

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7672-7679
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

The Serverless Paradigm: Abstraction, Elasticity, and Event-Driven Computing

in Modern Cloud Architectures

Ujjwal Raj*

Independent Researcher, USA
* Corresponding Author Email: reachujjwalraj@gmail.com- ORCID: 0000-0002-5247-0050

Article Info:

DOI: 10.22399/ijcesen.4088

Received : 29 August 2025

Accepted : 08 October 2025

Keywords

Function-as-a-Service,

Event-Driven Architecture,

Infrastructure Abstraction,

Consumption-Based Billing,

Cloud Computing

Abstract:

Serverless computing has emerged as a transformative paradigm in cloud computing,

fundamentally altering how applications are designed, deployed, and managed. This

article explores the core characteristics of serverless architectures—including

infrastructure abstraction, event-driven execution models, automatic scaling, and

consumption-based billing while distinguishing them from traditional cloud service

models. The article demonstrates the significant benefits of serverless adoption, such as

reduced operational overhead, accelerated development cycles, and enhanced cost

efficiency, particularly for workloads with unpredictable demand patterns. It examines

architectural patterns naturally suited to serverless implementation, including

microservices integration, event-driven designs, and data processing pipelines. The

analysis also addresses critical challenges inherent to the serverless model, including

cold start latency, observability complexities, vendor lock-in concerns, and state

management in stateless environments. The article concludes with an evaluation of the

current serverless landscape across major cloud providers and identifies promising

future directions, including convergence with edge computing and artificial intelligence

technologies.

1. Introduction and Foundational Principles

Serverless computing represents a paradigm shift in

cloud computing that fundamentally transforms

application deployment and management strategies.

This approach, often termed Function-as-a-Service

(FaaS), enables developers to focus exclusively on

code functionality while abstracting away

infrastructure management concerns [1]. The

serverless model emerged as a natural evolution in

cloud computing, progressing from Infrastructure-

as-a-Service (IaaS) and Platform-as-a-Service

(PaaS) to deliver heightened abstraction and

operational efficiency.Recent industry surveys

indicate substantial growth in serverless adoption,

with a significant percentage of enterprises now

implementing serverless technologies in at least one

application [1]. This trajectory reflects the model's

compelling value proposition across diverse

organizational contexts. Historically, the serverless

concept materialized commercially in 2014 with

AWS Lambda, though its conceptual foundations

trace back to utility computing theories proposed in

the early 2000s. By 2024, the serverless computing

market has reached substantial valuation, with

projections indicating continued strong growth

through 2028 [2].The serverless paradigm is

distinguished by four fundamental characteristics

that collectively define its operational model:

Server abstraction removes infrastructure

provisioning and management responsibilities from

developers, with adopters reporting significant

reductions in operational overhead [1].

Event-driven execution model, where functions

activate in response to specific triggers such as

HTTP requests, database changes, or message

queue events. This approach has demonstrated

notable improvements in resource utilization

compared to traditional always-on deployment

models [2].

Automatic and elastic scaling enables seamless

adaptation to workload fluctuations without manual

intervention. Cloud providers' serverless platforms

automatically provision computational resources in

response to incoming requests, with platforms like

AWS Lambda reporting the ability to scale from

zero to thousands of concurrent executions within

seconds.

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7673

Consumption-based billing charges exclusively

for actual compute resources consumed during

function execution, typically measured in

millisecond increments, eliminating costs during

idle periods. Studies indicate this billing approach

reduces compute costs significantly for intermittent

workloads compared to traditional reservation-

based models [1].

Serverless computing distinctly differs from

preceding cloud service models in its abstraction

level and operational parameters. Unlike IaaS,

which requires manual virtual machine

configuration and maintenance, serverless

completely abstracts infrastructure management. It

extends beyond PaaS by eliminating application-

level scaling concerns and introducing more

granular billing. Compared to container

orchestration platforms like Kubernetes, which still

necessitate cluster management and scaling

policies, serverless platforms provide automatic

scaling without configuration requirements.

Comparative analyses demonstrate that serverless

implementations require significantly fewer

operational hours than container-based

deployments and traditional IaaS approaches [2].

