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Abstract:  
 

Wireless Body Area Networks (WBANs) are one of the most critical technologies for 

maintaining constant monitoring of patient’s health and diagnosing diseases. They 

consist of small, wearable wireless sensors transmitting signals. Within this vision, 

WBANs are not without unique difficulties, for instance, high energy consumption, heat 

from the sensor, and impaired data accuracy. This paper introduces adaptive algorithms 

combining Convolutional Neural Networks (CNNs) and dynamic threshold mechanisms 

to enhance the performance and energy efficiency of Wireless Body Area Networks. 

The study utilizes the MIB-BIH Arrhythmias dataset to improve the detection of 

arrhythmias. The results show a 10.53% improvement in battery life and a 5.62-fold 

enhancement in temperature management when sleep mode technology is applied. As a 

result, the model reached the average accuracy of ECG classification of 98% and a high 

level of selectivity and sensitivity to a normal type of heartbeat and quite satisfactory 

results in the classification of arrhythmia type of heartbeat. 

 

1. Introduction 

Wireless Body Area Networks (WBANs) have emerged 

as a critical technology for continuous health monitoring, 

providing real-time data to medical professionals. 

WBANs are diverse in application; they can be divided 

into four types of categories that perform technology 

modifications according to precise user requirements and 

environments. WBANs are essential in the medical field 

to continually monitor a patient’s health and perform 

diagnostic checks on them; these must be highly reliable 

due to strict safety and privacy standards[1]. Fitness and 

Wellness WBANs are centered on lifestyle 

measurement, activity logging, and synchronous 

connectivity with the user’s devices. Military WBANs 

feature highly reliable designs to work in harsh 

environments while keeping important data safe[2]. 
Lastly, in assistive technology, WBANs support the 

elderly and disabled and enhance their quality of life by 

connecting them with home systems for vitals and 

patients’ safety. Every category shows how WBANs can 

be easily integrated and how they can revolutionize 

almost every sphere of personal, social, and business 

life, as well as perform vital functions[3].  
Exploring the existing Works Related to WBAN It 

has been found that several refined techniques have been 

proposed and implemented for improving the system 

features of WBAN, where state-of-the-art advanced 

computing is used. Among them, Deep Learning (DL) 

algorithms, especially Convolutional Neural Networks 

(CNNs) can identify and extract features from raw 

sensor data to enhance health monitoring applications[4]. 
WBANs are part of modern healthcare improvement 

through monitoring technologies. These networks 

include motion sensors for gathering and forwarding 

physiological signs from the human body to medical 

practitioners to facilitate recovery and shorten treatment 

delays Wireless Body Area Networks (WBANs) have 

the potential to revolutionize healthcare by enabling the 

monitoring of patient’s vital signs, like heart rate and 

temperature[5]. The primary challenge addressed in this 

work is the high energy consumption and overheating of 

the sensors in WBANs. Conventional techniques like 

static thresholding and simple averaging often fail to 

balance energy efficiency with accurate health 

monitoring. Static thresholding methods, for example, 

keep the sensors continuously active or inactive based on 

a fixed threshold, leading to unnecessary energy 

consumption during inactive periods. Simple averaging 

methods lack the responsiveness needed to adapt to rapid 

changes in physiological signals, resulting in inaccurate 

monitoring and increased heat generation. In contrast, 

our proposed method utilizes dynamic thresholds and 

CNNs to optimize sensor activity, thereby extending 

battery life and maintaining optimal sensor temperatures. 

The proposed method's advantages and results are 

detailed in Sections 4 and 5. Highlighting the drawbacks 
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of existing solutions and the improvements offered by 

our approach. The. efficacy of the proposed method is 

demonstrated using the MIT-BIH Arrhythmia dataset. 

2. Related Work 

This section reviews the latest research efforts aimed at 

improving WBAN performance through innovative 

methodologies and technologies. 

