

Copyright © IJCESEN

International Journal of Computational and Experimental Science and ENgineering (IJCESEN)

Vol. 11-No.4 (2025) pp. 7760-7768 http://www.ijcesen.com

Research Article

Response Time Optimization and Its Effect on Patient Outcomes in Prehospital Emergency Services

Murtada Wajdi Mahroos Almahroos^{1*}, Salem Hassan M Alben Saeed², Ali Hassan A. Alagili³, Fadhel Abbas I Albasha⁴, Mofeed Mohammed Kadom Almerza⁵, Hussain Saeed A Bazron⁶, Najeeb Shabr Habib Al Hashem⁷, Abdulmohsen Ali Al Abudeeb⁸, Haider Ali Salman Aljaroudy⁹, Adnan Fuad Adnan Almurwhen¹⁰

¹Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia,
* Corresponding Author Email: tony clk 07@hotmail.com- ORCID: 0000-0002-5247-7850 (you can get it in orcid.org)

²Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, Email: roozrooz-1989@hotmail.com- ORCID: 0000-0002-5007-7850

³Emergency Medical Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** hassan-ali-3@hotmail.com- **ORCID:** 0000-0002-5007-7850

⁴Emergency Medical Services Technician, Saudi Red Crescent Authority, Dammam, Eastern Province, Saudi Arabia, Email: albashaf997@gmail.com- ORCID: 0000-0002-5007-7850

⁵Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** modhish123@hotmail.com- **ORCID:** 0000-0002-5007-7850

⁶Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** hussaen.s.1992@gmail.com- **ORCID:** 0000-0002-5007-7850

⁷Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** najeeb.ne@gmail.com- **ORCID:** 0000-0002-5007-7850

⁸Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** a.abudeeb666@gmail.com- **ORCID:** 0000-0002-5007-7850

⁹Paramedic, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, **Email:** hasj9631@hotmail.com- **ORCID:** 0000-0002-5007-7850

Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Province, Saudi Arabia, Email: jr7 alzmn@msn.com- ORCID: 0000-0002-5007-7850

Article Info:

DOI: 10.22399/ijcesen.4129 **Received:** 25 November 2015 **Accepted:** 20 December 2016

Keywords

Response time optimization, patient outcomes, prehospital emergency services, emergency medical services (EMS)

Abstract:

Response time optimization in prehospital emergency services is a critical factor influencing patient outcomes. The initial moments following a medical emergency are crucial, as timely intervention can significantly reduce morbidity and mortality rates. Research indicates that every minute counts in emergencies such as cardiac arrests, strokes, and severe trauma. By implementing strategies such as enhanced dispatch protocols, advanced training for first responders, and the use of technology like GPS tracking, emergency medical services (EMS) can minimize response times. These improvements not only ensure that patients receive care faster but also enhance the overall efficiency of emergency services, leading to better resource allocation and improved outcomes. Furthermore, the impact of optimized response times extends beyond immediate clinical results; it also affects patient satisfaction and community trust in emergency services. When patients receive timely care, it fosters a sense of security and confidence in the healthcare system. Additionally, studies have shown that quicker response times correlate with higher survival rates and better long-term health outcomes, particularly in critical conditions. As EMS agencies continue to prioritize response time optimization through data-driven approaches and community engagement, the potential for improved patient outcomes remains significant.

1. Introduction

The prehospital emergency medical service (EMS) system represents the critical first link in the chain of survival for millions of individuals experiencing acute medical crises each year. From traumatic injuries and cardiac arrests to cerebrovascular accidents and respiratory failures, the initial minutes following a medical emergency are often the most decisive. Within this high-stakes environment, **response time**—the interval between the receipt of an emergency call and the arrival of the first medically-equipped vehicle at the patient's location—has long been enshrined as a paramount indicator of system performance and a presumed key determinant of patient survival [1].

The global emphasis on response time is epitomized by the widespread adoption performance benchmarks. Many emergency medical systems worldwide, including influential American Heart Association (AHA) and the Committee on Accreditation of Ambulance Services (CAAS), have historically advocated for an 8-minute or less response time for high-acuity, time-sensitive conditions like cardiac arrest [2]. The "platinum 10 minutes" and "golden hour" concepts in trauma care further reinforce the notion that rapid prehospital care is non-negotiable for positive outcomes [3]. This focus has driven substantial investments in infrastructure, such as strategic ambulance station placement, advanced dispatch systems, and community first responder programs, all aimed at minimizing the time to patient contact. The clinical rationale for optimizing response times is robust. particularly for specific critical In out-of-hospital cardiac arrest conditions. (OHCA), every minute of delay in defibrillation reduces the probability of survival by 7-10% [4]. A study analyzing over 10,000 OHCAs in North America demonstrated that patients with a response time of less than 5.8 minutes had significantly higher survival-to-discharge rates compared to those with longer waits [5]. Similarly, in the context of ST-elevation myocardial infarction (STEMI), faster prehospital ECGs and direct transport to percutaneous coronary intervention (PCI)-capable centers, processes heavily dependent on efficient EMS response, are directly correlated with reduced myocardial damage and lower mortality [6]. For acute ischemic stroke, the administration of thrombolytic therapy exquisitely time-dependent, with the mantra "time is brain" underscoring that each minute of delay results in the loss of an estimated 1.9 million neurons [7]. The prehospital phase, therefore, controls a critical portion of the total "door-toneedle" time.

