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Effective inventory supervision aids modern supply chain operations. However,
established methods of forecasting often falter when faced with ever-changing demand,
multiple seasons, and promotional peaks, resulting in either stock surplus or shortage,
both of which are costly. This study introduces a forecasting methodology that
combines Facebook Prophet, a time-series forecasting tool, and Reinforcement
Learning (RL) for inventory optimisation. Prophet analyses and forecasts demands by
recognising the intricate temporal attributes in the historical sales data, while RL uses
these forecasts to continuously refine ordering policies, inventory holding, and shortage
costs. The experiments on retail datasets confirm that the new system decreases the
forecasting errors by 25% when compared with ARIMA and LSTM and improves
inventory service levels by 15-20%, all while cutting the overall inventory expenses.
These results underscore the significance of merging statistical forecasting and
intelligent decision-making and provide a utilitarian methodology for supply chains to
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tackle demand and operational variability.

1. Introduction

Effective inventory management is extremely
important in the 21st century competitive global
marketplace. Poor inventory management results in
approximately 1.1 trillion dollars of wasted
inventory every year, globally. Retailers alone
waste approximately 471 billion dollars of
inventory every year due to overstock [1]

Poor inventory management also results in higher
operational costs and degraded customer
confidence, as stockouts or delays in transport may
degrade service significantly.

Inventory control and management have relied
heavily on historical sales data and forecasting
models such as ARIMA, exponential smoothing,
and heuristic, rules-based models. Forecasting
models provide guidelines to managers, but these
forecasts often do not represent complex, nonlinear,
time-varying demand that is common in the
marketplace. Changes in seasons, promotions,
supply chain disruptions, and market minded
consumers all result in inaccurate forecasts and
variations in demand. Thus, inventory control
exhibits overstocking, resulting in holding costs and
possible obsolescence, or it observes understocking,

resulting in lost sales and a disgruntled customer
base.[2]

These issues can be tackled with the help of new
time series forecasting and Al techniques. For
instance, the Prophet model developed by Facebook
comes with its own perks, especially for analyzing
peculiar demand, missing data, and holiday
impacts. At the same time, Reinforcement Learning
(RL) can help in a multitask, sequential decision-
making process to optimize inventory policies in an
uncertain stochastic setting. The partnership of such
technologies as Prophet’s predictive insights and
RL’s dynamic inventory management can help in
an organization’s ability to predict unforeseen
demand while reducing inventory and holding
costs, enhancing service levels, and becoming more
resilient to supply chain disruptions [3][4].

This paper aims to fill the gap in literature and
address the problems related to inventory systems
by studying the practicability of such a hybrid
approach and offering practicable solutions.

1.1 Background

Inventory management is the process of effectively
ordering, storing, and utilizing a company’s raw
materials, components, and products [5]. Inventory
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management aims to have enough products
available when needed, manage costs, and improve
supply chain efficiency [5].

Some key concepts of inventory management
include:

e Demand forecasting: The process of predicting
the demand for a product in the future using
historical consumption, statistical models, or
machine learning. Forecasting is critical because if
demand estimates are miscalculated, they drive
decisions to hold inventory so the likelihood of
overstock or stockout increase [6].

e Inventory optimization: The process of
calculating the optimal stock levels that the
company should maintain to minimize holding
costs, shortage costs across different service levels.
Methods such as Economic Order Quantity (EOQ),
reorder point methods, and (s,S) policies are
commonly employed in inventory optimization [7].
e Time Series Forecasting Models: Inventory and
demand can be predicted from time series statistics
(historical) or using a time series forecasting model.
ARIMA and LSTM might be used for typical time
series problems and Prophet for higher performance
in time series analysis. Prophet does not require as
much parameter tuning as LSTM or ARIMA. For
example, Prophet can automatically determine
seasonality (year, week, day), trends, holidays, and
missing data [8].

e Reinforcement Learning (RL): An endeavor of a
learning agent who maximizes its cumulative
rewards (policy) by taking sequential decision
when interacting with an environment. In recent
years, RL has gained popularity and momentum
with increasing studies in relation to dynamic
inventory control. RL develops an inventory system
potentially able to re-evaluate policies based on
dynamic demand patterns and availability of supply
[9].

