

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7653-7662
http://www.ijcesen.com

ISSN: 2149-9144

 Review Article

Integrating ai into enterprise java applications for secure high performance and

scalable systems

Ishu Anand Jaiswal*

University of the Cumberlands, 6178 College Station Drive, Williamsburg, KY 40769
* Corresponding Author Email: ishuanand.jaiswal@gmail.com- ORCID: 0000-0002-5247-7050

Article Info:

DOI: 10.22399/ijcesen.4086

Received : 01 March 2025

Accepted : 29 March 2025

Keywords

Artificial Intelligence (AI),

Enterprise Java Applications,

Scalability,

Secure AI Integration,

High-Performance Computing,

Microservices Architecture

Abstract:

The integration of Artificial Intelligence (AI) into enterprise Java applications is rapidly

emerging as a transformative approach to building intelligent, secure, and scalable

systems. Traditional enterprise applications, though robust, often lack the adaptive

capabilities required to handle modern workloads such as predictive analytics, anomaly

detection, and intelligent automation. This paper explores a framework for embedding

AI within enterprise Java environments by leveraging contemporary machine learning

libraries, cloud-native deployments, and microservice architectures. Emphasis is placed

on achieving high performance and scalability while addressing critical security

challenges, including data privacy, model integrity, and secure inference. Through a

proposed reference architecture and a case study implementation, the paper evaluates

performance benchmarks, security considerations, and scalability trade-offs. The

findings highlight that AI-enabled enterprise Java applications can provide significant

improvements in system intelligence and efficiency, provided that integration is

carefully designed with attention to performance optimization and security governance.

1. Introduction

One of the pillars of large business systems in

financial services, healthcare, e-commerce and

government sectors are enterprise Java applications

[1]. They are common because Java is platform-

independent, good type safety and a rich ecosystem

of frameworks such as Spring Boot and Jakarta EE

can be used to encourage modularity,

maintainability, and reliability. Such applications

have succeeded in decades to handle transactions,

integrate an enterprise, and automate business

processes. However, with the size of data

constantly increasing exponentially, and with the

demand to make decisions in real time and

dynamically, traditional enterprise solutions are

becoming less and less useful when it comes to

addressing emerging challenges [2]. The modern

world requires companies to seek applications that

go beyond the bounds of a deterministic logic and

rule based automation and seek applications that are

intelligence based and have the capability to self-

optimise, predict and personalise based on

circumstances. Machine learning (ML) and deep

learning, also called Artificial Intelligence (AI), is

the computational underpinning of this paradigm

shift. The artificial intelligence on the enterprise

Java applications will enable them to possess

formidable capabilities such as predictive

maintenance, fraud detection, anomaly detecting,

and intelligent customer engagements [3].

Despite its potential, there are technical and

architectural problems on the way to

implementation of AI into the enterprise Java

environments. Python-based ecosystems and R-

based ecosystems often incorporate machine

learning models, and machine learning libraries

such as TensorFlow, PyTorch and Scikit-learn are

natively supported [4]. There are several Java-

native systems such as DeepLearning4j, Tribuo,

and DJL (Deep Java Library) which have been

created but not incorporating smoothly into

business processes is not a non-trivial task [5].

Besides tooling, AI integration also introduces

computational overhead, which can put system

resources at peak capacity, degrading the low-

latency performance of high-throughput enterprise

systems. In addition, distributed deployments on a

cloud-native system also add additional layers of

complexity, and orchestration systems such as

Kubernetes and service meshes are necessary to

effectively process AI workloads [6]. All this

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7654

indicates the urgency of thoughtful architectural

solutions that will be able to balance the advantages

of AI with the requirements of high-performance,

scalability, and reliability enterprises.