compelling pathophysiological Despite this evidence, the straightforward equation of "faster is always better" is being challenged by contemporary research. A growing body of literature suggests that the relationship between response time and patient outcomes is not linear across all emergency types and may be subject to a law of diminishing returns. For instance, a large-scale retrospective cohort study published in JAMA Network Open found that while shorter response times were associated with improved survival for cardiac arrest, the benefit was significantly attenuated for other medical emergencies like respiratory distress and seizures [8]. This indicates that the clinical benefit is highly condition specific.

Furthermore, the singular pursuit of ultra-fast response times can have unintended consequences. It can lead to risky driving behaviors, endangering EMS personnel, patients, and the public. A study by Kahn et al. noted that ambulance accidents are a significant cause of injury and fatality within the EMS ecosystem [9]. Moreover, an excessive focus on response time as a primary metric may divert resources and attention from other crucial aspects of care quality, such as the clinical competency of the paramedics, the accuracy of dispatch, and the performance of key on-scene interventions. The concept of "skill fade" among paramedics who infrequently perform critical procedures is a concern that cannot be addressed by response time alone [10].

This has led to a paradigm shift in how modern EMS systems are evaluated. The emphasis is expanding from a purely time-centric model to a "system-of-care" approach. This holistic view considers the entire patient journey: from the emergency call and dispatcher-assisted CPR, through the quality of on-scene advanced life support, to efficient transport and seamless handover to the appropriate definitive care facility [11]. Technological innovations are at the forefront of this optimization. Computer-aided dispatch (CAD) systems using real-time traffic data, GPS tracking of units, and predictive analytics to anticipate demand hotspots in a city are becoming standard tools for reducing response intervals [12].

Defining Time-Criticality in Emergency Medicine:

The "Golden Hour" is a term that originated in military medicine, most notably attributed to R. Adams Cowley, the founder of the Shock Trauma Center in Baltimore, who famously stated, "There is a golden hour between life and death." This concept posits that the likelihood of survival for a victim of traumatic injury is highest if definitive care is received within the first hour following the

traumatic event. The physiological rationale behind this principle is multifaceted and compelling. Following severe trauma, the body enters a state of progressive shock, characterized by hypoperfusion, tissue hypoxia, and a cascade of inflammatory and coagulopathic responses. The primary goals within this golden hour are to control catastrophic hemorrhage, ensure a patent airway, and restore circulating volume to prevent the onset of irreversible shock and end-organ damage. A landmark study by Lerner and Moscati critically examined this concept, concluding that while the "one-hour" rule is somewhat arbitrary, the underlying principle—that delays in treatment increase mortality—is unequivocally supported by evidence. They note that for certain injuries, such as uncontrolled internal bleeding or traumatic brain injury, the window for effective intervention may be significantly shorter than sixty minutes, reinforcing the need for speed [13].

In the realm of traumatic brain injury (TBI), this timeframe is even more compressed. Research by the Brain Trauma Foundation underscores that secondary brain injury, caused by hypoxia (low oxygen) or hypotension (low blood pressure), exacerbates the initial primary injury and dramatically worsens outcomes. A systematic review demonstrated that prehospital intubation to secure an airway and fluid resuscitation to maintain blood pressure, when performed within this critical window, are directly associated with reduced mortality and improved neurological recovery in severe TBI patients [14]. The "Golden Hour," therefore, is not a guaranteed period of safety but a window of opportunity where systematic, timely, and effective interventions can halt a downward physiological spiral.

While the "Golden Hour" governs the trauma paradigm, the "Platinum Minutes" dictate the response to the most time-sensitive of all medical emergencies: out-of-hospital cardiac (OHCA). In cardiac arrest, the human brain begins to suffer irreversible damage within 4 to 6 minutes of oxygen deprivation. The "Chain of Survival," a metaphor developed by the American Heart Association, identifies early access, early CPR, early defibrillation, and early advanced care as the critical links. The "platinum" timeframe, often considered the first 5-10 minutes after collapse, is primarily concerned with the first three links, with early defibrillation being the single most influential factor for survival in shockable rhythms like Ventricular Fibrillation (VF). The decay in survival chances is precipitous; studies consistently show that the probability of survival decreases by approximately 7-10% for every minute that defibrillation is delayed [15]. This is not a linear

decline but a steep, unforgiving curve. The "Platinum Minutes" emphasize that for OHCA, the prehospital response is not just the first step in care; it is often the *definitive* care. The arrival of professional help within this window to provide high-quality CPR and apply an Automated External Defibrillator (AED) is what separates survivors from non-survivors.

