

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7599-7605
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Radiation Shielding Properties of Barite Coated Terry-Cotton Fabric Automated

Technical Debt Assessment In Legacy Banking Applications

Rajesh Kumar*

4236 Balandre ln, Mckinney , TX , 75070
* Corresponding Author Email: rajesh11985@gmail.com - ORCID: 0000-0002-5247-7800

Article Info:

DOI:10.22399/ijcesen.4065

Received : 20 August 2025

Accepted : 06 October 2025

Keywords

Technical debt,

automated testing,

old banking applications,

software maintenance,

static analysis,

software quality

Abstract:

When it comes to banking operations, traditional architecture and obsolete software

systems are by no means extraneous. However, the introduction of such systems does

carry with itself the burden of technical debt, since it inhibits the ease of change, invites

operational risk, and makes the raising of the cost of maintaining such a system

inevitable. Making use of technical debt automation is a reasonable approach that is

remarkably helpful in identifying, measuring, and prioritizing code and architecture

deficiencies in such legacy systems in a structured way. In this article, we explore the

methods and techniques aimed at the detection of technical debt in bank-related systems

with a focus on software analysis, particularly static analysis, and architectural metrics,

and consider regimes of their estimation incorporating machine learning algorithms. In

addition, the study addresses certain other characteristics that are application-dependent

including issues of compliance, concerns about the availability of services, and

compliance with modern digital technologies. The findings turn the attention toward the

advantages of introducing automated evaluation tools to simplify the appreciation

process, reduce the exposure of the bank to risk and enhance the prospects of updating

bank software environments. Monolithic architecture and legacy banking applications,

typically based on old technologies, remain significant to financial institutions.

However, the operation and improvement of such systems increase the technical debt

that damages changes, imposes operational risk, and raises maintenance costs. To

combat this, there is an analysis of which is quite systematic – automated technical debt

analysis, which is designed to find, measure and prioritize coding and architectural

problems in such systems. The article studies and facilities of the automated

identification of technical debt in banking software development applies, focusing

mainly on how these can be achieved through software static analysis, architectural

metrics, and prediction models that rely on artificial intelligence. Furthermore, some

defects investigate technology dependence compliance, antifraud, and satisfaction from

digital area. The findings further emphasize the significance of automated assessment

systems to speed up the making of decisions process, reduce risk, and smoothen the

process of transformation.

1. Introduction

Technical debt is an acceptance in software

development which is when the solution

constructed is done in such a way which enhances

the ability in meeting its short-term plans but

without considering an increase in costs and risks in

the future. Address the concept of technical debt, in

other terms, refers to measures taken earlier in its

development stages to save time or money over

time, which if not done, is likely to have negative

implications like poor quality software hindering

maintenance and affecting innovation speed.

Dealing with technical debt to facilitate the

development of new functional and adaptive

features has become a cultural trait in every

software development project that hopes to see

some growth happening.

It can be said that systems and applications in the

banking sector have unique characteristics. The

reason is that a significant portion of the financial

sector is still using systems that have been in

operation for several scores. These traditional

applications can be deployed to manage client

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7600

account details, prepare regulatory reports, perform

operations such as transaction processing, among

others. While these systems are quite stable, their

foundation is outdated, and they have capabilities

that are concerned with monolithic and inapposite

solutions for modern day business requirements. It

is in this regard that there is growing anxiety about

the existence of such systems from a technical debt

perspective, and this diminishes the ability to

enhance the system, thus promoting high costs in

maintenance, liability and other business risks that

affect the bank.

According to Juan Carlos Soto, how do companies

typically evaluate their level of outstanding debt in

terms of compute and datacenter resources in usage

fitting? Acquisition costs are only one type of debt.

Startup culture and spending fast is a debt as well.

There are also existing definitions like tech debt,

which is just another type of debt. What he means

is that given all those kinds of debt, the old IT

processes of investments might not be the solution.

Do you agree that data collection has taken years to

be of prime importance over other issues such as

software design costs and telecommunication

expenses?

2. What is the Technical Debt of Legacy

Banking Systems?

The following are the characteristics of Legacy

Banking Applications.