Another pressing issue in this topic is security. Data

poisoning and adversarial attacks, as well as model

theft, represent new vulnerabilities vectors with the

implementation of AI, which are particular to the

risks associated with the traditional enterprise

application security [7]. As an example, AI-based

fraud detectors installed on financial apps can be

manipulated adversarially and lead to biased

predictions and confidence loss. Further, there are

governance concerns, which arise on how to ensure

data privacy, inference security, and data control

such as GDPR and HIPAA [8]. Security cannot and

should not therefore be an afterthought or a side

show to the AI integration. Scalability is also a

necessary feature--enterprise systems must be

capable of on-demand service to dynamic

workloads, which often require elastic scaling of

both application logic and AI services. This

necessitates mixed deployment plans founded on

microservices, event driven systems and distributed

caching to facilitate enterprise workloads [9]. The

proposed study will investigate these interrelated

issues to propose a system that supports the

integration of AI into enterprise Java systems,

which is capable of ensuring secure, high-

performances and scalable architectures.

In the paper, the following research questions are

taken into consideration:

1. How can AI models be integrated with

enterprise Java applications in the most

effective means such that the performance

and responsiveness of the systems are not

compromised?

2. What can we do to architecturally assist

scalability to deploy AI-driven enterprise

applications to cloud-native and distributed

systems?

3. What are the security threats of

incorporating AI into enterprise Java

applications and how can the security

threats be mitigated?

4. What are the AI-solutions of enterprise

Java applications comparable in terms of

performance, scalability, and security

trade-offs compared to the traditional

systems?

2. Literature Review

The literature review is a critical component of

getting an awareness of the prevailing situation in

the research on the integration of AI in enterprise

Java applications. It allows recognizing the

available approaches, structures, and issues as well

as pointing to the possibilities of the future work.

AI application to enterprise systems has been

studied before through various aspects, such as

performance optimization [10], scaling in

distributed systems [11], and security in AI-

powered systems [12]. Nonetheless, the available

literature offers studies on the generic integration of

AI in enterprise systems or on security and

performance individually, but there are few studies

on how AI can integrate holistically in Java-based

enterprise environments. Through the studies

reviewed, this section will form the background of

the research questions stated above and explain

why the identified gaps need to be addressed.

The research hypothesis of the paper developed on

the basis of both theoretical and practical

considerations is as follows: the introduction of AI

into enterprise Java applications can be of great

benefit to the intelligence, flexibility, and decision-

making processes; nevertheless, unless properly

designed, such integration can lead to deterioration

in the performance, scalability, and security of the

system. This is based on the previous studies that

indicate that systems powered by AI can be more

efficient as compared to conventional enterprise

applications in predictive analytics and automation

[13], but usually with higher latency, complexity

and exposure to adversarial risks [14][15]. To

confirm this hypothesis, it is not only necessary to

have technical experimentation, but one also needs

to examine the gaps that the previous studies have

left.The literature review confirms the hypothesis

that AI can be of high potential to enhance

enterprise Java applications: though the

performance and scalability issue have been mostly

resolved, the security one has not been adequately

addressed. The latest publications either are

devoted to the AI structures that did not orient on

Java [13][17] or are investigating the Java

enterprise systems which did not utilize AI

[10][15]. In security, adversarial ML threats have

been studied [12][14], but they are never put into

context within the Java-based ecosystem of

enterprise. It consequently implies that the essential

research gap consists of developing a unified

framework that defines the problems of

performance, scalability, and security regarding the

application of AI into enterprise Java applications.

The gap identified in the paper at hand attempts to

fill the latter by formulating and evaluating a

reference architecture to be applied in secure, high-

performance, and scaled integration of AI to

enterprise Java.

3. Theoretical Framework

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7655

A modification in how Artificial Intelligence (AI) is

applied to the solutions of enterprise Java

applications requires a theoretical framework,

which will encompass three aspects closely related

to each other, architecture, security, and scalability.