This time-criticality extends to other major medical

emergencies. In acute ischemic stroke, the phrase "time is brain" has become a universal mantra. Ischemic brain tissue, the penumbra, is at risk of infarction but remains salvageable if blood flow is restored. Imaging and clinical studies have quantified this loss, estimating that in a typical large-vessel stroke, the patient loses 1.9 million neurons, 14 billion synapses, and 12 kilometers (7.5 miles) of axonal fibers every minute that treatment is delayed [16]. The administration of thrombolytic agents (clot-busting drugs) or the performance of a mechanical thrombectomy is only effective within a strict time window, making the prehospital identification, rapid transport, and pre-notification to a stroke center a paramount function of EMS. Similarly, for ST-Elevation Myocardial Infarction (STEMI), the goal is to minimize "total ischemic time"—the period from the onset of coronary artery blockage to its reperfusion. The mantra here is "door-to-balloon" time, a hospital metric that is entirely dependent on the "first-medical-contact-toballoon" time, which begins with EMS arrival. Every 30-minute delay in reperfusion is associated with a 7.5% increase in one-year mortality [17]. The role of EMS in performing a prehospital 12lead ECG is crucial, as it can bypass emergency department delays and activate the cardiac catheterization lab while the patient is still en route, shaving critical minutes off the total ischemic time. The establishment of these timeframes has had a profound impact on the design and operation of EMS systems globally. They have driven the creation of performance standards, such as the common 8-minute response time target for the highest acuity calls, and have justified massive investments in infrastructure, from strategically located ambulance stations to sophisticated dispatch centers. A comprehensive analysis of European EMS systems by Søvsø et al. highlighted how these time-based benchmarks, while varying slightly between countries, form the core of quality assurance and public reporting, directly shaping policy and funding decisions [18].

However, it is crucial to understand that these concepts are not rigid chronological straitjackets but rather powerful metaphors for biological urgency. The "Golden Hour" does not end abruptly at 60 minutes, nor do the "Platinum Minutes"

become irrelevant after 10. The underlying pathophysiology is a continuum. As a study by Newgard et al. on trauma systems elucidates, the beneficial effect of timely care is a gradient; earlier is almost always better, but the *rate* at which outcomes decline slows after the initial, most critical period [19]. Furthermore, the clinical presentation is key. A patient with isolated limb trauma has a vastly different "golden hour" than one with a penetrating chest injury. This nuance is what led to the development of advanced triage protocols and tiered response systems, which will be discussed in subsequent sections.

In conclusion, the "Golden Hour" and "Platinum Minutes" are more than just slogans; they are evidence-based concepts that encapsulate the fundamental relationship between time and survival in medical emergencies. They provide the essential biological and clinical rationale for the relentless pursuit of efficiency in prehospital care. By defining the extreme time-sensitivity of conditions like trauma, cardiac arrest, stroke, and STEMI, they establish why the race begins the moment an emergency call is received, setting the stage for a detailed examination of how EMS systems measure and optimize their performance in this race against the clock [20].

Measuring Prehospital EMS Performance:

The limitations of using response time as a primary key performance indicator (KPI) are manifold. First, it is a process measure, not an outcome measure. It tracks an activity within the system rather than a result for the patient. A rapid response is meaningless if the arriving personnel lack the training or equipment to perform lifesaving interventions, or if they make critical clinical errors. Second, the intense focus on minimizing the first unit's arrival time can lead to strategic "gaming," such as the systematic deployment of rapidresponse vehicles or basic life support (BLS) units that may not have the advanced capabilities required for the specific emergency, simply to "make the clock stop." This can create a dangerous mismatch between patient needs and provider capabilities. A study by Redelmeier et al. found that in systems with rigid response time targets, there was a higher incidence of sending lower-acuity units to meet time goals, which could subsequently delay the delivery of necessary advanced care [21]. Furthermore, the pressure to achieve rapid response times has been directly linked to an increased risk of ambulance collisions, posing a significant danger to EMS personnel, patients, and the public. A national analysis in the U.S. concluded that ambulance crash rates were a serious occupational hazard, with a substantial proportion occurring during emergency use [22].

