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The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a powerful hybrid artificial
intelligence model that combines the learning capabilities of neural networks with the
reasoning of fuzzy logic. It is widely used to model complex relationships between input
and output parameters across various domains. However, the performance of ANFIS is

Keywords highly dependent on the optimal setting of its internal parameters, making their
ANFIS optimization a significant research focus. This work aims to enhance ANFIS performance

by optimizing its parameters using seven well-recognized metaheuristic algorithms,
including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Salp Swarm
Algorithm (SSA), and Grey Wolf Optimizer (GWO). The proposed hybrid models were
evaluated on three different datasets. Experimental results demonstrate that the hybrid
models, which integrate these optimization algorithms with ANFIS, achieve a significant
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performance improvement compared to the standard ANFIS model.

1. Introduction

In recent years, artificial neural networks (ANNSs)
have become one of the most powerful supervised
learning techniques, due to their remarkable ability
to learn complex nonlinear relationships directly
from data. Their flexible architecture enables them
to approximate complex functions and achieve high
predictive accuracy across a wide range of
applications. However, ANNs mainly focus on
numerical learning and do not naturally incorporate
human reasoning or linguistic knowledge. In
contrast, fuzzy logic systems can represent
uncertainty and qualitative knowledge more
intuitively through human-understandable rules,
providing transparency and interpretability in
decision-making processes [4].

The Adaptive Neuro-Fuzzy Inference System
(ANFIS) bridges this gap by integrating the adaptive
learning ability of neural networks with the
interpretability of fuzzy logic principles. This hybrid
architecture enables ANFIS to effectively model
nonlinear systems while maintaining a transparent
reasoning process through its fuzzy rule base [5]. As
a supervised machine learning model, ANFIS learns
from labeled datasets to accurately approximate
nonlinear input—output relationships. However, its

performance heavily relies on the optimal
configuration of parameters, including membership
functions and consequent parameters. The standard
gradient-based learning approach often suffers from
limitations such as convergence to local minima and
sensitivity to initial conditions, which highlights
the necessity for more robust optimization strategies
[6].

Recent advances in metaheuristic optimization have
provided promising solutions to these challenges.
Algorithms such as Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Grey Wolf
Optimizer (GWO), and Salp Swarm Algorithm
(SSA) have demonstrated exceptional capability in
solving complex optimization problems. These
population-based algorithms offer global search
capabilities that can effectively navigate the
parameter space of ANFIS models, potentially
overcoming the limitations of traditional training
methods [7].This paper presents a comprehensive
investigation into the optimization of ANFIS
parameters using seven metaheuristic algorithms:
PSO, GA, GWO, and SSA, SCSO, FOX and GGO.
Our study aims to systematically evaluate the
performance of these hybrid approaches across
multiple benchmark datasets. The experimental
results demonstrate significant improvements in
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prediction accuracy and model efficiency compared
to the conventional ANFIS approach, demonstrating
the potential of metaheuristic algorithms for
complex modeling tasks.

2. Adaptive Neuro-Fuzzy Inference System
(ANFIS) Architecture

The Adaptive Neuro-Fuzzy Inference System
(ANFIS) architecture is fundamentally based on a set
of fuzzy "if-then" rules enhanced with learning
mechanisms to approximate complex nonlinear
functions [8]. The synergy between neural networks
and fuzzy systems has proven highly effective across
numerous  research  domains, demonstrating
particular strength in modeling and control
applications where interpretability and learning are
simultaneously required.Structurally, ANFIS is
implemented as an adaptive network consisting of
interconnected nodes and directed links, where each
node processes incoming signals according to its
specific function. The parameters that determine
these functions are modifiable and are categorized as
premise parameters (related to input membership
functions) and consequent parameters (related to
output functions) [9]. This adaptive nature allows the
system to refine its knowledge representation
through learning from data.The mathematical
foundation of ANFIS closely follows the Takagi-
Sugeno-Kang (TSK) fuzzy model, employing a
hybrid learning mechanism that combines gradient
descent and least squares estimation. This
combination significantly enhances parameter
optimization efficiency. During the forward pass,
consequent parameters are identified using the least
squares method, while premise parameters are
updated through gradient descent in the backward
pass. This hybrid approach accelerates convergence
by effectively reducing the search space
dimensionality during error backpropagation [8, 9,
10].