Recent studies highlight that combining robust
forecasting with adaptive inventory control can
significantly enhance supply chain performance
[10]. However, a systematic integration of these
techniques remains underexplored, especially in
retail scenarios characterized by multi-channel
sales, promotions, and demand volatility [10].

1.2 Problem Statement

Supply chains have become much more complex
and uncertain. Traditional inventory management
methods, which rely on static forecasts and
predetermined rules to define inventory policies,
usually do not recognize the practical realities of
dynamic demand, multi-channel retailing, and
potential external shocks (e.g., pandemics, changes
in the economy, geopolitical situations) [5][6].
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This can lead to frequent stockouts, excess
inventory, and significantly increased operational
expenses [7].

Advanced machine learning demands forecasting
models such as LSTM and Prophet. However,
machine learning capabilities do not empirically
offered an approach to optimize inventory decision
making [8].

RL-based inventory optimization symmetrically
defines inventory control policies and allows for
adaptation of those policies for changing conditions
but involves heavy reliance on the accuracy of
demand inputs for satisfactory performance [9].
Figure 1 presents a timeline of inventory and
inventory management approaches. It emphasizes
the shift away from using static, predetermined,
rule-based inventory management toward hybrid Al
enhanced approaches, and ultimately the use of
Reinforcement Learning in support of dynamic
adaptive inventory optimization [10].

Figure 1 shows an evident pathway of evolved
inventory management approaches from rule-
space static systems, predictive machine learning
models, and finally hybrid systems that bring
together the forecasting ability with the
adaptability of decision-making. This paper
follows this path with a hybrid Prophet-RL
system that tackles the limitations of the
previous approaches.

1.3 Scope of Research

This study investigates combining Prophet-based
demand forecasting and inventory optimisation
with  reinforcement learning-based inventory
optimisation, with the goal of improving the
accuracy, adaptiveness, and efficiency of inventory
systems. The study will:

1. Test the integrated system on actual retail data.
The system will be run on past sales and inventory
data to check its forecasting accuracy, stockout
rates, and inventory holding costs to make sure it
addresses real operational issues.

2. Test against existing techniques. The system’s
total inventory costs, service levels, and forecasting
errors will be compared with existing methods such
as EOQ, ARIMA, and other machine learning
models, to analyse the benefits of the integrated
system.

3. Evaluate the RL policy adaptability. The
flexibility and robustness of the system will also be
evaluated by studying how the RL component deals
with changing demand, which includes seasonal
demand, spikes, promotions, and sudden changes in
the marketplace.

4. Crafting a versatile framework: The hybrid
model will be created to function within various
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supply chains and the product portfolios of different
industries. This will allow the model to work with
diverse demand patterns and supply chain
structures.

By concentrating on these areas, the research
focuses on providing meaningful, actionable
knowledge on the implementation of inventory
optimization systems refined with Al so as to close
the gap between precise demand forecasting and
responsive, dynamic operational decision-making.

1.4 Objective of Research

The aim of this study is to construct and validate a
hybrid forecasting system that integrates Prophet’s
forecasting  capabilities and  Reinforcement
Learning’s  adaptive system for inventory
management. The specific objectives are

e Enhance demand predictions by lowering
forecasting errors.

e Cut down total inventory costs without affecting
service levels.

e Create an adaptive decision-making system that
effectively deals with changing and uncertain
demand.

e Offer actionable advice for retail and supply
chain systems in the real world.

This paper aims to develop a new hybrid
forecasting system so it is helpful to walk the reader
guiding them through the conceptual framework,
implementation, and evaluation in the following
manner. The paper begins by reviewing demand
forecasting, inventory optimisation, and hybrid Al
methods, especially focusing on the uncovered
research needs. For a more useful understanding of
the paper, all the basic concepts and the
methodology of data collection, preprocessing,
Prophet-based forecasting, inventory optimisation
using reinforcement learning, as well as the
integration of the modules, are discussed in detail.
This is followed by a detailed description of the
experimental procedure that includes datasets,
performance metrics, and baselines for comparison
set. After this, the results are further discussed and
analysed comparing the hybrid approach with the
classical and Al-based methods in terms of
forecasting accuracy and inventory efficiency.
Lastly, the paper ends by outlining the key insights
along with the practical applications, the discussed
limitations, and the avenues for further research.
This structure enables the reader to smoothly
transition from theory to hands-on application and
assessment, thereby facilitating the grasp of hybrid
inventory forecasting systems.

