

International Journal of Computational and Experimental Science and ENgineering (IJCESEN)

Vol. 11-No.4 (2025) pp. 7791-7798 http://www.ijcesen.com

ISSN: 2149-9144

Copyright © IJCESEN Research Article

Driveline Control Integrated with Zonal Architectures in Software-Defined Vehicles

Ajit Gajre*

Michigan Technological University, USA * Corresponding Author Email: ajitgajreglobal@gmail.com- ORCID: 0000-0002-1247-7850

Article Info:

DOI: 10.22399/ijcesen.4110 Received: 29 August 2025 Accepted: 14 October 2025

Keywords

Driveline Control Systems, Zonal Architectures. Software-Defined Vehicles. Automotive Ethernet. Time-Sensitive Networking

Abstract:

Modern automotive drivelines encompass complete all-wheel drive management, precision torque vectoring systems, and integrated regenerative braking functions. Traditional implementations employed domain-specific electronic control units to manage these complex functions through independent operational frameworks. Current software-defined vehicle development initiatives transition toward server-zone architectures incorporating distributed zone control units paired with high-performance central computing platforms. This article presents a service-oriented driveline control framework distributed across multiple zones, where specialized microservices manage torque allocation algorithms, slip detection protocols, and regenerative braking coordination, while centralized arbitration systems provide mode management and operational oversight. Network infrastructure selections prioritize Automotive Ethernet implementations with Time-Sensitive Networking capabilities, ensuring deterministic delivery of time-critical torque commands, complemented by Controller Area Network protocols supporting actuator-local control loops and comprehensive diagnostic communications. Functional safety implementation addresses sensing, estimation, and actuation pathway decomposition through independent monitoring capabilities that enable axle isolation or torque-neutral operational modes during fault conditions. Predictive diagnostic systems integrate inverter thermal characteristics and vibration signature analysis to anticipate performance degradation events. Implementation guidance addresses migration pathways from legacy domain architectures toward zone control unit topologies, demonstrating wiring harness optimization and enhanced feature development capabilities. Industry supplier communications and technical documentation confirm zone control unit and server-zone methodologies achieving commercial deployment across diverse vehicle segments, spanning entry-level through premium market categories.

1. Introduction

Automotive driveline control systems undergone a fundamental transformation manufacturers transition toward software-defined vehicle architectures that prioritize feature agility and operational cost optimization. Traditional driveline implementations relied on distributed domain-specific electronic control units managing all-wheel drive coordination, torque vectoring algorithms, and regenerative braking functions through independent operational frameworks [1]. Contemporary vehicle development programs migrate toward integrated server-zone architectures that consolidate these functions while enabling enhanced customization capabilities and reduced

system complexity [2]. The unification of driveline control within software-defined vehicles addresses critical industry demands for rapid feature deployment, reduced development cycles, and improved manufacturing economics. Feature agility becomes essential as consumer expectations evolve and regulatory requirements demand continuous system updates throughout vehicle operational lifecycles Cost optimization [8]. consolidated hardware architectures and simplified wiring harnesses provides manufacturers with competitive advantages while enabling advanced functionality previously constrained by domainimplementations.Deterministic specific management and fail-operational behavior across distributed zones represent significant engineering

challenges that require innovative architectural solutions. Current zonal implementations must demonstrate equivalent safety performance compared to traditional domain controllers while providing enhanced functionality and reduced system complexity [4]. These challenges demand comprehensive safety decomposition strategies and robust fault management protocols that maintain vehicle controllability during component failures or communication disruptions. This analysis provides an architectural blueprint for service-oriented driveline control integration within zonal vehicle addressing architectures. both technical implementation strategies and comprehensive safety considerations. The proposed framework demonstrates migration pathways from legacy domain controllers toward distributed zone control units while maintaining stringent functional safety requirements. Industry supplier roadmaps confirm accelerating deployment of zonal technologies across vehicle segments, indicating widespread commercial viability and manufacturer confidence in these architectural approaches [1,2].

