International Journal of Computational and Experimental
Science and ENgineering B e
(IJCESEN) —

Vol. 11-No.4 (2025) pp. 7599-7605
http://www.ijcesen.com

MCESEN

——

ISSN: 2149-9144

Copyright © IJCESEN

Research Article

Radiation Shielding Properties of Barite Coated Terry-Cotton Fabric Automated
Technical Debt Assessment In Legacy Banking Applications

Rajesh Kumar*

4236 Balandre In, Mckinney , TX, 75070
* Corresponding Author Email: rajesh11985@gmail.com - ORCID: 0000-0002-5247-7800

Article Info: Abstract:
DOI1:10.22399/ijcesen.4065
Received : 20 August 2025
Accepted : 06 October 2025

When it comes to banking operations, traditional architecture and obsolete software
systems are by no means extraneous. However, the introduction of such systems does
carry with itself the burden of technical debt, since it inhibits the ease of change, invites

operational risk, and makes the raising of the cost of maintaining such a system

Keywords

inevitable. Making use of technical debt automation is a reasonable approach that is

remarkably helpful in identifying, measuring, and prioritizing code and architecture

Technical debt,
automated testing,

old banking applications,
software maintenance,
static analysis,

software quality

deficiencies in such legacy systems in a structured way. In this article, we explore the
methods and techniques aimed at the detection of technical debt in bank-related systems
with a focus on software analysis, particularly static analysis, and architectural metrics,
and consider regimes of their estimation incorporating machine learning algorithms. In
addition, the study addresses certain other characteristics that are application-dependent
including issues of compliance, concerns about the availability of services, and

compliance with modern digital technologies. The findings turn the attention toward the
advantages of introducing automated evaluation tools to simplify the appreciation
process, reduce the exposure of the bank to risk and enhance the prospects of updating
bank software environments. Monolithic architecture and legacy banking applications,
typically based on old technologies, remain significant to financial institutions.
However, the operation and improvement of such systems increase the technical debt
that damages changes, imposes operational risk, and raises maintenance costs. To
combat this, there is an analysis of which is quite systematic — automated technical debt
analysis, which is designed to find, measure and prioritize coding and architectural
problems in such systems. The article studies and facilities of the automated
identification of technical debt in banking software development applies, focusing
mainly on how these can be achieved through software static analysis, architectural
metrics, and prediction models that rely on artificial intelligence. Furthermore, some
defects investigate technology dependence compliance, antifraud, and satisfaction from
digital area. The findings further emphasize the significance of automated assessment
systems to speed up the making of decisions process, reduce risk, and smoothen the

process of transformation.

1. Introduction

Technical debt is an acceptance in software
development which is when the solution
constructed is done in such a way which enhances
the ability in meeting its short-term plans but
without considering an increase in costs and risks in
the future. Address the concept of technical debt, in
other terms, refers to measures taken earlier in its
development stages to save time or money over
time, which if not done, is likely to have negative
implications like poor quality software hindering

maintenance and affecting innovation speed.
Dealing with technical debt to facilitate the
development of new functional and adaptive
features has become a cultural trait in every
software development project that hopes to see
some growth happening.

It can be said that systems and applications in the
banking sector have unique characteristics. The
reason is that a significant portion of the financial
sector is still using systems that have been in
operation for several scores. These traditional
applications can be deployed to manage client

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

account details, prepare regulatory reports, perform
operations such as transaction processing, among
others. While these systems are quite stable, their
foundation is outdated, and they have capabilities
that are concerned with monolithic and inapposite
solutions for modern day business requirements. It
is in this regard that there is growing anxiety about
the existence of such systems from a technical debt
perspective, and this diminishes the ability to
enhance the system, thus promoting high costs in
maintenance, liability and other business risks that
affect the bank.

According to Juan Carlos Soto, how do companies
typically evaluate their level of outstanding debt in
terms of compute and datacenter resources in usage
fitting? Acquisition costs are only one type of debt.
Startup culture and spending fast is a debt as well.
There are also existing definitions like tech debt,
which is just another type of debt. What he means
is that given all those kinds of debt, the old IT
processes of investments might not be the solution.
Do you agree that data collection has taken years to
be of prime importance over other issues such as
software design costs and telecommunication
expenses?

