
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 11-No.4 (2025) pp. 8143-8150 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

Performance Enhancement of Adaptive Neuro-Fuzzy Inference System through 

Population-Based Algorithms 
 

Mohamed Abderraouf Ferradji* 

 

Artificial Intelligence Laboratory, Department of computer science, Faculty of Sciences, Ferhat Abbas 

University Setif-1, Setif, Algeria. 
* Corresponding Author Email: mohamed.ferradji@univ-setif.dz 

 
Article Info: 

 
DOI: 10.22399/ijcesen.4145 

Received : 03 September 2025 

Accepted : 27 October 2025 

 

Keywords 

 
ANFIS 

Metaheuristic Optimization 

Parameter Tuning 

Fuzzy Logic Systems 

Abstract:  
 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a powerful hybrid artificial 

intelligence model that combines the learning capabilities of neural networks with the 

reasoning of fuzzy logic. It is widely used to model complex relationships between input 

and output parameters across various domains. However, the performance of ANFIS is 

highly dependent on the optimal setting of its internal parameters, making their 

optimization a significant research focus. This work aims to enhance ANFIS performance 

by optimizing its parameters using seven well-recognized metaheuristic algorithms, 

including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Salp Swarm 

Algorithm (SSA), and Grey Wolf Optimizer (GWO). The proposed hybrid models were 

evaluated on three different datasets. Experimental results demonstrate that the hybrid 

models, which integrate these optimization algorithms with ANFIS, achieve a significant 

performance improvement compared to the standard ANFIS model. 

 

1. Introduction 
 

In recent years, artificial neural networks (ANNs) 

have become one of the most powerful supervised 

learning techniques, due to their remarkable ability 

to learn complex nonlinear relationships directly 

from data. Their flexible architecture enables them 

to approximate complex functions and achieve high 

predictive accuracy across a wide range of 

applications. However, ANNs mainly focus on 

numerical learning and do not naturally incorporate 

human reasoning or linguistic knowledge. In 

contrast, fuzzy logic systems can represent 

uncertainty and qualitative knowledge more 

intuitively through human-understandable rules, 

providing transparency and interpretability in 

decision-making processes [4]. 

The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) bridges this gap by integrating the adaptive 

learning ability of neural networks with the 

interpretability of fuzzy logic principles. This hybrid 

architecture enables ANFIS to effectively model 

nonlinear systems while maintaining a transparent 

reasoning process through its fuzzy rule base [5]. As 

a supervised machine learning model, ANFIS learns 

from labeled datasets to accurately approximate 

nonlinear input–output relationships. However, its 

performance heavily relies on the optimal 

configuration of parameters, including membership 

functions and consequent parameters. The standard 

gradient-based learning approach often suffers from 

limitations such as convergence to local minima and 

sensitivity to initial conditions, which highlights    

the necessity for more robust optimization strategies 

[6]. 

Recent advances in metaheuristic optimization have 

provided promising solutions to these challenges. 

Algorithms such as Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), Grey Wolf 

Optimizer (GWO), and Salp Swarm Algorithm 

(SSA) have demonstrated exceptional capability in 

solving complex optimization problems. These 

population-based algorithms offer global search 

capabilities that can effectively navigate the 

parameter space of ANFIS models, potentially 

overcoming the limitations of traditional training 

methods [7].This paper presents a comprehensive 

investigation into the optimization of ANFIS 

parameters using seven metaheuristic algorithms: 

PSO, GA, GWO, and SSA, SCSO, FOX and GGO. 

Our study aims to systematically evaluate the 

performance of these hybrid approaches across 

multiple benchmark datasets. The experimental 

results demonstrate significant improvements in 
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prediction accuracy and model efficiency compared 

to the conventional ANFIS approach, demonstrating 

the potential of metaheuristic algorithms for 

complex modeling tasks. 
 

