self-care management facilitation, psychosocial support, meticulous symptom monitoring, and robust care coordination and transition management [55]. Each component is essential, and their combined application forms the effective. evidence-based backbone of management.

The cornerstone of comprehensive nursing support is structured patient and family education. This process begins upon diagnosis and is reinforced continuously throughout the patient's journey. Effective education is not a one-time event of handing over a pamphlet; it is an ongoing, dynamic process that is tailored to the patient's health literacy, cultural background, and readiness to learn. The content of this education comprehensive and covers several critical domains. Firstly, patients must understand the fundamental nature of heart failure in simple terms—what it is, what causes it, and how it affects their body. This foundational knowledge is crucial for fostering acceptance and adherence to the treatment plan [56]. Secondly, education focuses intensely on the medication regimen, explaining the purpose of each drug (e.g., beta-blockers to slow the heart rate and reduce workload, diuretics to remove excess fluid), their potential side effects, and the critical importance of adherence. Finally, and perhaps most importantly, is education on daily self-monitoring, specifically the recognition of key warning signs of decompensation, such as a rapid weight gain of 2-3 pounds in a day or worsening shortness of breath, and knowing when to contact their healthcare provider [57].

Building directly upon education is the component of self-care management facilitation. While education provides the knowledge, self-care management facilitation equips patients with the skills, confidence, and motivation to apply that knowledge in their daily lives. This is a collaborative process where the nurse acts as a coach, working with the patient to set realistic goals and develop a personalized action plan. A central tool in this process is the daily weight log. Nurses teach patients to weigh themselves each morning after voiding and before eating, and to recognize significant changes that warrant action, such as taking an extra dose of a diuretic as pre-instructed or calling their nurse [58]. Furthermore, nurses

assist patients in navigating the practical challenges of dietary sodium and fluid restriction, offering strategies for reading food labels, planning meals, and managing thirst. This component is deeply rooted in theoretical models like Orem's Self-Care Deficit Theory, where the nursing system is designed to compensate for the patient's inability to engage in effective self-care and to subsequently develop their self-care capabilities [59].

indispensable third. component comprehensive nursing support is proactive symptom monitoring and management. Heart failure is characterized by a burdensome symptom profile, primarily dyspnea, fatigue, and edema, which directly dictate a patient's quality of life. Nurses are at the forefront of assessing these symptoms using both clinical assessment and patient-reported outcomes. They employ evidencebased strategies to help patients manage these symptoms, such as teaching energy conservation techniques and pacing activities to combat fatigue, or advising on positioning and breathing exercises to alleviate dyspnea [60]. In advanced practice roles, nurses titrate diuretic therapy based on daily weights and symptom reports, ensuring optimal fluid balance. The advent of telehealth has revolutionized this component, allowing for remote patient monitoring (RPM). Through RPM systems, patients transmit vital signs, weight, and symptom reports from their homes, enabling nurses to monitor trends and intervene proactively before a minor issue escalates into a crisis requiring hospitalization [61]. This continuous, technologyenabled surveillance creates a virtual safety net, extending the nurse's reach and providing patients with reassurance and timely care.

Psychosocial and emotional support forms the compassionate core of comprehensive nursing care. A diagnosis of heart failure carries a significant psychological burden, often manifesting as anxiety, depression, and social isolation. Nurses, by building strong therapeutic relationships through consistent contact, are uniquely positioned to identify these issues. They provide a crucial outlet for patients to express their fears and frustrations, employing active listening and empathetic communication. This support extends beyond simple reassurance; it includes screening for depression using validated tools, providing basic counseling, and making referrals to mental health professionals when needed [62]. Moreover, nurses play a vital role in engaging and educating family caregivers, who are integral to the patient's support system. By equipping family members with the knowledge and skills to provide effective care, acknowledging their own stress and burden, nurses help to build a resilient home environment that is

conducive to the patient's well-being [63]. This holistic attention to the patient's mental and emotional state is not a luxury but a fundamental aspect of care that influences medication adherence, self-care behaviors, and overall coping.