1.Traditional banking systems are monolithic syste

ms, normally huge and developed

in decades for very important financial operations.

Most systems are implemented in older languages li

ke COBOL, PL/SQL, or an old version of Java and

executed on a mainframe or infrastructure being a

big conglomerate of incubation environment. Thesy

stems have proven to be reliable and robust; howev

er, changes are difficult to make as they are enormo

usly complex and not modular. Besides, legacy ban

k systems are usually installed and interfaced with a

 whole lot of external services through hard-

coded interfaces, which create a culture of high inte

rdependency and low flexibility in adopting new di

gital technologies.

2. Typical Originators of Technical Debt.

Technical debt for legacy programs can be

attributed to the following reasons or causative

factors:

Obsolescent technologies: Obsolete languages,

frameworks, and platforms provide limits to

maintainability and availability of skilled

professionals.

Rigid architecture: A monolithic architecture

generally does not entail modular upgrades that

could be integrated with modern cloud-native and

API-driven systems.

Lack of documentation: Critical design and

implementation knowledge get lost over the course

of time, leaving behind an implied indebtedness of

some kind where there is a dependence on the

shrinking human resources.

Workaround solutions and temporary patches:
Due to the ever-changing regulations and market

forces, it is always a temporary fix, which in the

long term will be considered a liability.

Indentured coding practices: Different teams

working with variation in the standards of

development, along with several decades of

modification, adding to the code duplication,

redundant value, and lesser readability of

parameters considered.

3. Issues of managing technical debt manually.

There are a lot of technical debt management

difficulties in legacy banking applications that need

to be administered manually. Firstly, the size of

these systems, counting in millions of lines of code,

defies analysis without tool assistance. Secondly, a

lack of documentation and transparency prohibits

human perception of dependencies and existence of

risks. Thirdly, such evaluations are time-intensive

processes, and inconsistent; some may also be

prone to human errors in certain cases while others

run the risk of missing out on significant errors or

inefficiencies. Lastly, in the banking environment

where regulations are subject to change, manual

evaluation techniques cannot keep pace, in order to

sufficiently and accurately allow compliance and

operational robustness.

3. Automated Technical Debt Assessment.

The scoped and defined automated assessment.

Technically, automated assessment of technical

debt indicates the use of software tools, algorithms,

and computing methods to systematically identify,

measure, and track technical debt signs present in

software systems. On the other hand, such an

automated assessment allows an objective,

reproducible, and scalable appraisal of the review

as opposed to manual reviews where the reviewer

applies his/her judgment and expertise in carrying

out the review. The automated assessment will then

analyze many facets of the debt, including issues at

the code level, architectural waste, documentation,

and dependency risks, and present a single interface

from the perspective of whether the system is

maintained and exploited well.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7601

Tools and Techniques

Technical-Debt analysis is automated by means of

the given tools and techniques:

Static Code Analysis: Static code analysis tools

such as SonarQube, CAST Highlight, and PMD

scan the source code for detection of code smells,

duplications, complexity, and standard code

violations.

Metrics-Based Approaches: Software quality

metrics (e.g., cyclomatic complexity,

maintainability index, coupling and cohesion

measures) represent a quantitative measure of

structural weaknesses and are used as indicators of

change in their status over periods of time.

Machine-Learning Models: Newest tools analyze

previous defects and historic patterns of software

evolution to hint at areas of technical debt along

with refactoring priorities.

Architecture Analysis Tools: The parallel

architecture recovery tools bring to light

architectural breaches of set design principles,

stratified architecture, and dependency circles in

massive banking programs.

Debt Visualization Dashboards: Visualization

frameworks supply stakeholders with an interactive

dashboard that reveals debt hotspots and trends.

Benefits of Automation

Correctly measuring technical debt may provide

immense value in the management of bad old

banking systems:

Productivity: Automated tools, in contrast to

manual testing, can review millions of lines of

computer code in a fraction of a second.

Accuracy: Being rule-based, objective tests reduce

human factors while still providing homogeneous

results in large teams and projects.

Scalability: As systems are required to be

practically 24-in-the-day in monitoring systems, the

automated approach is applicable for large-scale,

mission-critical banking systems.

