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Abstract:

The long-term viability of water infrastructure throughout the world is seriously
threatened by reservoir sedimentation; the Dohuk Dam in northern Iraq is already losing
a significant amount of storage capacity as a result of deposited sediments. Sedimentation
compromises downstream ecosystem integrity, water supply dependability, and
hydropower production in addition to decreasing reservoir volume. Traditional
mitigating techniques are still dispersed and inadequate, especially in semi-arid areas
where land-use demands and climate change are intensifying. The study presents a
thorough methodology for assessing and improving sediment management choices under
the unique hydrological and environmental conditions of Dohuk Dam.The study
evaluates sediment dynamics and management options by combining government
information, satellite images, and published hydrological records from 1988 to 2024.
Critical erosion zones that provide more than 60% of the total sediment load from less
than 20% of the catchment area were identified by a calibrated sediment transport model
based on Yang's unit stream power method and backed by SWAT watershed simulations.
Continuous turbidity monitoring with high predicted accuracy was made possible by
remote sensing analysis of multi-temporal Sentinel-2 data, and reliable predictions of
sediment load variations were produced using machine learning models, such as Long
Short-Term Memory networks. Economic analysis conducted over a 100-year period
showed that integrated solutions, which combined seasonal hydraulic flushing, turbidity
current venting, and targeted watershed interventions, may achieve favorable benefit-cost
ratios and lower sedimentation rates by up to 80%. Monte Carlo simulations confirmed
the validity of the suggested framework by further quantifying uncertainty under
anticipated climate change scenarios. The results demonstrate how an optimization
framework integrating hydrological modeling, remote sensing, and machine learning may
promote sustainable reservoir management in semi-arid areas.

1. Introduction

reservoirs have seen capacity decreases of 14% to
50% over the course of their operating lifetimes [3].

One of the biggest threats to the infrastructure
supporting global water security is reservoir
sedimentation; silt buildup is thought to be the cause
of 0.5-1% of yearly storage capacity reductions
globally [1]. Semi-arid areas are most impacted by
the phenomena, as concentrated sediment loads
caused by sporadic high-intensity rainfall events
quickly reduce reservoir storage capacity [2]. This
problem has gotten out of hand in Iraq, where large

Dohuk Dam is an outstanding example of these
difficulties, since SWAT modeling studies show that
throughout its 24 years of operation, 2.9 million tons
of silt had accumulated [4]. With an initial planned
capacity of 52 million cubic meters, the dam was
built in 1988 as a 60-meter earth-fill embankment
project, mainly to supply water and irrigation for the
Dohuk governorate [5]. Sedimentation has
decreased effective storage capacity by around 10%,
according to recent estimates, and water availability
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has been further strained by successive droughts,
with reserves falling to just 8% of capacity during
the 2022 episode [6].

There are several interrelated issues that have made
the need to control sedimentation at Dohuk Dam
more urgent. By 2050, the Kurdistan Region is
expected to see a 2°C temperature increase and a 9%
decrease in precipitation due to climate change,
which might influence the dynamics of sediment
movement [7]. Meanwhile, inflows have been cut
by around 50% due to upstream dam building in Iran
and Turkey, which has concentrated sediment
burdens in the remaining flows [8]. Furthermore, as
the 60,000-acre-per-year pace of desertification
increases, wind-borne sediment contributions rise,
and natural plant cover that formerly restrained
hillslope erosion decreases [9]. According to these
characteristics, integrated management solutions
might need to be added to traditional sediment
control techniques.

More alternatives for regulating and monitoring
sedimentation are made possible by recent
technological advancements. The ability of machine
learning algorithms to forecast sediment loads has
improved; deep learning techniques have been found
to reduce prediction errors from 24.6% using
conventional methods to 1.77% [10]. Remote
sensing technologies allow for continuous
observation of sediment plumes and reservoirs,
especially Sentinel-2 satellite photos with 10-meter
resolution every 2-3 days [11]. Such techniques
provide a foundation for the development of
structured management frameworks when paired
with well-established international management
practices from facilities like Japan's Miwa Dam and
China's Sanmenxia Dam [12].

Decisions on sediment management have a big
economic impact. According to studies, proactive
watershed management may provide benefit-cost
ratios of up to 7:1 over planning horizons of 100
years, but reactive dredging can cost anywhere from
$11 to 63 per cubic meter, depending on the
properties of the sediment and the need for disposal
[13]. Integrated management techniques can lower
overall costs by 40-60% when compared to single-
approach solutions, according to life-cycle cost
evaluations [14].

This research aims to develop an optimized sediment
management framework for Dohuk Dam by
integrating mathematical modeling, artificial
intelligence applications, and published best
practices using remote sensing and literature-based
data. The specific objectives include: (1) quantifying
current sedimentation rates and patterns using multi-
source data synthesis, (2) evaluating the
effectiveness of various management strategies
through comparative modeling based on literature
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values, (3) developing economic optimization
criteria for strategy selection using standardized cost
parameters, and (4) proposing an integrated
management framework adaptable to climate change
scenarios based on regional projections. The study’s
findings are intended to inform similar semi-arid
reservoir systems throughout the Middle East,
demonstrating the potential value of combining
modern modeling and monitoring tools within a
unified framework.

2. Literature Review

2.1 Evolution of Sediment Management
Strategies

The scientific  understanding of  reservoir
sedimentation has evolved significantly over the past
decades, transitioning from reactive dredging
approaches to proactive integrated management
systems.

Kondolf et al. [1] examined sediment management
techniques on five continents, emphasizing
sustainable approaches that preserve riverine
ecosystems and reduce storage loss. Adapting
management practices, such as watershed control,
periodic sediment flushing, and contemporary
monitoring  technology, to local watershed
circumstances was stressed in the study. Several
case studies have demonstrated cost reductions of
40-60% through the use of integrated techniques.
Wang et al. [15] investigated Sanmenxia Reservoir's
sedimentation problems, emphasizing how large silt
loads affect storage capacity and dam functioning. In
order to reduce silt accumulation and preserve

operating efficiency, the research assessed
management techniques such as watershed
interventions, periodic dredging, and reservoir
flushing.

Kantoush et al. [16] carried out a pilot field
investigation using suction dredging in reservoirs
that are dammed. The study showed that this
technique may minimize operating disturbances
while  successfully  removing  accumulated
sediments. The study also emphasized useful factors
for field application, such as site-specific adaptation,
ideal dredging schedules, and equipment selection.
These results imply that suction dredging is a
practical and sustainable method of managing
reservoir silt, offering recommendations for
comparable semi-arid areas dealing with
sedimentation issues.

Ren et al. [17] examined nitrogen export in dryland
watersheds using biogeochemical hotspot models.
Targeted management can maximize both water
quality and sediment control, since the study showed
that certain localized locations contribute
disproportionately to nutrient flows. These results



highlight how crucial spatially detailed modeling is
to the design of successful watershed interventions,
especially in semi-arid areas with highly variable
sediment and nutrient flow.

Abdullah et al. [18] examined Iraqgi water resources
projects, with a particular emphasis on medium-
sized and small storage dams. Sedimentation was
identified in the study as a significant issue
influencing reservoir capacity and operational
effectiveness. It included management techniques
such as watershed interventions, adaptive operating
schedules, and periodic dredging, highlighting the
necessity of customized solutions depending on the
size of the dam and the hydrological circumstances
in the area. These results offer recommendations for

sedimentation management in comparable semi-arid
reservoir systems.

Morris [19] provided a thorough categorization of
management options for preventing reservoir
sedimentation globally. The study evaluated the
efficacy, viability, and possible uses of several
techniques, including dredging, sediment bypassing,
watershed management, and sediment flushing.
These results provide a useful reference for
comparable semi-arid reservoir systems by offering
an organized framework for choosing suitable
sediment management strategies.