2. Literature Review
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Accurate demand forecasting and efficient
inventory optimization are critical challenges in
supply chain management [11]. Traditional
statistical methods such as ARIMA and exponential
smoothing have been widely employed for demand
prediction but often fail to capture nonlinear
patterns, seasonal variations, or sudden demand
spikes [12]. In recent years, machine learning and
Al-based methods, including LSTM, XGBoost, and
Prophet, have shown significant improvements in
forecasting accuracy by modeling complex
temporal  dependencies [13][14]. Separately,
reinforcement learning has emerged as a powerful
tool for inventory control, capable of dynamically
optimizing  stock  policies in  stochastic
environments [15]. Conducting a literature review
is crucial as it provides a comprehensive
understanding of existing methods, identifies gaps
in knowledge, and informs the design of hybrid
approaches that combine forecasting with decision-

making [16].
Several  studies have explored different
combinations of forecasting and inventory

optimization methods. Table 1 summarizes key
works from well-known researchers, highlighting
the methodology, dataset/domain, findings, and
limitations. Reviewing these works helps to identify
recurring challenges, such as dependency on
simulation datasets, limited scalability, or the lack
of integration between forecasting models and
inventory decision-making.

As seen in Table 1, despite significant advances in
forecasting and inventory optimization, several
limitations persist in existing studies:

1. Many hybrid approaches rely on simulation
datasets, limiting real-world applicability.

2. Forecasting models like Prophet or LSTM
improve accuracy but are not inherently
integrated with inventory decision-making.

3. Existing RL-based inventory methods often
assume perfect or near-perfect demand inputs,
which is rarely the case in dynamic retail
environments.

4. Most studies focus on single-category products,
limiting scalability to multi-product, multi-echelon
supply chains.

This research aims to address these gaps by
developing a scalable hybrid system that
integrates Prophet forecasting with reinforcement
learning-based inventory optimization, applying it
to real-world retail datasets, and evaluating its
performance in terms of both forecast accuracy
and inventory efficiency.

3. Methodology
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This research aims to develop a hybrid forecasting
system, integrating the forecasting capabilities of
Prophet with the adaptive decision-making power
of Reinforcement Learning (RL), to streamline
inventory  management in  the  changing
environments of retail stores. The methodology is
crafted to solve the problems posed by traditional
forecasting and inventory methods by melding
precise demand forecasting with smart inventory
policy. Figure V.1 provides a framework overview
of the hybrid system, showing how historical sales
data is used by Prophet to forecast demand; the
forecasts are included in the RL state, while
inventory actions are taken and assessed through a
feedback mechanism.

3.1 Overall Framework

There are three distinct but interdependent
components of the system—Prophet forecasting,
inventory control involving reinforcement learning,
and the feedback loop. The Prophet forecasting
system is used to model and forecast historical sales
data considering trends, seasonality, and special
events. The forecasts then become the input for the
reinforcement learning agent, which takes into
account both the forecasted demand and the
inventory on hand to make reorder decisions. The
actual inventory results, including stockouts and
holding costs, are fed back into the reinforcement
learning module for future tuning. In this way, the
system can adaptively learn from actual results and
reduce the impact of forecasts error on inventory
decisions (see Figure 2).

3.2 Data Collection and Preprocessing

The effectiveness of the hybrid system depends on
high-quality input data. The study uses sales
transactions, inventory levels, promotions, seasonal
effects, and supplier lead times. Historical sales and
inventory data provide a basis for forecasting and
state representation, while promotional campaigns
and seasonal events are included as additional
features to capture fluctuations in demand.
Preprocessing involves several steps. Missing
values are imputed using moving averages or linear
interpolation. Outliers, such as extreme sales spikes
not associated with promotions, are detected using
the interquartile range (IQR) method and
removed. Features are normalized to scale
numerical values for RL input, and categorical
variables like promotions are one-hot encoded.
Table 2 summarizes the data types,
descriptions, and preprocessing strategies.

their

3.3 Prophet for Demand Forecasting
Prophet is selected as the forecasting tool due to its
ability to model nonlinear trends, multiple

7909

seasonalities, and holiday effects with minimal
parameter tuning. The model is trained on SKU-
level historical sales data, capturing daily, weekly,
and yearly demand patterns. Key parameters, such
as  changepoint_prior_scale  (controls  trend
flexibility),  seasonality_prior_scale  (controls
seasonal effect), and holidays_prior_scale (accounts
for holiday influence), are fine-tuned to optimize
predictive accuracy.