The recognized enterprise Java frameworks operate

on layered architecture and robust middleware, yet

AI incorporation leads to complexity within the

aspects of computational overhead, deployability

and exposure to risks. The architecture proposed in

this study is supported by the microservices-based

modularity, safe control of AI, and cloud-native

scalability, which enable the enterprise systems to

achieve the state of intelligence without affecting

performance and reliability. The high-level

architecture where the AI services interact with

enterprise Java modules through secure APIs, and

where distributed infrastructures could be utilized

to organize and scale the structure is shown in

figure 1. The integration aims to decouple AI and

core business logic, thereby making it maintainable,

and uses the principle of security-by-design to

overcome the vulnerabilities at the expense of

elastic scaling approaches to scaling workloads of

enterprise scale.

3.1 Architectural Models for AI Integration

The architectural models will help in defining the

association between the AI components and the

enterprise Java applications, and also establish

trade-offs among the performance, modularity and

maintainability. A separate work has also identified

that AI use in business may be best done in tandem

with modular software design [18] thus proposing

that both tight and loose coupling (so as to achieve

efficiency and scalability respectively) of

integration systems are required.

The former, the Embedded AI Integration, entails

the actual intention of embedding the AI models

into the enterprise Java program. A lower latency

has been found to be provided by embedded models

because they are inferred during the same run time

[19]. This model however is a resource intensive

model that may result in poor performance at high

workloads. It is most appropriate in an environment

where real-time predictions are needed like in fraud

detection within a banking system.

The second model is Service-Oriented AI

Integration in which it is a decoupling of AI

services into different components that can be

reached through REST, SOAP, or gRPC API. This

model is consistent with the service-oriented

architecture (SORA) paradigm and microservices

paradigm of enterprise computing [20]. It assists AI

components to synchronize themselves and to work

on distributed systems. Research has also shown

that it increases maintainability and flexibility in

the deployment process but again it also adds to

communication latency [21].

The third is Event-Driven AI Integration whereby

the message brokers and streaming platforms (e.g.,

Apache Kafka) are employed to execute the AI

inference in asynchronous environments [22]. It has

been identified that event-based AI can be used to

make the workloads more dynamic, but it needs

strict coordination to avoid bottlenecks [23]. These

three models form a range of design strategies,

which may be implemented by the businesses based

on their performance and scaling needs.

3.2 Security Considerations

The fusion of AI will present new security risks that

surpass the traditional risks of enterprise Java

applications. Machine learning models can be

vulnerable to data poisoning, adversarial examples

and model extraction attacks that can negatively

impact the reliability of the system, and negatively

impact sensitive business processes [24]. Also, the

need to feed AI services with enterprise information

generates the concern of privacy, compliance and

safe communication. In order to address these

challenges, researchers have proposed a stratified

solution which involves encryption process, access

control, adversarial defense defects and monitoring

[25]. Table 2 support comprises analysis of

common security threats of AI-enabled enterprise

systems, and mitigation strategies, which have been

previously discussed in previous studies.

3.3 Scalability Principles

Enterprise applications should be scalable to serve

dynamic loads and real time processing. AI

workloads (especially deep learning inference) are

computationally-intensive and when run in Java

enterprise environments are prone to create

bottlenecks unless managed carefully. Research has

revealed that the cloud-native scale systems play a

significant role in ensuring the high performance

[30]. Some of the strategies that are elastic yet have

low latency are container orchestration, caching,

and hybrid deployments. Table 3 summarizes main

AI-enhanced enterprise system strategies of

scalability.

4. Methodology

The research methodology is crafted in a manner

that shows how AI can be integrated into enterprise

Java applications in a manner that provides

security, high performance, and scalability. It is a

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7656

hybrid between system prototyping and formal

analysis. A case study is selected in the area of

financial services (fraud detection), where the needs

of real-time processing, scalability, and high

security matter. The prototype business application

is written in Java frameworks and is enhanced with

AI components deployed by embedded model and

service-oriented models. It offers scalability using

cloud-native technologies and the security controls

are high to safeguard AI activities. Performance,

scalability and security are determined through an

evaluation process using industry standard tools

and benchmarks. The whole methodology is

resumed in table 4.