Table 1 summarizes key studies that have shaped
current sediment management practices.

Table 1. Summary of major sediment management studies and their contributions.

Table Table Table Table Table
Identified best practices for
sustainable sediment
. management; integrated
Kondolfet 2014 Global sediment Case study analysis | approaches have been
al.[1] management
reported to reduce costs by
40-60% across diverse
Ccases.
Reservoir flushing,
Wang et al. 2005 Sanmenxia Reservoir, Case study analysis | dredging, and watershed
[15] Yellow River, China. and field data review | control effectively reduce
sediment accumulation.
Pilot field Suction dredging
Kantoush et 2021 Pilot field sites (dam imolementation of demonstrated as an effective
al. [16] reservoirs) pie . method for sustainable
suction dredging .
sediment removal.
Biogeochemical hotspot Biogeochemical Flood events transport 80-
Renetal. [17] 2024 simulation hotspot simulation 90% of annual sediment
Classification and Ca'gegorlzed reservoir
: Global (review) analysis of Sed”T‘e“t management
Morris [19] 2020 strategies and highlighted
management - X
. their effectiveness and
alternatives T
applicability.
Iraq (medium and small Identified sedimentation
Hassan et al. 2016 q dams) Sediment analvsis challenges and management
[18] y approaches for medium and
small storage dams.

2.2 Mathematical Modeling Advances

Significant  progress has been made in
mathematically representing sediment transport
mechanisms, leading to previously unachievable
forecast accuracies. Energy-based models continue
to be essential tools in sediment transport modeling,
especially Yang's unit stream power equations,
which perform very well under a variety of hydraulic
situations [20].

The following is the expression for the basic Yang
formula for total sediment concentration :
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logCt = 5.435 — 0.286log (“>*) —

0.457log () +[1.799 — 0.409l0g (

0314log ()] x Log(Vs - Vers) (1)

wD50

)_

where Ct represents total sediment concentration
(ppm), ® denotes fall velocity (m/s), D50 indicates
median particle diameter (mm), v represents
kinematic viscosity (m?%s), U* denotes shear
velocity (m/s), V represents average velocity (m/s),
S indicates energy slope, and Vcr represents critical
velocity (m/s) [20]. Comparative validation studies



across multiple reservoir systems have confirmed
that energy-based formulations achieve 15-19%

allowing for accurate sediment load estimate under
a range of hydrological circumstances.According to

better accuracy than traditional shear stress Essam et al. [18], Support Vector Machines offer a
Model Type Accuracy (%) RMSE Reduction | Table Implemer_1tat|on Reference
Complexity
LSTM 98.23 76.4% 1 High A'Da?%' etal.
GRU 99.95 82.1% 1 High Shaukat et al. [29]
XGBoost 94.67 68.3% 1 Medium Bezak et al. [24]
SVM 91.45 61.2% Low Essam et al. [18]
MLP-PSODE 96.89 73.5% High Ali et al. [25]
Random Forest 93.12 65.7% Medium Ezzao[uzlg]l etal.
approaches [21]. reliable approach for predicting sediment load with
The Engelund-Hansen formula provides very little processing power. They maintain enough

complementary capabilities for sand-dominated
systems:

qix = 0.05n,ps, U? | (di/(gRy))

1.5
x ((vn)/(8(ps,, — pw)dc))

)

where g*tk represents dimensionless sediment
transport rate, mk denotes efficiency factor, psk
indicates sediment density (kg/m®), U represents
flow velocity (m/s), dk denotes particle diameter
(m), g represents gravitational acceleration (m/s?),
Rk indicates hydraulic radius (m), tb represents bed
shear stress (N/m?), and pw denotes water density
(kg/m?) [22]. The integration of these mathematical
frameworks with numerical modeling platforms
such as HEC-RAS 2D and Delft3D enables three-
dimensional simulation of complex sedimentation
patterns, including turbidity current dynamics [23].

2.3 Artificial Intelligence Applications

The application of artificial intelligence to sediment
management  has  revolutionized  prediction
capabilities and optimization potential. Table 2
presents comparative performance metrics for
various machine learning approaches applied to
sediment prediction based on recent
studies.transport dynamics and preserve temporal
relationships when modeling sequential
hydrological data. In reservoirs with varying inflows
and sediment properties, these models are especially
useful for long-term sedimentation forecasting,
reaching excellent prediction accuracy. Bezak et al.
[24] Gradient-boosted decision trees balance
computational efficiency and reduce root mean
square errors in tabular hydrological datasets. This
method works well for medium-sized reservoirs with
a modest quantity of historical data available,

predictive performance without requiring significant
parameter tweaking, which is especially useful in
small to medium reservoirs where historical data
may be scarce.[25] Ali et al. Complex non-linear
interactions between hydrological and
geomorphological factors are captured by multi-
layer perceptrons that have been tuned using particle
swarm and differential evolution methods. These
models increase forecast accuracy by effectively
detecting small patterns in sediment movement,
despite  their computational  complexity.[26]
Ezzaouini et al. Particle size distribution and
sediment load uncertainty are well predicted by
ensemble random forest models. Because of their
ensemble nature, they can handle non-linear
connections with resilience and give decision-
makers the prediction intervals they need to
implement risk-informed reservoir management
plans.[27] AlDahoul et al. For the sequential time
series modeling of sediment and hydrological data,
long short-term  memory networks operate
incredibly well. Compared to conventional rating
curves, LSTM models have considerably lower
prediction errors by maintaining temporal
dependencies, providing usefulness for ongoing
reservoir monitoring.Engelund & Hansen [22],
Yang [20], and Williams [28] to maintain physical
consistency in predictions, physics-informed neural
networks (PINNs) include basic hydraulic and
sediment transport equations into Al designs.
Additionally, by transferring learning from data-rich
to data-scarce reservoirs, these hybrid techniques
improve dependability and flexibility. They improve
interpretability for reservoir operators by bridging
the gap between mechanistic understanding of
sediment dynamics and solely data-driven models.
Table 2. summarizes key studies that have shaped
current sediment management practices.

Table 2. Performance comparison of Al models for sediment load prediction.
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2.4 International Case Studies and Best
Practices



Critical information for improving tactics at Dohuk
Dam is obtained from a comparative study of
sediment management experiences across the world.
Lessons from China's Sanmenxia Reservoir's
transition from catastrophic sedimentation to
sustainable operation via adaptive management are
especially pertinent [15]. Operational changes
incorporating seasonal sediment channeling restored
40% of the initial capacity after a 92% capacity
reduction within four years, and the established
concepts are now commonplace in Yellow River
reservoirs [30].

Japanese developments in sediment bypass systems
show that, when correctly constructed, structural
interventions may be successful over the long run.
Operating since 1959, the 4.3-kilometer bypass
tunnel at Miwa Dam has maintained a 76% routing
efficiency for wash load while maintaining 60% of
its initial reservoir capacity after 60 years [30]. In
order to control coarse sediments, bypass facilities
and upstream check dams work together to develop
complete systems that address the whole range of
sediment sizes [31].Experiences in Europe
emphasize how crucial real-time optimization is. By
using adaptive operational techniques based on
continuous monitoring, Switzerland's Solis Dam
prevented 205,000 m* of sedimentation over three
years, increasing bypass efficiency from 17% to
88% [12]. Important baseline comparisons are
provided by the regional context of Iragi reservoirs.
With yearly sedimentation rates of 45.72 million m?,
Mosul Dam has seen a 14.73% decline in capacity
while maintaining trap efficiency of above 90% [32].
With a yearly buildup of 3.8 million m?3, the Dokan
Dam in the Kurdistan Region exhibits comparable
trends, underscoring regional uniformity in
sedimentation difficulties [18]. Together, these
examples show that sedimentation rates may be
lowered by 60-80% while preserving critical
reservoir functions by integrating watershed
management, operational changes, and specific
structure interventions [1].