2. Adaptive Neuro-Fuzzy Inference System 

(ANFIS) Architecture 

 
The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) architecture is fundamentally based on a set 

of fuzzy "if-then" rules enhanced with learning 

mechanisms to approximate complex nonlinear 

functions [8]. The synergy between neural networks 

and fuzzy systems has proven highly effective across 

numerous research domains, demonstrating 

particular strength in modeling and control 

applications where interpretability and learning are 

simultaneously required.Structurally, ANFIS is 

implemented as an adaptive network consisting of 

interconnected nodes and directed links, where each 

node processes incoming signals according to its 

specific function. The parameters that determine 

these functions are modifiable and are categorized as 

premise parameters (related to input membership 

functions) and consequent parameters (related to 

output functions) [9]. This adaptive nature allows the 

system to refine its knowledge representation 

through learning from data.The mathematical 

foundation of ANFIS closely follows the Takagi-

Sugeno-Kang (TSK) fuzzy model, employing a 

hybrid learning mechanism that combines gradient 

descent and least squares estimation. This 

combination significantly enhances parameter 

optimization efficiency. During the forward pass, 

consequent parameters are identified using the least 

squares method, while premise parameters are 

updated through gradient descent in the backward 

pass. This hybrid approach accelerates convergence 

by effectively reducing the search space 

dimensionality during error backpropagation [8, 9, 

10]. 
 

2.1 Network Architecture and Layer Description 

The ANFIS architecture consists of five distinct 

layers, each performing a specific computational 

role. Figure 1 illustrates the complete network 

structure with two inputs (x, y) and a single output 

(f), implementing two fuzzy if–then rules according 

to the Sugeno fuzzy inference model. 

2.1.1 Layer 1(Fuzzification Layer): 

Each node in this layer corresponds to a linguistic 

label and generates membership grades for input 

variables. The node functions are defined as:  

𝑂1,𝑖 = µ𝐴𝑖
(𝑥),            𝑖 = 1,2  (1) 

𝑂1,𝑖 = µ𝐵𝑖−2
(𝑦), 𝑖 = 3,4   (2) 

where µ𝐴𝑖
(𝑥) and µ𝐵𝑖−2

(𝑦) represent membership 

functions, typically using bell-shaped functions 

parameterized by {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} (premise parameters). 

2.1.2 Layer 2 (Rule Layer): 

Every node in this layer is a fixed node 

labeled Π that calculates the firing strength of each 

rule via the product operator: 

𝑂2,𝑖 = 𝑤𝑖 = µ𝐴𝑖
(𝑥).  µ𝐵𝑖

(𝑦), 𝑖 = 1,2  (3) 

This layer effectively implements the T-norm 

operator for fuzzy AND operations. 

2.1.3 Layer 3 (Normalization Layer): 

Nodes in this layer compute normalized firing 

strengths: 

𝑂3,𝑖 = 𝑤̅𝑖 = 
𝑤𝑖

𝑤1+𝑤2
, 𝑖 = 1,2 (4) 

Normalization ensures that the contribution of each 

rule to the final output is proportional to its relative 

firing strength. 

2.1.4 Layer 4 (Consequent Layer) 

Each adaptive node in this layer computes the 

following output: 

𝑂4,𝑖 = 𝑤̅𝑖𝑓𝑖= 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2      (5) 

Where {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} are the consequent parameters. 

2.1.5 Layer 5 (Output Layer) 

The single node in this layer computes the overall 

output as the weighted sum of all rule outputs: 

𝑂5,𝑖 = ∑ 𝑤̅𝑖𝑓𝑖= 
∑ 𝑤𝑖𝑓𝑖

2
𝑖=1

∑ 𝑤𝑖
2
𝑖=1

2
𝑖=1  (6) 

 

The hybrid learning mechanism combines the least 

squares method for identifying consequent 

parameters with gradient descent for updating 

premise parameters, resulting in accelerated 

convergence and enhanced precision. This 

parameter optimization process enables ANFIS to 

achieve superior learning capability while 

maintaining the interpretability of fuzzy reasoning. 
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Figure 1. Architecture of the Adaptive Neuro-Fuzzy 

Inference System (ANFIS). 

3. Metaheuristic Algorithms 

Metaheuristic optimization techniques have gained 

significant popularity in recent years for solving 

complex optimization problems across various 

domains. According to the literature, metaheuristics 

can be classified into two main categories based on 

the number of solutions they manipulate: 

population-based methods and single-solution 

methods [11]. Population-based meta-heuristics 

maintain and improve multiple candidate solutions 

simultaneously. This category can be subdivided 

into two major subfields: Swarm Intelligence (SI) 

algorithms, which are inspired by the collective 

behavior of decentralized, self-organized systems 

found in nature, such as swarms of birds or colonies 

of ants; and Evolutionary Algorithms (EAs), which 

are based on principles of biological evolution, 

including selection, crossover, and mutation [12]. 

This paper focuses specifically on swarm 

intelligence algorithms, which have demonstrated 

remarkable effectiveness in tuning the parameters of 

complex models. The core objective of this work is 

to employ selected SI algorithms to optimize the 

Adaptive Neuro-Fuzzy Inference System (ANFIS), 

enhancing its performance and predictive accuracy 

by fine-tuning its membership functions and 

consequent parameters. 