2. What is the Technical Debt of Legacy
Banking Systems?

The following are the characteristics of Legacy
Banking Applications.

1.Traditional banking systems are monolithic syste
ms, normally huge and developed

in decades for very important financial operations.
Most systems are implemented in older languages li
ke COBOL, PL/SQL, or an old version of Java and
executed ona mainframe or infrastructure being a
big conglomerate of incubation environment. Thesy
stems have proven to be reliable and robust; howev
er, changes are difficult to make as they are enormo
usly complex and not modular. Besides, legacy ban
k systems are usually installed and interfaced with a
whole lot of external services through hard-

coded interfaces, which create a culture of high inte
rdependency and low flexibility in adopting new di
gital technologies.

2. Typical Originators of Technical Debt.

Technical debt for legacy programs can be
attributed to the following reasons or causative
factors:

Obsolescent technologies: Obsolete languages,
frameworks, and platforms provide limits to
maintainability and availability skilled
professionals.

of

7600

Rigid architecture: A monolithic architecture
generally does not entail modular upgrades that
could be integrated with modern cloud-native and
API-driven systems.

Lack of documentation: Critical design and
implementation knowledge get lost over the course
of time, leaving behind an implied indebtedness of
some kind where there is a dependence on the
shrinking human resources.

Workaround solutions and temporary patches:
Due to the ever-changing regulations and market
forces, it is always a temporary fix, which in the
long term will be considered a liability.

Indentured coding practices: Different teams
working with variation in the standards of
development, along with several decades of
modification, adding to the code duplication,
redundant value, and lesser readability of
parameters considered.

3. Issues of managing technical debt manually.
There are a lot of technical debt management
difficulties in legacy banking applications that need
to be administered manually. Firstly, the size of
these systems, counting in millions of lines of code,
defies analysis without tool assistance. Secondly, a
lack of documentation and transparency prohibits
human perception of dependencies and existence of
risks. Thirdly, such evaluations are time-intensive
processes, and inconsistent; some may also be
prone to human errors in certain cases while others
run the risk of missing out on significant errors or
inefficiencies. Lastly, in the banking environment
where regulations are subject to change, manual
evaluation techniques cannot keep pace, in order to
sufficiently and accurately allow compliance and
operational robustness.

3. Automated Technical Debt Assessment.

The scoped and defined automated assessment.

Technically, automated assessment of technical
debt indicates the use of software tools, algorithms,
and computing methods to systematically identify,
measure, and track technical debt signs present in
software systems. On the other hand, such an
automated assessment allows an objective,
reproducible, and scalable appraisal of the review
as opposed to manual reviews where the reviewer
applies his/her judgment and expertise in carrying
out the review. The automated assessment will then
analyze many facets of the debt, including issues at
the code level, architectural waste, documentation,
and dependency risks, and present a single interface
from the perspective of whether the system is
maintained and exploited well.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

Tools and Techniques
Technical-Debt analysis is automated by means of
the given tools and techniques:

Static Code Analysis: Static code analysis tools
such as SonarQube, CAST Highlight, and PMD
scan the source code for detection of code smells,
duplications, complexity, and standard code
violations.

Metrics-Based Approaches: Software quality
metrics (e.g., cyclomatic complexity,
maintainability index, coupling and cohesion
measures) represent a quantitative measure of
structural weaknesses and are used as indicators of
change in their status over periods of time.

Machine-Learning Models: Newest tools analyze
previous defects and historic patterns of software
evolution to hint at areas of technical debt along
with refactoring priorities.

Architecture Analysis Tools: The parallel
architecture recovery tools bring to light
architectural breaches of set design principles,
stratified architecture, and dependency circles in
massive banking programs.

Debt Visualization Dashboards: Visualization
frameworks supply stakeholders with an interactive
dashboard that reveals debt hotspots and trends.

Benefits of Automation

Correctly measuring technical debt may provide
immense value in the management of bad old
banking systems:

Productivity: Automated tools, in contrast to
manual testing, can review millions of lines of
computer code in a fraction of a second.

Accuracy: Being rule-based, objective tests reduce
human factors while still providing homogeneous
results in large teams and projects.

Scalability: As systems are required to be
practically 24-in-the-day in monitoring systems, the
automated approach is applicable for large-scale,
mission-critical banking systems.