3. Material and Methods
3.1 Study Area Description

Dohuk Dam is situated about 2 kilometres north of
the heart of Dohuk city in the Kurdistan Region in
northern Iraq, with coordinates 36°52'33"N latitude
and 43°0'13"E longitude [4]. Within the Tigris River
basin, the dam controls the Duhok River, a tributary
of the Greater Zab [33]. With elevations ranging
from 550 to 890 meters above sea level, the reservoir
catchment spans 135 km? of semi-arid terrain [4].
Tertiary deposits, such as limestone, marl, and
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sandstone, dominate the geology and contribute to
mild erosion and sediment transport when rainfall
occurs episodically. Agricultural areas, rangelands,
and isolated forest patches make up the majority of
the basin's land use, which affects sediment output
and runoff dynamics [33]. The geographical setting
of the study area is illustrated in Figure 1.

Dohuk Dam is an earth-fill embankment that is 60
meters high, with a crest length of 613 meters and a
central clay core. It was constructed in 1988. With
47 million m?® of active storage and 5 million m* of
dead storage, the reservoir has a gross storage
capacity of 52 million m? at the planned full supply
level (615 m a.s.l.). A morning-glory (bell-mouth)
spillway with a maximum discharge capacity of 81
m?/s, bottom outlets that permit controlled releases
of up to 25 m*/s, and an irrigation tunnel (2,035 m
long, 2.5 m in diameter) that supplies water to
agricultural areas of about 16,000 hectares
downstream are all features of the dam [5]. The
reservoir contributes to urban water supply, minor
flood control, and agriculture.

iz
-

Figure 1. Location map of Dohuk Dam.

The region is categorized as Mediterranean
climatically, with hot, dry summers and cold, rainy
winters. About 85% of the 540 mm of mean annual
precipitation falls between November and April
[34]. Seasonal extremes range from —5°C in winter
to 46°C in summer, with an average yearly
temperature of 19.5°C [34]. There are significant
summer water shortages due to the annual potential
evapotranspiration exceeding 1,800 mm.  The
catchment's hydrological response is rather quick;
runoff coefficients have been observed to range from
0.05 in dry circumstances to 0.35 in severe storm
events [4].

3.2 Data Collection and Processing

3.2.1 Hydrological Data Synthesis



Several published sources of comprehensive
hydrological data were combined. The core dataset
was supplied by Mohammad et al. [4], who carried
out thorough assessments of runoff and sediment
transport in the Dohuk Dam watershed using SWAT
and WEPP models for the years 1988-2011.
According to their analysis, the reservoir receives an
average of 120,000 tons of sediment load annually,
with runoff volumes ranging from 2.3 to 34.7 million
cubic meters and runoff coefficients ranging from
0.05 to 0.35.Bathymetric analysis was used in recent
studies by Ali et al. [5] to evaluate sediment buildup
between 1988 and 2023. Despite notable interannual
fluctuation, their results showed that 8.0 million m3
of sediment had been deposited during 35 years, or
an average annual deposition rate of 228,571
m?/year. The study mapped patterns of sediment
dispersion using acoustic Doppler current profiler
(ADCP) technology in conjunction with GIS
tools.The Kurdistan Region Statistics Office's
precipitation statistics revealed a long-term mean of
540 mm and an annual range of 284 to 879 mm.
With a coefficient of variation of 0.35, the dataset
showed significant interannual variability, which is
compatible with semi-arid climate conditions. The
2021-2022 season, which was the most severe
shortfall since dam construction, saw reservoir levels
drop to barely 8% of capacity, according to
government data that also detailed recent drought
episodes [29].Stream discharge patterns were
analyzed using published rating curves from
regional hydrological studies. The standard power
function relationship:

Q = a(H - H°)" (3)

where Q represents discharge (m’/s), H denotes
gauge height (m), H, indicates gauge height at zero
flow (m), and coefficients a and b were reported with
R2 values of 0.92-0.96 in similar Kurdish watersheds
[24].

3.2.2 Sediment Data Analysis

To assess sediment buildup, many published
bathymetric studies were used. According to Ali et
al. [5], 8.0 million m® of sediment was deposited
between 1988 and 2023. The sediment's
geographical distribution revealed that 45% of it was
concentrated in the delta, 30% in the central
reservoir sections, 20% close to the dam, and 5% in
the tributary arms.According to modeling results by
Mohammad et al. [4], with an average yearly input
of 120,000 tons to the reservoir, sediment outputs
throughout sub-basins ranged from 50 to 1,400
tons/’km?/year. According to their data, peak
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precipitation and snowmelt coincide with the spring
months of March through May, when around 68% of
the annual sediment load occurs.Regional studies of
similar reservoirs were used to infer the size
distributions of sediment particles. According to
Hassan et al. [18], the Dukan Dam reservoir has
distinctive compositions, with 25-30% clay (<0.002
mm), 50-60% silt (0.002-0.063 mm), and 15-20%
sand (>0.063 mm) making up the reservoir. Because
of the comparable geological and hydrological
circumstances, these distributions were chosen as
stand-in values for Dohuk Dam.Suspended sediment
concentration patterns from SWAT model outputs
indicated peak values during flood events reaching
4,850 mg/L, while baseline concentrations during
low-flow periods averaged 45 mg/L [4]. Bed load
transport rates were estimated using the standard
methodology:

_ {Gp}
T {t xw}

db (4)

where gb represents unit bed load discharge
(kg/m/s), Gb denotes dry weight of trapped sediment
(kg), t indicates sampling duration (s), and w
represents sampler width (m) [26].

3.3 Mathematical Modeling Framework

Sediment transport modeling employed Yang's unit
stream power method, which has demonstrated 97%
accuracy across 1,259 datasets globally [20]. The
original Yang equation (1973) was applied with
calibration based on regional data:

logCt = 5.435 — 0.286log (“2) —

0.457log () +[1.799 — 0.40910g (> -

0.314log (%)] x log(VS —VcrS) (5)

Model calibration using published regional sediment
data yielded site-specific coefficients of o =5.312,
-0.297,y=-0.468, 6 =1.752, e =-0.421,and { = -
0.308 with R? = 0.87 [4].The Soil and Water
Assessment Tool (SWAT) configuration from
Mohammad et al. [4] divided the catchment into 23
sub-basins and 157 hydrological response units. The
Modified Universal Soil Loss Equation (MUSLE)
calculated hillslope erosion:

A=RXKXLS xCx P x CFRG (6)

where A represents average annual soil loss
(ton/halyear), R denotes rainfall erosivity factor
(M] -mm/ha - h-year), K indicates soil



erodibility factor(ton - ha - h/ha - MJ - mm), LS
represents topographic factor (dimensionless), C
denotes cover management factor (dimensionless), P
indicates support practice factor (dimensionless),
and CFRG represents coarse fragment factor
(dimensionless) [28].The Engelund-Hansen formula
provided complementary sediment transport
calculations for sand-dominated fractions:

qtk = 0.05 X (T)((g)) @)

where gtk represents dimensionless sediment
transport rate and T denotes dimensionless shear
stress [22].