1.1 Zonal Architecture Evolution and Domain Controller Migration

Zonal electrical and electronic architectures represent a paradigm shift from traditional domainspecific control units toward consolidated zone control units that manage multiple vehicle functions within defined physical regions. Legacy domain controller implementations distributed individual throughout vehicle electronic control units architectures, each managing specific functional domains such as powertrain, chassis, or body systems [4]. These implementations required extensive wiring harnesses connecting sensors, actuators, and control units across vehicle platforms while limiting cross-domain integration capabilities essential for advanced vehicle functions.Contemporary zonal architectures consolidate multiple functions within zone control units positioned strategically throughout vehicle structures, reducing wiring complexity while enabling enhanced functional integration. Zone control units manage all sensors, actuators, and communication interfaces within their assigned processing local functions communicating with central high-performance computers for system-wide coordination [5]. This architectural transformation reduces wiring harness improving fault isolation complexity while capabilities and enabling more flexible vehicle packaging solutions. The migration from domain controllers to zonal architectures addresses fundamental challenges in system complexity

management and integration flexibility. Traditional domain-specific implementations created isolated functional silos that hindered cross-system coordination essential advanced driver for assistance systems and autonomous vehicle capabilities [1]. Zonal architectures enable seamless integration between previously isolated functions providing centralized coordination capabilities that support complex vehicle behaviors multi-domain requiring cooperation. Implementation complexity escalates during transitional phases as manufacturers balance legacy system compatibility requirements with new zonal capability deployment. System architects must navigate latency management, fault isolation protocols, and integration obstacles that emerge consolidating previously distributed operational functions [4]. These transitional obstacles demand thorough architectural planning comprehensive validation processes safety performance guarantee matching surpassing legacy implementations while delivering intended cost optimization and feature development advantages.

1.2 Microservice Architecture and Service-Oriented Framework

Service-oriented architectures enable modular through implementations driveline control distributed microservices that manage specific communicating functions while through standardized interfaces. Microservice torque decomposition separates allocation slip detection algorithms, protocols, regenerative braking coordination into independent software services that can be developed, deployed, and maintained separately [8]. This architectural approach enables rapid feature development cycles and simplified system updates while maintaining functional isolation that prevents single service failures from affecting overall system operation. The proposed driveline control stack partitions functions across multiple zones where specialized handle discrete microservices operational responsibilities while central coordination services system-wide arbitration and provide management. Torque allocation microservices optimize power distribution across multiple drive units based on vehicle dynamics, driver inputs, and efficiency targets [7]. Slip detection services monitor wheel behavior and road conditions to provide early warning capabilities for stability control systems, while regenerative braking coordination services balance energy recovery with friction braking requirements across diverse operational scenarios. Central arbitration services

coordinate between distributed microservices to ensure consistent system behavior and resolve conflicts between competing control objectives. Mode management services handle transitions between operational states such as sport, efficiency, or off-road configurations while maintaining smooth driver experiences [9]. These central services implement system-wide policies and priorities while enabling local microservices to optimize their specific functions within defined operational boundaries. Over-the-air update capabilities enable continuous improvement of individual microservices without requiring complete system updates or vehicle service visits. Software update methodologies support featuredeployment based strategies that enable manufacturers to introduce new capabilities or performance improvements throughout vehicle lifecycles operational [7]. Safe rollback mechanisms ensure system integrity during update processes while enabling rapid recovery from deployment issues that could affect vehicle safety or performance [9]. This capability transforms traditional static vehicle configurations into dynamic platforms that can evolve and improve continuously throughout their operational periods.