Fahad Masood et al. (2024) [6] proposed energy 

efficiency for SDWBANs via sophisticated routing 

techniques. They put into practice the fuzzy-based 

Dijkstra algorithm on routing decisions concerning the 

power source, link distance, and transmission power. 

This was tested against the IEEE 802.15 standard, which 

enhances network stability and lessens the routing load. 

Another important achievement is HUBsFlow, the 

interface protocol that optimizes the data flow by 

providing efficient management of data packet 

transmission and avoiding an excess of broadcast, which 

increases energy consumption. The study used 

simulations with a different area of operation of 

300m×300m, and the total simulation time was 600 

seconds. It also used different energy levels concerning 

nodes. The evaluation further showed that the fuzzy-

based Dijkstra algorithm obtained a throughput of 

3565.7 bps and an end-to-end delay of at least 0.007 

seconds, while the throughput achieved by the 

HUBsFlow protocol was 16 packets/s, accompanied by a 

packet loss ratio of 0.014.  These observations imply that 

SDWBANs have the potential to enhance patient 

monitoring systems immensely since they consume less 

energy as well as directing the data flow appropriately. 

Razieh Mohammadi and Zahra Shirmohammadi 

(2023) [7] paper titled "DRDC: Deep Reinforcement 

Learning-Based Duty Cycle for Energy Harvesting Body 

Sensor Node is dedicated to enhancing the duty cycle of 

sensor nodes in energy-harvesting body area networks 

(EH-BAN), through the use of DRL. The considered 

algorithm, which is a Deep Q-network (DQN), targets 

optimizing the energy consumption and the operational 

cycle of these sensor nodes based on the variations in 

energy harvesting. Hence, their approach shows a drastic 

decrease in the duty cycle by a margin of 28% and a 

reduction in the data overhead by more than 50%, which 

implies an enhanced efficiency of the sensor nodes. This 

improvement in duty cycle management increases the 

battery life of the body's sensory network to support 

continuous health monitoring systems and applications. 

Bassem Mokhtar et al. (2023) [8] “Nano-Enriched 

Self-Powered WBAN for Sustainable Health Monitoring 

Services” aims to develop state-of-the-art protocols and 

algorithms that enhance the performance of WBANs. 

Their suggestion entails a MAC Protocol based on 

Energy Harvesting which is focused on how effectively 

we can use energy from human movements through 

piezoelectric nano-biosensors. They also brought in the 

use of machine learning (ML) for its dynamic power 

management aimed at efficient distribution or 

consumption of energy based on certain statistics. Those 

techniques collectively improve self-sufficiency, 

reliability, and efficiency in WBANs that are necessary 

for long-term health monitoring applications. 

Ashraf A. Taha et al. (2022) [9] have presented the 

Aquila Optimizer (AO) algorithm as a way of increasing 

the energy efficiency of WSN and extending its life. 

They compared AO with conventional approaches like 

LEACH protocol, Genetic Algorithm (GA), Coyote 

Optimization Algorithm (COY), and Harris Hawks 

Optimization (HHO). It was realized that AO could help 

retain more active nodes for an extended period using 

less power than other methods such as LEACH protocol, 

COY, and HHO which are very useful in sustainable 

wireless networks. 

S. Ezhil Pradha et al. (2022) [10] proposed the 

design of the Scheduled Access MAC (SAMAC) 

protocol in their paper titled “Scheduled Access Strategy 

for Improving Sensor Node Battery Lifetime and Delay 

Analysis of Wireless Body Area Network.” The focus is 

to increase network lifetime while reducing latency in 

WBANs through improvements to the MAC layer. 

SAMAC is different from other wireless MAC protocols 

including IEEE 802.15.6 Baseline MAC and ZigBee 

MAC by avoiding wasting energy on unnecessary 

activities resulting in improved packet delivery ratios as 

well as end-to-end delays hence managing energy 

consumption and quality of service effectively within 

WBANs. 