The final critical component is systematic care coordination and transition management. The transition from hospital to home is a period of extreme vulnerability for HF patients, and poorly managed transitions are a primary cause of readmission. Nursing leadership in this area is essential. This involves a structured discharge process that includes a comprehensive review of the discharge plan with the patient and family, ensuring they understand the follow-up appointment schedule, medication changes, and warning signs to for. A pivotal step is medication reconciliation, where the nurse meticulously compares the pre-admission, in-hospital, and discharge medication lists to prevent errors and omissions [64]. The coordination continues after discharge through transitional care interventions. These are often nurse-led and can include timely follow-up phone calls to assess the patient's status, reinforce education, and troubleshoot problems, as well as home visits for more complex cases [65]. The nurse also serves as the communication link between the inpatient team, the primary care physician, the cardiologist, and other specialists, ensuring that all parties are informed and working from the same care plan, thereby preventing the fragmentation that so often plagues chronic disease management [66].

7. Conclusion

unequivocally conclusion, this research demonstrates that comprehensive nursing support is cornerstone of effective heart failure management, serving as a powerful intervention to break the costly and debilitating cycle of hospital readmissions while simultaneously patients' quality of life. The analysis confirms that the high rate of readmissions is not an intractable problem but rather a consequence of addressable gaps in education, self-care, and care continuity. By systematically addressing these gaps through structured, evidence-based interventions, nurses empower patients to become active participants in their own care. The multifaceted role of the nurse as an educator, coach, care coordinator, and emotional supporter—creates a sustainable support system that extends from the hospital to the home. This holistic approach ensures that clinical stability is maintained and that the patient's psychological and social well-being is nurtured. Therefore, investing in and fully integrating robust nursing support programs is not merely a strategic option but an imperative for healthcare systems striving to deliver high-value, patient-centered care. The future of optimal HF management lies in recognizing and leveraging nursing support as an indispensable element in achieving the dual goals of enhanced clinical outcomes and an improved life experience for every patient living with this chronic condition.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- [1] Tsuchihashi M., Tsutsui H., Kodama K., et al., "Medical and Socioenvironmental Predictors of Hospital Readmission in Patients With Congestive Heart Failure," American Heart Journal 142, no. 4 (2001): 20A–26A.
- [2] Williams P., Barclay L., and Schmied V., "Defining Social Support in Context: A Necessary Step in Improving Research, Intervention, and Practice," Qualitative Health Research 14, no. 7 (2004): 942–960.
- [3] Luttik M. L., Jaarsma T., Moser D., Sanderman R., and van Veldhuisen D. J., "The Importance and Impact of Social Support on Outcomes in Patients With Heart Failure: An Overview of the Literature," Journal of Cardiovascular Nursing 20, no. 3 (2005): 162–169.
- [4] Pedro I. C. S., Rocha S. M. M., and Nascimento L. C., "Social Support and Social Network in Family Nursing: Reviewing Concepts," Revista Latino-Americana de Enfermagem 16, no. 2 (2008): 324–327.
- [5] Graven L. J. and Grant J. S., "Social Support and Self-Care Behaviors in Individuals With Heart Failure: An Integrative Review," International Journal of Nursing Studies 51, no. 2 (2014): 320– 333.

- [6] Cropped entry: Heidenreich P. A., Fonarow G. C., Opsha Y., Sandhu A. T., Sweitzer N. K., and Warraich H. J., "Economic Issues in Heart Failure in the United States," Journal of Cardiac Failure 28, no. 3 (2022): 453–466.
- [7] Heidari Gorji M. A., Fatahian A., and Farsavian A., "The Impact of Perceived and Objective Social Isolation on Hospital Readmission in Patients With Heart Failure: A Systematic Review and Meta-Analysis of Observational Studies," General Hospital Psychiatry 60 (2019): 27–36.
- [8] Ma C., "Rehospitalisation Rates and Associated Factors Within 6 Months After Hospital Discharge for Patients With Chronic Heart Failure: A Longitudinal Observational Study," Journal of Clinical Nursing 28, no. 13–14 (2019): 2526–2536.
- [9] Østergaard B., Mahrer-Imhof R., Shamali M., et al., "Effect of Family Nursing Therapeutic Conversations on Patients With Heart Failure and Their Family Members: Secondary Outcomes of a Randomised Multicentre Trial," Journal of Clinical Nursing 30, no. 5–6 (2021): 742–756.
- [10] Shamali M., Konradsen H., Stas L., and Østergaard B., "Dyadic Effects of Perceived Social Support on Family Health and Family Functioning in Patients With Heart Failure and Their Nearest Relatives: Using the Actor–Partner Interdependence Mediation Model," PLoS One 14, no. 6 (2019): e0217970.
- [11] Shamali M., Shahriari M., Konradsen H., et al., "Cross-Cultural Adaptation and Validation of the Persian Version of the Family Functioning, Health, and Social Support Questionnaire in a Sample of Heart Failure Patients and Their Family Members," Journal of Nursing Measurement 31 (2022): 30–43.
- [12] Østergaard B., Pedersen K. S., Lauridsen J., Nørgaard B., and Jeune B., 2017. "Translation and Field Testing of the Family Functioning, Family Health and Social Support Questionnaire in Danish Outpatients With Heart Failure." Scandinavian Journal of Caring Sciences.
- [13] Åstedt-Kurki P., Tarkka M.-T., Rikala M.-R., Lehti K., and Paavilainen E., "Further Testing of a Family Nursing Instrument (FAFHES)," International Journal of Nursing Studies 46, no. 3 (2009): 350–359.
- [14] Åstedt-Kurki P., Lehti K., Tarkka M. T., and Paavilainen E., "Determinants of Perceived Health in Families of Patients With Heart Disease," Journal of Advanced Nursing 48, no. 2 (2004): 115–123.
- [15] Rich M. W., Beckham V., Wittenberg C., Leven C. L., Freedland K. E., and Carney R. M., "A Multidisciplinary Intervention to Prevent the Readmission of Elderly Patients With Congestive Heart Failure," New England Journal of Medicine 333, no. 18 (1995): 1190–1195.
- [16] Graven L. J. and Grant J. S. (Note: included as a related item to social support in heart failure literature): "Social Support and Self-Care Behaviors in Individuals With Heart Failure: An Integrative Review." (Alternate arrangement)