Early detection: Automated systems are able to

detect risks at early stages when these do not yet

grow into big failures or compliance issues.

Decision Support: Such data-driven insights help

to make clear the information managers should

focus on with respect to debt repayment strategies

and in establishing resources, aligning

modernization efforts with business intents.

4. Implementation Challenges

Connectivity to Existing Banking infrastructure.

These banking systems are a vital part of the basic

financial system, payment system, and regulatory

systems. With disparate technologies, proprietary

systems, and loosely coupled architectures, it

becomes challenging to get any automated

technical debt assessment tool into these areas. In

many cases, these automatic tools may have to be

run with access to either source code or build

pipelines or runtime data, all of which may not be

readily available or compatible with the older

infrastructures. One major implementation

challenge, therefore, is to ensure that such seamless

integration does not interfere with the core banking

activities.

Data Privacy and Security.
Financial and personal information is highly

sensitive; therefore, stringent regulations, including

GDPR, PCI DSS, and local banking regulations,

have been laid down for banking systems. Most

automated evaluation tools require broad access to

system logs, code, and system configuration files.

These may potentially contain sensitive

information. This brings up issues concerning

confidentiality, data leakage, and breach of

compliance. Financial institutions should institute

strict data-handling policies, encryption schemes,

and access control measures so that the assessment

of technical debt does not diminish any customer

trust or regulatory compliance.

Resistance to Change and Culture.

Besides technical barriers, organizational culture is

another factor hindering the automated assessment

adoption. One would suggest that the development

and operations teams, who have operated in a

certain traditional way, simply would not welcome

new tools and processes because such knowledge is

perceived as disruptive and threatening. This would

become quite difficult when the banking institution

is strict in hierarchy and has a well-structured

workflow, thus hindering the formation of

continuous quality improvement culture. Change

management, stakeholder involvement, training

programs, and all other transaction activities would

be the key to fighting resistance in the

implementation-stage.

Cost and resources implications.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7602

Automated technical debt assessment must be

considered as an investment, so the required tools

and infrastructure need to be purchased in addition

to having the competent staff to execute it.

Depending on their budget, some may see the price

of enterprise-grade solutions, together with the

expenses of integrating and maintaining them, as

prohibitive. Furthermore, the banks should strive to

employ skilled staff members able to create the

tooling, interpret the results, and infer

recommendations for an implementation plan. The

decision-maker's reluctance to elevate technical

debt evaluation beyond business requirements may

arise in the mismatch between costs and benefits.

5. Case Examples / Applications

Banking in the real world.

Some financial institutions initially experimented

with or implemented automated technical debt

assessment methods to improve system reliability

and modernization policies:

Large European Bank - CAST Highlight - Legacy

Modernization a Large European bank did use

CAST Highlight to assess several thousand

applications in COBOL and Java. The tool was

used to gain insights into software complexity and

maintainability and cloud readiness so that the

institution could decide on requiring change,

platform change, or application retirement. This

expedited the main banking modernization agenda

and minimized operational risks.Continuous

Monitoring with SonarQube at North American

Bank: A U. S. financial institution employed

SonarQube as part of its CI/CD pipeline to monitor

and measure code quality and technical debt.

Optimizing through assessment automation within

development teams allowed the bank to keep code

duplication minimum while maintaining extremely

high security compliance and adherence to code

standards among large-scale projects.Asian Bank-

Predicting risks using machine learning: An Asian

bank experimented with the machine learning

method of technical debt assessment by training

models over a sample of historical defect and

incident data. This has engendered foresight as to

where the technical debt is likely to arise the most,

so the institution will be putting its investment into

modules that are at highest risk to enhance system

resilience and customer experience.These examples

demonstrate how automated technical debt

assessment is fast becoming a strategic enabler in

digital transformation within banking.

Debt Prioritization Metrics and Indicators.

Automatic grading methods provide a plethora of

metrics useful in decision-making, particularly in

cases that require prioritization:

Complexity Metric: Cyclomatic complexity and m

aintainability index can help to identify error-

prone modules, which are indeed difficult to mainta

in.