Early detection: Automated systems are able to
detect risks at early stages when these do not yet
grow into big failures or compliance issues.

Decision Support: Such data-driven insights help
to make clear the information managers should

7601

focus on with respect to debt repayment strategies
and in establishing resources, aligning
modernization efforts with business intents.

4. Implementation Challenges

Connectivity to Existing Banking infrastructure.
These banking systems are a vital part of the basic
financial system, payment system, and regulatory
systems. With disparate technologies, proprietary
systems, and loosely coupled architectures, it
becomes challenging to get any automated
technical debt assessment tool into these areas. In
many cases, these automatic tools may have to be
run with access to either source code or build
pipelines or runtime data, all of which may not be
readily available or compatible with the older
infrastructures. One major implementation
challenge, therefore, is to ensure that such seamless
integration does not interfere with the core banking
activities.

Data Privacy and Security.

Financial and personal information is highly
sensitive; therefore, stringent regulations, including
GDPR, PCI DSS, and local banking regulations,
have been laid down for banking systems. Most
automated evaluation tools require broad access to
system logs, code, and system configuration files.
These may potentially contain sensitive
information. This brings up issues concerning
confidentiality, data leakage, and breach of
compliance. Financial institutions should institute
strict data-handling policies, encryption schemes,
and access control measures so that the assessment
of technical debt does not diminish any customer
trust or regulatory compliance.

Resistance to Change and Culture.

Besides technical barriers, organizational culture is
another factor hindering the automated assessment
adoption. One would suggest that the development
and operations teams, who have operated in a
certain traditional way, simply would not welcome
new tools and processes because such knowledge is
perceived as disruptive and threatening. This would
become quite difficult when the banking institution
is strict in hierarchy and has a well-structured
workflow, thus hindering the formation of
continuous quality improvement culture. Change
management, stakeholder involvement, training
programs, and all other transaction activities would
be the key to fighting resistance in the
implementation-stage.

Cost and resources implications.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

Automated technical debt assessment must be
considered as an investment, so the required tools
and infrastructure need to be purchased in addition
to having the competent staff to execute it.
Depending on their budget, some may see the price
of enterprise-grade solutions, together with the
expenses of integrating and maintaining them, as
prohibitive. Furthermore, the banks should strive to
employ skilled staff members able to create the
tooling, interpret the results, and infer
recommendations for an implementation plan. The
decision-maker's reluctance to elevate technical
debt evaluation beyond business requirements may
arise in the mismatch between costs and benefits.

5. Case Examples / Applications
Banking in the real world.

Some financial institutions initially experimented
with or implemented automated technical debt
assessment methods to improve system reliability
and modernization policies:

Large European Bank - CAST Highlight - Legacy
Modernization a Large European bank did use
CAST Highlight to assess several thousand
applications in COBOL and Java. The tool was
used to gain insights into software complexity and
maintainability and cloud readiness so that the
institution could decide on requiring change,
platform change, or application retirement. This
expedited the main banking modernization agenda
and minimized operational risks.Continuous
Monitoring with SonarQube at North American
Bank: A U. S. financial institution employed
SonarQube as part of its CI/CD pipeline to monitor
and measure code quality and technical debt.
Optimizing through assessment automation within
development teams allowed the bank to keep code
duplication minimum while maintaining extremely
high security compliance and adherence to code
standards among large-scale projects.Asian Bank-
Predicting risks using machine learning: An Asian
bank experimented with the machine learning
method of technical debt assessment by training
models over a sample of historical defect and
incident data. This has engendered foresight as to
where the technical debt is likely to arise the most,
so the institution will be putting its investment into
modules that are at highest risk to enhance system
resilience and customer experience.These examples
demonstrate how automated technical debt
assessment is fast becoming a strategic enabler in
digital transformation within banking.

Debt Prioritization Metrics and Indicators.

7602

Automatic grading methods provide a plethora of
metrics useful in decision-making, particularly in
cases that require prioritization:

Complexity Metric: Cyclomatic complexity and m
aintainability index can help to identify error-
prone modules, which are indeed difficult to mainta
in.

Duplication and Redundancy: Sometimes
developers may write similar pieces of code - it is
bad practice. There are also tools with duplicating
code indicators which show where the developers
prefer to copy and paste.

