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Abstract:  
 

The long-term viability of water infrastructure throughout the world is seriously 

threatened by reservoir sedimentation; the Dohuk Dam in northern Iraq is already losing 

a significant amount of storage capacity as a result of deposited sediments.  Sedimentation 

compromises downstream ecosystem integrity, water supply dependability, and 

hydropower production in addition to decreasing reservoir volume.  Traditional 

mitigating techniques are still dispersed and inadequate, especially in semi-arid areas 

where land-use demands and climate change are intensifying.  The study presents a 

thorough methodology for assessing and improving sediment management choices under 

the unique hydrological and environmental conditions of Dohuk Dam.The study 

evaluates sediment dynamics and management options by combining government 

information, satellite images, and published hydrological records from 1988 to 2024. 

Critical erosion zones that provide more than 60% of the total sediment load from less 

than 20% of the catchment area were identified by a calibrated sediment transport model 

based on Yang's unit stream power method and backed by SWAT watershed simulations. 

Continuous turbidity monitoring with high predicted accuracy was made possible by 

remote sensing analysis of multi-temporal Sentinel-2 data, and reliable predictions of 

sediment load variations were produced using machine learning models, such as Long 

Short-Term Memory networks. Economic analysis conducted over a 100-year period 

showed that integrated solutions, which combined seasonal hydraulic flushing, turbidity 

current venting, and targeted watershed interventions, may achieve favorable benefit-cost 

ratios and lower sedimentation rates by up to 80%. Monte Carlo simulations confirmed 

the validity of the suggested framework by further quantifying uncertainty under 

anticipated climate change scenarios. The results demonstrate how an optimization 

framework integrating hydrological modeling, remote sensing, and machine learning may 

promote sustainable reservoir management in semi-arid areas. 

 

1. Introduction 
 

One of the biggest threats to the infrastructure 

supporting global water security is reservoir 

sedimentation; silt buildup is thought to be the cause 

of 0.5–1% of yearly storage capacity reductions 

globally [1].  Semi-arid areas are most impacted by 

the phenomena, as concentrated sediment loads 

caused by sporadic high-intensity rainfall events 

quickly reduce reservoir storage capacity [2].  This 

problem has gotten out of hand in Iraq, where large 

reservoirs have seen capacity decreases of 14% to 

50% over the course of their operating lifetimes [3]. 

Dohuk Dam is an outstanding example of these 

difficulties, since SWAT modeling studies show that 

throughout its 24 years of operation, 2.9 million tons 

of silt had accumulated [4].  With an initial planned 

capacity of 52 million cubic meters, the dam was 

built in 1988 as a 60-meter earth-fill embankment 

project, mainly to supply water and irrigation for the 

Dohuk governorate [5].  Sedimentation has 

decreased effective storage capacity by around 10%, 

according to recent estimates, and water availability 
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has been further strained by successive droughts, 

with reserves falling to just 8% of capacity during 

the 2022 episode [6]. 

There are several interrelated issues that have made 

the need to control sedimentation at Dohuk Dam 

more urgent.  By 2050, the Kurdistan Region is 

expected to see a 2°C temperature increase and a 9% 

decrease in precipitation due to climate change, 

which might influence the dynamics of sediment 

movement [7].  Meanwhile, inflows have been cut 

by around 50% due to upstream dam building in Iran 

and Turkey, which has concentrated sediment 

burdens in the remaining flows [8].  Furthermore, as 

the 60,000-acre-per-year pace of desertification 

increases, wind-borne sediment contributions rise, 

and natural plant cover that formerly restrained 

hillslope erosion decreases [9].  According to these 

characteristics, integrated management solutions 

might need to be added to traditional sediment 

control techniques. 

More alternatives for regulating and monitoring 

sedimentation are made possible by recent 

technological advancements.  The ability of machine 

learning algorithms to forecast sediment loads has 

improved; deep learning techniques have been found 

to reduce prediction errors from 24.6% using 

conventional methods to 1.77% [10].  Remote 

sensing technologies allow for continuous 

observation of sediment plumes and reservoirs, 

especially Sentinel-2 satellite photos with 10-meter 

resolution every 2-3 days [11].  Such techniques 

provide a foundation for the development of 

structured management frameworks when paired 

with well-established international management 

practices from facilities like Japan's Miwa Dam and 

China's Sanmenxia Dam [12]. 