Omar Ahmed et al. (2020) [11]Energy Optimized a 

Congestion Control-Based Temperature Aware Routing 

Algorithm for Software Defined WBANs, proposed the 

EOCC-TARA algorithm, which prescribes the use of 

Enhanced Multi-Objective Spider Monkey Optimization 

(EMSMO). This algorithm enhances the network 

performance in terms of energy, congestion, and thermal 

impacts to achieve optimal efficiency in the case of SD-

WBANs. The results of the simulation show its 

effectiveness and advantages over conventional methods 

by having a higher level of success rates in terms of 

accuracy and stressing the fact that it is very effective in 

enhancing some important network parameters. 

Ch. Rajendra Prasad Polaiah Bojja (2020) 

[12]proposed a new multi-hop HEER protocol for WBA 

based on an ultra-low-power transceiver with an 

emphasis on the eHealth care system. The protocol 

follows an aggressive direct and indirect information 

exchange principle, which enhances a network’s energy 

consumption and lifespan. Also, it uses a novel 

synchronization schedule that assigns variable time slots 

to minimize colliding and energy waste ineffective 

protocol performance in comparison to initial work. 

These innovations play a central role in increasing the 

operational effectiveness and sustainability of eHealth 

systems. 

3. Methodology 

This paper has centered on upgrading the performance of 

sensors at Tier 1 in WBANs architecture. This section 

gives a detailed description of the design and the 

functioning of the proposed Wireless Body Area 

Network system (Figure 1). The system uses a Dynamic 

Threshold Algorithm alongside CNNs to minimize 

energy consumption and sensor overheating. The 

Dynamic Threshold Mechanism deactivates sensors 

during normal heart rates (60-100 BPM) and reactivates 
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them when abnormalities are detected. The CNNs model 

processes ECG signals, reducing false positives and 

ensuring accurate monitoring. Data preprocessing 

involves noise reduction and normalization of ECG 

signals. The CNN model is trained on the MIT-BIH 

Arrhythmia dataset, achieving high classification 

accuracy. To design the proposed WBAN system, the 

following components were incorporated: 

 

 

 
 

Figure 1. Flowchart of the Dynamic Threshold 

Proposed System. 

 

3.1 Read Data 

This section involves the process of dealing with and 

analyzing the collected data through WBANs. These 

stages are crucial in the development of applications 

utilizing raw data acquired through sensors for 

healthcare monitoring and others. As shown in Fig. 2, 

the typical stages include the following: 

Data Pre-Processing 

Data pre-processing This is the first step in processing 

the raw data gathered from WBAN sensors. Some of the 

most common pre-processing techniques include 

cleaning, normalizing, and segmenting the data to 

minimize the noise used in the data. This stage involves 

several key activities: 

A. Data Cleaning: This includes dealing with 

missing data whereby imputation or deletion is 

done on the missing values based on their 

number and significance. signals preprocessing 

to reduce the impact of sensor error on the 

results. 

B. Data Integration: Sensory data is consolidated 

into a single data representation; this may be the 

process of synchronizing the acquired data 

streams by time or other markers. 

C. Dimensionality Reduction: Linear methods, 

including Principal Component Analysis (PCA) 

and Linear Discriminate Analysis (LDA), are 

used to reduce noise and emphasize the most 

important features. Some pre-processing also 

involves data gathering over particular time 

durations (for instance, averaging over 

successive 1-minute intervals) to minimize the 

amount of data and highlight trends. 

D. Normalization: The sensor data is normalized 

to a certain scale, for instance, 0-1, which is 

crucial when handling different sensors and 

conditions. 

E. Class  Imbalance Handling: There are some 

methods, like RandomOverSampler, that can 

help in handling the problem of class imbalance 

in the given set of data. This helps in making 

the model not inclined towards the major 

classes and able to identify the minority classes, 

which is vital in identifying rare forms of 

arrhythmias. 

 

Figure 2. Data Analysis Stages. 