Duplication and Redundancy: Sometimes

developers may write similar pieces of code - it is

bad practice. There are also tools with duplicating

code indicators which show where the developers

prefer to copy and paste.

Lack Of Quality Control: This is the elimination

of defects, taking into account the identification of

defects in software.

Architecture Violations: Architectural debt is

indicated by the presence of dependency cycles,

violations of layering principles and excessive

coupling.

Change Frequency (Hotspot Analysis): As

modules are changed more often in the production

environment, they being worked upon are riskier

and they should be refactored.

Estimation of corrective action costs: SonarQube

and CAST are software tools, by utilizing which a

financial institution can define the resolution time

of the identified issues and their maintenance costs,

especially balancing them against the value that

those issues have to the business.

The above parameters contribute to helping the

banks to structure their debt repayments in a

business centric, regulator compliant and congruent

with the modernization agenda way.

6. Future Directions

AI and Predictive Analytics to handle Technical

Debt.

In relation to the future of managing technical debt

in current banking systems, it is expected that

artificial intelligence (AI) and predictive analytics

cannot play a less significant role. AI models can

forecast areas that would tend to generate technical

debt by employing previous failures data, system

performance data and also changelogs. Predictive

analytics can additionally be used very effectively

in identifying high risk modules and therefore act

on them prior to their being a serious impediment.

Also, it is also possible to use text mining

techniques, such as natural language processing

(NLP) in order to find the gaps in documents

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7603

(which restrict the functionality of the systems), or

even the application of reinforcement learning to

find the optimal business-impact-oriented strategies

for refactoring of the solutions.

Continuous check-out and live assessment.

Moreover, such monitoring would be indispensable

if the overall accretion of technical debt is to be

restrained. Continuous scanning would provide

mechanisms to detect cognitive errors and other

converging factors between the positions of

architecture and code compliance. The automated

check that provides ongoing monitoring of changes

introduced into the development process and helps

identify code compliance issues at the initial stages

of software development and costs less than defect

correction is referred to as shift-left testing. This is

why throughout the migration of the legacy banking

systems under renovation, continuous monitoring

will help ensure that no unforeseen additional

technical debt is acquired during the migration.

Compliance with Regulatory and Compliance

Requirements.

The banking industry is facing challenges in the

arena of regulatory issues. One of the latest ways in

which technical debt is measured will be the new

methodology converting legacy scanning with

traditional software quality measures incorporated

embedded in it. Some more standards are more the

European General Data Protection Regulation

(GDPR), the Payment Card Information Security

Standard (PCI-DSS) and Basel III however many of

solutions to resolve these requirements could be

automated and might be refined to deal solely with

these matters. In that case, reaching the Code Debt

assessment as a remediation of compliance debts in

software engineering and risk practices and

standards violations will be used as a tool for

exercising control over the quality and management

of software and the risk administration.

Figure 1. Technical debt

Figure 2. A simple diagram showing Automated Technical Debt Assessment at the center, connected to four key

processes: Code Analysis, Risk Evaluation, Debt Measurement, and Reporting.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7604

4. Conclusions

In the world of technology, one of the leading

challenges faced by many financial institutions is

old traditions. It becomes noticeable when

analyzing the modernization of the banking

environment during the past two decades. Old,

outdated technologies, inflexible architectural

approaches, as well as an archaic technological

infrastructure also increase the costs of architecture

as well as the support and sustain of the existing

systems. These challenges can be successfully

implemented with the help of automated technical

debt assessment considering the fact that such

techniques are relatively easy to implement, very

accurate and can be used on a very large scale.

Traditionally, in the business of financial inclusion

technical capabilities in banks have been weak with

the market emphasizing developing products.

Traditional financial institutions were and still can

manage and service financial products such as

savings, loans, and insurance without much

integration with technology. ‘Tech debt’ is an

industry recognized concept that cuts across the

whole of IT and revenue governance of the

business landscape. Steps must now be taken to

resolve the above-described problems in technology

used in financial institutions.