2. Benefits and Value Proposition

2.1 Operational Efficiency

Serverless computing delivers substantial

operational benefits by radically reducing

infrastructure management overhead. Organizations

implementing serverless architectures report

significant reductions in DevOps personnel hours

dedicated to server provisioning, patching, and

maintenance activities [3]. Studies of enterprise

implementations reveal that development teams

reclaim considerable time previously allocated to

infrastructure management tasks, representing a

meaningful portion of total development capacity

[3]. This operational efficiency translates directly to

financial benefits, with organizations reporting

reductions in total cost of ownership (TCO)

following serverless adoption. Infrastructure

automation inherent in serverless platforms has

eliminated many security vulnerabilities stemming

from misconfiguration and patch management

delays, addressing key concerns that previously

consumed substantial operational resources [4].

2.2 Development Acceleration

Development acceleration represents another

significant advantage of serverless architectures.

The abstraction of infrastructure concerns enables

developers to focus exclusively on business logic,

reducing cognitive load and supporting faster

iteration cycles. Industry analyses show that

development teams leveraging serverless

frameworks demonstrate measurable reductions in

time-to-production for new features compared to

teams utilizing traditional deployment

methodologies [3]. This acceleration stems from

simplified deployment processes, with

organizations reporting increased deployment

frequency following serverless adoption. The

elimination of environment configuration

disparities between development and production

has reduced integration issues, while serverless

frameworks' built-in CI/CD integration capabilities

have compressed deployment pipelines [4]. Many

organizations report that serverless adoption

enabled them to decrease time-to-market for new

products by months on average [3].

2.3 Cost Efficiency

Cost efficiency constitutes a primary driver for

serverless adoption across diverse organizational

contexts. The consumption-based pricing model

eliminates costs during idle periods, with

organizations reporting infrastructure expenditure

reductions for workloads with lower utilization

rates [3]. This economic advantage is particularly

pronounced for applications with unpredictable or

sporadic traffic patterns. Analyses of enterprise

workloads reveal that applications with high

variability in request rates achieved significant cost

reductions through serverless implementation

compared to traditional provisioning [4]. Even for

sustained workloads, the elimination of over-

provisioning – which is common in traditional

architectures according to industry benchmarks –

delivers significant economic benefits. The pay-

per-use model also transforms capital expenditure

(CapEx) to operational expenditure (OpEx), with

enterprises reporting improved financial flexibility

and more predictable cost structures despite

workload variability [3].

2.4 Scalability

Scalability characteristics represent perhaps the

most transformative aspect of serverless

architectures. The automatic, near-instantaneous

scaling capabilities eliminate capacity planning

requirements and enable seamless handling of

traffic fluctuations without performance

degradation. Performance benchmarks demonstrate

that leading serverless platforms can scale from

zero to thousands of concurrent function executions

within seconds, accommodating sudden traffic

spikes that would overwhelm traditional

architectures [4]. This elastic scaling occurs

bidirectionally, with resources scaling down to zero

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7674

during idle periods, unlike container orchestration

systems that maintain minimum resource

allocations. Analysis of production workloads

reveals that serverless implementations maintain

high availability during traffic surges, compared to

traditional autoscaling groups with similar

configurations [3]. For seasonal workloads with

significant differences between peak and baseline

traffic, serverless architectures demonstrate high

cost efficiency (defined as the ratio of resources

consumed to resources provisioned), compared to

traditional provisioning approaches [4].

3. Architectural Patterns and

Implementation Strategies

Serverless computing has catalyzed significant

evolution in microservices integration and

decomposition approaches, enabling more

granular functional separation than traditional

microservice architectures. Research conducted

across enterprise applications indicates that

serverless implementations achieve substantially

higher function granularity compared to

conventional microservices [5]. This fine-grained

decomposition enables superior isolation, with

failure domain analysis demonstrating reduced

cascading failures following decomposition from

microservices to serverless functions. Organizations

implementing serverless microservices report

reductions in time required for individual service

updates, with many teams achieving continuous

deployment capabilities within months of adoption

[6].