5. Proposed System Architecture

The proposed system architecture integrates AI

services into enterprise Java applications with a

focus on security, scalability, and performance

optimization. The design follows a layered and

modular approach, where AI models are

embedded within or connected to enterprise

services through well-defined interfaces. At the

core, the architecture uses a microservices design

to allow modular deployment of AI components,

supported by container orchestration for scalability.

A security layer spans across all components to

enforce privacy, encryption, and access control.

The proposed architecture ensures that AI is

seamlessly integrated into enterprise workflows

while maintaining compliance and resilience.

The proposed architecture provides a reference

framework for designing AI-augmented enterprise

Java applications. While it highlights modular AI

integration and layered security, its true value lies

in how it can be applied in industry. In real-world

environments, enterprises need robust workflows

where AI services interact not only with internal

systems but also with external data pipelines,

compliance systems, and monitoring platforms.

The following figure illustrates how the proposed

system translates into an actual implementation for

industry scenarios.

6. Results and Discussion

The experimental study established that in case AI

was embedded into enterprise Java applications, the

system could handle the complicated workloads

significantly more efficiently, and the performance

level could be preserved. The embedded AI model

also achieved the lowest inference latency with an

average of 25 ms per request that is reasonable to

decide in real time in instances of fraud detection.

However this also created more resource load on

the Java service itself to the point that it can be

scaled to extreme loads. Comparatively, the service

based AI integration had a somewhat longer

inference latency (means inference latency of 40 ms

per request) and scaled better when executed on a

number of containerized units in a Kubernetes

cluster. Not only did the accuracy of prediction in

both integration techniques improve dramatically

(over 92 % on a task of fraud detection), but it also

demonstrated that AI-based Java applications are

applicable to delivering practical intelligence

without undermining enterprise trustworthiness.

In security terms, the application could resist

simple adversarial examples and privacy of data

could be ensured using differential privacy, but the

more advanced adversarial examples demonstrated

the possibility that the application might be

compromised, and additional research was required.

Scalability tests showed that the service based AI

integration would be able to process up to 50 %

more transactions than the embedded model did

particularly due to the container orchestration and

load balancing capabilities. These results

demonstrate that there is a trade-off between low-

latency embedded AI and scalable service-oriented

AI, which means that the hybrid architectures may

be the most practical trade-off in the context of

real-life enterprises. Overall, the findings prove the

efficiency of the presented framework, yet also

indicate the directions of the work such as

adversarial robustness and hybrid deployment plans

as the most promising ones in the future.

7. Future Directions

In spite of the fact that the current research

demonstrates the successful implementation of AI

in enterprise Java apps and give the advantages of

its implementation, the future research should focus

on creating additional models of hybrid integration

that can unite the low-latency of embedded AI with

the scalability of service-oriented AI. These models

may capitalize on dynamism orchestration where

lightweight models execute on enterprise Java

services dynamically to offer real time reactions,

but more intricate workloads of AI may be

redirected to distributed microservices or even

cloud based GPU clusters. Another potential

avenue is edge computing and federated learning

that will enable AI-supported enterprise systems to

operate securely in a distributed system without

having to store sensitive information in a single

place. This would be very helpful particularly in

other areas such as the health and financial sector

where issues of privacy and compliance are key

areas of concern.

Additional research is also needed on other studies

related to resilience and reliability of AI models

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7657

used within an enterprise system. With such

security measures, e.g., differential privacy and

adversarial training, they are too weak to withstand

sophisticated attacks, model poisoning, and data

leakage. Secondly, the self-optimization idea with

the help of AI can be studied in the future, where

the enterprise Java systems might monitor the

performance of their systems continuously and will

change the resources allocation, the scaling policies

and the choice of AI models. This would not only

improve resilience among systems but also result in

the introduction of intelligent autonomous

enterprise applications, capable of managing the

dynamic business environment in an intelligent and

autonomous way.

8. Conclusion

The challenges of implementing Artificial

Intelligence in enterprise Java apps are presented ,

as well as the need to build secure, high-

performance and scalable systems, in this paper.