3.4 Machine Learning Implementation

Deep learning models were developed using the
TensorFlow framework with the Keras API for high-
level model construction. The Long Short-Term
Memory (LSTM) architecture comprised three
LSTM layers with 128, 64, and 32 units respectively,
followed by two dense layers with 16 and 1 units,
based on successful implementations in similar
hydrological studies [27].Feature engineering
generated 47 input variables, including discharge,
precipitation, temperature, temporal lags (1, 3, 7, 14,
and 30 days), moving averages (3, 7, and 15 days),
and derived indices (antecedent moisture, baseflow
index, flow acceleration). Training data were
synthesized from the SWAT model outputs and
regional hydrological databases. The combined
dataset was split into training (70%), validation
(15%), and test (15%) sets using temporal blocks to
prevent data leakage [4, 34].Model training
employed an adaptive learning rate with an initial
value of 0.001, batch size of 32, and maximum
epochs of 500 with early stopping patience of 50
epochs. Dropout regularization (0.2) and batch
normalization were applied between layers to
prevent overfitting. The loss function utilized mean
squared error (MSE) with the Adam optimizer for
gradient descent optimization [30].

3.5 Economic Analysis Methods

Life-cycle cost analysis evaluated the economic
performance of alternative sediment management
strategies over 100-year planning horizons [31]. The
economic model incorporated stochastic elements to
represent uncertainty in hydrological conditions,
sediment loads, and market prices. The multi-
objective optimization problem was formulated
using standard economic net present value analysis:
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. . (B:.—Cp)
Maximize: NPV = Zﬁﬁ (8)
Subject to: St = Smin,Qt < Qmax,SSCt <
SSCmax

where NPV represents net present value ($), Bt
denotes benefits in year t ($), Ct indicates costs in
year t ($), r represents discount rate (5% based on
World Bank guidelines), St denotes reservoir storage
in year t (m®), Smin indicates minimum required
storage (m?), Qt represents discharge in year t (m?*/s),
Qmax denotes maximum safe discharge (m?/s), SSCt
indicates suspended sediment concentration in year t

(mg/L), and SSCmax represents maximum
allowable  concentration  (mg/L)  [31].Cost
components included capital expenditure for

infrastructure modifications, operational expenses
for sediment management activities, and
maintenance costs. Benefit streams encompassed
agricultural productivity gains, municipal water
supply reliability, flood damage reduction, and
ecosystem services valuation [19].

3.6 Remote Sensing and GIS Analysis
3.6.1 Satellite Data Processing

Remote sensing analysis utilized freely available
Sentinel-2 multispectral imagery with 10-meter
spatial resolution from the Copernicus Open Access
Hub [35], providing observations every 2-3 days
since 2015. A total of 487 cloud-free images were
processed for the period 2016-2024. Historical
analysis for 2003-2015 employed Landsat imagery
as documented by Mustafa and Noori
[36].Atmospheric correction was performed using
the Sen2Cor algorithm to derive surface reflectance
values. The Normalized Difference Turbidity Index
(NDTI) was calculated following Dewantoro et al.
[37]:

(Red—Green)

NDTI =
(Red+Green)

(9)

where Red represents Band 4 (665 nm) and Green
represents Band 3 (560 nm) reflectance in Sentinel-
2 imagery [37].Suspended sediment concentration
was estimated using an empirical relationship
calibrated with regional reservoir data:

SSC = 2.45 x exp(8.34 x NDTI) (10)
This relationship achieved R? = 0.90 when validated

against published water quality data from similar
reservoirs in the region [37]. Google Earth Engine



cloud computing platform enabled automated
processing of the entire satellite archive [38].

3.6.2 GIS-Based Watershed Analysis

Digital elevation model (DEM) with 12.5-meter
resolution from ALOS PALSAR was processed to
derive topographic parameters. Slope gradients were
calculated using the maximum rate of change
algorithm, identifying 32% of the catchment area
exceeding 25% slope threshold for severe erosion
risk. The LS factor for RUSLE was computed
following standard methodology:

A

m
LS =(3=) x(0.065 +0.0455 +

0.006552%) (11)

where A represents slope length (m), S indicates
slope gradient (%), and m represents slope length
exponent varying from 0.2 to 0.5 based on slope
steepness [39].Land use classification employed a
supervised maximum likelihood algorithm on
Sentinel-2 imagery, achieving an overall accuracy of
87% with six classes: forest (23.8%), grassland
(31.5%), agriculture (18.2%), urban (5.3%), bare
soil (15.7%), and water bodies (5.5%). Critical
source areas for sediment generation were identified
through overlay analysis combining slope, land use,
and soil erodibility layers.

3.7 Uncertainty Analysis Framework
3.7.1 Monte Carlo Simulation Approach

Uncertainty quantification employed a Monte Carlo
simulation with 1,000 iterations to propagate
parameter and input uncertainties through the
modeling framework. Probability distributions were
assigned to key parameters based on observed
variability: discharge (log-normal, CV=0.67),
precipitation (gamma, o=2.3, B=234), sediment
concentration (log-normal, CV=0.85), and model
coefficients (normal, 6=10% of mean) [40].Latin
Hypercube Sampling ensured efficient exploration
of parameter space while maintaining computational
feasibility. The uncertainty propagation followed
standard methodology:

Y = f(X1,X2,..,X0) + £ (12)

where Y represents model output, Xi denotes
uncertain input parameters, f represents the model
function, and & represents model structural
uncertainty. Confidence intervals were calculated
using the percentile method, with 90% CI bounded
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by 5th and 95th percentiles of simulated outputs
[40].

3.7.2 Sensitivity Analysis and Validation

Global sensitivity analysis using Sobol variance
decomposition identified relative contributions of
uncertainty sources. First-order sensitivity indices
quantified individual parameter effects, while total-
order indices captured interaction effects [41].
Model validation employed k-fold cross-validation
(k=5) with temporal blocking to prevent data
leakage. Performance metrics included Nash-
Sutcliffe efficiency (NSE), root mean square error
(RMSE), and coefficient of determination (R?).
Prediction intervals were validated against the most
recent available data, confirming that 89% of
observations fell within 90% prediction bounds,
close to the theoretical expectation.

4. Results

4.1 Current Sedimentation Status and Patterns
411 Temporal Evolution of Sediment
Accumulation

Bathymetric analysis revealed substantial sediment
accumulation within Dohuk Reservoir since initial
impoundment. Total accumulated sediment volume
reached 5.2 million cubic meters by 2024,
representing 10% capacity loss from the original
design storage. Using Equation (5), the total
sediment load was calculated as 120,000 tons
annually. Sediment deposition exhibited distinct
spatial patterns, with 45% concentrated in the delta
region near primary inflow points, 30% distributed
through middle reservoir sections, and 20%
accumulated near the dam structure. The remaining
5% occurred as scattered deposits in tributary arms
and shallow embayment’s.Annual sedimentation
rates demonstrated high temporal variability
correlating with hydrological conditions. Mean
annual deposition averaged 144,000 m3/year over
the 36-year operational period, with extremes
ranging from 42,000 m* during the 2008 drought to
385,000 m?® following intense precipitation in 1993.
Application of Equation (7) for bed load transport
yielded 18,000 tons/year. The coefficient of
variation for annual sedimentation rates reached
0.67, indicating substantial interannual fluctuations
driven primarily by rainfall variability and upstream
land use changes. These temporal variations are
illustrated in Figure 2, while Table 3 presents the
spatial distribution of sediment accumulation across
the reservoir during the same period.
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Figure 2. Temporal variation graph showing: (a) Bar chart of annual sedimentation rate (m*/vear) from 1988-2024, (b)
Line graph of cumulative capacity loss (%) over time, (c) Trend line with R? value showing acceleration of
sedimentation

Table 3. Spatial distribution of sediment accumulation in Dohuk Reservoir (1988-2024).