Domain-driven design methodologies
complemented by serverless architectures have

demonstrated particularly compelling results, with

bounded context implementations showing

improvements in team autonomy metrics and

reduced cross-team dependencies compared to

monolithic or coarse-grained microservice

approaches [5]. Furthermore, analysis of production

deployments reveals that teams implementing

serverless microservices achieve more frequent

deployments with fewer rollbacks compared to

traditional microservice implementations [6].

Event-driven architectures (EDA) and reactive

programming paradigms represent natural

complements to serverless computing models, with

most production serverless implementations

incorporating event-driven patterns [5]. These

architectures leverage serverless functions as event

consumers, processing events generated by diverse

sources, including databases, message queues, IoT

devices, and user interactions. Performance analysis

demonstrates that serverless EDA implementations

achieve lower coupling scores compared to request-

response architectures, enabling superior system

resilience and maintainability [6]. Message-based

choreography patterns predominate in serverless

implementations, with organizations reporting

reductions in orchestration complexity and

decreased central coordination components

compared to traditional service orchestration

approaches [5]. Reactive programming paradigms

further enhance these architectures by providing

declarative composition of asynchronous and event-

based systems. Assessment of enterprise

applications reveals that reactive serverless

implementations achieve higher throughput under

variable load conditions and lower latency

variability compared to imperative approaches,

with particularly pronounced benefits during traffic

spikes [6].

Data processing pipelines and real-time analytics

workflows represent compelling serverless use

cases, with many enterprises implementing

serverless for at least one data processing function

[5]. Event-triggered processing enables real-time

data transformation with minimal infrastructure

complexity, while consumption-based pricing

aligns costs directly with processing volume.

Comparative analysis of identical extract-

transform-load (ETL) workloads demonstrates that

serverless implementations achieve higher cost

efficiency compared to traditional batch processing

systems [6]. Organizations report reductions in data

processing pipeline development time, with many

achieving low processing latencies for events

requiring fewer transformation steps [5]. Real-time

analytics workflows particularly benefit from

serverless architectures, with implementations

achieving sub-second insights delivery compared to

traditional approaches. Performance benchmarks

indicate that serverless stream processing

implementations handle higher throughput per

compute dollar than persistent cluster deployments

for workloads with intermittent or unpredictable

volume [6]. Notably, organizations report

successful implementation of complex analytical

functions, including time-series analysis, anomaly

detection, and predictive modeling within

serverless architectures, achieving lower total cost

of ownership compared to dedicated analytics

infrastructure [5].

State management presents distinctive challenges

in inherently stateless serverless environments,

necessitating specialized strategies for persistence

and coordination. Research examining production

serverless applications reveals that most employ

external persistence services, with many utilizing

NoSQL databases, object storage, and specialized

state management services [6]. Performance

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7675

analysis demonstrates that optimized external state

access patterns reduce function execution duration

compared to naive implementations, with particular

benefits derived from connection pooling, data

locality, and asynchronous I/O [5]. Distributed

caching strategies significantly enhance

performance, with high-throughput serverless

applications implementing multi-level caching that

reduces database interactions [6]. For workflow

orchestration requiring state coordination across

multiple functions, organizations report lower

implementation complexity using specialized

serverless workflow services compared to custom

coordination mechanisms. Importantly, research

examining production incidents reveals that a

significant portion of serverless application failures

stem from state management issues, with race

conditions, inconsistent caching, and transactional

boundary violations representing the most common

failure modes [5]. Organizations implementing

comprehensive state management strategies with

clearly defined consistency models report fewer

production incidents and faster mean time to

resolution (MTTR) for state-related failures [6].