 

3.1 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) [13] is a 

population-based metaheuristic algorithm inspired 

by the social behavior of species such as birds and 

fish. Developed by Kennedy and Eberhart in 1995, 

PSO simulates the movement of particles in a 

multidimensional search space, where each particle 

represents a potential solution. The algorithm 

operates by updating particle positions based on two 

key components: the personal best position (pbest) 

and the global best position (gbest). The velocity and 

position update equations are defined as: 

𝑣𝑖
𝑡+1 =  𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡)       (7) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (8) 

Where w is the inertia weight, c1 and c2 are 

acceleration coefficients, and r1, r2 are random 

values in [0, 1]. PSO is widely appreciated for its 

simplicity, fast convergence, and effectiveness in 

solving complex nonlinear optimization problems. 

3.2 Genetic Algorithm (GA) 

Genetic Algorithm (GA) [14] is an evolutionary 

optimization technique based on the principles of 

natural selection and genetics. GA operates on a 

population of candidate solutions, called 

chromosomes, which evolve over generations 

through genetic operators: selection, crossover, and 

mutation. Selection favors individuals with higher 

fitness, crossover combines parent chromosomes to 

produce offspring, and mutation introduces random 

changes to maintain diversity. The algorithm is 

particularly effective for multimodal optimization, 

as it explores multiple regions of the search space 

simultaneously and avoids premature convergence 

to local optima. GA has been successfully applied in 

various fields, including engineering, economics, 

and artificial intelligence. 

3.3 Grey Wolf Optimizer (GWO) 

Grey Wolf Optimizer (GWO) [15] is a metaheuristic 

algorithm inspired by the social hierarchy and 

hunting behavior of grey wolves. The algorithm 

models the leadership structure of a wolf pack, 

which includes four types of wolves: alpha (α), beta 

(β), delta (δ), and omega (ω).  The optimization 

process mimics the encircling and attacking of prey, 

where the positions of wolves are updated based on 

the positions of the alpha, beta, and delta wolves. 

The position update equations are defined as:  

𝐷⃗⃗ = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|  (9) 

𝑋 (𝑡 + 1) =  𝑋 𝑝(𝑡) − 𝐴 . 𝐷⃗⃗   (10) 

Where 𝐴  and 𝐶  are coefficient vectors, and 𝑋 𝑝 

represents the position of the prey. GWO is known 

for its simplicity, low computational cost, and strong 

performance in solving complex optimization 
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problems, often outperforming established 

algorithms. 

3.4 Salp Swarm Algorithm (SSA) 

Salp Swarm Algorithm (SSA) [16] is a recent 

metaheuristic inspired by the collective behavior of 

salps, which form chain-like swarms in deep oceans. 

The algorithm divides the population into leaders 

and followers. The leader guides the swarm toward 

the food source (best solution), while followers 

update their positions sequentially to maintain chain 

structure. The position update for the leader is 

defined as:  

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1. ((𝑢𝑏𝑗 − 𝑙𝑏𝑗). 𝑐2 + 𝑙𝑏𝑗) 𝑖𝑓 𝑐3 ≥ 0.5

𝐹𝑗 − 𝑐1. ((𝑢𝑏𝑗 − 𝑙𝑏𝑗). 𝑐2 + 𝑙𝑏𝑗) 𝑖𝑓 𝑐3 ≤ 0.5
 (11) 

where Fj is the food source position, ubj and lbj are 

the upper and lower bounds, and c1, c2, c3 are control 

parameters. Followers update their positions using: 

𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)  (12) 

SSA is recognized for its simplicity, robustness in 

multimodal search spaces, and ability to avoid local 

optima, making it suitable for complex optimization 

problems. 

3.5 Sand Cat Swarm Optimization (SCSO) 

Sand Cat Swarm Optimization (SCSO) [17] is a 

recent metaheuristic algorithm inspired by the 

hunting behavior of the sand cat. This small predator 

is renowned for its ability to detect subsurface prey 

through the sand using its highly sensitive hearing. 

The algorithm simulates two key behaviors: the 

search for prey, which corresponds to exploring the 

search space, and the attack, which corresponds to 

exploiting promising solutions. 