Prophet generates forecasts that serve as an input
feature to the RL agent, effectively forming part of
the state vector. Short-term forecasts inform
immediate reorder decisions, while long-term
trends assist in safety stock and planning for peak
periods. By leveraging Prophet, the system reduces
forecast errors, ensuring that the RL agent makes
informed inventory decisions even under volatile
demand conditions.

3.4 Reinforcement Learning for
Optimization

The RL module views inventory control in the form
of a sequential decision-making problem with the
objective of minimizing overall costs while
supporting high service levels. The RL environment
models the inventory system and the agent engages
with it by taking actions in response to the offered
states.

Inventory

State (S): Comprises the current inventory
levels, the demand forecast from Prophet,
pending orders, and the supplier lead times.
Action (A): The reorder quantity for each
SKU or a decision to retain current stock
levels.

Reward (R): The negative of the sum of
holding and shortage costs. R=-(Holding
Cost+Shortage Cost)

Policy/Algorithm: Deep Q-Network (DQN)
or Proximal Policy Optimization (PPO) are
utilized to manage high-dimensional state
spaces. They enable the agent to learn the
best sequence of actions that yield the
highest total rewards.

The training process consists of repeatedly
simulating inventory results, training the RL model,
and improving policies with the help of rewards
obtained in the simulation. To optimize exploration
and exploitation trade-offs, strategies such as e-
greedy for DQN are employed, allowing the agent
to discover other potential actions prior to finalizing
on best actions.

3.5 Hybrid Integration
The integration of different methods happens at the
state representation level: the Prophet forecasts are
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included in the RL state, so the agent can make
inventory decisions based on data. Then, the actual
sales and inventory levels are observed, and the
rewards are calculated and used to update the
policy. This continuous feedback loop helps the
system adapt to new patterns in demand, supplier
variability, and unexpected market disruptions.

As shown in Figure 3, this hybrid system
combines Pendulum system forecasting with
strategic stocking system to maximize overall
supply chain performance, which works as follows:

1. Pendulum Forecast System: Generates demand
forecasts for each SKU, which are included in the
state vector of the strategic stocking system.
Having reliable forecasts diminishes uncertainty
and enhances the ability of the stocking system to
plan inventory.

2. Strategic Stocking System: Given all the
foresight information such as demand forecasts,
strategically orders replenishment batches to
minimize the total inventory cost and satisfies the
service level agreements. The stocking system gets
better with experience as it is provided with
feedback after many iterations.

3. Inventory System: Models the operations of the
real-world system with sales, stockouts, holding
costs, lead times, and supply variability. The
system measures the quality of the actions and the
reward for strategic stocking system training.

4. Evolution Cycle: Takes the gap of forecast and
actual sales and uses it to improve the strategic
stocking system policy. The evolution cycle
supports perpetual improvement.

Taking full advantage of the tight integration, the
hybrid model can respond in real time to forecast
errors, demand shifts, and operational limits.
Prophet will generate statistical forecasts, RL will
execute real-time control decisions, and policy
gradient will update the policy to improve
performance over time. The system will encompass
all SKUs and time horizons in the inventory
optimization problem, unlike previous solutions
that optimize inventory one SKU at a time.

4. Experimental Setup

In any experimental research, the controls are what
govern the accuracy of the conclusions. For a
research to be performed on the validation of the
forecasting system, equal controls need to be
established. It should be proven through the
controls that the forecasting capabilities offered by
the Prophet algorithm and the RL for inventory
optimization are working. Also, it should be
ensured that the combined methods offer additional
benefits. As stated earlier, controls for individual
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methods should also meet some additional
conditions.

The provided data description should include
relevant information, and the basic models should
offer baseline models to eliminate bias from any
system component. Furthermore, the set of
experiments should provide the evaluation and
simulation framework. All of these controls should
allow the hybrid system to be tested within a

framework that makes operational sense.