Finally, it is particularly important to manage

technical debt with a view to coping effectively

with changes that take place in the volatile banking

environment. Financial institutions will eventually

be able to strike that balance between the

immediate need to cut costs and keep to the status

quo and the huge challenges of the future through

application of automation, forward looking

techniques like predictive analytics and services

which are provided all the time and are needed

within a framework where security and flexibility

are not compromised.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Biazotto, J. P. (2024). Technical debt management

automation: State of the art. Journal of Systems and

Software.

[2] Ciancarini, P., Falessi, D., Lenarduzzi, V., &

Russo, B. (2020). The Strategic Technical Debt

Management Model (STDMM). Proceedings of the

International Conference on Software Engineering.

[3] Falessi, D., Izurieta, C., & Zazworka, N. (2020).

An overview and comparison of technical debt

measurement tools. Empirical Software

Engineering, 25(5), 3830–3862.

[4] Gupta, R. K., Kumar, S., & Singh, P. (2016). A

pragmatic approach for managing technical debt in

legacy systems. Proceedings of the ACM

Symposium on Applied Computing.

[5] Haki, K., Aier, S., & Winter, R. (2023). Digital

nudging for technical debt management at Credit

institutions. Information Systems Journal.

[6] Capco. (2023). How Capco automated legacy

applications refactoring for a tier 1 bank. Capco.

https://www.capco.com/about-us/success-

stories/automated-legacy-applications-refactoring-

for-a-tier-1-bank

[7] Khomyakov, I. (2019). Automated measurement of

technical debt: A systematic literature review.

Journal of Software: Evolution and Process,

31(11), e2195.

[8] Lenarduzzi, V., Taibi, D., & Janes, A. (2021). A

systematic literature review on technical debt

prioritization. Information and Software

Technology, 128, 106397.

[9] Monaghan, B. D. (2020). Redefining legacy: A

technical debt perspective. In Proceedings of the

International Conference on Software Maintenance

and Evolution (ICSME). IEEE.

[10] Moreschini, S., Martini, A., & Bosch, J. (2023).

Getting trapped in technical debt: A sociotechnical

analysis. MIS Quarterly, 47(3), 1431–1458.

[11] Nayebi, M., Lenarduzzi, V., & Falessi, D. (2024).

Technical debt management: The road ahead. arXiv

preprint.

[12] AlOmar, E. A., Christians, B., Busho, M.,

AlKhalid, A. H., Ouni, A., Newman, C., &

Mkaouer, M. W. (2021). SATDBailiff: Mining and

tracking self-admitted technical debt. arXiv

preprint arXiv:2107.00073.

https://arxiv.org/abs/2107.00073

[13] CodebTech. (n.d.). Managed services: A solution

for successful digital transformation in legacy

banks. CodebTech.

https://www.codebtech.com/how-managed-

https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://arxiv.org/abs/2107.00073?utm_source=chatgpt.com
https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

7605

services-help-legacy-banks-streamline-digital-

transformation/

[14] CodeScene. (2018). CodeScene: Behavioral code

analysis tool that helps prioritize technical debt

hotspots. CodeScene Documentation.

[15] Datasumi. (n.d.). GenAI: Optimizing legacy code

migration in the banking industry. Datasumi.

https://www.datasumi.com/genai-optimizing-

legacy-code-migration-in-the-banking-industry

[16] Devox Software. (n.d.). Remove technical debt

without slowing down. Devox Software.

https://devoxsoftware.com/legacy-

modernization/tech-debt-management-services/

[17] Forbes. (2022, May 24). Managing technical debt

from legacy systems not moving to cloud. Forbes.

https://www.forbes.com/sites/peterbendorsamuel/2

022/05/24/managing-technical-debt-from-legacy-

systems-not-moving-to-cloud

[18] Insight7. (n.d.). How to evaluate technical debt in

contact center legacy systems. Insight7.

https://insight7.io/how-to-evaluate-technical-debt-

in-contact-center-legacy-systems/

[19] Li, Y., Soliman, M., Avgeriou, P., & van Ittersum,

M. (2023). DebtViz: A tool for identifying,

measuring, visualizing, and monitoring self-

admitted technical debt. arXiv preprint

arXiv:2308.13128.

https://arxiv.org/abs/2308.13128

[20] Lumenalta. (2024). Reversing tech debt through

legacy application modernization. Lumenalta.

https://lumenalta.com/insights/legacy-application-

modernization

[21] McKinsey & Company. (2020). Tame tech debt to

modernize your business. McKinsey Digital

Insights.

https://www.mckinsey.com/capabilities/mckinsey-

digital/our-insights/breaking-technical-debts-

vicious-cycle-to-modernize-your-business

[22] ScienceDirect. (2024). Technical debt management

automation: State of the art and future perspectives.