4. Challenges and Limitations

Cold start latency represents one of the most

significant challenges in serverless computing,

introducing unpredictable performance

characteristics that can undermine application

responsiveness. Comprehensive benchmarking

across major serverless platforms reveals varying

cold start latencies, with median values in the

hundreds of milliseconds across function

invocations [7]. These latencies stem from multiple

sequential operations: container instantiation,

runtime initialization, function code loading, and

dependency resolution. Language selection

significantly impacts these metrics, with compiled

languages demonstrating lower cold start latencies

compared to interpreted languages, while functions

with larger dependency footprints experience

longer initialization times compared to functions

with minimal dependencies [8]. The implications of

cold start latency extend beyond theoretical

concerns, with user experience research indicating

that users abandon web applications experiencing

longer response times, and organizations reporting

SLA violations directly attributable to cold start

incidents [7]. Various mitigation techniques

demonstrate varied effectiveness: pre-warming

strategies reduce cold start frequency but introduce

additional costs; dependency optimization reduces

cold start duration for various runtimes; memory

allocation increases reduce initialization time but

increase per-invocation costs; and specialized

provisioned concurrency options eliminate cold

starts for most requests but introduce base costs [8].

Observability, debugging, and monitoring present

compound challenges in serverless architectures

due to their distributed, ephemeral execution

model. Analysis of production incidents reveals that

debugging complexity increases in serverless

applications compared to monolithic equivalents,

with longer mean time to resolution (MTTR) [7].

This complexity stems from limited execution

context, ephemeral runtime environments, and

distributed trace fragmentation. Survey data from

organizations indicates that many report significant

gaps in their observability tooling following

serverless adoption, with particular deficiencies in

cross-function tracing, performance profiling, and

end-to-end request visualization [8]. Traditional

debugging approaches prove inadequate, with

development teams reporting that local debugging

environments fail to accurately reproduce

production behavior for serverless functions.

Organizations implementing comprehensive

observability solutions specifically designed for

serverless architectures report reductions in MTTR

and decreases in production incidents, though these

solutions increase monitoring costs and introduce

runtime overhead depending on instrumentation

depth [7]. Correlating events across distributed

serverless components remains particularly

challenging, with organizations reporting that

reconstructing transaction flows requires manual

intervention for complex operations spanning

multiple distinct functions [8].

Vendor lock-in considerations represent significant

strategic concerns in serverless adoption, with

quantitative risk analysis indicating that migration

costs from one serverless platform to another

represent a substantial percentage of initial

development costs [7]. This lock-in stems from

deep integration with provider-specific services,

with the average production serverless application

utilizing multiple distinct managed services beyond

core function execution. Survey data indicates that

many organizations express concern regarding

serverless lock-in, though fewer implement

concrete portability strategies [8]. Comparative

analysis of serverless offerings reveals

discrepancies in feature sets, with only a portion of

advanced features being consistently available

across major providers. Performance characteristics

also vary substantially, with identical functions

demonstrating execution time variations across

platforms and cost differences for equivalent

workloads [7]. Organizations pursuing portability

implement various strategies with differing success

rates: abstraction layers reduce migration effort but

introduce performance overhead and increase

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7676

development complexity; multi-cloud deployments

improve resilience but increase operational costs;

and standardized deployment frameworks reduce

configuration drift but constrain utilization of

platform-specific optimizations. Notably,

organizations implementing the Serverless

Framework report reductions in platform migration

efforts compared to native tooling approaches,

though this abstraction constrains access to

advanced platform features [8].

Performance boundaries and execution

constraints impose significant limitations on

serverless applicability for certain workloads.

Empirical analysis across function types reveals

that serverless platforms impose explicit

constraints, including maximum execution

duration, deployment package size, memory

allocation, concurrent execution limits, and

temporary storage capacity [8]. These constraints

render serverless architectures unsuitable for certain

existing application workloads, including long-

running processes, memory-intensive computations,

and storage-intensive operations. Performance

analysis indicates that serverless functions

experience CPU throttling at a higher rate than

equivalent virtual machine deployments, with CPU

allocation closely correlating with memory

configuration [7]. Network performance introduces

additional limitations, with functions experiencing

higher network latency to external services

compared to dedicated compute resources, and

bandwidth constraints reducing data transfer rates

for larger operations. Ephemeral execution

environments prohibit state persistence, with

functions losing local state within minutes of

inactivity [8]. Cold start penalties create particular

challenges for latency-sensitive applications, with

performance modeling indicating that applications

requiring low P95 latencies experience SLA

violations at higher rates in serverless

implementations compared to persistent compute

deployments. Organizations implementing

serverless architectures report successful migration

for web application backends, data transformation

pipelines, and event-handling systems, but lower

success rates for computation-intensive workloads,

stream processing applications with strict ordering

requirements, and applications with strict real-time

guarantees [7].