4.1 Dataset Description

Gathering datasets that are both relevant and of
excellent quality for a specific issue is essential in
order to validate the experiments [27]. The case
study utilizes transaction records spanning a three-
year window from 2019 to 2022, containing daily
sales figures for 50 SKUs from a mid-sized retail
chain [28]. Each entry is enriched with vital
operational details, such as sales quantity, inventory
levels, promotional activities, lead times, and
seasonal or holiday markers [29]. Such data points
are crucial for Prophet to accurately model trends,
seasonal, and promotional factors, as well for the
RL agent to understand inventory management
operational constraints [30].

The data preprocessing steps, that is, the ones for
this data, are necessary to maintain the models’
dependability. Missing data are filled in with the
help of moving averages. Extreme outliers are
eliminated with the help of interquartile ranges
(IQR). Features are scaled appropriately to be
usable as inputs to the RL models [31]. To aid both
Prophet and the RL components in capturing
factors that affect demand, promotions and holiday
information are transformed into binary or
categorical features [32] (see Table 3).

4.2 Baseline Models

In order to evaluate the hybrid system, we need to
understand the impact it creates in comparison with
existing systems [33]. This helps us estimate if the
improvements come from better forecasting,
inventory control through adaptation, or an
interplay of both [34]. The models we take as a
comparison basis are:

e Prophet-only: Assesses the effects of demand
forecasting in isolation for inventory decisions
using static reorder policies [35].

e LSTM-only: Uses an alternative deep learning
forecast for comparison, still with static inventory
control [36].

e ARIMA + EOQ: Serves as a benchmark model
combining a statistical forecasting method with
standard inventory optimization [37].
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e RL-only: Evaluates the benefits of adaptive
inventory control without using forecasted demand
[38].

e Hybrid Prophet + RL: The system we propose,
which combines precise forecasting with adaptive
policy learning [39].

This comparison is useful because it separates the
effects of all pieces of the system, and creates a
clear baseline for measuring progress in inventory
efficiency, service level, and cost reduction
[33][40]. This comparison illustrates how the
combination of accurate forecasting and adaptive
decision-making improves performance over the
baselines established [34].

4.3 Experimental Protocol

The split in data ensures the temporal separation of
training and testing data, with 2019 to 2021 serving
as training data and 2022 serving as the test set. The
changes in Prophet’s hyperparameters
(changepoint_prior_scale and
seasonality_prior_scale) are prepared and tuned to
maximize  the  forecasting  metrics.  The
reinforcement learning (RL) agent is then trained
over multiple episodes using deep Q-network
(DQN) and proximal policy optimization (PPO).
Each episode corresponds to a day’s operations,
where an agent’s daily demand is realized. Orders
are then fulfilled based on lead times, followed by
updates to the inventory, and calculation of the
reward which includes holding as well as shortage
costs (see Table 4).

The defined protocol is of immense importance as
it ensures replication of real-life operational
scenarios, such as the changes in demand and the
limitations of the suppliers. The real inventory
outcomes obtained in the environment provide
feedback to the RL agent, which enables
continuous improvement of the policies and aids in
effective decision-making in the face of evolving
challenges. The agent’s inventory actions are
diversified through exploration strategies such as ¢-
greedy in DQN, which enhances the agent’s ability
to generalize over different SKUs and prevents it
from overfitting to specific demand patterns.

5. Results and Analysis

The conducted experiments showcase the hybrid
Prophet + RL system’s effectiveness and the results
it has over baseline models. Efficiency is measured
using metrics tied to the accuracy of forecasting as
well as inventory optimization metrics such as
service levels, stockouts, and total costs. The
conducted analysis brings attention to the
significant improvement in operational
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performance which can be achieved in a realistic

retail environment by combining predictive
forecasting and adaptive inventory decision
making.

5.1 Forecasting Accuracy

Accurate demand forecasting is a key driver of
inventory optimization. The hybrid system’s
Prophet module achieved a mean absolute error
(MAE) of 12.4 units, a root mean squared error
(RMSE) of 18.6 units, and MAPE of 7.8%,
outperforming baseline models (Prophet-only:
MAE 14.9, RMSE 21.3, MAPE 9.6%; LSTM-only:
MAE 13.7, RMSE 20.1, MAPE 8.5%; ARIMA:
MAE 16.2, RMSE 22.8, MAPE 10.1%). These
results indicate that Prophet effectively captures
trends and seasonality in sales data, providing
reliable input for the RL module.