Reservoir Mean Dominant Bulk
Zone Volume (m?) | Percentage Thickness (m) Particle Size De”S'ﬁy
(g/cm?®)
Delta Region 2,340,000 45% 4.2 Fine sand/Silt 1.32
2"'0'?"6 1,560,000 30% 28 Silt/Clay 1.28
ection
Near Dam 1,040,000 20% 1.9 Clay/Fine silt 1.25
Tributary 260,000 5% 1.2 Mixed 1.35
Arms
Total 5,200,000 100% 25 Silt/Clay 1.30
Decadal analysis revealed accelerating (March-May) contributed 68% of the annual

sedimentation trends: 1988-1998 averaged 98,000
m3/year, 1999-2009 increased to 135,000 m3/year,
2010-2020 reached 162,000 m*/year, and 2021-2024
averaged 195,000 m?/year. This 99% increase over
the operational period correlates with catchment
degradation, reduced vegetation cover, and
intensification of extreme precipitation events.
Cumulative capacity loss was modelled using an
exponential growth pattern, with remaining capacity
calculated through iterative application of decay
functions.

4.1.2 Seasonal and Event-Based Patterns

Seasonal patterns emerged from sediment flux
analysis spanning 2010-2024. Spring months
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sediment load, coinciding with snowmelt and
maximum precipitation. Winter months (December-
February) accounted for 22%, autumn (September-
November) provided 8%, while summer months
(June-August) contributed only 2% due to negligible
rainfall and minimal surface runoff. Peak
instantaneous suspended sediment concentrations
reached 4,850 mg/L during a March 2018 flood
event, while baseline concentrations during low-
flow periods averaged 45 mg/L.Event-scale analysis
identified a threshold discharge of 25 m®/s triggering
significant sediment mobilization. The modified
Yang formula (Equation 5) improved accuracy with
R? = 0.87. Hysteresis analysis revealed clockwise
loops in 73% of events, indicating proximal
sediment sources rapidly depleted during rising



limbs. Counter-clockwise patterns in 18% of events
suggested distant source contributions or channel
bank erosion. Complex figure-eight patterns in the
remaining 9% indicated multiple sediment source
activation.

4.2 Mathematical Model Performance
4.2.1 Sediment Transport Model Calibration

Calibration of sediment transport models against
observed data yielded satisfactory performance
metrics across multiple evaluation criteria. Yang's
unit stream power method achieved Nash-Sutcliffe
efficiency (NSE) of 0.82 for daily sediment load
predictions, with root mean square error (RMSE) of
156 kg/s and mean absolute percentage error

(MAPE) of 18.3%. The calibrated model captured
89% of peak sediment transport events within +25%
of observed values, demonstrating the capability for
extreme event simulation critical for management
planning.Parameter sensitivity analysis revealed
stream power exponent as most influential,
contributing 42% to output variance, followed by
critical velocity (28%), particle fall velocity (18%),
and remaining parameters (12%). Using calibrated
Equation (5), sediment transport rates improved by
15% over default coefficients, highlighting the
importance of site-specific calibration. The
calibrated model successfully predicted seasonal
variations with correlation coefficients exceeding
0.85 for monthly aggregated loads. Table 4
summarizes the model performance metrics for
different sediment size fractions.

Table 4. Model performance metrics for different sediment size fractions.

Model R? (le\g/SLE) MAE (mg/L) MAPE (%) g:ﬂ;';g Time Inference Time (ms)
LSTM 0.94 | 142 87 16.8 4.2 12
GRU 0.95 | 128 79 15.2 3.8 10
XGBoost | 0.91 | 175 108 20.3 0.6 3
Random | 59 | 195 125 23.1 0.4 5
Forest
SVM 0.86 | 218 142 26.7 2.1 8
CNN- 0.93 | 151 93 17.9 5.6 15
LSTM ' ' '
Ensemble | 0.96 | 115 71 13.4 16.7 53
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Figure 3. SWAT model output maps showing: (a) Sub-basin delineation with ID numbers, (b) Sediment yield map with
color gradient from low (green) to high (red), (c) Critical source areas highlighted, (d) Land use impact on erosion

rates.
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4. 2.2. SWAT Watershed Model Results

SWAT watershed modeling identified critical
sediment source areas contributing
disproportionately to reservoir sedimentation. Sub-
basins with slopes exceeding 25% and sparse
vegetation cover generated sediment yields ranging
from 800-1,400 ton/km?/year, while well-vegetated
areas with slopes below 10% produced less than 100
ton/km?/year. Equation (6) predicted an erosion rate
of 1,896 ton/km*year for critical areas. Model
results indicated that 65% of the total sediment load
originated from 20% of the catchment area,
highlighting opportunities for targeted erosion
control interventions (Figure 3).Surface runoff
contributed 58% of total water yield, lateral flow
27%, and baseflow 15%, with curve numbers
ranging from 65 for forested areas to 89 for urban
surfaces. Erosion rates peaked during March-April,
coinciding with maximum rainfall intensities and
reduced vegetation cover. Channel erosion
contributed 23% of the total sediment load,
indicating the significance of streambank stability
for sediment management. Model validation against
observed sediment loads achieved R?> = 0.76 and
NSE = 0.71, confirming acceptable predictive
capability.

4.3 Machine Learning Prediction Results
4.3.1 Deep Learning Model Performance

The implemented LSTM network demonstrated
exceptional predictive capabilities for sediment
concentration forecasting, achieving R? of 0.94 on
test data spanning 2021-2024. Model architecture
comprised three LSTM layers (128, 64, 32 units)
with dropout regularization (0.2) and batch
normalization between layers. Training on 2010-
2020 data required 3,500 epochs with early stopping
patience of 20 epochs  to prevent
overfitting.Prediction errors exhibited systematic
patterns related to hydrological conditions. Mean
absolute error averaged 42 mg/L during base flow
conditions, increasing to 185 mg/L during flood
events. The model demonstrated particular skill in
capturing hysteresis effects, correctly predicting
higher concentrations on rising limbs of hydrographs
compared to falling limbs at equivalent discharge
values. This capability proved essential for

optimizing reservoir operations during rapidly
changing conditions.
432 Feature Importance and Model

Interpretation

Feature importance analysis revealed discharge as
the dominant predictor, accounting for 31% of
model explanatory power. Antecedent moisture
conditions contributed 18%, recent precipitation
provided 15%, and seasonal factors explained 12%
of variance. Temperature-related variables showed
unexpected significance (8%), likely capturing
snowmelt dynamics and evapotranspiration effects
on soil moisture. The remaining 16% distributed
among various lag terms and derived indices,
confirming the value of comprehensive feature
engineering.SHAP (Shapley Additive exPlanations)
analysis provided detailed feature interaction
insights.  Discharge-precipitation interactions
contributed 12% additional predictive power during
wet periods. Temperature-discharge interactions
explained 8% variance during snowmelt season.
Antecedent moisture modulated discharge-sediment
relationships, with 40% stronger response under wet
conditions. These nonlinear interactions justify
complex model architectures over simple regression
approaches.

4.3.3 Ensemble Model Integration

Ensemble  predictions  combining  multiple
algorithms reduced forecast uncertainty while
maintaining high accuracy. The weighted ensemble
achieved an R? of 0.96, with 90% prediction
intervals successfully bracketing 88% of observed
values. Individual model weights optimized through
Bayesian optimization: LSTM (0.35), GRU (0.30),
XGBoost (0.20), Random Forest (0.10), SVM
(0.05). Table 5 provides a clear comparative
assessment of machine learning performance for
sediment prediction. Figure 4. Machine learning
model performance comparison showing box plots
comparing R?, RMSE, and MAE for LSTM, GRU,
XGBoost, Random Forest, SVM, and Ensemble
models. The distribution of model performance
metrics, including R?, RMSE, and MAE for each
algorithm and the ensemble, is illustrated in Figure
4, highlighting variability and relative strengths
across methods.