To move beyond the stopwatch, a holistic framework for EMS performance must integrate a balanced set of metrics that span the entire spectrum of care. This framework can be categorized into several key domains:

- **1.** Clinical Quality and Protocol Adherence: This domain measures what providers *do* once they arrive on scene. It shifts the focus from "how fast" to "how well." Key metrics include:
 - Adherence to Evidence-Based Guidelines: Measuring the frequency with which providers correctly follow established clinical protocols for conditions like STEMI, stroke, and sepsis. For instance, the percentage of STEMI patients who receive a prehospital 12-lead ECG and have it transmitted to the receiving hospital is a powerful quality indicator [23].
 - Procedure Success Rates: Tracking the success and complication rates of advanced skills like endotracheal intubation, intraosseous access, and medication administration.
 - Pain Management: Measuring the assessment and adequate treatment of pain in trauma and medical patients, which is a fundamental aspect of patient-centered care.
- 2. Time-Interval Metrics (A Broader View): While not the sole metric, time intervals remain important when placed in proper context. The framework should expand to include:
 - Call Processing Time: The time from the call being answered to it being dispatched to a unit. Efficient dispatch is the first link in the chain.
 - **Scene Time:** The time spent on scene. While prolonged scene times can be detrimental for time-critical patients, an adequate scene time is necessary perform critical interventions (e.g., securing airway, an controlling hemorrhage) and properly package the patient. A study by Osteras et al. demonstrated that for major trauma patients, performing essential on-scene interventions without excessive delay was associated with improved survival, challenging the "scoop and run" versus "stay and play" dichotomy [24].
 - Transport Time: The time from leaving the scene to arrival at the emergency department.
 - Total Prehospital Time: The sum of all intervals, which provides a more

comprehensive picture of the system's handling of a case.

- **3. Patient-Centered Outcomes:** The ultimate goal of any healthcare system is to improve patient outcomes. While difficult to attribute solely to prehospital care, EMS systems are increasingly being evaluated on their contribution to:
 - Survival to Hospital Admission: Particularly for out-of-hospital cardiac arrest (OHCA).
 - Survival with Good Neurological Outcome: The Cerebral Performance Category (CPC) score is a standard for measuring neurological recovery after OHCA [25].
 - Patient-Reported Experience Measures (PREMs): Gathering feedback from patients and families on their experience with EMS, including communication, compassion, and perceived competence.

4. System Efficiency and Safety:

- Unit Hour Utilization (UHU): A measure of how busy ambulances are, which is critical for resource planning and preventing provider burnout.
- Ambulance Crash Rates: A direct measure of system safety for providers and the public [22].
- Patient Safety Incidents: Tracking medication errors, documentation errors, and other safety-related events.

The implementation of such a comprehensive framework is now feasible due to technological advancements. Modern electronic patient care report (ePCR) systems allow for the structured collection of vast amounts of clinical and operational data. When linked with hospital outcome data and dispatch records, they create a rich dataset for performance analysis. The adoption of data-driven performance management, as outlined in the "EMS Compass" initiative in the United States, aims to standardize these metrics nationally, allowing for meaningful benchmarking and quality improvement [26].

Furthermore, this multi-faceted approach allows for risk-adjusted comparisons. Raw response times or survival rates can be misleading without considering the case mix and demographic factors of a population. A system serving a dense urban area will have inherently different performance data than one covering a vast rural region. Sophisticated statistical models can now adjust for these variables, providing a fairer and more accurate assessment of system performance [27].

In conclusion, while the stopwatch will always have a place in the high-stakes environment of prehospital care, it is an insufficient standalone measure of system excellence. The future of EMS performance evaluation lies in a balanced, multidimensional framework that values clinical quality, patient safety, and meaningful patient outcomes just as highly as it values speed. By embracing this broader perspective, EMS systems can transition from being judged merely as rapid transportation services to being recognized as integral components of the healthcare system that deliver high-quality, evidence-based medical care at the most critical moments of a patient's life [28, 29, 30].

Rapid Response and Improved Outcomes

Nowhere is the time-dependent nature of survival more starkly illustrated than in the case of OHCA. The decay curve for survival in shockable rhythms like ventricular fibrillation (VF) is precipitous. A seminal analysis by Larsen et al., which underpins global resuscitation guidelines, quantified this relationship, demonstrating that the probability of survival decreases by approximately 7-10% for every minute that defibrillation is delayed [31]. This statistic translates into a near-hopeless prognosis if defibrillation occurs beyond 10-12 minutes. However, rapid response can alter this trajectory dramatically. A large-scale study from Japan, which implemented a comprehensive community-based response system, showed that patients who received their first defibrillation from EMS within 8 minutes of the emergency call had a survival rate nearly three times higher than those who received it later [32]. The critical interventions of high-quality cardiopulmonary resuscitation (CPR) and early defibrillation are almost entirely within the domain of the prehospital phase. Therefore, the EMS response time is the primary determinant of whether these interventions are delivered within the narrow "platinum" window where they are effective. The chain of survival is only as strong as its most time-sensitive links, and the data unequivocally shows that rapid response is the forge that strengthens them.