2.1 Network Architecture and Layer Description

The ANFIS architecture consists of five distinct
layers, each performing a specific computational
role. Figure 1 illustrates the complete network
structure with two inputs (x, y) and a single output
(F), implementing two fuzzy if-then rules according
to the Sugeno fuzzy inference model.

2.1.1 Layer 1(Fuzzification Layer):
Each node in this layer corresponds to a linguistic

label and generates membership grades for input
variables. The node functions are defined as:
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01 = Hy, (), =12 (1)
01,1' = ”’Bi—z (y)! i = 3!4 (2)
where p, (x) and pg, , (y) represent  membership

functions, typically using bell-shaped functions
parameterized by {a;, b;, c;} (premise parameters).

2.1.2 Layer 2 (Rule Layer):

Every node in this layer is a fixed node
labeled IT that calculates the firing strength of each
rule via the product operator:

02 = w; = py (). pp,(y), i =12 (3)

This layer effectively implements the T-norm
operator for fuzzy AND operations.

2.1.3 Layer 3 (Normalization Layer):

Nodes in this layer compute normalized firing
strengths:
O3; = W; = — =

1,2 4)

witw,’
Normalization ensures that the contribution of each
rule to the final output is proportional to its relative
firing strength.

2.1.4 Layer 4 (Consequent Layer)

Each adaptive node in this layer computes the
following output:

O4i = Wifi-wi(pix +qiy + 1), i =12 (5)

Where {p;, q;, ;} are the consequent parameters.
2.1.5 Layer 5 (Output Layer)

The single node in this layer computes the overall
output as the weighted sum of all rule outputs:

2
Yizawifi

2
Zi=1 wi

Os; = Xiy Wifi= (6)

The hybrid learning mechanism combines the least
squares method for identifying consequent
parameters with gradient descent for updating
premise parameters, resulting in accelerated
convergence and enhanced precision. This
parameter optimization process enables ANFIS to
achieve superior learning capability while
maintaining the interpretability of fuzzy reasoning.
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Figure 1. Architecture of the Adaptive Neuro-Fuzzy
Inference System (ANFIS).

3. Metaheuristic Algorithms

Metaheuristic optimization techniques have gained
significant popularity in recent years for solving
complex optimization problems across various
domains. According to the literature, metaheuristics
can be classified into two main categories based on
the number of solutions they manipulate:
population-based methods and single-solution
methods [11]. Population-based meta-heuristics
maintain and improve multiple candidate solutions
simultaneously. This category can be subdivided
into two major subfields: Swarm Intelligence (SI)
algorithms, which are inspired by the collective
behavior of decentralized, self-organized systems
found in nature, such as swarms of birds or colonies
of ants; and Evolutionary Algorithms (EAs), which
are based on principles of biological evolution,
including selection, crossover, and mutation [12].
This paper focuses specifically on swarm
intelligence algorithms, which have demonstrated
remarkable effectiveness in tuning the parameters of
complex models. The core objective of this work is
to employ selected Sl algorithms to optimize the
Adaptive Neuro-Fuzzy Inference System (ANFIS),
enhancing its performance and predictive accuracy
by fine-tuning its membership functions and
consequent parameters.