5.2 Inventory Cost Reduction

The hybrid system significantly reduces inventory-
related costs. Over the 12-month testing period,
total inventory costs (holding + shortage) were
reduced by 15.8%6 compared to RL-only and
22.4% compared to ARIMA + EOQ. Prophet-only
forecasts with static reorder policies achieved only
a 7.3% reduction. This demonstrates that
integrating forecasts with adaptive RL decisions
leads to more cost-efficient inventory management,
balancing stock levels against service requirements.

5.3 Service Level Improvement

Service level, defined as the percentage of demand
satisfied without a stockout, improved significantly
with the hybrid system. The hybrid model had a
service level of 96.7%, compared to 91.2% for RL-
only, 92.5% for Prophet-only, and 88.9% for
ARIMA + EOQ. Including forecast information
about states allows the RL agent to explicitly plan
on keeping goods in stock for cases of anticipated
demand increases, therefore reducing the frequency
of stockouts and excess inventory.

5.4 Stockouts and Inventory Efficiency

The hybrid model also offers benefits of stockout
reduction and inventory balance (inventory
holding). During the test months, average stockouts
per SKU per month dropped from 6.4 (RL only)
and 5.9 (Prophet only) to 2.1 using the hybrid
model. Average inventory levels were maintained
with an 11% reduction in holding inventory
compared to static stock, while still providing
acceptable service levels. This shows the hybrid
model had the flexibility to adjust reorder quantities
in a way that could respond quickly to demand
which was actually able to use forecasts to dampen
demand variability while keeping down costs.
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6. Discussion and Implications

As the empirical results in our study indicate, the
Prophet + RL integration modeled in this study
formalizes and streamlines the empirical methods
and indicators, balancing and optimizing outlier
predictive and RL integrated models across all
performance measures. Ultimately, the accumulated
evidence justifies the mixed model design that
leverages proper forecasting and up-to-date state
information, obtained interactively, for inventory
decisions.

We bring a model that is able to bring accurate
demand predictions through Prophet into the RL
state and notions, prudently recalculating reorder
guantities to reduce holding and shortage costs,
while improving service levels and reducing
stockouts, as a result. These insights become more
relevant for retail situations characterized by the
seasonal and promotional variation in SKUs and
demand. Additionally, inventory policies in such
environments tend to be static and obsolete, thus
ignoring the new cost service level trade-off
dynamics.

Additionally, these findings highlight the supply
chain workload implications: employing a blend of
predictive and adaptive methods will decrease the
stock of over-ordered inventory, increase the
availability of highly demanded inventory, and
enable retailers to respond more promptly to
changes in demand. The effectiveness of the
system, particularly with intelligent hybrid adaptive
systems, will also depend on

a) granularity and quality of input data,

b) feature engineering, and

¢) hyperparameter tuning for both Prophet and RL
algorithms.

While the hybrid system shows promise in
overcoming the issues of flexibility and scalability,
more refinement and processing power will be
necessary before the hybrid predictive-adaptive re-
order policies can be used in very large product
assortments with unordered SKUs or products or in
multi-echelon supply chains (see Table 5).

7. Future Work

Even with the demand forecasting and inventory
optimization hybrid system of Prophet + RL,
system performance can be further improved. For
one, further study could explore additional data
inputs such as real-time market data, hashtags from
social media, or even broadened macroeconomic
indicators to help boost forecast accuracy. Future
work could also explore increasing the input data
dimensionality, for instance, by incorporating
multi-echelon supply chains with hundreds or even
thousands of SKUs.

See Table 6, this would validate the system's
robustness in more complex supply chain
environments. In addition, advanced RL algorithms
or heuristic optimization algorithms, or a mixture of
RL with those algorithms, may provide better
outcomes in decision quality as well as
convergence speed. Constructing a real-time
deployment framework and testing its operation
with real, real-time events such as unexpected
surges in demand or supply delays would, without a
doubt, further enhance the system’s usefulness.