2. Network Infrastructure and Communication Protocols

Network infrastructure requirements for zonal driveline control architectures demand highbandwidth communication capabilities with deterministic timing characteristics essential for safety-critical torque commands. Automotive Ethernet implementations provide the foundational networking technology capable of supporting advanced driveline control algorithms while enabling flexible network topologies that adapt to diverse vehicle architectures [3]. Time-Sensitive Networking extensions guarantee message delivery timing for critical control functions while managing competing network traffic from multiple vehicle systems operating simultaneously. Controller Area Network protocols complement Automotive Ethernet implementations by providing robust backup communication pathways and supporting actuator-local control loops that require lower bandwidth but high reliability characteristics. Endto-end delay analysis demonstrates that zonal network architectures can achieve acceptable latency performance for real-time driveline control while reducing overall wiring harness complexity traditional compared to domain controller implementations [6]. Network redundancy strategies ensure continued operation during primary communication system failures while

essential vehicle controllability maintaining protocol functions.Communication selection balances requirements with performance implementation complexity across diverse operational scenarios and fault conditions. Primary network paths utilize Automotive Ethernet for highbandwidth control data transmission, while secondary paths employ Controller Area Network protocols for essential safety functions and diagnostic communications [10]. prioritization protocols guarantee that time-critical torque commands obtain preferential treatment compared to lower-priority diagnostic and status during communications network congestion conditions. Network security requirements gain significance as vehicle systems achieve greater interconnectivity and reliance on software-based control frameworks. Protected communication protocols defend against unauthorized access while preserving low-latency performance requirements necessary for real-time driveline control [3]. Authentication protocols confirm message accuracy and source validation without introducing excessive delays that might affect vehicle safety or performance during critical operational conditions.

2.1 Real-Time Scheduling and Time-Sensitive Networking

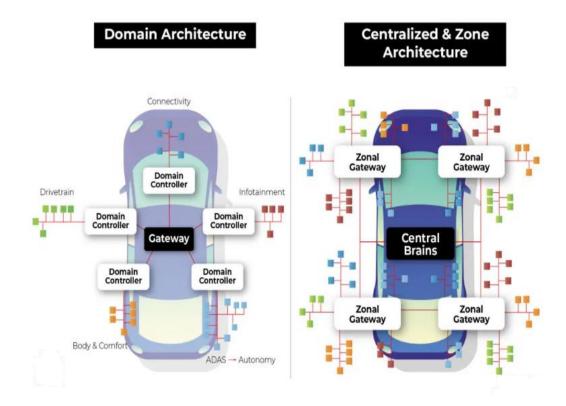
Time-sensitive networking protocols enable deterministic message delivery, essential for coordinating torque commands across distributed driveline control systems within architectures. Network scheduling algorithms allocate guaranteed bandwidth for critical driveline functions while managing background communication traffic from other vehicle systems [3]. These scheduling mechanisms ensure that torque vectoring commands, regenerative braking coordination signals, and slip detection data maintain consistent timing characteristics regardless of overall network utilization levels.Real-time scheduling methodologies prioritize driveline control messages based on safety criticality and timing requirements while providing fallback communication pathways during network congestion or component failures. Primary scheduling algorithms utilize time-division multiplexing to guarantee dedicated communication slots for time-critical torque commands, ensuring timing essential predictable delivery coordinated driveline operation [6]. Secondary scheduling mechanisms handle lower-priority diagnostic and status communications during available network capacity periods. Wiring harness networking optimization through zonal architectures significantly reduces cable complexity

while maintaining deterministic communication performance for driveline control functions. Consolidated network connections between zone control units eliminate point-to-point wiring between individual sensors and actuators, reducing overall harness weight and complexity [4]. Network topology optimization strategies position zone control units to minimize communication path lengths while ensuring redundant connectivity for safety-critical functions.Controller Area Network fallback systems provide essential communication capabilities during Automotive Ethernet network failures or degraded operation scenarios. Fallback protocols implement simplified message sets that maintain basic driveline functionality while prioritizing safety-critical functions such as torque limitation and emergency braking coordination [3]. Degraded mode handling ensures graceful system behavior during communication failures while maintaining vehicle controllability and occupant safety throughout fault recovery procedures.