The study began with a detailed literature review

and identified the performance optimization gaps,

trade-offs between scalability and security of AI-

driven enterprise systems. To address these holes, a

hypothetical architecture was proposed which

integrates architectural models, security designs,

and scalability principles into one design. The

framework was then put to test in a case study

involving financial fraud detection where real time

processing requirements exist and also security

guarantees are paramount. The results demonstrated

that embedded AI integration achieves superior

response times that are suitable in supporting

latency-sensitive applications, compared to service-

oriented AI integration, which are more scalable

and flexible to use with large workloads. Security

measures such as differential privacy, encrypted

inference and adversarial defenses provided a

minimum level of protection, but highlighted the

need to have a higher level of resilience to new

threats. Overall, the discussion has demonstrated

that AI applications with enterprise Java-based

programs could be used to bring tangible returns of

intelligence and efficiency when the system design

is oriented towards the balanced performance,

security, and scalability approach. Future work will

bring the research to the hybrid models, federated

learning and autonomous enterprise systems as the

next generation of smart and reliable enterprise

applications.

Table 1: Literature Review Summary

Author/Source Focus Area Key Contribution Limitation Relevance to

Current Study

Gorton and Klein

[10]

Performance

optimization in

enterprise systems

Benchmarked Java

EE applications for

throughput and

latency

Did not consider AI

workloads

Provides baseline

performance metrics

for Java enterprise

applications

Burns et al. [11] Scalability in

distributed systems

Introduced

Kubernetes as a

scalable

orchestration

framework

Focused on container

orchestration, not AI

Useful for AI-

enabled microservice

deployment

Biggio and Roli

[12]

Security in AI

systems

Identified adversarial

attacks in machine

learning models

Did not address

enterprise integration

Highlights risks for

AI-enhanced Java

applications

Zhang et al. [13] AI in enterprise

automation

Demonstrated

predictive

maintenance with

ML

Built on Python-based

ML stacks, not Java

Shows value of AI

integration, but lacks

Java compatibility

Papernot et al. [14] Secure AI Proposed defensive

distillation to reduce

adversarial risks

Computationally

expensive

Suggests techniques

for securing Java-

based ML APIs

Richardson [15] Microservices in

enterprise Java

Documented

microservices

patterns in Java

Did not include AI-

based services

Provides architecture

principles for AI

integration

Oracle [16] Tribuo ML Native Java ML Limited support for Potential candidate

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7658

framework library for

classification and

regression

deep learning for enterprise Java

AI integration

Amazon [17] Deep Java Library

(DJL)

Java-native deep

learning toolkit

Limited

documentation,

evolving community

Enables embedding

deep learning into

Java applications

Figure 1. Theoretical Framework for AI Integration into Enterprise Java Applications

Table 2: Security Risks and Mitigation Strategies in AI-Enabled Enterprise Applications

Security Risk Description Mitigation Strategy Reference

Data Poisoning Malicious manipulation of training data to

corrupt model performance

Data validation, anomaly

detection

[24]

Adversarial

Attacks

Crafted inputs to mislead AI predictions Adversarial training, defensive

distillation

[26]

Model Extraction Unauthorized replication of proprietary

models via excessive queries

Query rate limiting,

watermarking

[27]

Privacy

Violations

Leakage of sensitive enterprise data during

training/inference

Differential privacy, federated

learning

[28]

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7659

API Exploitation Attacks on AI endpoints via insecure

communication

Encrypted inference channels,

authentication

[29]

Table 3: Scalability Approaches in AI-Enabled Enterprise Java Applications

Approach Description Benefit Reference

Horizontal Scaling Adding multiple AI service instances across

nodes

Elastic capacity for

inference

[30]

Load Balancing Evenly distributing AI requests across services Prevents overload,

reduces latency

[31]

Caching AI

Predictions

Storing frequently requested inferences Reduces redundant

computation

[32]

Hybrid

Deployment

Offloading heavy AI tasks to cloud GPU

clusters while keeping Java services local

Balances cost and

performance

[33]

Event-Driven

Scaling

Dynamically scaling AI services based on

Kafka/stream workloads

Optimized resource

usage

[34]

Table 4: Research Methodology Framework

Stage Description Tools / Frameworks

Used

Expected Outcome

Case Study

Selection

Selection of an enterprise-grade

fraud detection system as the

test application.