The core mechanism of SCSO relies on an auditory 

sensitivity operator that adaptively switches between 

exploration and exploitation. The position of each 

sand cat (agent) is updated according to the equation: 

 

𝑋 (𝑡 + 1) = 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑟 . cos(𝜃) .    (13) 

|𝑟𝑎𝑛𝑑(0,1). 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑋 | 

where r is a random vector, θ is a random angle. 

SCSO is appreciated for its effective balance 

between exploration and exploitation, its 

implementation simplicity, and its performance on 

complex benchmark functions. 

3.6 FOX Optimizer 

The FOX Optimizer [18] is a metaheuristic 

algorithm inspired by the hunting behavior of red 

foxes, which locate prey under snow cover by 

measuring sound propagation time and execute 

precise jumps to capture them. Mathematically, the 

algorithm alternates between an exploration phase: 

𝑋(𝑡+1) = 𝐵𝑒𝑠𝑡𝑋𝑡 × 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) × 𝑀𝑖𝑛𝑇 × 𝑎     (14) 

and an exploitation phase based on the estimated 

distance to prey (Dist_Fox_Prey) and jump height 

(Jump): 

𝑋(𝑡+1) =  𝐷𝑖𝑠𝑡_𝐹𝑜𝑥_𝑃𝑟𝑒𝑦 × 𝐽𝑢𝑚𝑝 × 𝑐𝑖  (15) 

where MinT is the minimum average time, 𝑎 is a 

decreasing adaptive parameter, t is the average 

sound travel time, Jump = 0.5 × 9.81 × t2 and 𝑐𝑖 ∈ 
{0.18,0.82} determined by a probability p.  

Through its balance between exploration and 

exploitation and dynamic jump mechanisms, FOX 

avoids local optima and converges rapidly toward 

optimal solutions, outperforming well-known  

algorithms on benchmark functions and engineering 

problems. 

3.7 Greylag Goose Optimization (GGO 

Greylag Goose Optimization (GGO) [19] is a 

nature-inspired metaheuristic algorithm that mimics 

the collective behavior of greylag geese during their 

migratory flights. When geese fly in a distinctive 

"V" formation, they optimize their energy efficiency 

by reducing air resistance, enabling them to travel 

much farther as a group. This intelligent group 

behavior is mathematically captured in the 

algorithm's fundamental update mechanism : 

𝑋 (𝑡 + 1) =  𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝐴 . |𝐶 . 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑋 (𝑡)| (16) 

where 𝑋 𝑏𝑒𝑠𝑡 is the current best solution (leader) and 

A and C are parameter vectors that guide the 

exploration movement.The algorithm dynamically 

divides the population into exploration and 

exploitation groups, adjusting their sizes based on 

search progress. GGO has been successfully applied 

to feature selection and engineering design 

problems, demonstrating superior performance 

compared to other metaheuristic algorithms due to 

its effective balance between global exploration and 

local refinement. 
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4. Adaptive Neuro-Fuzzy Inference System 

Parameter Tuning Using Population Based 

Optimization Algorithms 

The integration of the ANFIS architecture with 

population-based optimization algorithms is 

illustrated in Figure 2. In this hybrid approach, seven 

population-based methods (PSO, GA, GWO, SSA, 

SCSO, FOX and GGO) are used to optimize the 

parameters of ANFIS in order to improve its learning 

ability and prediction accuracy. The main objective 

of this work is to evaluate the impact of these 

population-based algorithms on ANFIS optimization 

and to analyze their performance on various datasets. 

The adopted methodology implements a structured, 

hybrid learning pipeline to develop a reliable 

predictive model. The process begins with an initial 

phase of dataset preprocessing to ensure data quality 

and compatibility. Following this, the parameters 

controlling the system's membership functions are 

initialized, establishing a foundational configuration 

for the model's architecture. The core of the learning 

process employs a population-based optimization 

algorithm to automatically and iteratively refine 

these parameters. This metaheuristic search operates 

by evolving a population of candidate solutions 

toward a global optimum, with the explicit objective 

of minimizing a predefined cost function, typically 

the mean squared error between predictions and 

actual values. By integrating the guided stochastic 

search of the optimization algorithm, the hybrid 

ANFIS achieves efficient convergence and  

produces a high-performance model with robust 

generalization capabilities. 

5. Results and Discussion 

To evaluate the performance of the ANFIS model 

optimized by population-based algorithms, three 

benchmark datasets were employed. These datasets 

differ in nature and complexity, covering both 

synthetic and real-world classification problems. A 

summary of the main characteristics of these datasets 

is provided in the table 1. 