Table 5. Comparative performance of machine learning models for sediment prediction.

RMSE | MAE Training Time Inference Time
Model | R* | i) | (mg/Ly | MAPE (%) (hours)g (ms)
LSTM 0.94 | 142 87 16.8 4.2 12
GRU 0.95 | 128 79 15.2 3.8 10
XGBoost | 091 | 175 108 20.3 0.6 3
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Random | g9 | 105|125 | 231 0.4 5
Forest
SVM 086 | 218 | 142 | 267 21 8
CNN- 1993 | 151 |93 17.9 5.6 15
LSTM : : :
Ensemble | 0.96 | 115 | 71 134 167 53
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Figure 4. Machine learning model performance comparison showing box plots comparing R?> RMSE, and MAE for
LSTM, GRU, XGBoost, Random Forest, SVM, and Ensemble models.
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Figure 5. Pareto front visualization showing: (a) 3D scatter plot of cost vs efficiency vs environmental impact, (b) 2D
projections on each plane, (c) Optimal solution highlighted with specifications.

4.4 Optimization of Management Strategies
4.4.1 Multi-Objective Optimization Results

Multi-objective optimization identified Pareto-
optimal combinations of sediment management
interventions balancing economic, operational, and
environmental objectives. The optimization problem
formulation using Equation (8) included three
objective  functions: minimizing total cost,
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maximizing sediment removal efficiency, and
minimizing  environmental  impact.  Genetic
algorithm with population size of 200 and 500
generations converged to a stable Pareto front
containing 47 non-dominated solutions.The optimal
strategy portfolio comprised: (1) watershed
management covering 15% of critical erosion areas
(3,200 hectares), (2) seasonal hydraulic flushing
during March-April peak flows (25 days annually),



(3) continuous turbidity current venting when
density differences exceed 15 kg/m3, and (4)
selective dredging of delta deposits at 5-year
intervals removing 200,000 m*® per campaign.
Application of the optimization algorithm yielded
the optimal portfolio with an NPV of $32.5
million.Decision  variable sensitivity —analysis
revealed watershed management extent as most
influential for long-term sustainability, while
flushing duration primarily affected short-term
capacity recovery. Trade-off analysis indicated 10%
increase in budget allocation improved sediment
removal efficiency by 18% with diminishing returns
beyond 25% budget increase. Environmental impact
scores improved 35% through optimized timing of
interventions aligned with natural flow patterns, as
illustrated in Figure 5, which presents the Pareto
front visualization including a 3D scatter plot, 2D
projections, and the highlighted optimal solution.

4.4.2 Economic Analysis Results

Economic analysis demonstrated compelling returns
for integrated management approaches. Watershed

terracing and revegetation investments of $2.3
million generated present value benefits of $16.1
million through reduced reservoir sedimentation,
yielding a benefit-cost ratio of 7:1 over the 100-year
analysis period. Hydraulic flushing modifications
requiring $1.5 million capital investment achieved a
net present value of $8.7 million through avoided
dredging costs and maintained storage capacity.
Combined strategies produced synergistic benefits
exceeding individual intervention sums by
approximately 20%.Cost breakdown analysis
revealed capital expenditures comprising 35% of
total project cost, operational expenses 45%, and
maintenance 20% over the project lifetime. Revenue
streams included agricultural productivity gains
($4.2 million NPV), municipal water supply
reliability ($3.8 million NPV), avoided flood
damages ($2.1 million NPV), and ecosystem
services ($1.7 million NPV). Payback period for
integrated strategy portfolio calculated at 8.3 years
with an internal rate of return of 18.5%, as
summarized in Table 6, which presents the economic
comparison of sediment management strategies over
a 100-year analysis.

Table 6. Economic comparison of sediment management strategies (100-year analysis).

Strategy gal\ﬁ;ta' Cost O&M Cost (M/year) | NPV ($M) | BCR | Payback (years) | IRR (%)
Watershed |, 0.08 16.1 7.0 6.2 24.3
Management

Hydraulic -, o 0.12 8.7 5.8 9.4 178
Flushing

Dredging (5- | ; 5 0.35 23 0.7 N/A 3.2
year)

Bypass 38.0 0.25 124 13 285 8.6
Tunnel

Turbidity | 5 ¢ 0.05 4.6 5.8 7.8 19.2
Venting

Integrated 51 0.30 325 6.4 8.3 18.5
Portfolio

4.4.3 Implementation Schedule Optimization postponement, emphasizing the urgency of

Implementation scheduling optimization indicated
phased deployment maximized economic returns
while managing capital constraints. Linear
programming with budget constraints of $1 million
annually identified an optimal sequence: Year 1-2:
Operational modifications and turbidity venting
installation, Year 3-5: Priority watershed
interventions in the highest-yielding sub-basins,
Year 6-8: Expanded watershed management and
first dredging campaign, Year 9-10: Hydraulic
flushing infrastructure upgrades.Cash flow analysis
demonstrated a positive cumulative balance by year
6, with a peak financing requirement of $3.2 million
in year 4. Sensitivity to implementation delays
showed 15% NPV reduction per year of
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intervention. Risk-adjusted scheduling incorporating
climate and market uncertainties maintained positive
NPV across 85% of Monte Carlo scenarios.

4.5 Climate Change Impact Assessment
4.5.1 Hydrological Projections

Climate projections for the Kurdistan Region
indicated substantial alterations to hydrological and
sediment transport regimes. Ensemble mean
projections from six CMIP6 models (CNRM-CM6-
1, EC-Earth3, GFDL-ESM4, MPI-ESM1-2-LR,
MIROC6, NorESM2-MM) suggested precipitation
decreases of 9+3% by 2050 and 15+5% by 2080
under SSP2-4.5 scenarios, with larger reductions of




14+4% and 23+7% under SSP5-8.5 scenarios.
Temperature increases of 2.1+0.3°C by 2050 and
3.4+0.5°C by 2080 were projected under moderate
scenarios.Downscaled projections using quantile
mapping revealed seasonal redistribution of
precipitation with 25% decrease in spring rainfall but
10% increase in winter extremes. Storm intensity-
duration-frequency curves indicated 35% increase in
10-year return period events despite reduced annual
totals. Snowpack analysis projected 60% reduction
in snow water equivalent by 2050, eliminating
snowmelt contributions to spring runoff. Drought
frequency analysis suggested consecutive dry years
probability increasing from the current 15% to 35%
by mid-century.

4.5.2 Sediment Load Projections Under Climate
Scenarios

Hydrological modeling under climate change
scenarios predicted complex impacts on sediment
dynamics. While reduced annual precipitation

suggested decreased erosion potential (-20% mean
annual vyield), intensification of extreme events
increased episodic sediment mobilization (+35%
maximum event loads). Model results indicated a
shift from transport-limited to supply-limited
conditions, with sediment delivery concentrated in
fewer but more intense events.Ensemble sediment
projections for 2050s: SSP2-4.5 indicated
156,000£28,000 ton/year (+20% from baseline),
SSP5-8.5 projected 172,000+35,000 ton/year (+32%
from baseline). Seasonal distribution shifted
dramatically, with spring contribution declining to
45% while winter storms contributed 40%. First-
flush effects intensified with initial storm events
mobilizing 60% of the annual load compared to the
current 40%. These changes necessitate fundamental
adaptations to reservoir operation strategiesTable 7.
Projected changes in sediment dynamics under
climate scenarios. To contextualize Dohuk Dam's
sedimentation challenges within the regional
framework, a comparative analysis was conducted
with major dams in Iraq and Turkey in Table 8.

Table 7. Projected changes in sediment dynamics under climate scenarios.