2.2 Functional Safety Decomposition and Fault Management

frameworks Safety decomposition partition driveline control functions into independent sensing, estimation, and actuation pathways that enable fault detection and isolation without compromising overall system safety performance. Sensing path isolation prevents single sensor failures from affecting multiple control functions through diverse measurement technologies and cross-validation algorithms [12]. Estimation pathway separation ensures that computational errors in one control domain cannot propagate to other safety-critical functions through independent processing channels and validation mechanisms.Actuation monitoring systems continuously evaluate motor controller performance and torque delivery accuracy to detect component degradation or failure conditions before they affect vehicle safety. Independent monitoring capabilities enable selective axle isolation during actuator failures while maintaining vehicle controllability through remaining functional systems [10]. Torqueneutral fault modes provide safe operational states that prevent uncontrolled vehicle behavior during component failures while enabling controlled vehicle deceleration and safe stopping procedures.Fault management protocols coordinate between distributed zone control units to implement system-wide safety responses while maintaining local fault containment capabilities. Distributed safety architectures enable individual zones to detect and respond to local faults without requiring centralized coordination, reducing response times

and improving overall system resilience [5]. Crosszone communication ensures that fault information reaches all relevant control systems while preventing fault propagation between independent safety domains. Safety validation methodologies verify fault detection capabilities and safe-state transition behaviors through systematic testing procedures that evaluate system responses to diverse failure scenarios. Validation protocols address single-point failures, multiple simultaneous faults, and communication disruption scenarios to ensure comprehensive safety performance across all operational conditions [12]. These validation procedures demonstrate that zonal driveline control architectures achieve safety performance equivalent to or exceeding that of traditional domain controller implementations, while providing functionality and feature agility capabilities.


3. Implementation Strategies and Migration Pathways

Implementation strategies for zonal driveline control architectures necessitate comprehensive migration planning that addresses the integration of legacy systems, hardware consolidation, and software deployment across diverse vehicle platforms. Such a structured. end-to-end implementation pathway mirrors the importance of comprehensive workflows in other technical domains, where a systematic approach from raw data to final output is essential for success and compliance [13]. Legacy domain architecture migration involves systematic replacement of distributed electronic control units with consolidated zone control units while maintaining operational continuity throughout transition periods [2]. Migration planning must address component compatibility, network infrastructure upgrades, and validation requirements that ensure performance during architectural transitions.Zone control unit deployment strategies optimize hardware placement and functional allocation to maximize wiring harness reductions while maintaining deterministic communication performance for driveline control functions. Strategic positioning of zone control units enables consolidation of previously distributed sensors and actuators while minimizing communication path lengths and reducing electromagnetic interference concerns [11]. Hardware consolidation provides shared processing advantages through resources and simplified manufacturing processes while enabling enhanced feature integration capabilities. Wiring harness optimization represents a primary economic benefit of zonal architectures, with consolidated network connections replacing

extensive point-to-point wiring between individual components. Harness reduction strategies focus on eliminating redundant cable runs while maintaining necessary redundancy for safety-critical functions [6]. Common hardware implementations enable economies of scale in manufacturing while simplifying supply chain management and reducing overall system complexity across vehicle platforms.Predictive diagnostics integration combines inverter thermal characteristics and vibration signature analysis to anticipate component degradation and performance limitations before they affect vehicle operation. Thermal monitoring systems track power electronics temperature profiles to predict derate events and enable proactive load management strategies [2]. Vibration analysis algorithms identify mechanical wear patterns and bearing degradation in driveline components, supporting predictive maintenance scheduling and component replacement planning.Feature-based software update methodologies enable continuous capability enhancement throughout vehicle operational lifecycles while maintaining system integrity and performance. Variability-rich schemes support customization and personalization features that can be deployed selectively based on vehicle configuration and customer preferences [7]. Safe rollback mechanisms ensure rapid recovery

from deployment issues while maintaining essential vehicle functionality during update processes [9].

Over-the-air update capabilities transform traditional static vehicle configurations dynamic platforms that can evolve continuously based on changing requirements and technological advances. Update deployment strategies to balance feature enhancement opportunities with safety validation requirements and system stability considerations [7]. Secure update mechanisms protect against unauthorized modifications while enabling legitimate capability enhancements that improve vehicle performance, efficiency, and user throughout extended operational experience periods.Manufacturer adoption patterns demonstrate accelerating deployment of zone control unit technologies across vehicle segments, indicating industry confidence in these architectural approaches. High-performance computers across centralized processing lines enable capabilities while distributed zone control units manage local functions and interface requirements [2]. Commercial deployment across entry-level through premium market segments confirms the scalability and economic viability of zonal architectures for diverse vehicle applications and customer requirements.