5. Current Landscape and Future Directions

Comparative analysis of major cloud provider

offerings reveals substantial diversity in serverless

implementations, with differentiated capabilities,

performance characteristics, and pricing models.

Quantitative benchmarking across function

deployments demonstrates that AWS Lambda

commands the largest market share, followed by

Azure Functions, Google Cloud Functions, and

IBM Cloud Functions [9]. Performance analysis

indicates variation in execution efficiency, with

AWS Lambda demonstrating lower average

execution times compared to Google Cloud

Functions for identical workloads, while Azure

Functions exhibits lower cold start latencies but

higher compute costs per million executions [10].

Feature comparison across distinct serverless

capabilities reveals that AWS leads in service

breadth with high feature implementation, followed

by Azure, Google, and IBM [9]. Pricing structures

exhibit material differences, with computation

charges and invocation fees varying across

providers. Memory allocation granularity varies

from smaller increments (AWS) to larger

increments (Google), with direct cost implications

for optimization. Maximum execution durations

and concurrency limits also vary across providers

[10]. Integration capabilities represent a key

differentiator, with AWS offering native

connections to numerous distinct services, followed

by Azure, Google, and IBM. Organizations

implementing multi-cloud serverless strategies

report higher operational complexity but improved

resilience compared to single-provider approaches

[9].Industry adoption patterns demonstrate

accelerating serverless implementation across

diverse sectors, with market analysis indicating

strong growth between 2018 and 2023 [9]. Sector-

specific adoption rates show considerable variation

across technology, financial services, retail,

healthcare, manufacturing, and public sector

organizations. Organization size correlates with

adoption patterns, with larger enterprises

demonstrating higher adoption compared to smaller

organizations. Use case maturity analysis across

production implementations reveals that specific

application categories have achieved substantial

production validation: API backends, data

processing workflows, scheduled automation, web

application hosting, IoT backends, and real-time

analytics [10]. Conversely, use cases demonstrating

limited maturity include high-performance

computing, stateful workflows, and mission-critical

systems with strict reliability requirements.

Implementation success metrics vary by use case,

with organizations reporting cost reductions for

batch processing workloads, development

acceleration for API implementations, and

scalability improvements for variable-demand

applications. Notably, many organizations report

unsuccessful serverless implementations for at least

one attempted use case, with primary failure factors

including performance limitations, complexity

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7677

management, and integration challenges

[9].Research frontiers in serverless computing span

multiple dimensions, with institutional and

corporate research initiatives increasing

significantly in recent years [10]. Performance

optimization represents a primary research focus,

with peer-reviewed publications addressing cold

start mitigation, resource efficiency, execution

isolation, and state management. Innovative

approaches demonstrating particular promise

include specialized container snapshots reducing

initialization time, language-specific optimizations

decreasing runtime overhead, and predictive scaling

algorithms improving resource utilization while

maintaining equivalent performance [9]. Security

research has produced publications addressing

serverless-specific concerns, with emphasis on

multi-tenant isolation, fine-grained permission

models, secure function composition, and supply

chain vulnerabilities. Novel security techniques

include side-channel attack mitigation, automated

least-privilege policy generation, and formal

verification methods identifying potential

vulnerabilities [10]. Interoperability research

encompasses publications focused on cross-

platform abstraction, standardized deployment

models, and function portability. Significant

advancements include platform-agnostic

development frameworks reducing implementation

differences, unified monitoring approaches

capturing relevant telemetry across heterogeneous

environments, and automated migration tooling

decreasing transition effort compared to manual

reimplementation [9].Convergence with edge

computing and artificial intelligence technologies

represents perhaps the most transformative frontier

in serverless evolution. Edge-serverless integration

research has produced publications demonstrating

latency reductions for geo-distributed applications

through function deployment at network edge

locations [10]. Implementation benchmarks indicate

that edge-serverless architectures achieve lower

P95 latency for location-sensitive workloads

compared to centralized cloud deployment, while

reducing bandwidth consumption through local data

processing. Challenges in this integration include

limited compute capacity, connectivity constraints,

and security complexities [9]. Artificial intelligence

convergence manifests in bidirectional integration:

serverless platforms as AI delivery mechanisms and

AI techniques enhancing serverless operations. For

AI delivery, serverless implementations

demonstrate cost reduction for inference workloads

with variable demand compared to dedicated

infrastructure, while enabling faster model

deployment cycles [10]. Research indicates that

many machine learning inference workloads exhibit

request patterns well-suited to serverless scaling

characteristics. Conversely, AI enhancement of

serverless operations demonstrates compelling

benefits: predictive scaling algorithms reduce

resource provisioning errors, intelligent function

placement improves execution efficiency,

automated code optimization enhances

performance, and anomaly detection identifies

potential failures earlier than threshold-based

approaches [9]. Industry analysts project that by

2025, most organizations implementing serverless

will incorporate edge deployment capabilities,

while many will leverage AI-enhanced operational

frameworks, representing the convergence of these

transformative technologies [10].

Figure 1: Benefits of Serverless Computing [3, 4]

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7678

Table 1: Serverless computing adoption spectrum from simple to complex [5, 6]

Architectural Pattern Key Benefits Organizational Outcomes

Fine-grained Microservice

Decomposition

Superior isolation with reduced

cascading failures

Reduced time for individual service

updates; faster achievement of

continuous deployment capabilities

Domain-driven Design

with Bounded Contexts

Improved team autonomy; reduced

cross-team dependencies

Better alignment with organizational

structure; clearer separation of concerns

Event-driven Architecture

(EDA)

Lower coupling scores; superior

system resilience

Reduced orchestration complexity;

decreased central coordination

components

Reactive Programming

Paradigms

Higher throughput under variable

load; lower latency variability

Particularly pronounced benefits during

traffic spikes; more predictable

performance

Specialized State

Management

Reduced function execution

duration; enhanced performance

through multi-level caching

Fewer production incidents; faster mean

time to resolution for state-related

failures

 Figure 2: Serverless limitations range from minor to major impact [7, 8]

Figure 3: Serverless provider feature breadth, from basic to comprehensive [9, 10]

Ujjwal Raj / IJCESEN 11-4(2025)7672-7679

7679

4. Conclusions

The serverless computing paradigm has

fundamentally reshaped cloud architecture, offering

unprecedented levels of abstraction, scalability, and

cost efficiency while introducing new challenges

and constraints. As evidenced throughout this

examination, serverless adoption continues to

accelerate across diverse industry sectors, with

particular maturity in API backends, data

processing, and event-driven applications, though

certain use cases remain poorly suited to serverless

constraints. The competitive landscape among

cloud providers has driven rapid feature evolution,

though significant implementation differences

persist, complicating portability efforts. Research

frontiers in performance optimization, security

enhancements, and interoperability show promising

advances in addressing current limitations,

particularly regarding cold start mitigation, multi-

tenant isolation, and cross-platform standardization.

Perhaps most significantly, the convergence of

serverless with edge computing enables dramatic

latency improvements for geo-distributed

applications, while bidirectional integration with

artificial intelligence technologies enhances both

deployment efficiency and operational intelligence.

As these technologies continue to mature and

converge, serverless computing stands poised to

become the dominant model for cloud application

development, fundamentally changing how

organizations conceptualize, build, and operate

cloud-native applications while demanding new

architectural approaches, operational practices, and

development methodologies to fully realize its

transformative potential.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Paul Castro et al., "The rise of serverless computing,"

Communications of the ACM, vol. 62, no. 12, pp.