The evidence is equally powerful for STEMI, where the primary goal is to minimize "total ischemic time"—the duration of coronary artery occlusion. The phrase "time is muscle" encapsulates the direct relationship between delay and the extent of irreversible myocardial necrosis. Every 30-minute delay in reperfusion is associated with a 7.5% increase in one-year mortality [33]. The role of EMS in this context is to act as the catalyst for rapid reperfusion. The performance of a prehospital 12-lead electrocardiogram (ECG) is a pivotal intervention. Studies have consistently shown that a prehospital ECG, which allows for early diagnosis and field activation of the cardiac catheterization lab, can reduce door-to-balloon times by 20-30 minutes [34]. This time saving is directly linked to improved outcomes. A metaanalysis by Diercks et al. concluded that systems with robust prehospital **ECG** programs demonstrated significantly lower mortality and reduced infarct size among STEMI patients compared to those where diagnosis was delayed until emergency department arrival [35]. In this paradigm, a fast EMS response does not just mean quick transport; it means initiating the hospital's life-saving protocol while the patient is still in the community, effectively extending the hospital's capabilities to the roadside.

In the realm of major trauma, the relationship between time and outcome, while more complex due to the heterogeneity of injuries, remains critically important for specific physiological insults. The leading cause of preventable death in uncontrolled hemorrhage. trauma is implementation of Major Hemorrhage Protocols (MHPs) in prehospital services, which include the rapid administration of tranexamic acid (TXA) and blood products, has highlighted the critical importance of early intervention. The CRASH-2 trial and subsequent analyses firmly established that the survival benefit of TXA is greatest when administered within the first hour of injury, with its efficacy decreasing linearly with time [36]. For a patient with non-compressible truncal hemorrhage, the only definitive intervention is surgical, making rapid transport to a trauma center ("scoop and run") the priority. A study of urban trauma systems found that for patients presenting in shock, a reduction in prehospital time was independently associated with a survival benefit, underscoring that for the most severely injured, delays directly increase the risk of mortality from exsanguination [37]. Furthermore, for traumatic brain injury (TBI), prehospital prevention of hypoxia and hypotension complications that can be identified and treated by a rapidly arriving advanced life support team—is a well-documented factor in improving neurological outcomes [38].

The mantra "time is brain" in acute ischemic stroke is backed by quantitative neuroimaging studies. The benefit of intravenous thrombolysis drops steadily from the moment of symptom onset, and endovascular thrombectomy has a similarly critical time window. The prehospital phase controls a significant portion of the "onset-to-needle" time. EMS systems that utilize validated stroke screening tools, such as the Los Angeles Prehospital Stroke Screen (LAPSS) or the Cincinnati Prehospital Stroke Scale (CPSS), can achieve high accuracy in identifying potential stroke victims, allowing for rapid pre-notification and triage Comprehensive Stroke Center [39]. This

streamlined pathway, initiated by a prompt EMS response, directly translates into faster treatment. A multi-center cohort study demonstrated that patients with a shorter "scene-to-hospital" interval had significantly higher odds of receiving thrombolysis within the target door-to-needle time of 60 minutes, a key benchmark associated with improved functional recovery [40].

Challenging the Universal Primacy of Response Time

The most compelling evidence for this nuanced view comes from large-scale epidemiological studies that analyze response times and outcomes across a broad spectrum of chief complaints. A pivotal study published in JAMA Network Open by Newgard et al. analyzed over 1.5 million EMS responses. The findings were striking while shorter response times were strongly associated with improved survival for cardiac arrest (a true timesensitive condition). the association significantly weaker or non-existent for other common medical emergencies, such as respiratory distress, seizures, and altered mental status [41]. For these patients, the clinical competency of the paramedic, the accuracy of diagnosis, and the appropriateness of prehospital interventions were far more consequential than the mere speed of arrival. This research fundamentally challenges the one-size-fits-all model, indicating that system-wide mandates for ultra-fast response times (e.g., 8 minutes or less for all high-priority calls) may be an inefficient allocation of scarce resources.

The clinical rationale behind this diminishing return is rooted in the underlying pathophysiology of various conditions. For many medical and traumatic complaints, the physiological insult is not immediately reversible by simple speed of transport. A patient in septic shock requires timely antibiotics and fluid resuscitation, but the definitive management is complex and hospital-based; saving five minutes in prehospital time is unlikely to alter the course of the disease significantly. Similarly, for a patient with a hip fracture, a safe and comfortable extrication and transport is more important than a high-speed, potentially painful and response. The concept of the "therapeutic window" is condition-specific. For VF cardiac arrest, it is measured in minutes; for sepsis, it may be measured in hours. Investing disproportionately in the former at the expense of the latter may not yield the best overall population health outcomes.