Lack Of Quality Control: This is the elimination
of defects, taking into account the identification of
defects in software.

Architecture Violations: Architectural debt is
indicated by the presence of dependency cycles,
violations of layering principles and excessive
coupling.

Change Frequency (Hotspot Analysis): As
modules are changed more often in the production
environment, they being worked upon are riskier
and they should be refactored.

Estimation of corrective action costs: SonarQube
and CAST are software tools, by utilizing which a
financial institution can define the resolution time
of the identified issues and their maintenance costs,
especially balancing them against the value that
those issues have to the business.

The above parameters contribute to helping the
banks to structure their debt repayments in a
business centric, regulator compliant and congruent
with the modernization agenda way.

6. Future Directions

Al and Predictive Analytics to handle Technical
Debt.

In relation to the future of managing technical debt
in current banking systems, it is expected that
artificial intelligence (Al) and predictive analytics
cannot play a less significant role. Al models can
forecast areas that would tend to generate technical
debt by employing previous failures data, system
performance data and also changelogs. Predictive
analytics can additionally be used very effectively
in identifying high risk modules and therefore act
on them prior to their being a serious impediment.
Also, it is also possible to use text mining
techniques, such as natural language processing
(NLP) in order to find the gaps in documents

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

(which restrict the functionality of the systems), or
even the application of reinforcement learning to
find the optimal business-impact-oriented strategies
for refactoring of the solutions.

Continuous check-out and live assessment.
Moreover, such monitoring would be indispensable
if the overall accretion of technical debt is to be
restrained. Continuous scanning would provide
mechanisms to detect cognitive errors and other
converging factors between the positions of
architecture and code compliance. The automated
check that provides ongoing monitoring of changes
introduced into the development process and helps
identify code compliance issues at the initial stages
of software development and costs less than defect
correction is referred to as shift-left testing. This is
why throughout the migration of the legacy banking
systems under renovation, continuous monitoring
will help ensure that no unforeseen additional
technical debt is acquired during the migration.

Compliance with Regulatory and Compliance
Requirements.

The banking industry is facing challenges in the
arena of regulatory issues. One of the latest ways in
which technical debt is measured will be the new
methodology converting legacy scanning with
traditional software quality measures incorporated
embedded in it. Some more standards are more the
European General Data Protection Regulation
(GDPR), the Payment Card Information Security
Standard (PCI-DSS) and Basel I1l however many of
solutions to resolve these requirements could be
automated and might be refined to deal solely with
these matters. In that case, reaching the Code Debt
assessment as a remediation of compliance debts in
software engineering and risk practices and
standards violations will be used as a tool for
exercising control over the quality and management
of software and the risk administration.

WHAT IS THE TECHNICAL DEBT
OF LEGACY BANKING SYSTEMS?

TECHNICAL DEBT

s l

! 1

HIGH
OUTDATED COMPLIANCE POOR
TECHNOLOGY MAINTENANCE RISKS PERFORMANCE
COSTS
Figure 1. Technical debt
Code Risk
Analysis Evaluation
N U
Automated
75 N
Debt .
Reportin
Measurement P g

Figure 2. A simple diagram showing Automated Technical Debt Assessment at the center, connected to four key
processes: Code Analysis, Risk Evaluation, Debt Measurement, and Reporting.

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

4. Conclusions

In the world of technology, one of the leading
challenges faced by many financial institutions is
old traditions. It becomes noticeable when
analyzing the modernization of the banking
environment during the past two decades. Old,
outdated technologies, inflexible architectural
approaches, as well as an archaic technological
infrastructure also increase the costs of architecture
as well as the support and sustain of the existing
systems. These challenges can be successfully
implemented with the help of automated technical
debt assessment considering the fact that such
techniques are relatively easy to implement, very
accurate and can be used on a very large scale.
Traditionally, in the business of financial inclusion
technical capabilities in banks have been weak with
the market emphasizing developing products.
Traditional financial institutions were and still can
manage and service financial products such as
savings, loans, and insurance without much
integration with technology. ‘Tech debt’ is an
industry recognized concept that cuts across the
whole of IT and revenue governance of the
business landscape. Steps must now be taken to
resolve the above-described problems in technology
used in financial institutions.