3.2 Resampling and Splitting 

To handle the issue of class imbalance in the dataset, the 

RandomOverSampler algorithm from the Imblearn 

package was implemented. This method creates new 

samples, thus applying a new distribution to the minority 

classes, which makes the model receive a balanced 

exposure to all classes during training. The data was then 

resampled and randomly divided into training 70%, 

validation 15%, and test sets 15%, respectively, to train 

as well as evaluate the results of the ML models. 

3.3 Dynamic Threshold 

The dynamic threshold mechanism is used to allow the 

sensor to sleep during the regular ECG measurements, 

thus conserving power. 

 

Figure 3. Distribution of labels Train before balancing. 
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Figure 4. Distribution of labels Test before balancing. 

 

Figure 5. Distribution of labels after balancing. 

 

Figure 3 shows distribution of labels Train before 

balancing while test one is shown in figure 4. In 

figure 5 the distribution of labels after balancing. It 

provides alarms to the medical staff when the ECG 

signals recorded are weighted out of a normal range. 

This mechanism changes input thresholds with 

previous heart rate values and utilizes a deep neural 

network to confirm abnormality, hence providing an 

accurate and power-efficient monitoring system. 

The sensor utilizes a dynamic threshold 

mechanism to save power by going into sleep mode 

during ECG measurements. It alerts staff when 

recorded ECG signals deviate from the range. By 

adjusting input thresholds based on heart rate values 

and using a neural network to detect abnormalities 

this mechanism ensures precise monitoring while 

conserving energy. The detailed explanation sheds 

light on how the system saves power and ensures 

health monitoring. Fig. 6, offers an in-depth look at 

the decision-making process of the threshold 

mechanism starting with heart rate monitoring. The 

system checks if the heart rate falls below 60 BPM 

or exceeds 100 BPM. If within the range it then 

assesses whether the difference in heart rates is less, 

than 10 BPM. If not, the sensor remains active and 

records ECG data, if so, it enters sleep mode to 

conserve power. For abnormal heart rates, deep 

learning algorithms are employed to confirm the 

abnormality. Once confirmed, further checks are 

conducted. The system then assesses if the previous 

heart rate difference is less than 5 BPM. If it is not, 

the sensor remains in sleep mode, continuously 

detecting abnormal readings. If the previous heart 

rate difference is higher than 5 BPM, the sensor 

becomes active and records the ECG heart rate. The 

system finally returns to the simulation step to 

validate and adjust the dynamic threshold, ensuring 

efficient and accurate monitoring. 

 

Figure 6. Comparative Performance of sensors with and 

without sleep modes in terms of battery life and 

temperature management.  

3.4 Proposed CNN Model 

CNNs are used in this work to analyze ECG signals. The 

CNN architecture provides an opportunity to train the 

model on the raw ECG data and extract the hierarchical 

features in a fully automatic approach that is suitable for 

the classification of different forms of arrhythmias. The 

CNN model architecture proposed is aimed at analyzing 

ECG signals and categorizing them into distinctive 

classes in this study. Here is a detailed explanation of the 

proposed CNN model: 

A. Input Layer: The input layer accepts data of 

shape (187, 1), where 187 is the length of the 

ECG data, and 1 represents a single channel. 

B. First Convolutional Block: The first block 

consists of a Conv1D layer with 64 filters and a 

kernel size of 6, followed by a ReLU activation 

function, BatchNormalization, and 

MaxPooling1D with a pool size of 3, strides of 

2, and padding set to "same." 

C. Second Convolutional Block: The second 

block has a Conv1D layer with 64 filters and a 

kernel size of 3, followed by ReLU activation, 

BatchNormalization, and MaxPooling1D with a 

pool size of 2, strides of 2, and padding set to 

"same." 

D. Third Convolutional Block: The third block 

also features a Conv1D layer with 64 filters and 

a kernel size of 3, followed by ReLU activation, 

BatchNormalization, and MaxPooling1D with a 

pool size of 2, strides of 2, and padding set to 

"same." 