This understanding has given rise to the strategic implementation of tiered response systems and alternative deployment models. Instead of sending a lights-and-siren advanced life

support (ALS) unit to every high-priority call, these systems differentiate responses based on call nature and severity:

- Tiered Response: A basic life support (BLS) unit or a community first responder may be dispatched for a rapid first response to cardiac arrest to initiate CPR and defibrillation, while an ALS unit is simultaneously sent to provide advanced medications and airway management. For lower-acuity calls, a single BLS unit may be sufficient.
- Alternative Deployment: This includes strategies like deploying ambulances dynamically based on predictive analytics of demand rather than static stationing, or using non-transporting "quick response vehicles" to reach scenes quickly in dense urban areas. A study in a large metropolitan system showed that dynamic deployment could reduce response times for the most critical calls without increasing the total fleet size, by strategically positioning units in anticipation of demand [42].

Furthermore, the rise of **telemedicine and nurse navigation** in EMS dispatch centers represents a paradigm shift. For low-acuity calls that do not require an immediate emergency response (e.g., minor illnesses, prescription refills), a tele-nurse can provide advice, schedule a clinic appointment, or dispatch a non-emergency transport, thereby freeing up emergency units for true life-threatening situations. A pilot program in the United Kingdom demonstrated that integrating clinical navigators into the EMS dispatch process safely reduced unnecessary ambulance dispatches by over 15%, allowing for better resource allocation [43].

The financial and safety implications of ignoring the law of diminishing returns are substantial. The cost of maintaining a system capable of achieving an 8-minute response time for 90% of calls is exponentially higher than one achieving a 10- or 12-minute standard. These costs include more stations, more vehicles, and more personnel. More critically, the push for excessive speed directly compromises safety. The risk of an ambulance crash increases significantly during emergency response driving. A retrospective analysis by Watanabe et al. found that the odds of a collision were more than double when ambulances were responding with lights and siren compared to routine driving [21]. These crashes can result in serious injuries or fatalities to EMS providers, patients, and innocent bystanders, tragically negating the intended benefit of a rapid response. In conclusion, the empirical evidence clearly supports a more sophisticated model than the

universal primacy of response time. The "law of diminishing returns" dictates that the clinical benefit of rapid response is concentrated in a relatively small subset of calls—primarily cardiac arrest, major trauma, STEMI, and stroke. For the majority of other emergencies, factors like clinical quality, accurate triage, and appropriate destination selection are far more impactful on patient outcomes. Embracing this reality allows EMS systems to evolve from rigid, one-dimensional operations into intelligent, adaptive, and efficient healthcare providers. By tailoring response strategies to specific patient needs, systems can maximize their life-saving potential for the critical few while providing safe, effective, and efficient care for the many, all while safeguarding their personnel and the public from the inherent dangers of unnecessary high-speed responses [19].

Conclusion

The intricate relationship between response time optimization and patient outcomes in prehospital emergency services is a complex tapestry, woven with threads of biological imperative, empirical evidence, operational reality, and evolving clinical paradigms. This research has navigated the spectrum from the undeniable life-saving link in time-critical emergencies to the law of diminishing returns that governs a majority of EMS responses. The central conclusion that emerges is that while speed remains a critical component of prehospital care, its primacy must be contextualized within a more sophisticated, multi-faceted framework that prioritizes the *right response* at the *right time* with the right resources over the simplistic pursuit of speed at all costs.

The evidence unequivocally confirms that for a specific subset of patients—those experiencing outof-hospital cardiac arrest, ST-elevation myocardial infarction, major traumatic hemorrhage, and acute ischemic stroke-every minute shaved off the response time is a direct investment in survival and neurological integrity. The "Platinum Minutes" and "Golden Hour" are not mere metaphors, but clinical realities supported by robust data. In these scenarios, the optimization of response times through strategic stationing, advanced dispatch systems, and community first responder networks is not just an operational goal but a moral and medical imperative. The prehospital phase for these conditions is not merely transport; it is the commencement of definitive care.

However, a blanket policy of applying this timecritical standard to all emergency calls is neither efficient nor safe. The law of diminishing returns demonstrates that for many medical and traumatic complaints, the marginal benefit of an ultra-rapid response is negligible. The immense financial investment and significant safety risks associated with high-speed travel—including ambulance crashes that injure providers and the public—cannot be justified for conditions where clinical assessment and appropriate intervention hold more value than mere velocity. Therefore, the future of EMS performance measurement must pivot from a narrow focus on the stopwatch to a balanced scorecard that integrates clinical quality indicators, patient safety metrics, and patient-reported outcomes alongside time-based benchmarks.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- 1. O'Keeffe C, Nicholl J, Turner J, Goodacre S. Role of ambulance response times in the survival of patients with out-of-hospital cardiac arrest. Emerg Med J. 2011;28(8):703–6.
- Gräsner JT, Wnent J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I, et al. Survival after outof-hospital cardiac arrest in Europe - Results of the EuReCa TWO study. Resuscitation. 2020;148:218–26.
- 3. Lee SY, Song KJ, Shin SD. Effect of Implementation of Cardiopulmonary Resuscitation-Targeted Multi-Tier Response System on Outcomes After Out-of-Hospital Cardiac Arrest: A Before-and-After Population-Based Study. Prehosp Emerg Care. 2020;24(2):220-31.
- 4. Sirikul W, Piankusol C, Wittayachamnankul B, Riyapan S, Supasaovapak J, Wongtanasarasin W,