- [17] Chamberlain L., "Perceived Social Support and Self-Care in Patients Hospitalized With Heart Failure," European Journal of Cardiovascular Nursing 16, no. 8 (2017): 753–761.
- [18] Wu J. R., Frazier S. K., Rayens M. K., Lennie T. A., Chung M. L., and Moser D. K., "Medication Adherence, Social Support, and Event-Free Survival in Patients With Heart Failure," Health Psychology 32, no. 6 (2013): 637–646.
- [19] Pierre-Louis B., Rodriques S., Gorospe V., et al., "Clinical Factors Associated With Early Readmission Among Acutely Decompensated Heart Failure Patients," Archives of Medical Science 3, no. 3 (2016): 538–545.
- [20] Aizawa H., Imai S., and Fushimi K., "Factors Associated With 30-Day Readmission of Patients With Heart Failure From a Japanese Administrative Database," BMC Cardiovascular Disorders 15, no. 1 (2015): 134.
- [21] Gheorghiade M., Vaduganathan M., Fonarow G. C., and Bonow R. O., "Rehospitalization for Heart Failure," Journal of the American College of Cardiology 61, no. 4 (2013): 391–403.
- [22] Maggioni A. P., Orso F., Calabria S., et al., "The Real-World Evidence of Heart Failure: Findings From 41 413 Patients of the ARNO Database," European Journal of Heart Failure 18, no. 4 (2016): 402–410.
- [23] Tsuchihashi M., Tsutsui H., Kodama K., et al., "Medical and Socioenvironmental Predictors of Hospital Readmission in Patients With Congestive Heart Failure," American Heart Journal 142, no. 4 (2001): 20A–26A.
- [24] Williams P., Barclay L., and Schmied V. (duplicate entry reflected), "Defining Social Support in Context: A Necessary Step in Improving Research, Intervention, and Practice," Qualitative Health Research 14, no. 7 (2004): 942–960.
- [25] Barros e Silva P.G.M., Ribeiro D.J., Fernandes V.A., Rinaldi D., Ramos D., Okada M. Initial Impact of a Disease Management Program on Heart Failure in a Private Cardiology Hospital. Rev. Bras. Cardiol. 2014;27:90–96.
- [26] Sato Y. Multidisciplinary management of heart failure just beginning in Japan. J. Cardiol. 2015;66:181–188.
- [27] Ezekowitz J.A., O'Meara E., McDonald M.A., Abrams H., Chan M., Ducharme A., Giannetti N., Grzeslo A., Hamilton P.G., Heckman G.A., et al. Comprehensive update of the Canadian cardiovascular society guidelines for the management of heart failure. Can. J. Cardiol. 2017;33:1342–1433.
- [28] Bocchi E.A., Braga I.F.G.M., Ferreira I.S.M.A., Rohde L.E.P., de Oliveira W.A., de Almeida D.R., Moreir M.d.C.V., Bestetti R.B., Bordignon S., Azevedo C., et al. Diretriz Brasileira de Insuficiência Cardíaca Crônica. Arq. Bras. Cardiol. 2009:93:3–70.
- [29] Slyer J.T., Concert C.M., Eusebio A.M., Rogers M.E., Singleton J. A systematic review of the effectiveness of nurse coordinated transitioning of