E. Flatten Layer: The flattened layer prepares the 

data for the dense layers by converting the 

multi-dimensional output into a single-

dimensional vector. 

F. First Dense Layer: This layer contains 64 units 

and uses the ReLU activation function. 

G. Second Dense Layer: This layer has 32 units 

and uses the ReLU activation function. 
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H. Output Layer: The output layer has a few units 

equal to the number of classes (e.g., 5) and uses 

the Softmax activation function for 

classification. 

 

4. Training the Model and Evaluation 

The performance of the proposed model was 

measured and assessed based on accuracy, precision, 

recall, and the F1 score. These metrics give a conclusive 

measurement of the model’s functionality of correctly 

classifying the ECG recordings. The outcomes depict 

that the model differentiates heartbeats (Class 0) with 

accurate classification, recall, and F1 classification of 0. 

99 each. However, its performance appeared to be 

slightly lower for the classification of types of 

arrhythmias; Class 1 and Class 3 have the F1 score of 0. 

81 and 0. 78, respectively, 

The MIT-BIH Arrhythmia Dataset was used for 

training and evaluation. The dataset consists of 87,554 

samples, each with 188 features. Of these features, 187 

represent ECG signal data. After balancing (Figure 5) 

the dataset using the RandomOverSampler, the data was 

split into training, validation, and test sets: 

The model was trained using a dataset that included 

multiple subjects' ECG recordings. After preprocessing, 

the dataset was split into training, validation, and test 

sets with the following dimensions: 

Training Set: 253,648 samples, each with 187 features. 

The labels were classified into 5 categories. 

Validation Set: 108,707 samples, each with 187 features. 

The labels were classified into 5 categories. 

Test Set: 21,892 samples, each with 187 features. The 

labels were classified into 5 categories. 

To address class imbalance in the dataset, we 

employed the RandomOverSampler from the imblearn 

library. This method was applied before splitting the data 

into training, validation, and test sets. The oversampling 

helped balance the dataset, ensuring more reliable model 

training and evaluation. 

The model was implemented and trained using 

Python, specifically utilizing the TensorFlow and Keras 

libraries for the deep learning components. 

In the same regard, Anaconda comes bundled with 

Jupyter and Spyder, and Mesa contains efficient libraries 

and frameworks required for constructing, training as 

well as emulating DL models. Jupyter was used in the 

interactive development as well as visual analysis and 

simulation work was done in Spyder. As shown in Fig. 

7, Performance Metrics for Each Class illustrate each 

class's precision, recall, and F1-score. 

 

Figures 7. Performance Metrics for Each Class. 

This chart highlights the model’s strengths in 

detecting normal heartbeats while pinpointing the need 

for improvements in arrhythmia classification. 

 

Figure 8. Aggregated Performance Metrics. 

As shown in Fig. 8, Aggregated Performance Metrics 

provide an overall summary of the model’s performance. 

This chart includes weighted and macro averages for 

precision, recall, and F1-score, as well as the overall 

accuracy. The weighted average, which considers the 

support of each class, demonstrates the model’s robust 

performance with an accuracy of 0.98. Fig. 7, shows that 

while the model performs well overall, there are 

discrepancies in performance across different classes. 

Fig. 8, reinforces this by summarizing the model’s 

general performance metrics. 

5. Experimental Result and Discussion 

. The main objectives are to improve the battery 

duration, monitor the temperature of the sensors suitably, 

and diagnose the improper signals suitably. According to 

the findings from this study, it is evident that the use of 

dynamic thresholds as well as sleep mode technology 

enhances battery life while regulating the sensor 

temperature without experiencing a predicted drop in the 

level of detection. 
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The proposed dynamic threshold mechanism was 

evaluated against static thresholding and simple 

averaging. Compared to these conventional methods, our 

approach showed significant improvements in energy 

efficiency and temperature management. In contrast, our 

dynamic threshold mechanism adapts in Visualization 

based on ECG data from the MIT-BIH Arrhythmia 

dataset, with CNN verification reducing false positives 

and ensuring accurate detection. This adaptive approach 

significantly conserves energy and maintains optimal 

sensor temperature, as demonstrated in our experimental 

results.  Tables 1 and 2, illustrate the comparative 

performance of sensors with and without sleep modes. 