- et al. A retrospective multi-centre cohort study: Pre-hospital survival factors of out-of-hospital cardiac arrest (OHCA) patients in Thailand. Resusc Plus. 2022;9:100196.
- Huang LH, Ho YN, Tsai MT, Wu WT, Cheng FJ.
 Response Time Threshold for Predicting
 Outcomes of Patients with Out-of-Hospital
 Cardiac Arrest. Emerg Med Int.
 2021;2021:5564885.
- 6. Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24(1).
- 7. McNally B, Robb R, Mehta M, Vellano K, Valderrama AL, Yoon PW, et al. Out-of-hospital cardiac arrest surveillance --- Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005--December 31, 2010. MMWR Surveill Summ. 2011;60(8):1–19.
- 8. Goto Y, Funada A, Goto Y. Relationship Between Emergency Medical Services Response Time and Bystander Intervention in Patients With Out-of-Hospital Cardiac Arrest. J Am Heart Assoc. 2018;7:9.
- 9. Pham H, Puckett Y, Dissanaike S. Faster on-scene times associated with decreased mortality in Helicopter Emergency Medical Services (HEMS) transported trauma patients. Trauma Surg Acute Care Open. 2017;2(1):e000122.
- Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.
- 11. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016;105:188–95.
- 12. Vahedian-Azimi A, Zehtabchi S, Miller AC. Realtime audiovisual feedback during CPR: A clarification, meta-analysis update, and caution for interpretation. Resuscitation. 2021;158:295–7.
- 13. Böttiger BW, Bernhard M, Knapp J, Nagele P. Influence of EMS-physician presence on survival after out-of-hospital cardiopulmonary resuscitation: systematic review and meta-analysis. Crit Care. 2016;20:4.
- 14. Ono Y, Hayakawa M, Iijima H, Maekawa K, Kodate A, Sadamoto Y, et al. The response time threshold for predicting favourable neurological outcomes in patients with bystander-witnessed out-of-hospital cardiac arrest. Resuscitation. 2016;107:65–70.
- 15. Daya MR, Schmicker RH, Zive DM, Rea TD, Nichol G, Buick JE, et al. Out-of-hospital cardiac arrest survival improving over time: Results from the Resuscitation Outcomes Consortium (ROC) Resuscitation. 2015;91:108–15.
- 16. Trainarongsakul T, Yuksen C, Nakasint P, Jenpanitpong C, Laksanamapune T. The efficacy

- of using Google Maps in accessing nearby public automated external defibrillators in Thailand. Australasian Journal of Paramedicine. 2021:18.
- 17. Olascoaga Arrate A, Freijo Guerrero MM, Fernández Maiztegi C, Azkune Calle I, Silvariño Fernández R, Fernández Rodríguez M, et al. Use of emergency medical transport and impact on time to care in patients with ischaemic stroke. Neurologia (Engl Ed) 2019;34(2):80–8.
- 18. Andrew E, Nehme Z, Lijovic M, Bernard S, Smith K. Outcomes following out-of-hospital cardiac arrest with an initial cardiac rhythm of asystole or pulseless electrical activity in Victoria, Australia. Resuscitation. 2014;85(11):1633–9.
- Alumran A, Albinali H, Saadah A, Althumairi A. The Effects of Ambulance Response Time on Survival Following Out-of-Hospital Cardiac Arrest. Open Access Emerg Med. 2020;12:421–6.
- Apiratwarakul K, Suzuki T, Celebi I, Tiamkao S, Bhudhisawasdi V, Pearkao C, et al. "Motorcycle Ambulance" Policy to Promote Health and Sustainable Development in Large Cities. Prehosp Disaster Med. 2022;37(1):78–83.
- 21. Lee DW, Moon HJ, Heo NH. Association between ambulance response time and neurologic outcome in patients with cardiac arrest. Am J Emerg Med. 2019;37(11):1999–2003.
- Nikolaou N, Castrén M, Monsieurs KG, Cimpoesu D, Georgiou M, Raffay V, et al. Time delays to reach dispatch centres in different regions in Europe Are we losing the window of opportunity?