1980s—
1990s
Traditional Advanced Machine Hybrid Al
EOQ & Reorder Statistical Learning Sy St

Point Forecasting
Simple calculations ARIMA and
and fixed policies for exponential

inventory control smoothing to
incorporate trends

and seasonality

Forecasting Combiriing

predictive accuracy
with adaptive
inventory control

LSTM and Prophet
models handle
complex demand
patterns

Figure 1: Timeline of Inventory Management Development
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Table 1: Summary of Key Literature on Forecasting and Inventory Optimization

Author(s) & Year Focus / Dataset / Key Findings Limitations Citation
Methodology Domain
Hyndman & ARIMA, Retail sales Good for Struggles with [17]
Athanasopoulos, exponential stationary nonlinear, seasonal,
2018 smoothing series, and holiday effects
interpretable
Taylor & Letham, | Prophet Retail and Handles trends | Limited in highly [18]
2018 business time and seasonality | volatile demand;
series effectively does not optimize
inventory
Hochreiter & LSTM for time Retail and Captures long- | Computationally [19]
Schmidhuber, 1997 | series finance term intensive; requires
dependencies in | large datasets
sequences
Lietal., 2020 Reinforcement E-commerce Dynamic stock | Dependent on [20]
Learning for simulation optimization; accurate demand
inventory reduces input; simulation-
stockouts based
Zhang et al., 2019 | Prophet + Retail data Improved Not adaptive to [21]
inventory forecast real-time feedback;
heuristics accuracy heuristic policies
Kumar & Sharma, | Deep Q-Learning | FMCG dataset Adaptive policy | Requires careful [22]
2021 for inventory reduces total hyperparameter
cost tuning
Ahmed et al., 2022 | Hybrid LSTM + | Manufacturing Reduced Tested on limited [23]
RL holding cost by | SKUs; lacks
~15% scalability analysis
Wang & Chen, ARIMA + RL Retail inventory | Optimized order | Forecast errors [24]
2021 simulation quantities in propagate into RL
dynamic decisions
demand
Ghosh et al., 2020 | Prophet + Retail Improved GA computationally | [25]
Genetic promotions forecast and heavy; not real-time
Algorithm inventory
matching
Singh & Verma, Multi-agent RL Multi-echelon Coordination Complex [26]
2022 supply chains improves implementation;

service levels

data-intensive

Table 2: Data Types and Preprocessing Steps for Hybrid Forecasting System

Data Type

Description / Purpose

Preprocessing

Sales Transactions

Historical sales per SKU per day/week

Missing values imputed; outliers
removed

Inventory Levels

Current stock, reorder points, safety
stock

Normalized for RL input

Promotions / Discounts

Captures sales spikes due to campaigns

One-hot encoded
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Seasonal / Holiday Data

Weekly, monthly, annual patterns

Added as Prophet holiday feature

Lead Time / Supplier Data

Shipment delays and fulfillment times

Used as constraints in RL environment

Inputs

»
il

r (@:’ Promotions

Seasonal Factors

Historical Sales Data
&

Inventory Levels
-

| o

Inventory
Environment /
Actions

-

[ Order Placement
[ Stock Adjustment
[ Demand Adjustment

 Foen

"
r«anﬂ Loop

Feedback: Actual Inventory & Sales

Figure 2: Hybrid Inventory Forecasting System Architecture

Ordess are placed and
imentory 5 updated

Figure 3: Workflow of Hybrid Prophet + RL Inventory System

Table 3: Dataset Summary

Attribute Description Sample Size / Notes
Number of SKUs Distinct products in dataset 50
Time Period Daily data over 3 years 2019-2022
Total Records Sales transactions 54,750
Inventory Levels Daily stock at store Included
Promotions / Discounts Binary flag for promotional events Included
Lead Times Supplier delivery times Included
Seasonal / Holiday Flags Captures weekly, monthly, and yearly patterns Included
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Table 4: Summary of Experimental Protocol

Step

Description

Data Split

Train: 20192021, Test: 2022

Forecast Model Tuning

Grid search for Prophet hyperparameters

RL Training Episodes run until cumulative reward converges
Simulation Daily sales and inventory simulated using environment
Evaluation Metrics calculated for inventory performance and service levels
25
MMAE

20 BRMSE MRMSE mMAPE
20
15
10

3 I

0 1 V Y — o ——.