3.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [13] is a
population-based metaheuristic algorithm inspired
by the social behavior of species such as birds and
fish. Developed by Kennedy and Eberhart in 1995,
PSO simulates the movement of particles in a
multidimensional search space, where each particle
represents a potential solution. The algorithm
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operates by updating particle positions based on two
key components: the personal best position (pbest)
and the global best position (gbest). The velocity and
position update equations are defined as:

t+1
L

vi* = wol + ¢y (pbest; — xf) + cyry(gbest —xf)  (7)

t+1

t+1 _ ..t

®)

Where w is the inertia weight, ¢; and c; are
acceleration coefficients, and ry, r. are random
values in [0, 1]. PSO is widely appreciated for its
simplicity, fast convergence, and effectiveness in
solving complex nonlinear optimization problems.

3.2 Genetic Algorithm (GA)

Genetic Algorithm (GA) [14] is an evolutionary
optimization technique based on the principles of
natural selection and genetics. GA operates on a
population of candidate solutions, called
chromosomes, which evolve over generations
through genetic operators: selection, crossover, and
mutation. Selection favors individuals with higher
fitness, crossover combines parent chromosomes to
produce offspring, and mutation introduces random
changes to maintain diversity. The algorithm is
particularly effective for multimodal optimization,
as it explores multiple regions of the search space
simultaneously and avoids premature convergence
to local optima. GA has been successfully applied in
various fields, including engineering, economics,
and artificial intelligence.

3.3 Grey Wolf Optimizer (GWO)

Grey Wolf Optimizer (GWO) [15] is a metaheuristic
algorithm inspired by the social hierarchy and
hunting behavior of grey wolves. The algorithm
models the leadership structure of a wolf pack,
which includes four types of wolves: alpha (a), beta
(B), delta (), and omega (w). The optimization
process mimics the encircling and attacking of prey,
where the positions of wolves are updated based on
the positions of the alpha, beta, and delta wolves.
The position update equations are defined as:

D

= |C.X,(t) — X(t)| ©)

Xt+1)=X,)—AD (10)
Where 4 and C are coefficient vectors, and X,
represents the position of the prey. GWO is known

for its simplicity, low computational cost, and strong
performance in solving complex optimization
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problems,  often established

algorithms.

outperforming

3.4 Salp Swarm Algorithm (SSA)

Salp Swarm Algorithm (SSA) [16] is a recent
metaheuristic inspired by the collective behavior of
salps, which form chain-like swarms in deep oceans.
The algorithm divides the population into leaders
and followers. The leader guides the swarm toward
the food source (best solution), while followers
update their positions sequentially to maintain chain
structure. The position update for the leader is
defined as:

1
X

{F,. + cy. ((uby = 1)z + 1) if €3 > 0.5 an

Fy = cy. ((uby = 1))z + 1) if €3 < 0.5

where Fjis the food source position, ubjand Ib; are
the upper and lower bounds, and c;, ¢, ¢3 are control
parameters. Followers update their positions using:

xf = %(xji +x71) (12)

SSA is recognized for its simplicity, robustness in
multimodal search spaces, and ability to avoid local
optima, making it suitable for complex optimization

problems.
3.5 Sand Cat Swarm Optimization (SCSO)

Sand Cat Swarm Optimization (SCSO) [17] is a
recent metaheuristic algorithm inspired by the
hunting behavior of the sand cat. This small predator
is renowned for its ability to detect subsurface prey
through the sand using its highly sensitive hearing.
The algorithm simulates two key behaviors: the
search for prey, which corresponds to exploring the
search space, and the attack, which corresponds to
exploiting promising solutions.

The core mechanism of SCSO relies on an auditory
sensitivity operator that adaptively switches between
exploration and exploitation. The position of each
sand cat (agent) is updated according to the equation:

X(t+1) = Xppse () —.cos(0) . (13)
|[rand (0,1). Xpes: (t) — X|

where r is a random vector, 4 is a random angle.
SCSO is appreciated for its effective balance
between exploration and exploitation, its
implementation simplicity, and its performance on
complex benchmark functions.
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3.6 FOX Optimizer

The FOX Optimizer [18] is a metaheuristic
algorithm inspired by the hunting behavior of red
foxes, which locate prey under snow cover by
measuring sound propagation time and execute
precise jumps to capture them. Mathematically, the
algorithm alternates between an exploration phase:

X(t+1) = BestX, x rand(1, dimension) x MinT x a  (14)

and an exploitation phase based on the estimated
distance to prey (Dist_Fox_Prey) and jump height
(Jump):

X(¢+1) = Dist_Fox_Prey X Jump x¢;  (15)
where MinT is the minimum average time, a is a
decreasing adaptive parameter, t is the average

sound travel time, Jump = 0.5 x 9.81 x t?and ¢; €
{0.18,0.82} determined by a probability p.