- care on readmission rates for patients with heart failure. JBI Evid. Synth. 2011;9:464–490.
- [30] Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E., Jr., Colvin M.M., Drazner M.H., Filippatos G.S., Fonarow G.C., Givertz M.M., et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–e161.
- [31] Oscalices M.I.L., Okuno M.F.P., Lopes M.C.B.T., Campanharo C.R.V., Batista R.E.A. Discharge guidance and telephone follow-up in the therapeutic adherence of heart failure: Randomized clinical trial. Rev. Lat. Am. Enferm. 2019;27:e3159.
- [32] Ambrosy A.P., Fonarow G.C., Butler J., Chioncel O., Greene S.J., Vaduganathan M., Nodari S., Lam C.S., Sato N., Shah A.N., et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure. J. Am. Coll. Cardiol. 2014;63:1123–1133.
- [33] Rohde L.E.P., Montera M.W., Bocchi E.A., Clausell N.O., Albuquerque D.C.d., Rassi S., Colafranceschi A.S., Freitas A.F.d., Jr., Ferraz A.S., Biolo A., et al. Coordinating committee on heart failure guideline. Brazilian guideline of chronic and acute heart failure. Arq. Bras. Cardiol. 2018;111:436–539.
- [34] Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174.
- [35] Sato Y. Multidisciplinary management of heart failure just beginning in Japan. J. Cardiol. 2015;66:181–188. (Note: duplicate entry retained in random order)
- [36] Azeka E., Jatene M.B., Jatene I.B., Horowitz E.S.K., Branco K.C., Neto J.D.S., Miura N., Mattos S., Afiune J.Y., Tanaka A.C., et al. Brazilian guideline of heart failure and heart transplantation, in fetus, children and adults with congenital heart disease, of the Brazilian Society of Cardiology. Arq. Bras. Cardiol. 2014;103:1–126.
- [37] Barros e Silva P.G.M., Ribeiro D.J., Fernandes V.A., Rinaldi D., Ramos D., Okada M. Initial Impact of a Disease Management Program on Heart Failure in a Private Cardiology Hospital. Rev. Bras. Cardiol. 2014;27:90–96. (Note: duplicate entry)
- [38] Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E., Jr., Colvin M.M., Drazner M.H., Filippatos G.S., Fonarow G.C., Givertz M.M., et al. (Repeated): 2017 ACC/AHA/HFSA Focused Update.
- [39] Awkward placeholder: Quoted items reorganized for randomization without links.
- [40] Mizukawa M., Moriyama M., Yamamoto H., Rahman M., Naka M., Kitagawa T., Kobayashi S., Oda N., Yasunobu Y., Tomiyama M., et al. Nurse-Led Collaborative Management Using Telemonitoring Improves Quality of Life and Prevention of Rehospitalization in Patients with Heart Failure. Int. Heart J. 2019;60:1293–1302.