Figure 1: Domain Controller to Zone Control Unit Architecture Evolution [4,5]

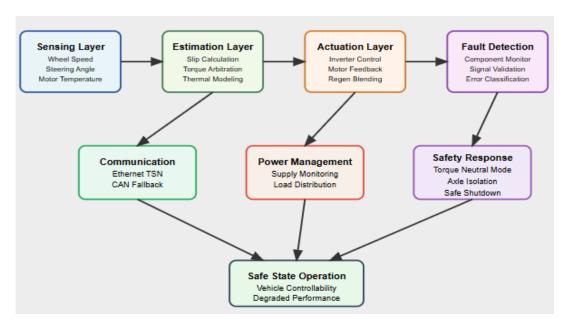
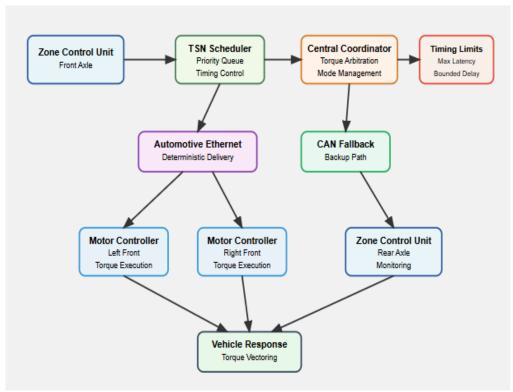



Figure 2: Functional Layer Decomposition for Service-Oriented Driveline Architecture [8,7]

 Table 1: Network Communication Safety Protocols [3,6]

Communication Layer	Safety Mechanism
Ethernet TSN Primary	Last known safe value retention with controlled torque reduction
CAN Bus Secondary	Local operational mode with simplified control algorithms
Power Supply Systems	Torque-neutral configuration enabling safe vehicle shutdown
Message Authentication	Secure validation protocols maintaining real-time performance

Figur 3: Time-Sensitive Networking Torque Command Flow Architecture [3,6]

Table 2: Safety Decomposition Matrix for Sensing, Estimation, Actuation [10,12]

Function Category	Safety Implementation
Sensing Pathways	Diverse measurement technologies with cross-validation algorithms
Estimation Processing	Independent computational channels prevent error propagation
Actuation Control	Selective isolation capabilities maintain vehicle controllability
Communication Systems	Redundant network paths with deterministic fallback mechanisms

 Table 3: Functional Safety Response Matrix [10,5]

System Component	Fault Response Strategy
Wheel Speed Sensors	Torque vectoring limitation with open-differential operation
Steering Angle Input	Torque biasing cancellation defaulting to neutral split
Stability Control	Control gain reduction with fixed bias compensation
Thermal Management	Progressive torque limitation enabling safe operation

Table 4: Communication and Power System Safety Matrix [2,7]

System Component	Failure Response Protocol
Ethernet TSN	Last safe value retention with controlled torque reduction
CAN Bus	Local operational mode with simplified control algorithms
Power Supply	Torque-neutral configuration enabling safe vehicle shutdown

4. Conclusions

Zonal architecture integration represents fundamental transformation in automotive driveline control systems, enabling enhanced feature agility and operational efficiency compared to traditional domain-specific implementations. Migration from legacy domain controllers to distributed zone control units delivers substantial wiring harness optimization while maintaining deterministic performance characteristics essential for safetycritical driveline functions. Harness reductions and hardware implementations common lower costs and simplify manufacturing recycling processes, while feature agility supports lifetime vehicle improvements through continuous software enhancement capabilities. Service-oriented microservice architectures provide unprecedented flexibility for torque allocation, slip detection, and regenerative braking coordination across diverse vehicle platforms and operational scenarios. Network infrastructure advances utilizing Automotive Ethernet with Time-Sensitive Networking protocols ensure reliable delivery of time-critical torque commands, while Controller Area Network implementations provide robust