Through its balance between exploration and
exploitation and dynamic jump mechanisms, FOX
avoids local optima and converges rapidly toward
optimal solutions, outperforming well-known
algorithms on benchmark functions and engineering
problems.

3.7 Greylag Goose Optimization (GGO

Greylag Goose Optimization (GGO) [19] is a
nature-inspired metaheuristic algorithm that mimics
the collective behavior of greylag geese during their
migratory flights. When geese fly in a distinctive
"V" formation, they optimize their energy efficiency
by reducing air resistance, enabling them to travel
much farther as a group. This intelligent group

behavior is mathematically captured in the
algorithm's fundamental update mechanism :
X+ 1) = Kpest (1) = A 1C.Kpest (O =X (O] (16)

where )_()bm is the current best solution (leader) and
A and C are parameter vectors that guide the
exploration movement.The algorithm dynamically
divides the population into exploration and
exploitation groups, adjusting their sizes based on
search progress. GGO has been successfully applied
to feature selection and engineering design
problems, demonstrating superior performance
compared to other metaheuristic algorithms due to
its effective balance between global exploration and
local refinement.



Mohamed Abderraouf Ferradji / IJCESEN 11-4(2025)8143-8150

C START )

\ 4
Dataset Pre-processing

\ 4
Initialize input Parameter of
membership Function

toward a global optimum, with the explicit objective

A4

ANFIS Model

Population-Based

Convergence

Inference Results

N

Optimization Algorithm

\

J

Predicted Output

Figure 2. Flowchart of the hybrid ANFIS optimization methodology with population-based optimization
algorithm

4. Adaptive Neuro-Fuzzy Inference System
Parameter Tuning Using Population Based
Optimization Algorithms

The integration of the ANFIS architecture with
population-based  optimization algorithms s
illustrated in Figure 2. In this hybrid approach, seven
population-based methods (PSO, GA, GWO, SSA,
SCSO, FOX and GGO) are used to optimize the
parameters of ANFIS in order to improve its learning
ability and prediction accuracy. The main objective
of this work is to evaluate the impact of these
population-based algorithms on ANFIS optimization
and to analyze their performance on various datasets.
The adopted methodology implements a structured,
hybrid learning pipeline to develop a reliable
predictive model. The process begins with an initial
phase of dataset preprocessing to ensure data quality
and compatibility. Following this, the parameters
controlling the system's membership functions are
initialized, establishing a foundational configuration
for the model's architecture. The core of the learning
process employs a population-based optimization
algorithm to automatically and iteratively refine
these parameters. This metaheuristic search operates
by evolving a population of candidate solutions
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of minimizing a predefined cost function, typically
the mean squared error between predictions and
actual values. By integrating the guided stochastic
search of the optimization algorithm, the hybrid
ANFIS achieves efficient convergence and
produces a high-performance model with robust
generalization capabilities.

5. Results and Discussion

To evaluate the performance of the ANFIS model
optimized by population-based algorithms, three
benchmark datasets were employed. These datasets
differ in nature and complexity, covering both
synthetic and real-world classification problems. A
summary of the main characteristics of these datasets
is provided in the table 1.