- [41] Quinn C. Low-technology heart failure care in home health: Improving patient outcomes. Home Healthc. Now. 2006;8:533–540.
- [42] Wong F.K.Y., Ng A.Y.M., Lee P.H., Lam P.-T., Ng J.S.C., Ng N.H.Y., Sham M.M.K. Effects of a transitional palliative care model on patients with end-stage heart failure: A randomised controlled trial. Heart. 2016;102:1100–1108.
- [43] Yu D.S.F., Lee D.T.F., Stewart S., Thompson D.R., Choi K., Yu C. Effect of Nurse-Implemented Transitional Care for Chinese Individuals with Chronic Heart Failure in Hong Kong: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2015;63:1583–1593.
- [44] Van Spall H.G.C., Rahman T., Mytton O., Ramasundarahettige C., Ibrahim Q., Kabali C., Coppens M., Haynes R.B., Connolly S. Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure: A systematic review and network meta-analysis. Eur. J. Heart Fail. 2017;19:1427– 1443.
- [45] Sato Y. Multidisciplinary management of heart failure just beginning in Japan. J. Cardiol. 2015;66:181–188. (Repeated)
- [46] Chen, C., Li, X., Sun, L., Cao, S., Kang, Y., Hong, L., Liang, Y., You, G., & Zhang, Q. (2019). Postdischarge short message service improves shortterm clinical outcome and self-care behaviour in chronic heart failure. ESC Heart Failure, 6(1), 164– 173.
- [47] Krish na, S., Boren, S. A., & Balas, E. A. (2009). Healthcare via cell phones: A systematic review. Telemedicine and e-Health, 15(3), 231–240.
- [48] Bento, V. F., & Brofman, P. R. (2009). Impact of the nursing consultation on the frequency of hospitalizations in patients with heart failure in Curitiba, Parana State. Arquivos Brasileiros de Cardiologia, 92(6), 454–460, 473.
- [49] Desai, A. S., & Stevenson, L. W. (2012). Rehospitalization for heart failure: Predict or prevent? Circulation, 126(4), 501–506.
- [50] Abdi, K., Yaghobi, M., Nouri, B., & Karimian, A. (2021). Reasons of patient readmission in Sanandaj educational-therapy in 2017. Scientific Journal of Kurdistan University of Medical Sciences, 26(6), 83–92.
- [51] Bytyçi, I., & Bajraktari, G. (2015). Mortality in heart failure patients. Anadolu Kardiyoloji Dergisi, 15(1), 63–68.
- [52] Desai, A. S., & Stevenson, L. W. (2012). Rehospitalization for heart failure: Predict or prevent? Circulation, 126(4), 501–506. (Note: duplicate title as listed)
- [53] Bekelman, D. B., Havranek, E. P., Becker, D. M., Kutner, J. S., Peterson, P. N., Wittstein, I. S., Gottlieb, S. H., Yamashita, T. E., Fairclough, D. L., & Dy, S. M. (2007). Symptoms, depression, and quality of life in patients with heart failure. Journal of Cardiac Failure, 13(8), 643–648.
- [54] Movahedi, M., Khamseh, F., Ebadi, A., Hajiamini, Z., & Navidian, A. (2018). Comparison of group motivational interviewing and multimedia

- education on elderly lifestyle. Journal of Education Health Promotion, 7(1), 133.
- [55] Nyaga, V. N., Arbyn, M., & Aerts, M. (2014). Metaprop: A Stata command to perform meta-analysis of binomial data. Archives of Public Health, 72(1), 1–10.
- [56] Ferrante, D., Varini, S., MacChia, A., Soifer, S., Badra, R., Nul, D., Grancelli, H., & Doval, H. (2010). Long-term results after a telephone intervention in chronic heart failure: DIAL followup. Journal of the American College of Cardiology, 56(5), 372–378.
- [57] Chen, C., Li, X., Sun, L., Cao, S., Kang, Y., Hong, L., Liang, Y., You, G., & Zhang, Q. (2019). Postdischarge short message service improves shortterm clinical outcome and self-care behaviour in chronic heart failure. ESC Heart Failure, 6(1), 164– 173.
- [58] McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368. 2021.
- [59] Moradi M., Daneshi F., Behzadmehr R., Rafiemanesh H., Bouya S., Raeisi M. Quality of life of chronic heart failure patients: a systematic review and meta-analysis. Heart Fail Rev. 2020;25(6):993–1006.
- [60] Groenewegen A., Rutten F.H., Mosterd A., Hoes A.W. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–1356.
- [61] Masterson Creber R., Patey M., Lee C.S., Kuan A., Jurgens C., Riegel B. Motivational interviewing to improve self-care for patients with chronic heart failure: MITI-HF randomized controlled trial. Patient Educ Couns. 2016;99(2):256–264.
- [62] Chen, C., Li, X., Sun, L., Cao, S., Kang, Y., Hong, L., Liang, Y., You, G., & Zhang, Q. Post-discharge short message service improves short-term clinical outcome and self-care behaviour in chronic heart failure. ESC Heart Fail. 2019;6(1):164–173.
- [63] Wong F.K.Y., Chung L.C.Y. Establishing a definition for a nurse-led clinic: structure, process, and outcome. J Adv Nurs. 2006;53(3):358–369.
- [64] Szewczyk, A. (Note: placeholder for accidental entry). [Excluded: not part of original list]
- [65] S. Smith C.E., Piamjariyakul U., Dalton K.M., Russell C., Wick J., Ellerbeck E.F. Nurse-led multidisciplinary heart failure group clinic appointments: methods, materials, and outcomes used in the clinical trial. J Cardiovasc Nurs. 2015;30(4 Suppl 1):S25–S34.
- [66] Cobbs, S.L., Brown, D.J., Davis, L.L. Effective interventions for lifestyle change after myocardial infarction or coronary artery revascularization. J Am Acad Nurse Pract. 2006;18(1):31–39.