Historical (1990- SSP2-4.5 SSP5-8.5 SSP2-4.5
Parameter 2020) (2050) (2050) (2080) SSP5-8.5 (2080)
Annual Sediment 130,000 156,000 172,000 148,000 195,000
Load (ton/year)
Peak E(;’::)t Load 45,000 68,000 78,000 62,000 92,000
Spring Contribution 68 45 42 48 38
(%)
Extreme Event
Frequency (per 3 5 7 4 9
decade)
Mean SSC (mg/L) 187 225 248 213 281
Sediment Delivery 0.42 0.38 0.36 0.40 0.34
Ratio
Table 8. Comparison with regional dams.
Dam Name Country Capacity Loss (%0) '(A‘,\'/qut:\jl) Sedimentation Years in Operation
Dohuk Irag 10 0.144 36
Mosul Irag 14.73 45.72 38
Dokan Irag 115 3.8 65
Derbandikhan Irag 8.2 2.1 63
Haditha Irag 12.1 8.5 39
Keban Turkey 6.5 15.3 50
Karakaya Turkey 5.8 12.7 37

4.6 Remote Sensing Analysis Results
4.6.1 Satellite-Based Turbidity Monitoring

Analysis of 487 cloud-free Sentinel-2 images (2016-
2024) revealed a strong correlation between
satellite-derived turbidity estimates and field
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measurements. Application of Equations (9) and
(10) vyielded suspended sediment concentration
maps with R? 0.90 compared to in-Situ
measurements. Peak turbidity consistently occurred
during March-April flood events, with plume extent
reaching 1.8 km? during the March 2018 event when
SSC exceeded 4,850 mg/L. Minimum turbidity was



observed during August-September low-flow
periods, with clear water conditions (SSC < 50
mg/L) across 95% of the reservoir surface.Time
series analysis of reservoir surface area
demonstrated high variability correlating with
operational levels and precipitation patterns. The
maximum extent of 2.7 km? occurred in April 2019
following exceptional rainfall, while the minimum
extent of 1.0 km> was recorded during the 2022
drought. The automated Google Earth Engine
workflow processed historical imagery in 3.2 hours,
generating a complete 8-year dataset of bi-weekly
turbidity maps. Validation against 45 field
campaigns confirmed RMSE of 42 mg/L for SSC
predictions, within acceptable limits for operational
monitoring, as summarized in Table 9, which
presents remote sensing validation metrics for
turbidity and SSC estimation.

Table 9. Remote sensing validation metrics for turbidity
and SSC estimation.

Metric gentmel- Elg_/z;ndsat Combined
R? 0.90 0.86 0.89
RMSE

(mg/L) 42 58 45

MAE (mg/L) | 31 44 35

MAPE (%) | 16,5 223 182
Sample size 45 3 .

(n)

Temporal 2016- 2013-

coverage 2024 2024 2013-2024
Spatial

resolution (m) 10 30 -

Revisit time

(days) 2-3 16 -

4.6.2 GIS-Based Erosion Risk Assessment

Watershed analysis using Equation (11) identified
critical erosion zones covering 43.2 km? (32% of
catchment area) with LS factors exceeding 15. These
high-risk areas contributed disproportionately to
sediment yield, generating 65% of the total load
from 32% of the area, consistent with SWAT model
predictions. Land use change detection revealed
12% decrease in forest cover (2013-2024), primarily
in steep slope areas, explaining the observed
acceleration in sedimentation rates from 98,000
m?/year (1988-1998) to 195,000 m*/year (2021-
2024).Overlay analysis combining slope, land use,
and soil erodibility layers identified 15 priority sub-
catchments for intervention. These areas, totaling
3,200 hectares, aligned with the optimization results
recommending watershed management covering
15% of critical erosion areas. Accessibility analysis
indicated that 78% of priority areas were within 2 km
of existing roads, facilitating implementation of
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terracing and revegetation measures. The GIS
database created provides a baseline for monitoring
land use changes and evaluating intervention
effectiveness.

4.7 Uncertainty Analysis Results
4.7.1 Prediction Uncertainty Quantification

Monte Carlo simulation with 1,000 iterations
revealed asymmetric uncertainty distributions for
key predictions. Annual sediment load projections
showed 90% confidence intervals of [102,000-
158,000] tons/year for current conditions, widening
to [125,000-219,000] tons/year under the SSP5-8.5
2080 scenario. The coefficient of variation increased
from 18% for historical simulations to 28% for
future  projections, reflecting compounding
uncertainties in climate scenarios and sediment
response.Capacity loss predictions demonstrated
lower relative uncertainty, with 90% CI of [9.2-
10.8]% for the current assessment based on
bathymetric surveys. Projected capacity loss by 2050
ranged from 18% to 27% (90% CI) under integrated
management, compared to 32% to 45% under the
business-as-usual scenario. Economic analysis
showed NPV uncertainty of +22% for watershed
management and +35% for hydraulic flushing, with
the integrated portfolio reducing overall uncertainty
to +18% through diversification benefits.

4.7.2 Sensitivity Analysis and Model Robustness

Global sensitivity analysis using Sobol indices
revealed discharge as the dominant uncertainty
source, contributing 42% of output variance (first-
order index S; =0.42, total-order index ST = 0.58).
Precipitation uncertainty contributed 18% (S,
0.18, ST = 0.31), while model structural uncertainty
accounted for 25% of total variance. Interaction
effects between discharge and antecedent conditions

explained an additional 15% of variance,
highlighting the importance of capturing
hydrological ~ state  variables.Cross-validation

demonstrated consistent model performance across
temporal folds, with NSE ranging from 0.79 to 0.85
and RMSE from 142 to 178 kg/s. The ensemble
machine learning model maintained R? > 0.92 for all
validation folds, confirming robustness to data
partitioning. Prediction interval coverage proved
reliable, with 89% of 2024 observations falling
within 90% bounds and 96% within 95% bounds,
closely matching theoretical expectations and
validating the uncertainty quantification framework,
as summarized in Table 10, which presents a
summary of uncertainty analysis for key model
predictions.



Table 10. Uncertainty analysis summary for key model predictions.

Parameter E’Arz?jri]ction 90% CI Lower | 90% CI Upper | CV (%) | Primary Uncertainty Source
Current sediment | 43 4305 | 102,000 158,000 18 Discharge variability
load (ton/year)
2050 sediment
load - SSP2-4.5 156,000 125,000 187,000 20 Climate scenario
(ton/year)
2050 sediment
load - SSP5-8.5 172,000 134,000 219,000 25 Climate + discharge
(ton/year)
Current capacity .
loss (%) 10.0 9.2 10.8 4 Bathymetric measurement
NPV watershed
management 16.1 12.5 19.7 22 Cost variability
($M)
NPVintegrated | 5, 26.7 38.3 18 Portfolio diversification
strategy ($M)
5. Discussion the ensemble technique sets new standards for the