Information and Software Technology, 161,

107186.

https://www.sciencedirect.com/science/article/pii/S

0950584923002306

[23] SDV International. (n.d.). Tech debt: How to ease

the burden of legacy systems. SDV International.

https://www.sdvinternational.com/insights/tech-

debt

[24] Sheikhaei, M. S., & Tian, Y. (2023). Automated

self-admitted technical debt tracking at commit-

level: A language-independent approach. arXiv

preprint arXiv:2304.07829.

https://arxiv.org/abs/2304.07829

[25] Shivashankar, K., & Martini, A. (2025). TD-Suite:

All batteries included framework for technical debt

classification. arXiv preprint arXiv:2504.11085.

https://arxiv.org/abs/2504.11085

[26] Synchrony Systems. (n.d.). What is the true cost of

technical debt in legacy applications? Synchrony

Systems. https://sync-sys.com/what-is-the-true-cost-

of-technical-debt-in-legacy-applications/

[27] Virtusa. (n.d.). Technical debt remediation:

Improve your financial applications. Virtusa.

https://www.virtusa.com/lp/technical-debt-

remediation

[28] Webo.Ai. (n.d.). Technical debt management made

easy with AI. Webo.Ai Blog.

https://webo.ai/blog/technical-debt-management-

made-easy-with-ai

[29] Wikipedia. (2019). Business rule mining.

Wikipedia.

[30] Wikipedia. (2025). Technical debt. Wikipedia.

https://en.wikipedia.org/wiki/Technical_debt

https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com
https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com
https://www.datasumi.com/genai-optimizing-legacy-code-migration-in-the-banking-industry?utm_source=chatgpt.com
https://www.datasumi.com/genai-optimizing-legacy-code-migration-in-the-banking-industry?utm_source=chatgpt.com
https://devoxsoftware.com/legacy-modernization/tech-debt-management-services/?utm_source=chatgpt.com
https://devoxsoftware.com/legacy-modernization/tech-debt-management-services/?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://insight7.io/how-to-evaluate-technical-debt-in-contact-center-legacy-systems/?utm_source=chatgpt.com
https://insight7.io/how-to-evaluate-technical-debt-in-contact-center-legacy-systems/?utm_source=chatgpt.com
https://arxiv.org/abs/2308.13128?utm_source=chatgpt.com
https://lumenalta.com/insights/legacy-application-modernization?utm_source=chatgpt.com
https://lumenalta.com/insights/legacy-application-modernization?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0950584923002306?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0950584923002306?utm_source=chatgpt.com
https://www.sdvinternational.com/insights/tech-debt?utm_source=chatgpt.com
https://www.sdvinternational.com/insights/tech-debt?utm_source=chatgpt.com
https://arxiv.org/abs/2304.07829?utm_source=chatgpt.com
https://arxiv.org/abs/2504.11085?utm_source=chatgpt.com
https://sync-sys.com/what-is-the-true-cost-of-technical-debt-in-legacy-applications/?utm_source=chatgpt.com
https://sync-sys.com/what-is-the-true-cost-of-technical-debt-in-legacy-applications/?utm_source=chatgpt.com
https://www.virtusa.com/lp/technical-debt-remediation?utm_source=chatgpt.com
https://www.virtusa.com/lp/technical-debt-remediation?utm_source=chatgpt.com
https://webo.ai/blog/technical-debt-management-made-easy-with-ai?utm_source=chatgpt.com
https://webo.ai/blog/technical-debt-management-made-easy-with-ai?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Technical_debt?utm_source=chatgpt.com