Table 2 summarizes the performance of the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) and its 

optimized variants using seven population-based 

optimization algorithms across three benchmark 

datasets: Banana, Blood Transfusion, and Banknote 

Authentication. For each algorithm, the mean (Avg) 

and standard deviation (Std) of the mean squared 

error (MSE) were computed over 30 independent 

runs to ensure statistical robustness. The basic 

Dataset Pre-processing 

START 

Initialize input Parameter of 

membership Function 

ANFIS Model 

Convergence 

Predicted Output 

END 

Inference Results 

Yes 

No 

Population-Based 

Optimization Algorithm 

Figure 2. Flowchart of the hybrid ANFIS optimization methodology with population-based optimization 

algorithm 
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ANFIS model consistently showed higher testing 

MSE values (0.9763, 0.0989, and 0.0293 for Banana, 

Blood Transfusion, and Banknote datasets, 

respectively), indicating limited generalization and 

highlighting the need for metaheuristic optimization. 

Across all datasets, the application of optimization 

algorithms significantly reduced testing MSE (by 

approximately 40–60%) compared with the baseline 

ANFIS. The Friedman test confirmed that these 

differences were statistically significant in all cases 

(p < 0.05), indicating that the algorithms have 

distinct optimization behaviors. Wilcoxon post-hoc 

tests were then applied to identify the best-

performing methods and verify pairwise statistical 

differences. 

For the Banana dataset, the Friedman test produced 

a result of χ²(6, N = 30) = 17.46 with p = 0.0078, 

revealing that not all optimizers performed equally. 

PSO achieved the lowest testing MSE (0.4735) with 

a relatively low variance (0.0781), outperforming 

most competitors. The Wilcoxon test (Table 3) 

confirmed that PSO significantly outperformed 

GWO, SSA, SCSO, GGO, and FOX, while its 

difference with GA (p = 0.214) was not statistically 

significant. This indicates that both PSO and GA 

achieved comparable predictive accuracy. 

Algorithms such as GWO and FOX, with higher 

MSE values (0.6097 and 0.6460, respectively), 

likely suffered from premature convergence. 

On the Blood Transfusion dataset, the Friedman test 

produced χ²(6, N = 30) = 18.27 with p = 0.0056, 

confirming significant performance differences 

among algorithms. The SCSO algorithm achieved 

the lowest testing MSE (0.0947) with a small 

standard deviation (0.0030), reflecting both 

accuracy and convergence stability. Wilcoxon 

pairwise tests revealed that SCSO significantly 

outperformed all algorithms except PSO (p = 0.181), 

confirming statistically comparable results between 

these two optimizers. The superior performance of 

SCSO can be attributed to its adaptive exploration–

exploitation strategy inspired by sand cat hunting 

behavior, which enables dynamic control of search 

intensity and prevents stagnation in local minima.  

For the Banknote Authentication dataset, the 

Friedman test resulted in χ²(6, N = 30) = 21.67 with 

p = 0.0013, again showing clear performance 

differences. PSO achieved the lowest testing MSE 

(0.0136), marking a 53.6% reduction compared with 

the non-optimized ANFIS model. The Wilcoxon 

analysis confirmed that PSO significantly 

outperformed SSA, GGO, FOX, and GWO, while its 

differences with GA (p = 0.118) and SCSO (p = 

0.136) were not significant. This finding highlights 

PSO’s excellent generalization capability and 

adaptability to different data distributions, driven by 

its dynamic velocity–position update mechanism 

that effectively balances exploration and 

exploitation.  

Metaheuristic optimization significantly improves 

ANFIS’s predictive performance, stability, and 

generalization ability. PSO emerged as the most 

robust and generalizable optimizer, delivering the 

best results on both the Banana and Banknote 

datasets. SCSO showed the strongest performance 

on the Blood Transfusion dataset, achieving 

excellent accuracy with minimal variance. GA 

showed competitive but slightly less stable results, 

while GWO, SSA, GGO, and FOX often displayed 

limited exploration ability, resulting in higher test 

errors. 

The Friedman and Wilcoxon statistical analyses 

confirm that PSO and SCSO are the most effective 

algorithms for optimizing ANFIS parameters. Their 

ability to achieve low MSE, consistent convergence, 

and balanced exploration–exploitation dynamics 

establishes them as the leading strategies among 

population-based metaheuristics. These findings 

provide reliable evidence that hybrid ANFIS–

metaheuristic frameworks can significantly enhance 

predictive accuracy, generalization performance, 

and robustness across diverse problem domains. 