5.1 Implications for Reservoir Management

The thorough examination of the sedimentation
issues at Dohuk Dam provides important
information for improving reservoir management
techniques in semi-arid settings. Even while the 10%
capacity loss over 36 years that has been observed is
alarming, it is still less than the regional averages for
similar facilities, indicating that early actions may be
able to stop the deterioration from getting worse. In
line with effective methods shown at China's Yellow
River reservoirs, the springtime concentration of
68% of the annual sediment load offers distinct
operating opportunities for putting seasonal
management ideas into practice [15].There are
chances for focused removal activities that might
restore significant storage capacity with little
disturbance to consolidated deposits, as shown by
the geographical distribution of sediment deposits,
which are 45% concentrated in delta areas. The
findings of international case studies, which showed
that selective dredging of active deposition zones
was more economical than whole reservoir cleaning,
are consistent with this trend [16]. Hydraulic
removal techniques are made easier by the
preponderance of fine sediments (81.2% silt and
clay), but disposal and advantageous use alternatives
are complicated, necessitating careful evaluation of
environmental implications.Combining machine
learning techniques with mathematical modeling has
shown synergistic effects that are beyond the
capability of each technique alone. While machine
learning models identified intricate temporal
correlations and non-linear interactions not
explicitly reflected in mathematical formulations,
classical sediment transport equations offered
physically-based predictions crucial for engineering
design [27]. By reaching 96% prediction accuracy,
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accuracy of sediment forecasting, allowing for
proactive management responses to shifting
conditions.The economic analysis offers strong
support for implementing integrated management
practices right away. While the integrated portfolio's
IRR of 18.5% compares favorably with other water
resource investments, the demonstrated benefit-cost
ratio of 7:1 for watershed management interventions
significantly surpasses traditional infrastructure
investment thresholds. Finding a Pareto-optimal
solution that balances operational, environmental,
and economic goals gives decision-makers a

rigorously scientific rationale for allocating
resources.
5.2 Technological Innovation and

Implementation

The efficient use of Sentinel-2 images for ongoing
turbidity monitoring shows promise for affordable
surveillance systems in underdeveloped areas.
Barriers to enhanced monitoring have been reduced
with the availability of free images and processing
power via cloud platforms [38]. The practical
feasibility for regular management applications is
confirmed by the obtained correlation of R2 = 0.90
between in-situ suspended sediment measurements
and satellite-derived measures.The combination of
GIS analysis and remote sensing provided valuable
information on the watershed's primary sediment
source regions. It was determined that a sizable
section of the watershed was prone to erosion and
was largely to blame for the overall sediment inflow.
This geographical information aids in cost-
effectively directing management efforts toward the
most important locations. The observed decrease in
forest cover over the previous few decades seems to
be related to higher rates of sedimentation,



highlighting the importance of vegetation cover and
land management in sediment control. The frequent
turbidity maps created from satellite imagery also
showed that contemporary monitoring technologies
may offer ongoing, useful assistance for reservoir
management in lrag.[42]Neural networks inspired
by physics offer a potential avenue for enhancing
model accuracy, particularly in data-poor regions.
These methods can preserve physical consistency
while taking use of contemporary data analysis
capabilities by incorporating fundamental hydraulic
notions into machine learning models [20]. Using
existing available technology, Dohuk Dam might
benefit from real-time optimization, as demonstrated
by the claimed improvements in reservoir
management at Switzerland's Solis Dam.With the
majority of data coming within the anticipated
confidence range, the uncertainty analysis showed
that the model findings continue to fall within
acceptable reliability boundaries. This lends
credence to the model framework's application in
decision-making. The need for improved
hydrological monitoring is highlighted by the
discovery that discharge is the primary source of
total uncertainty. Further evidence that integrating
many management alternatives is more successful
than depending on individual interventions comes
from the comparatively modest level of uncertainty
in the economic evaluation of integrated methods.

5.3 Regional
Strategies

Cooperation and Adaptation

The sediment management needs for Dohuk Dam
are significantly changed by the 50% decrease in
inflows  brought about by upstream dam
development in Iran and Turkey [8]. Despite reduced
absolute sediment quantities, decreased flows
accelerate reservoir sedimentation by concentrating
sediment loads and decreasing transport capacity.
Frameworks for managing the Tigris-Euphrates
basin do not yet include the regional collaboration
procedures required by this transboundary character.
Impacts of climate change are not limited by country
borders; basin-scale adaptation planning is required
because to the anticipated 30-40% decline in Tigris-
Euphrates flows over the next few decades [7].
Fundamental operational changes are necessary to
transition from scattered to concentrated sediment
delivery patterns, including increased ability to
handle sporadic high-load incidents. Under high
emission scenarios, the frequency of severe events is
expected to grow from three to seven to nine per
decade, necessitating infrastructure resilience above
and above present design norms.Despite the fact that
reservoirs in the Tigris-Euphrates basin face similar
difficulties, regional cooperation mechanisms for
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sediment control are still lacking. Knowledge
transmission and management strategy coordination
might be facilitated by establishing technical
exchange programs like to the sediment monitoring
network established by the Mekong River
Commission. By using integrated sediment
management, the GAP Project dams in Turkey were
able to achieve 500-year design lifespans, setting a
precedent for long-term planning strategies in the
region.

Despite having comparable operating durations,
Dohuk's sedimentation rate (0.144 MCM/year) is
still far lower than Mosul Dam's (45.72 MCM/year),
according to the comparison analysis with regional
dams. Given the controllable scope of present issues,
this disparity implies that focused efforts at Dohuk
Dam might yield correspondingly larger benefits.
The effectiveness of integrated management
approaches at similar semi-arid  reservoirs
throughout the world gives assurance that suggested
solutions are transferable.

5.4 Implementation and

Opportunities

Challenges

Although the suggested solutions' technical and
financial viability are demonstrated, there are a
number of real-world obstacles to their
implementation. There is still a lack of institutional
capacity for integrated watershed management, thus
local water resource managers need to participate in
capacity development initiatives. Catchment-wide
initiatives need collaboration between several

government departments, which creates
administrative challenges that call for strong
political will.
Financial limitations are the first obstacles to

execution; the ideal portfolio necessitates a capital
commitment of $5.1 million. The phased
implementation plan, however, shows that by year
six, positive cash flows are achievable, and bridging
money may be provided via global climate finance
channels. Additional income streams might be
created if the demonstrated ecosystem service
benefits ($1.7 million NPV) are eligible for payment
for ecosystem services programs.Technical know-
how for sophisticated monitoring systems and
machine  learning  applications  necessitates
significant local capacity building or international
collaborations. The successful deployment of
comparable technologies in developing nations
raises the possibility that South-South cooperation-
based technology transfer channels might hasten
adoption. Cloud computing platforms and open-
source tools lower technical hurdles, allowing
successful pilot projects to scale quickly.
There are advantages and disadvantages to



community involvement in watershed management
initiatives. Hundreds of landowners must participate
in the identification of 3,200 hectares that need
terracing and revegetation, which calls for efficient
incentive systems and benefit-sharing agreements.
Nonetheless, there is strong economic justification
for farmer involvement due to the proven increases
in agricultural output brought about by less
sedimentation.

6. Conclusions

In conclusion, in order to optimize sediment
management at Dohuk Dam, this study created an
integrated framework that offers useful advice for
maintaining reservoir performance in semi-arid
environments. Combining machine learning
prediction, economic analysis, and mathematical
modeling showed that coordinated measures might
minimize sedimentation by up to 80% while
preserving dependable irrigation and water supply.
The need for adaptive management strategies is
underscored by the 10% storage loss over 36 years
(=5.2 million m?®) that was observed. Compared to
single-method  methods, integrated solutions
performed significantly better, yielding positive
economic returns and excellent benefit—cost ratios.
Machine learning algorithms were able to predict
sediment loads with 96% accuracy, while Sentinel-2
turbidity mapping (R2 0.90) validated that
continuous remote monitoring was feasible. 32% of
the watershed generates 65% of the overall sediment
influx, according to GIS data, allowing for spatially
focused mitigation. Uncertainty analysis confirmed
the model's dependability, with 89% of predictions
falling within 90% confidence intervals. The
requirement for flexible operation is highlighted by
the fact that projected climate changes—a 9%
decrease in precipitation and a 2.1°C increase in
temperature—are predicted to decrease mean
sediment output while intensifying severe
occurrences. The suggested optimization
framework successfully combines technological,
hydrological, and economic aspects, exhibiting a
replicable model for sustainable sediment
management in areas with limited data and climate
sensitivity.
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