Table 2 summarizes the performance of the Adaptive
Neuro-Fuzzy Inference System (ANFIS) and its
optimized variants using seven population-based
optimization algorithms across three benchmark
datasets: Banana, Blood Transfusion, and Banknote
Authentication. For each algorithm, the mean (Avg)
and standard deviation (Std) of the mean squared
error (MSE) were computed over 30 independent
runs to ensure statistical robustness. The basic
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ANFIS model consistently showed higher testing
MSE values (0.9763, 0.0989, and 0.0293 for Banana,
Blood Transfusion, and Banknote datasets,
respectively), indicating limited generalization and
highlighting the need for metaheuristic optimization.
Across all datasets, the application of optimization
algorithms significantly reduced testing MSE (by
approximately 40-60%) compared with the baseline
ANFIS. The Friedman test confirmed that these
differences were statistically significant in all cases
(p < 0.05), indicating that the algorithms have
distinct optimization behaviors. Wilcoxon post-hoc
tests were then applied to identify the best-
performing methods and verify pairwise statistical
differences.

For the Banana dataset, the Friedman test produced
a result of ¥%(6, N = 30) = 17.46 with p = 0.0078,
revealing that not all optimizers performed equally.
PSO achieved the lowest testing MSE (0.4735) with
a relatively low variance (0.0781), outperforming
most competitors. The Wilcoxon test (Table 3)
confirmed that PSO significantly outperformed
GWO, SSA, SCSO, GGO, and FOX, while its
difference with GA (p = 0.214) was not statistically
significant. This indicates that both PSO and GA
achieved  comparable  predictive  accuracy.
Algorithms such as GWO and FOX, with higher
MSE values (0.6097 and 0.6460, respectively),
likely suffered from premature convergence.

On the Blood Transfusion dataset, the Friedman test
produced »3(6, N = 30) = 18.27 with p = 0.0056,
confirming significant performance differences
among algorithms. The SCSO algorithm achieved
the lowest testing MSE (0.0947) with a small
standard deviation (0.0030), reflecting both
accuracy and convergence stability. Wilcoxon
pairwise tests revealed that SCSO significantly
outperformed all algorithms except PSO (p = 0.181),
confirming statistically comparable results between
these two optimizers. The superior performance of
SCSO can be attributed to its adaptive exploration—

exploitation strategy inspired by sand cat hunting
behavior, which enables dynamic control of search
intensity and prevents stagnation in local minima.
For the Banknote Authentication dataset, the
Friedman test resulted in ¥*(6, N = 30) = 21.67 with
p 0.0013, again showing clear performance
differences. PSO achieved the lowest testing MSE
(0.0136), marking a 53.6% reduction compared with
the non-optimized ANFIS model. The Wilcoxon
analysis confirmed that PSO significantly
outperformed SSA, GGO, FOX, and GWO, while its
differences with GA (p = 0.118) and SCSO (p =
0.136) were not significant. This finding highlights
PSO’s excellent generalization capability and
adaptability to different data distributions, driven by
its dynamic velocity—position update mechanism
that  effectively balances exploration and
exploitation.

Metaheuristic optimization significantly improves
ANFIS’s predictive performance, stability, and
generalization ability. PSO emerged as the most
robust and generalizable optimizer, delivering the
best results on both the Banana and Banknote
datasets. SCSO showed the strongest performance
on the Blood Transfusion dataset, achieving
excellent accuracy with minimal variance. GA
showed competitive but slightly less stable results,
while GWO, SSA, GGO, and FOX often displayed
limited exploration ability, resulting in higher test
errors.

The Friedman and Wilcoxon statistical analyses
confirm that PSO and SCSO are the most effective
algorithms for optimizing ANFIS parameters. Their
ability to achieve low MSE, consistent convergence,
and balanced exploration—exploitation dynamics
establishes them as the leading strategies among
population-based metaheuristics. These findings
provide reliable evidence that hybrid ANFIS-
metaheuristic frameworks can significantly enhance
predictive accuracy, generalization performance,
and robustness across diverse problem domains.

Table 1. Summary of the benchmark datasets used in this study.

Class Feature .

Dataset Instances | Features Distribution Type Target Variable
2651 (Class 1), . .