 

Table 1. Summary of the benchmark datasets used in this study. 

Dataset  Instances Features 
Class 

Distribution 

Feature 

Type 
Target Variable 

Banana [20] 5301 2 
2651 (Class 1), 

2650 (Class 2) 
Continuous Class (binary) 

Blood Transfusion 

Service Center [21] 
748 4 

570 (No 

Donation), 178 

(Donation) 

Numerical 
Donated_Blood  

(0 = No, 1 = Yes) 

Banknote 

Authentication [22] 
1372 4 

762 (Genuine), 

610 (Forged) 
Continuous 

Class (0 = Forged,  

1 = Genuine) 

Table 2. Performance comparison of ANFIS and ANFIS optimized by seven population-based optimization 

algorithms across three benchmark datasets. 



Mohamed Abderraouf Ferradji / IJCESEN 11-4(2025)8143-8150 

 

8149 

 

 Banana dataset Blood Transfusion Service 

dataset 

BankNote Authentication 

dataset 

Train Test Train Test Train Test 

ANFIS 0.9847 0.9763 0.1729 0.0989 0.0344 0.0293 

GA Avg 0,501541 0,476105 0,165634 0,098147 0,022222 0,021947 

Std 0,08117 0,0785 0,002383 0,004339 0,001638 0,001602 

PSO Avg 0,485642 0,473484 0,156916 0,095394 0,012556 0,013611 

Std 0,077365 0,078131 0,002828 0,004077 0,00419 0,003932 

GWO Avg 0,623062 0,609663 0,16405 0,095533 0,023426 0,023017 

Std 0,066964 0,070054 0,003998 0,004251 0,005356 0,004271 

SSA Avg 0,736508 0,718872 0,164293 0,097845 0,02122 0,021176 

Std 0,072587 0,072312 0,000978 0,001215 0,001596 0,001498 

SCSO Avg 0,611749 0,600954 0,161068 0,09466 0,020849 0,021082 

Std 0,072837 0,074588 0,001678 0,003021 0,001907 0,002 

GGO Avg 0,825326 0,812715 0,168236 0,100057 0,026948 0,025538 

Std 0,056738 0,064206 0,001269 0,002091 0,001393 0,001031 

FOX Avg 0,664124 0,645997 0,164298 0,096869 0,023078 0,023263 

Std 0,055339 0,058772 0,001862 0,002906 0,001589 0,001735 

 

Table 3. Wilcoxon post-hoc test results comparing each algorithm with the best-performing optimizer on each dataset 

Comparison (vs 

Best Algorithm) 

Banana    

(Best = PSO) 

Blood Transfusion 

(Best = SCSO) 

Banknote Authentication 

(Best = PSO) 

Significance 

(p < 0.05) 

GA 0.214 0.001 0.118 No / Yes / No 

SCSO 0.011 — 0.136 Yes / — / No 

SSA 0.007 0.002 0.007 Yes 

GGO 0.006 0.004 0.012 Yes 

GWO 0.002 0.009 0.002 Yes 

FOX 0.001 0.003 0.004 Yes 

PSO — 0.181 — — / No / — 

 

6. Conclusion 
 

This study has demonstrated the significant potential 

of integrating metaheuristic optimization algorithms 

with the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) to enhance its predictive performance and 

generalization capability. Experimental results on 

three distinct benchmark datasets demonstrate that 

the hybrid ANFIS models outperformed the standard 

ANFIS. The Friedman and Wilcoxon statistical tests 

provided robust evidence that these improvements 

are statistically significant, confirming that the 

choice of optimization algorithm substantially 

influences model performance. 

Among the seven population-based algorithms 

evaluated, Particle Swarm Optimization (PSO) and 

Sand Cat Swarm Optimization (SCSO) emerged as 

the most effective optimizers. PSO demonstrated 

remarkable robustness and generalization, achieving 

the best performance on the Banana and Banknote 

Authentication datasets, while SCSO performed best 

on the Blood Transfusion dataset, achieving high 

accuracy with minimal variance. These algorithms 

successfully balanced exploration and exploitation, 

avoiding premature convergence and effectively 

navigating the complex parameter space of ANFIS. 

The findings confirm the critical importance of 

metaheuristic-based parameter tuning in overcoming 

the limitations of conventional ANFIS training. 

Future research will focus on extending this 

approach to larger and more complex datasets and 

adapting these hybrid models for real-world 

applications in dynamic environments. 
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