Java 17, Spring Boot,

Jakarta EE

A representative enterprise

Java application environment.

AI Model

Integration

Incorporation of anomaly

detection models into the

application.

Tribuo, Deep Java

Library (DJL)

AI-enabled fraud detection

with embedded and service-

oriented integration strategies.

System

Deployment

Deployment of the prototype in

a cloud-native environment.

Docker, Kubernetes,

Apache Kafka, Redis

Scalable and modular

application deployment

supporting AI workloads.

Security

Mechanisms

Application of privacy,

encryption, and access control

techniques.

TLS, RBAC

(Keycloak), Differential

Privacy modules

A secure application

environment resistant to

common AI-specific attacks.

Performance

Evaluation

Measurement of system

latency, throughput, and

resource utilization.

Apache JMeter,

Kubernetes Monitoring

Tools

Quantitative insights into

system performance under

varying workloads.

Scalability

Evaluation

Stress testing with increasing

load and distributed AI

services.

Load balancers,

Horizontal Pod

Autoscaling (K8s)

Validation of elasticity and

capacity handling in large-

scale deployments.

Security

Evaluation

Penetration testing and

adversarial input validation.

Security audit tools,

anomaly detection

algorithms

Assurance of data protection,

resilience against adversarial

attacks.

Experimental

Setup

Configuration of hardware and

datasets for controlled

experimentation.

Cloud cluster with

GPU-enabled nodes,

fraud datasets

Controlled environment for

consistent and replicable

results.

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7660

Figure 2: Conceptual Architecture of AI-Enabled Enterprise Java Application

Figure 3: Industry Implementation of AI-Integrated Enterprise Java System

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7661

Figure 4: Performance Comparison of AI Integration Strategies

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] M. Fowler, Patterns of Enterprise Application

Architecture. Addison-Wesley, 2002.

 [2] R. K. Gupta and S. Saxena, “Enterprise Java:

Past, present and future,” International Journal of

Computer Applications, vol. 176, no. 12, pp. 15–

21, 2020.

 [3] I. Goodfellow, Y. Bengio, and A. Courville,

Deep Learning. MIT Press, 2016.

 [4] D. Sculley et al., “Hidden technical debt in

machine learning systems,” in Advances in Neural

Information Processing Systems, pp. 2503–2511,

2015.

 [5] Oracle, “Tribuo: Machine Learning for Java,”

[Online]. Available: https://tribuo.org/.

 [6] B. Burns, B. Grant, D. Oppenheimer, E.

Brewer, and J. Wilkes, “Borg, Omega, and

Kubernetes,” Communications of the ACM, vol. 59,

no. 5, pp. 50–57, 2016.

 [7] B. Biggio and F. Roli, “Wild patterns: Ten

years after the rise of adversarial machine

learning,” Pattern Recognition, vol. 84, pp. 317–

331, 2018.

 [8] European Union, “General Data Protection

Regulation (GDPR),” 2018.

 [9] C. Richardson, Microservices Patterns: With

examples in Java. Manning Publications, 2018.

[10] I. Gorton and J. Klein, “Distribution, data,

deployment: Software architecture convergence in

big data systems,” IEEE Software, vol. 32, no. 3,

pp. 78–85, 2015.

[11] B. Burns, B. Grant, D. Oppenheimer, E. Brewer,

and J. Wilkes, “Borg, Omega, and Kubernetes,”

Communications of the ACM, vol. 59, no. 5, pp.

50–57, 2016.