Specifically, the battery life increased by 10.53%, and 

temperature regulation improved 5.62-fold. These results 

highlight the efficacy of adaptive algorithms in 

enhancing WBAN performance. 

 

The simulation was conducted for 7200 seconds. 

With a current step of 5001. During this time, the 

sensor's battery performance was analysed under two 

different modes: with and without sleep mode. As shown 

in Fig. (9) and (10): 

 

1. Sensor without Sleep Mode: After 

approximately 120 minutes of operation, the 

battery began to decrease, and this decline 

continued steadily throughout the remaining 

simulation period. The battery's performance 

showed minimal conservation due to the 

absence of sleep mode. 

2. Sensor with Sleep Mode: The battery life 

exhibited notable improvements. It maintained 

its charge for up to 180 minutes before 

beginning to decrease, demonstrating the 

impact of the sleep mode on energy 

conservation. The difference in battery 

depletion rates between the two modes is 

visualized in Tables (1) and (2), which compare 

the average battery percentages at different time 

intervals. 

 

The data clearly shows that the sleep mode 

significantly extends the sensor's battery life during 

continuous operation, reducing the overall power 

consumption. These thresholds change dynamically with 

battery charge levels and reported temperature values to 

reduce energy consumption while at the same time 

minimizing false alarms in the case of detecting 

anomalous sub-categories of the data. The thresholds 

allow the sensors to sleep during regular measurements 

and wake up only during abnormal ones, thus saving the 

variance. The system accomplishes this through a 

Dynamic Threshold Algorithm in association with the 

CNN. In the same way, the system also involves a sleep 

mode of the sensor, and this working mode is managed 

depending on certain ECG threshold values (100-60). 

The sensor wakes up from sleep mode and notifies the 

medical staff only when there are variations in the 

patient’s heart rate. As shown in Fig. 9, illustrates the 

comparative performance of sensors that utilize sleep  

 

 
Figure 9. Visualization of simulation results comparing 

the performance of sensors with sleep modes, 

demonstrating differences in battery life and temperature  

management. 

 

modes in terms of battery life and temperature 

management. The results show that sensors with sleep 

modes exhibit a more stable and extended battery life 

due to reduced power consumption during inactive 

periods. The graph also indicates better temperature 

management, as the sensors remain cooler by entering 

sleep mode when not actively monitoring. This enhanced 

performance underscores the effectiveness of 

incorporating sleep mode in WBAN sensors, providing. 

significant improvements in both energy efficiency and 

heat regulation.   

 

 
 

Figure 10. Visualization of simulation results comparing 

the performance of sensors without sleep modes, 
demonstrating differences in battery life and temperature 

management. 

 

In contrast, Fig. 10, depicts the performance of 

sensors without sleep modes, highlighting the drawbacks 

of continuous operation. The data shows a rapid decline 

in battery life and higher temperature readings over time. 

These sensors consume more power and generate more 

heat as they continuously monitor without breaks. The 

comparison indicates that sensors without sleep modes 

are less efficient, leading to quicker battery depletion 

and higher temperatures, which can affect the reliability 

and longevity of the WBAN system. 
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Table 1. Simulation Result Sensor with Sleep Mode 
 