Finally, it is particularly important to manage
technical debt with a view to coping effectively
with changes that take place in the volatile banking
environment. Financial institutions will eventually
be able to strike that balance between the
immediate need to cut costs and keep to the status
guo and the huge challenges of the future through
application of automation, forward looking
techniques like predictive analytics and services
which are provided all the time and are needed
within a framework where security and flexibility
are not compromised.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

Funding information: The authors declare that
there is no funding to be acknowledged.

Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

7604

Biazotto, J. P. (2024). Technical debt management
automation: State of the art. Journal of Systems and
Software.

Ciancarini, P., Falessi, D., Lenarduzzi, V., &
Russo, B. (2020). The Strategic Technical Debt
Management Model (STDMM). Proceedings of the
International Conference on Software Engineering.
Falessi, D., lzurieta, C., & Zazworka, N. (2020).
An overview and comparison of technical debt
measurement tools. Empirical Software
Engineering, 25(5), 3830-3862.

Gupta, R. K., Kumar, S., & Singh, P. (2016). A
pragmatic approach for managing technical debt in
legacy systems. Proceedings of the ACM
Symposium on Applied Computing.

Haki, K., Aier, S., & Winter, R. (2023). Digital
nudging for technical debt management at Credit
institutions. Information Systems Journal.

Capco. (2023). How Capco automated legacy
applications refactoring for a tier 1 bank. Capco.
https://www.capco.com/about-us/success-
stories/automated-legacy-applications-refactoring-
for-a-tier-1-bank

Khomyakov, I. (2019). Automated measurement of
technical debt: A systematic literature review.
Journal of Software: Evolution and Process,
31(11), e2195.

Lenarduzzi, V., Taibi, D., & Janes, A. (2021). A
systematic literature review on technical debt
prioritization. Information and Software
Technology, 128, 106397.

Monaghan, B. D. (2020). Redefining legacy: A
technical debt perspective. In Proceedings of the
International Conference on Software Maintenance
and Evolution (ICSME). IEEE.

Moreschini, S., Martini, A., & Bosch, J. (2023).
Getting trapped in technical debt: A sociotechnical
analysis. MIS Quarterly, 47(3), 1431-1458.
Nayebi, M., Lenarduzzi, V., & Falessi, D. (2024).
Technical debt management: The road ahead. arXiv
preprint.

AlOmar, E. A., Christians, B., Busho, M.,
AlKhalid, A. H., Ouni, A, Newman, C., &
Mkaouer, M. W. (2021). SATDBAailiff: Mining and
tracking self-admitted technical debt. arXiv
preprint arXiv:2107.00073.
https://arxiv.org/abs/2107.00073

CodebTech. (n.d.). Managed services: A solution
for successful digital transformation in legacy
banks. CodebTech.
https://www.codebtech.com/how-managed-

https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://www.capco.com/about-us/success-stories/automated-legacy-applications-refactoring-for-a-tier-1-bank?utm_source=chatgpt.com
https://arxiv.org/abs/2107.00073?utm_source=chatgpt.com
https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Rajesh Kumar / IJCESEN 11-4(2025)7599-7605