44-54, 2019.

https://dl.acm.org/doi/10.1145/3368454

[2] Garrett McGrath and Paul R. Brenner, "Serverless

Computing: Design, Implementation, and

Performance," IEEE, 2019.

https://ieeexplore.ieee.org/document/7979855

[3] Adam Eivy, "Be Wary of the Economics of

"Serverless" Cloud Computing," IEEE Cloud

Computing 4(2):6-12, 2017.

https://www.researchgate.net/publication/31649697

3_Be_Wary_of_the_Economics_of_Serverless_Clo

ud_Computing

[4] Ioana Baldini et al., "Serverless Computing: Current

Trends and Open Problems," Springer, 2017.

https://link.springer.com/chapter/10.1007/978-981-

10-5026-8_1

[5] Philipp Leitner et al., "A mixed-method empirical

study of Function-as-a-Service software

development in industrial practice," Journal of

Systems and Software, Volume 149, 2019.

https://www.sciencedirect.com/science/article/abs/p

ii/S0164121218302735

[6] Scott Hendrickson et al., "Serverless Computation

with OpenLambda," OReilly, 2016.

https://www.usenix.org/conference/hotcloud16/wor

kshop-program/presentation/hendrickson

[7] Liang Wang et al., "Peeking Behind the Curtains of

Serverless Platforms," Open access to the

Proceedings of the 2018 USENIX Annual

Technical Conference is sponsored by USENIX.

2018.

https://www.usenix.org/system/files/conference/atc

18/atc18-wang-liang.pdf

[8] Johann Schleier-Smith et al., "What serverless

computing is and should become: the next phase of

cloud computing," Communications of the ACM,

Volume 64, Issue 5, 2021.

https://dl.acm.org/doi/10.1145/3406011

[9] Erwin van Eyk et al., "Serverless is More: From PaaS

to Present Cloud Computing," ResearchGate, 2018.

https://www.researchgate.net/publication/32808848

2_Serverless_is_More_From_PaaS_to_Present_Clo

ud_Computing

[10] Vladimir Yussupov, "Facing the Unplanned

Migration of Serverless Applications: A Study on

Portability Problems, Solutions, and Dead Ends," in

Proceedings of the 12th IEEE/ACM International

Conference on Utility and Cloud Computing, 2019,

pp. 273-283.

https://dl.acm.org/doi/10.1145/3344341.3368813

https://dl.acm.org/doi/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://dl.acm.org/doi/10.1145/3368454
https://ieeexplore.ieee.org/author/37619263300
https://ieeexplore.ieee.org/author/37566745900
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1109/ICDCSW.2017.36
https://ieeexplore.ieee.org/document/7979855
https://ieeexplore.ieee.org/author/37086028825
https://www.researchgate.net/journal/IEEE-Cloud-Computing-2325-6095?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InNpZ251cCIsInBhZ2UiOiJwdWJsaWNhdGlvbiJ9fQ
https://www.researchgate.net/journal/IEEE-Cloud-Computing-2325-6095?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InNpZ251cCIsInBhZ2UiOiJwdWJsaWNhdGlvbiJ9fQ
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://www.researchgate.net/publication/316496973_Be_Wary_of_the_Economics_of_Serverless_Cloud_Computing
https://www.researchgate.net/publication/316496973_Be_Wary_of_the_Economics_of_Serverless_Cloud_Computing
https://www.researchgate.net/publication/316496973_Be_Wary_of_the_Economics_of_Serverless_Cloud_Computing
https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1#auth-Ioana-Baldini
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1
https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software/vol/149/suppl/C
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302735
https://www.sciencedirect.com/science/article/abs/pii/S0164121218302735
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://dl.acm.org/doi/10.1145/3406011
https://dl.acm.org/toc/cacm/2021/64/5
https://dl.acm.org/toc/cacm/2021/64/5
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3406011
https://dl.acm.org/doi/10.1145/3406011
https://ieeexplore.ieee.org/author/37086251573
https://doi.org/10.1109/MIC.2018.053681358
https://doi.org/10.1109/MIC.2018.053681358
https://www.researchgate.net/publication/328088482_Serverless_is_More_From_PaaS_to_Present_Cloud_Computing
https://www.researchgate.net/publication/328088482_Serverless_is_More_From_PaaS_to_Present_Cloud_Computing
https://www.researchgate.net/publication/328088482_Serverless_is_More_From_PaaS_to_Present_Cloud_Computing
https://dl.acm.org/doi/10.1145/3344341.3368813
https://doi.org/10.1145/3344341.3368813
https://doi.org/10.1145/3344341.3368813
https://dl.acm.org/doi/10.1145/3344341.3368813