STEP 

Currently 

Previous Heart 

Rate 

Heart 

Rate 

Average 

Battery 

Average 

Temperature 
ECG Recording 

1 137 BPM 146 BPM 100.00% 5.00°C 
sensor active detection of 

abnormal 

2 146 BPM 150 BPM 100.00% 4.80°C 
sensor sleep mode detection of 

abnormal 

3 
150 BPM 146 BPM 100.00% 4.34°C sensor sleep mode detection of 

abnormal 

4 
146 BPM 141 BPM 100.00% 4.58°C sensor active detection of 

abnormal 

5 
141 BPM 149 BPM 100.00% 4.42°C sensor active detection of 

abnormal 

6 
149 BPM 150 BPM 100.00% 5.00°C sensor sleep mode detection of 

abnormal 

7 
150 BPM 147 BPM 100.00% 4.58°C sensor sleep mode detection of 

abnormal 

8 
147 BPM 150 BPM 100.00% 4.92°C sensor sleep mode detection of 

abnormal 

9 
150 BPM 140 BPM 100.00% 4.09°C sensor active detection of 

abnormal 

10 
140 BPM 148 BPM 100.00% 4.38°C sensor active detection of 

abnormal 

11 
148 BPM 142 BPM 100.00% 4.60°C sensor active detection of 

abnormal 

12 
142 BPM 150 BPM 100.00% 4.09°C sensor active detection of 

abnormal 

13 
150 BPM 133 BPM 100.00% 4.54°C sensor active detection of 

abnormal 

109 95 BPM 85 BPM 100.00% 4.55°C 
sensor active mode detection of 

abnormal 

110 85 BPM 79 BPM 100.00% 4.27°C sensor sleep mode normal 

111 79 BPM 75 BPM 100.00% 5.00°C sensor sleep mode normal 

4999 121 BPM 115 BPM 97.69% 2.96°C 
sensor active detection of 

abnormal 

5000 115 BPM 107 BPM 97.69% 2.66°C 
sensor active detection of 

abnormal 

5001 107 BPM 127 BPM 97.69% 2.65°C 
sensor active detection of 

abnormal 

 
Table 2. Simulation Result Sensor without Sleep Mode 

 

STEP 

Currently 

Previous Heart 

Rate 

Heart 

Rate 

Average 

Battery 

Average 

Temperature 
ECG Recording 

1 50 BPM 52 BPM 100.00% 1.11°C Abnormal 

2 52 BPM 50 BPM 99.99% 12.66°C Abnormal 

3 50 BPM 56 BPM 99.98% 11.87°C Abnormal 

4 56 BPM 59 BPM 99.98% 10.63°C Abnormal 

5 59 BPM 50 BPM 99.98% 10.02°C Abnormal 

6 50 BPM 60 BPM 99.97% 10.82°C Abnormal 

7 60 BPM 68 BPM 99.97% 10.66°C Normal 

8 68 BPM 78 BPM 99.97% 11.49°C Normal 

9 78 BPM 71 BPM 99.96% 10.41°C Normal 

10 71 BPM 68 BPM 99.96% 11.31°C Normal 

11 68 BPM 72 BPM 99.96% 10.59°C Normal 

12 72 BPM 82 BPM 99.96% 10.48°C Normal 

13 82 BPM 78 BPM 99.96% 10.00°C Normal 

109 129 BPM 123 BPM 99.76% 16.97°C Abnormal 

110 123 BPM 113 BPM 99.76% 16.54°C Abnormal 

111 113 BPM 114 BPM 99.76% 17.11°C Abnormal 

4999 115 BPM 106 BPM 87.44% 28.70°C Abnormal 

5000 106 BPM 97 BPM 87.44% 27.96°C Abnormal 

5001 97 BPM 107 BPM 87.43% 28.08°C Abnormal 
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5.1 Analysis of Simulation Results: 

The results from the two simulations indicate 

significant differences in performance between sensors 

with and without sleep modes. General Ratio of the 

Optimization Process During the 2-houres simulation, 

the overall performance optimization can be summarized 

as follows: 

A. Table (1): Results for Sensors with Sleep Mode  

 

 Average Battery Level: Maintained close to 

100% for most steps, slightly dropping to 

97.69% at the last few steps. 

 Overall Battery Conservation: The sensors with 

sleep mode show excellent battery 

conservation, with many readings indicating 

100% battery life. This demonstrates that the 

sleep mode effectively reduces power 

consumption. 