backup communications and diagnostic capabilities. Functional safety decomposition independent monitoring systems enables fault isolation and torque-neutral operational modes that maintain vehicle stability during component Industry adoption patterns failures. expanding implementation of zone control unit technologies across multiple vehicle categories, demonstrating manufacturer commitment to these architectural solutions for upcoming automotive platforms. Feature development agility through zonal implementations supports accelerated engineering cycles and personalization capabilities that improve customer value delivery across varied market applications. Architectural evolution trends toward standardized chassis control frameworks that establish common interfaces and enable manufacturer interoperability. Engineering priorities must emphasize deterministic networking competencies and safety decomposition methodologies to successfully implement these advanced control architectures supporting autonomous vehicle operations.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- [1]Continental, "Zone control units in server-based architectures," 2025. https://www.continental.com/en/press/press-releases/20240418-zonecontrolunits/
- [2] Continental, "High-performance computers and zone control units across all vehicle lines," 2025. https://www.continental.com/en/press/press-releases/20240418-zonecontrolunits/
- [3]Semiconductor Engineering, "Automotive Ethernet, Time-Sensitive Networking," 2024. https://semiengineering.com/knowledge_centers/a_utomotive-networking/automotive-ethernet-time-sensitive-networking-tsn/
- [4] Jonas Maier and Hans-Christian Reuss, "Handling System Complexity in Zonal E/E Architectures," ScienceDirect, Sep. 2023.
- https://www.sciencedirect.com/science/article/pii/S2666 691X23000350
- [5] Lucas Mauser and Stefan Wagner, "Centralization potential of automotive E/E architectures," ScienceDirect, Sep. 2024.
- https://www.sciencedirect.com/science/article/abs/pii/S0 164121224002644
- [6] Chulsun Park et al., "Analysis of E2E Delay and Wiring Harness in In-Vehicle Network with Zonal Architecture," MDPI, May 2024.
- https://www.mdpi.com/1424-8220/24/10/3248
- [7] Abir Bazzi et al., "Software Update Methodologies for Feature-Based Product Lines: A Combined Design Approach," MDPI, Aug. 2024.
- https://www.mdpi.com/2674-113X/3/3/17
- [8] Alaa Khamis and Partha Goswami, "Rethinking Vehicle Architecture Through Softwarization and Servitization," IEEE Access, Jul. 2025.
- $\frac{https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1}{1078249}$

- [9] Abir Bazzi et al., "A Novel Variability-Rich Scheme for Software Updates of Automotive Systems," IEEE Access, Jun. 2024.
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1 0547264
- [10] Wenwei Wang et al., "Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators," Springer Nature Link, Jan. 2024.
- https://link.springer.com/article/10.1007/s42154-023-00266-9
- [11] Sung Bhin Oh et al., "Design of a Scaled-Vehicle Research Platform for Software-Defined Vehicles," in 2025 11th International Conference on Mechatronics and Robotics Engineering (ICMRE), ResearchGate, Feb. 2025.
- https://www.researchgate.net/publication/391691379 Design_of_a_Scaled-Vehicle_Research_Platform_for_Software-Defined_Vehicles
- [12] Jonas Maier and Hans-Christian Reuss, "Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra's Algorithm," Energies, ResearchGate, Sep. 2023.
- https://www.researchgate.net/publication/374302623_Design_of_Zonal_EE_Architectures_in_Vehicles_Using_a_Coupled_Approach_of_k-Means_Clustering_and_Dijkstra's_Algorithm
- [13] Donapati, L. and Venna, P.R., "From raw data to regulatory submission: A comprehensive SAS workflow for SDTM and ADaM mapping using Define.xml, ADRG, and Csdrg," *Journal of Computational Analysis and Applications* (*JoCAAA*), vol. 30, no. 2, pp. 649–661, 2022