Banana [20] 5301 2 2650 (Class 2) Continuous | Class (binary)

. 570 (No

Bloo.d Transfusion 748 4 Donation), 178 Numerical DoPated_B_Iood

Service Center [21] : (0=No, 1 =Yes)
(Donation)

Banknote 762 (Genuine), . Class (0 = Forged,

Authentication [22] 1372 4 610 (Forged) Continuous 1 = Genuine)

Table 2. Performance comparison of ANFIS and ANFIS optimized by seven population-based optimization
algorithms across three benchmark datasets.
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Banana dataset Blood Transfusion Service | BankNote Authentication
dataset dataset
Train Test Train Test Train Test
ANFIS 0.9847 0.9763 0.1729 0.0989 0.0344 0.0293
GA Avg 0,501541 0,476105 0,165634 0,098147 0,022222 0,021947
Std 0,08117 0,0785 0,002383 0,004339 0,001638 0,001602
PSO Avg 0,485642 0,473484 0,156916 0,095394 0,012556 0,013611
Std 0,077365 0,078131 0,002828 0,004077 0,00419 0,003932
GWO Avg 0,623062 0,609663 0,16405 0,095533 0,023426 0,023017
Std 0,066964 0,070054 0,003998 0,004251 0,005356 0,004271
SSA Avg 0,736508 0,718872 0,164293 0,097845 0,02122 0,021176
Std 0,072587 0,072312 0,000978 0,001215 0,001596 0,001498
SCSO Avg 0,611749 0,600954 0,161068 0,09466 0,020849 0,021082
Std 0,072837 0,074588 0,001678 0,003021 0,001907 0,002
GGO Avg 0,825326 0,812715 0,168236 0,100057 0,026948 0,025538
Std 0,056738 0,064206 0,001269 0,002091 0,001393 0,001031
FOX Avg 0,664124 0,645997 0,164298 0,096869 0,023078 0,023263
Std 0,055339 0,058772 0,001862 0,002906 0,001589 0,001735

Table 3. Wilcoxon post-hoc test results comparing each algorithm with the best-performing optimizer on each dataset

Comparison (vs Banana Blood Transfusion Banknote Authentication | Significance
Best Algorithm) | (Best =PSO) | (Best=SCSO) (Best = PSO) (p <0.05)
GA 0.214 0.001 0.118 No /Yes/ No
SCSO 0.011 — 0.136 Yes/—/No
SSA 0.007 0.002 0.007 Yes

GGO 0.006 0.004 0.012 Yes

GWO 0.002 0.009 0.002 Yes

FOX 0.001 0.003 0.004 Yes

PSO — 0.181 — —/No/—

6. Conclusion

This study has demonstrated the significant potential
of integrating metaheuristic optimization algorithms
with the Adaptive Neuro-Fuzzy Inference System
(ANFIS) to enhance its predictive performance and
generalization capability. Experimental results on
three distinct benchmark datasets demonstrate that
the hybrid ANFIS models outperformed the standard
ANFIS. The Friedman and Wilcoxon statistical tests
provided robust evidence that these improvements
are statistically significant, confirming that the
choice of optimization algorithm substantially
influences model performance.

Among the seven population-based algorithms
evaluated, Particle Swarm Optimization (PSO) and
Sand Cat Swarm Optimization (SCSO) emerged as
the most effective optimizers. PSO demonstrated
remarkable robustness and generalization, achieving
the best performance on the Banana and Banknote
Authentication datasets, while SCSO performed best
on the Blood Transfusion dataset, achieving high
accuracy with minimal variance. These algorithms
successfully balanced exploration and exploitation,
avoiding premature convergence and effectively
navigating the complex parameter space of ANFIS.
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The findings confirm the critical importance of
metaheuristic-based parameter tuning in overcoming
the limitations of conventional ANFIS training.
Future research will focus on extending this
approach to larger and more complex datasets and
adapting these hybrid models for real-world
applications in dynamic environments.
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