 

B. Table (2): Results for Sensors without Sleep 

Mode  

 Average Battery Level: Ranges from 100% to 

87.43%, with significant drops as the steps 

progress. 

 Overall Battery Drain: The sensors without 

sleep mode experience a noticeable decrease in 

battery life, with the final readings showing 

87.43% battery life. This indicates higher 

energy consumption compared to sensors in 

sleep mode. 

C. Temperature Management Table (1): Results for 

Sensors with Sleep Mode  

 Average Temperature: Remains consistently 

low, ranging from 2.65°C to 5.00°C. 

 Temperature Stability: The sensors with sleep 

mode maintain a low and stable temperature, 

indicating effective management of heat 

generation. 

 

D. Table (2): Results for Sensors without Sleep 

Mode  

 Average Temperature: Ranges from 1.11°C to 

28.08°C, significantly increasing as the steps 

progress .  

 Temperature Increase: The sensors without 

sleep mode show a substantial rise in  

 

temperature, particularly towards the later steps, 

reaching up to 28.08°C. This indicates poor heat 

management compared to sensors with sleep mode. 

5.2 Equations 

To quantify the improvement in sensor performance, 

we calculate the optimization ratio for both battery life 

and temperature management.  

 

A. Battery Life Optimization Ratio  

 Sensor with Sleep Mode: 

o initial Average Battery: 100% 

o Final Average Battery: 97.69% 

 

 Sensor without Sleep Mode: 

o initial Average Battery: 100% 

o Final Average Battery: 87.43% 

 

a. Optimization Ratio for Battery Life: The 

optimization ratio is calculated as the improvement 

in battery life preservation with sleep mode 

compared without sleep mode. 

Optimization Ratio =
𝐹𝑖𝑛𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑑𝑒

𝐹𝑖𝑛𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑤𝑖𝑡ℎ 𝑆𝑙𝑒𝑒𝑝 𝑚𝑜𝑑𝑒
 

Optimization Ratio=
87.43%

97.69%
≈ 0.8947        (1) 

This means that the battery life with sleep mode 

is approximately 10.53% better compared to 

without sleep mode. 

B. Temperature Management Optimization 

Ratio 
 Sensor with Sleep Mode: 

o Highest Average Temperature: 5.00C 

 Sensor without Sleep Mode: 

o Highest Average Temperature: 28.08C 

b. Optimization Ration for Temperature 

Management: The optimization ratio is calculated 

as the reduction in temperature with sleep mode 

compared to without sleep mode. 

 

=
𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑑𝑒 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑑𝑒
 

 

Optimization Ratio =
28.08𝐶

5.00𝐶
≈ 5.616         (2) 

This means that temperature management with sleep 

mode is approximately 5.62 times better compared to 

without sleep mode. 

Battery Life Optimization Ratio: The battery life 

with sleep mode is approximately 10.53% better than 

without sleep mode. Temperature Management 

Optimization Ratio: Temperature management with 

sleep mode is approximately 5.62 times better than 

without sleep mode. These optimization ratios clearly 

illustrate the significant improvements in power 

consumption and heat management achieved by 

implementing the sleep mode in WBAN sensors. 

6. Conclusions 

The proposed method utilizes a dynamic threshold 

mechanism and CNNs to optimize sensor activity, 

thereby extending battery life and maintaining optimal 

sensor temperatures. This adaptive approach 

significantly conserves energy and ensures accurate 

health monitoring. The implementation of sleep mode 

technology significantly improves battery life and 

temperature regulation without compromising 

monitoring accuracy. Our experimental results 
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demonstrated a 10.53% reduction in energy consumption 

and a 5.62-fold improvement in temperature control. The 

CNN model, trained on the MIT-BIH Arrhythmia 

dataset, achieved a 98% classification accuracy, further 

validating the effectiveness of the proposed method. In 

conclusion, our findings illustrate the potential for 

improved energy efficiency and thermal management in 

WBANs, making them viable for continuous health 

monitoring. 
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