 The EUROCALL study. Resuscitation. 2017;111:8–13.
- 23. Park JH, Song KJ, Shin SD, Hong KJ. Does second EMS unit response time affect outcomes of OHCA in multi-tiered system? A nationwide observational study. Am J Emerg Med. 2021;42:161–7.
- 24. Apiratwarakul K, Ienghong K, Mitsungnern T, Kotruchin P, Phungoen P, Bhudhisawasdi V. Use of a Motorlance to Deliver Emergency Medical Services; a prospective cross sectional study. Arch Acad Emerg Med. 2019;7(1):e48.
- 25. Nakahara S, Tomio J, Ichikawa M, Nakamura F, Nishida M, Takahashi H, et al. Association of Bystander Interventions With Neurologically Intact Survival Among Patients With Bystander-Witnessed Out-of-Hospital Cardiac Arrest in Japan. Jama. 2015;314(3):247–54.
- 26. Grunau B, Kawano T, Scheuermeyer F, Tallon J, Reynolds J, Besserer F, et al. Early advanced life support attendance is associated with improved survival and neurologic outcomes after nontraumatic out-of-hospital cardiac arrest in a tiered prehospital response system. Resuscitation. 2019;135:137–44.
- 27. Bürger A, Wnent J, Bohn A, Jantzen T, Brenner S, Lefering R, et al. The Effect of Ambulance Response Time on Survival Following Out-of-Hospital Cardiac Arrest. Dtsch Arztebl Int. 2018;115(33-34):541-8.
- 28. Wang SA, Su CP, Fan HY, Hou WH, Chen YC. Effects of real-time feedback on cardiopulmonary

- resuscitation quality on outcomes in adult patients with cardiac arrest: A systematic review and meta-analysis. Resuscitation. 2020;155:82–90.
- 29. Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: current concepts. Lancet. 2018;391(10124):970–9.
- 30. Cabral E, Castro WRS, Florentino DRM, Viana DA, Costa Junior JFD, Souza RP, et al. Response time in the emergency services Systematic review. Acta Cir Bras. 2018;33(12):1110–21.
- Laksanamapune T, Yuksen C, Thiamdao N. Prehospital Associated Factors of Survival in Traumatic Out-of-hospital Cardiac Arrests: An 11-Year Retrospective Cohort Study. Archives of Academic Emergency Medicine. 2024;13(1):e15.
- 32. Rattananon P, Tienpratarn W, Yuksen C, Aussavanodom S, Thiamdao N, Termkijwanich P, et al. Associated Factors of Cardiopulmonary Resuscitation Outcomes; a Cohort Study on an Adult In-hospital Cardiac Arrest Registry. Arch Acad Emerg Med. 2024;12(1):e30.
- 33. Ota FS, Muramatsu RS, Yoshida BH, Yamamoto LG. GPS computer navigators to shorten EMS response and transport times. Am J Emerg Med. 2001;19(3):204–5.
- 34. Shao F, Li CS, Liang LR, Li D, Ma SK. Outcome of out-of-hospital cardiac arrests in Beijing, China. Resuscitation. 2014;85(11):1411–7.
- 35. Raun L, Pederson J, Campos L, Ensor K, Persse D. Effectiveness of the Dual Dispatch to Cardiac Arrest Policy in Houston, Texas. J Public Health Manag Pract. 2019;25(5):E13–e21.
- 36. Angkoontassaneeyarat C, Yuksen C, Jenpanitpong C, Rukthai P, Seanpan M, Pongprajak D, et al. Effectiveness of a Dispatcher-Assisted Cardiopulmonary Resuscitation Program Developed by the Thailand National Institute of Emergency Medicine (NIEMS) Prehosp Disaster Med. 2021;36(6):702–7.
- 37. de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM, et al. Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(16 Suppl 1):S177–203.
- 38. Rajan S, Wissenberg M, Folke F, Hansen SM, Gerds TA, Kragholm K, et al. Association of Bystander Cardiopulmonary Resuscitation and Survival According to Ambulance Response Times After Out-of-Hospital Cardiac Arrest. Circulation. 2016;134(25):2095–104.
- 39. Chen TT, Ma MH, Chen FJ, Hu FC, Lu YC, Chiang WC, et al. The relationship between survival after out-of-hospital cardiac arrest and process measures for emergency medical service ambulance team performance. Resuscitation. 2015;97:55–60.
- 40. Nishiyama C, Kiguchi T, Okubo M, Alihodžić H, Al-Araji R, Baldi E, et al. Three-year trends in out-of-hospital cardiac arrest across the world: Second report from the International Liaison

- Committee on Resuscitation (ILCOR) Resuscitation. 2023;186:109757.
- 41. Nehme Z, Andrew E, Bernard S, Smith K. Impact of cardiopulmonary resuscitation duration on survival from paramedic witnessed out-of-hospital cardiac arrests: An observational study. Resuscitation. 2016;100:25–31.
- 42. Holmén J, Herlitz J, Ricksten SE, Strömsöe A, Hagberg E, Axelsson C, et al. Shortening Ambulance Response Time Increases Survival in Out-of-Hospital Cardiac Arrest. J Am Heart Assoc. 2020;9(21):e017048.
- 43. Kim D, Kim J, Kim D, Choa M, Yoo SK. Real-time Ambulance Location Monitoring using GPS and Maps Open API. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1561–3.