services-help-legacy-banks-streamline-digital-
transformation/
CodeScene. (2018). CodeScene: Behavioral code [28]
analysis tool that helps prioritize technical debt
hotspots. CodeScene Documentation.
Datasumi. (n.d.). GenAl: Optimizing legacy code
migration in the banking industry. Datasumi. [29]
https://www.datasumi.com/genai-optimizing-
legacy-code-migration-in-the-banking-industry [30]
Devox Software. (n.d.). Remove technical debt
without slowing down. Devox Software.
https://devoxsoftware.com/legacy-
modernization/tech-debt-management-services/
Forbes. (2022, May 24). Managing technical debt
from legacy systems not moving to cloud. Forbes.
https://www.forbes.com/sites/peterbendorsamuel/2
022/05/24/managing-technical-debt-from-legacy-
systems-not-moving-to-cloud
Insight7. (n.d.). How to evaluate technical debt in
contact center legacy systems. Insight7.
https://insight7.io/how-to-evaluate-technical-debt-
in-contact-center-legacy-systems/
Li, Y., Soliman, M., Avgeriou, P., & van Ittersum,
M. (2023). DebtViz: A tool for identifying,
measuring, visualizing, and monitoring self-
admitted technical debt. arXiv preprint
arXiv:2308.13128.
https://arxiv.org/abs/2308.13128
Lumenalta. (2024). Reversing tech debt through
legacy application modernization. Lumenalta.
https://lumenalta.com/insights/legacy-application-
modernization
McKinsey & Company. (2020). Tame tech debt to
modernize your business. McKinsey Digital
Insights.
https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/breaking-technical-debts-
vicious-cycle-to-modernize-your-business
ScienceDirect. (2024). Technical debt management
automation: State of the art and future perspectives.
Information and Software Technology, 161,
107186.
https://www.sciencedirect.com/science/article/pii/S
0950584923002306
SDV International. (n.d.). Tech debt: How to ease
the burden of legacy systems. SDV International.
https://www.sdvinternational.com/insights/tech-
debt
Sheikhaei, M. S., & Tian, Y. (2023). Automated
self-admitted technical debt tracking at commit-
level: A language-independent approach. arXiv
preprint arXiv:2304.07829.
https://arxiv.org/abs/2304.07829
Shivashankar, K., & Martini, A. (2025). TD-Suite:
All batteries included framework for technical debt
classification. arXiv preprint arXiv:2504.11085.
https://arxiv.org/abs/2504.11085
Synchrony Systems. (n.d.). What is the true cost of
technical debt in legacy applications? Synchrony
Systems. https://sync-sys.com/what-is-the-true-cost-
of-technical-debt-in-legacy-applications/
Virtusa. (n.d.). Technical debt remediation:
Improve your financial applications. Virtusa.
7605

https://www.virtusa.com/lIp/technical-debt-
remediation

Webo.Ai. (n.d.). Technical debt management made
easy with Al. Webo.Ali Blog.
https://webo.ai/blog/technical-debt-management-
made-easy-with-ai

Wikipedia. (2019). Business rule mining.
Wikipedia.

Wikipedia. (2025). Technical debt. Wikipedia.
https://en.wikipedia.org/wiki/Technical debt

https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com
https://www.codebtech.com/how-managed-services-help-legacy-banks-streamline-digital-transformation/?utm_source=chatgpt.com
https://www.datasumi.com/genai-optimizing-legacy-code-migration-in-the-banking-industry?utm_source=chatgpt.com
https://www.datasumi.com/genai-optimizing-legacy-code-migration-in-the-banking-industry?utm_source=chatgpt.com
https://devoxsoftware.com/legacy-modernization/tech-debt-management-services/?utm_source=chatgpt.com
https://devoxsoftware.com/legacy-modernization/tech-debt-management-services/?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://www.forbes.com/sites/peterbendorsamuel/2022/05/24/managing-technical-debt-from-legacy-systems-not-moving-to-cloud?utm_source=chatgpt.com
https://insight7.io/how-to-evaluate-technical-debt-in-contact-center-legacy-systems/?utm_source=chatgpt.com
https://insight7.io/how-to-evaluate-technical-debt-in-contact-center-legacy-systems/?utm_source=chatgpt.com
https://arxiv.org/abs/2308.13128?utm_source=chatgpt.com
https://lumenalta.com/insights/legacy-application-modernization?utm_source=chatgpt.com
https://lumenalta.com/insights/legacy-application-modernization?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0950584923002306?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0950584923002306?utm_source=chatgpt.com
https://www.sdvinternational.com/insights/tech-debt?utm_source=chatgpt.com
https://www.sdvinternational.com/insights/tech-debt?utm_source=chatgpt.com
https://arxiv.org/abs/2304.07829?utm_source=chatgpt.com
https://arxiv.org/abs/2504.11085?utm_source=chatgpt.com
https://sync-sys.com/what-is-the-true-cost-of-technical-debt-in-legacy-applications/?utm_source=chatgpt.com
https://sync-sys.com/what-is-the-true-cost-of-technical-debt-in-legacy-applications/?utm_source=chatgpt.com
https://www.virtusa.com/lp/technical-debt-remediation?utm_source=chatgpt.com
https://www.virtusa.com/lp/technical-debt-remediation?utm_source=chatgpt.com
https://webo.ai/blog/technical-debt-management-made-easy-with-ai?utm_source=chatgpt.com
https://webo.ai/blog/technical-debt-management-made-easy-with-ai?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Technical_debt?utm_source=chatgpt.com