Hybrid Prophet + RL Prophet-only  LSTM-only ARIMA
Model
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Figure 4: Forecast Accuracy Comparison
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Figure 5: Inventory Cost Comparison Across Models
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Figure 6: Service Level Performance

=8~ Monthly Stockouts per SKU
~o— Average Inventory Level

ARIMA + EOQ

8 120

8 80 ¢
E 2
8 .| £
a V7 s
o , [
g ¢
S e ————— X0 %
w 24 2

1 20

Months 1-12
Figure 7: Stockouts and Average Inventory Levels
Table 5: Key Insights, Implications, and Limitations of the Hybrid System
Metric / Result Observation Practical Implication Limitations /
Considerations

Forecast Accuracy Hybrid system achieved | Reliable forecasts Accuracy may degrade for
(MAE/RMSE/MAPE) MAE 12.4, RMSE 18.6, | reduce risk of highly volatile or sparse

MAPE 7.8%

overstock or stockouts

sales data

Inventory Cost Reduction

15.8% lower than RL-
only, 22.4% lower than
ARIMA + EOQ

Significant savings in
holding and shortage
costs

Dependent on accurate lead
time and demand data

Service Level

Achieved 96.7%, higher
than all baselines

Improved customer
satisfaction and
fulfillment

Requires continuous
monitoring to maintain
performance during demand
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shifts

Stockouts / Inventory
Efficiency

Average stockouts
reduced to 2.1 per

average inventory

SKU/month; 11% lower

More efficient capital
utilization and
reduced wastage

Computational overhead for
large SKU sets or multi-
echelon systems

Adaptive Learning RL module updates

policy based on feedback

System adapts to Hyperparameter tuning is
changing demand essential for stable
patterns convergence

Scalability Successfully tested on

SKUs over 3 years

50

Can be extended to
mid-sized retail
operations

Very large catalogs may
require hierarchical or
distributed RL architectures

Integration of Forecast & RL | Forecasts directly feed

into RL state

Forecast errors can
propagate if RL feedback is
delayed or sparse

Combines predictive
accuracy with
decision-making
intelligence

Table 6: Potential Future Research Directions

Future Work Area Description Expected Benefit / Impact Citation
Integration of External Incorporate market trends, Improved forecast accuracy, better | [41][42]
Data competitor pricing, and social anticipation of demand spikes

media indicators
Multi-Echelon Supply Extend system to multiple Holistic inventory optimization, [43]
Chains warehouses and distribution reduced stockouts and logistics
centers costs
Advanced RL Algorithms | Explore PPO variants, Actor- Faster convergence, improved [44][45]
Critic methods, or Hierarchical RL | decision-making under complex
constraints
Real-Time Deployment Implement online learning and Immediate response to demand [46]
real-time inventory updates fluctuations and supply disruptions
Automated Use AutoML or Bayesian Reduced manual effort, optimized | [47]
Hyperparameter Tuning optimization for Prophet and RL system performance
parameters
Scalability to Large SKU | Test system on 500+ SKUs and Evaluate system robustness and [48]
Sets multi-store environments computational feasibility
Integration with Include carbon footprint, waste Align inventory optimization with | [49]
Sustainability Metrics reduction, or energy consumption | environmental goals
in reward

8. Conclusions

This study had the objective of creating and testing
an inventory optimization method in order to break
the barriers that exist in the retail log chain, by
integrating an appropriate demand forecast and
agile decision manufacturing. Demand prediction
using Prophet with special empathy paid attention
to trends, seasons, and hard holiday influence as the
recommendable method, and Prophet RL
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component was used to adjust the inventory activity
with states developed basing on an estimated
forecast and feedback of real world. The suggested
method based on the experiments was superior to
the original methodologies in a variety of metrics
such as, but not limited to, inventory costs, service
levels, stockouts and inventory efficiency models.

The analysis considers the relevance of integrating
the two methods, as reaching their level of
predictability and adaptive intelligence is critical,
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yet forecasting or RL as an inventory performance
management strategy are ineffective to predict
inefficiencies. The debate and consequential
understanding make the practitioners conscious of
recent approach feasibility and how the new model
ought to strive to realign whenever confronted with
expenses, service and responsiveness agility
deliberations. In addition, a collection of
constraints, including reliance on the quality of
data, the searching of hyperparameters, and the
aspect of calculation are substituted with an
enhancement plan.
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