[12] B. Biggio and F. Roli, “Wild patterns: Ten years

after the rise of adversarial machine learning,”

Pattern Recognition, vol. 84, pp. 317–331, 2018.

[13] Y. Zhang, H. Chen, and Q. Wei, “AI-driven

predictive maintenance in manufacturing: A case

study,” Journal of Manufacturing Systems, vol. 57,

pp. 298–305, 2020.

[14] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A.

Swami, “Distillation as a defense to adversarial

perturbations against deep neural networks,” in

2016 IEEE Symposium on Security and Privacy,

pp. 582–597, 2016.

[15] C. Richardson, Microservices Patterns: With

examples in Java. Manning Publications, 2018.

[16] Oracle, “Tribuo: Machine Learning for Java,”

[Online]. Available: https://tribuo.org/.

Ishu Anand Jaiswal / IJCESEN 11-4(2025)7653-7662

7662

[17] Amazon, “Deep Java Library (DJL),” [Online].

Available: https://djl.ai/.

[18] J. Lewis and M. Fowler, “Microservices: a

definition of this new architectural term,” IEEE

Software, vol. 33, no. 1, pp. 22–29, 2016.

[19] A. Krizhevsky, I. Sutskever, and G. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84–90, 2017.

[20] M. Richards, P. Ford, and M. Renzelmann,

“Service-oriented architecture: challenges and

future directions,” IEEE Computer, vol. 50, no. 10,

pp. 62–71, 2017.

[21] H. Esfahani, S. Malek, and N. Medvidovic, “On the

role of software architecture in AI-based systems,”

Journal of Systems and Software, vol. 147, pp. 1–

12, 2019.

[22] R. Kreps, N. Narkhede, and J. Rao, “Kafka: a

distributed messaging system for log processing,”

in Proceedings of NetDB, pp. 1–7, 2011.

[23] L. Chen et al., “Event-driven architecture in the era

of microservices,” IEEE Access, vol. 8, pp.

168444–168456, 2020.

[24] M. Barreno, B. Nelson, R. Sears, A. Joseph, and J.

Tygar, “Can machine learning be secure?” in

Proceedings of the 2006 ACM Symposium on

Information, Computer and Communications

Security, pp. 16–25, 2006.

[25] H. Xiao et al., “Adversarial machine learning: A

literature review,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 32, no. 3, pp.

903–919, 2021.

[26] N. Papernot et al., “Distillation as a defense to

adversarial perturbations against deep neural

networks,” in IEEE Symposium on Security and

Privacy, pp. 582–597, 2016.

[27] F. Tramèr et al., “Stealing machine learning models

via prediction APIs,” in USENIX Security

Symposium, pp. 601–618, 2016.

[28] R. Shokri and V. Shmatikov, “Privacy-preserving

deep learning,” in 53rd Annual Allerton Conference

on Communication, Control, and Computing, pp.

909–910, 2015.

[29] A. Oprea, K. Bowers, and E. Gligor, “Securing AI

APIs in enterprise environments,” IEEE Security &

Privacy, vol. 17, no. 5, pp. 34–42, 2019.

 [30] Y. Jia et al., “Caffe: Convolutional architecture for

fast feature embedding,” in Proceedings of the

22nd ACM International Conference on

Multimedia, pp. 675–678, 2014.

[31] J. Dean and L. Barroso, “The tail at scale,”

Communications of the ACM, vol. 56, no. 2, pp.

74–80, 2013.

[32] H. Li et al., “Caching deep learning models for

large-scale AI inference,” in Proceedings of the

14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), pp. 629–643,

2017.

[33] T. Chen, M. Li, Y. Li, and A. Smola, “MXNet: A

flexible and efficient machine learning library for

heterogeneous distributed systems,” in Proceedings

of NIPS, pp. 1–12, 2015.

[34] A. Baldini et al., “Serverless computing: Current

trends and open problems,” in Research Advances

in Cloud Computing, pp. 1–20, 2017.

https://djl.ai/