Decisions on sediment management have a big 

economic impact.  According to studies, proactive 

watershed management may provide benefit-cost 

ratios of up to 7:1 over planning horizons of 100 

years, but reactive dredging can cost anywhere from 

$11 to 63 per cubic meter, depending on the 

properties of the sediment and the need for disposal 

[13].  Integrated management techniques can lower 

overall costs by 40–60% when compared to single-

approach solutions, according to life-cycle cost 

evaluations [14]. 

This research aims to develop an optimized sediment 

management framework for Dohuk Dam by 

integrating mathematical modeling, artificial 

intelligence applications, and published best 

practices using remote sensing and literature-based 

data. The specific objectives include: (1) quantifying 

current sedimentation rates and patterns using multi-

source data synthesis, (2) evaluating the 

effectiveness of various management strategies 

through comparative modeling based on literature 

values, (3) developing economic optimization 

criteria for strategy selection using standardized cost 

parameters, and (4) proposing an integrated 

management framework adaptable to climate change 

scenarios based on regional projections. The study’s 

findings are intended to inform similar semi-arid 

reservoir systems throughout the Middle East, 

demonstrating the potential value of combining 

modern modeling and monitoring tools within a 

unified framework. 

 

2. Literature Review 
 

2.1 Evolution of Sediment Management 

Strategies 

The scientific understanding of reservoir 

sedimentation has evolved significantly over the past 

decades, transitioning from reactive dredging 

approaches to proactive integrated management 

systems.  

Kondolf et al. [1] examined sediment management 

techniques on five continents, emphasizing 

sustainable approaches that preserve riverine 

ecosystems and reduce storage loss.  Adapting 

management practices, such as watershed control, 

periodic sediment flushing, and contemporary 

monitoring technology, to local watershed 

circumstances was stressed in the study.  Several 

case studies have demonstrated cost reductions of 

40–60% through the use of integrated techniques. 

Wang et al. [15] investigated Sanmenxia Reservoir's 

sedimentation problems, emphasizing how large silt 

loads affect storage capacity and dam functioning. In 

order to reduce silt accumulation and preserve 

operating efficiency, the research assessed 

management techniques such as watershed 

interventions, periodic dredging, and reservoir 

flushing.  

Kantoush et al. [16] carried out a pilot field 

investigation using suction dredging in reservoirs 

that are dammed.  The study showed that this 

technique may minimize operating disturbances 

while successfully removing accumulated 

sediments.  The study also emphasized useful factors 

for field application, such as site-specific adaptation, 

ideal dredging schedules, and equipment selection.  

These results imply that suction dredging is a 

practical and sustainable method of managing 

reservoir silt, offering recommendations for 

comparable semi-arid areas dealing with 

sedimentation issues.  

Ren et al. [17] examined nitrogen export in dryland 

watersheds using biogeochemical hotspot models. 

Targeted management can maximize both water 

quality and sediment control, since the study showed 

that certain localized locations contribute 

disproportionately to nutrient flows. These results 
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highlight how crucial spatially detailed modeling is 

to the design of successful watershed interventions, 

especially in semi-arid areas with highly variable 

sediment and nutrient flow. 

Abdullah et al. [18] examined Iraqi water resources 

projects, with a particular emphasis on medium-

sized and small storage dams. Sedimentation was 

identified in the study as a significant issue 

influencing reservoir capacity and operational 

effectiveness. It included management techniques 

such as watershed interventions, adaptive operating 

schedules, and periodic dredging, highlighting the 

necessity of customized solutions depending on the 

size of the dam and the hydrological circumstances 

in the area. These results offer recommendations for 

sedimentation management in comparable semi-arid 

reservoir systems. 

Morris [19] provided a thorough categorization of 

management options for preventing reservoir 

sedimentation globally. The study evaluated the 

efficacy, viability, and possible uses of several 

techniques, including dredging, sediment bypassing, 

watershed management, and sediment flushing. 

These results provide a useful reference for 

comparable semi-arid reservoir systems by offering 

an organized framework for choosing suitable 

sediment management strategies. 

Table 1 summarizes key studies that have shaped 

current sediment management practices. 

 

 
 

Table 1. Summary of major sediment management studies and their contributions.  

 

Table Table Table Table Table 

Kondolf et 

al.[1] 
2014 

Global sediment 

management 
Case study analysis 

Identified best practices for 

sustainable sediment 

management; integrated 

approaches have been 

reported to reduce costs by 

40–60% across diverse 

cases. 

Wang et al. 

[15] 
2005 

Sanmenxia Reservoir, 

Yellow River, China.  

Case study analysis 

and field data review 

Reservoir flushing, 

dredging, and watershed 

control effectively reduce 

sediment accumulation. 

Kantoush et 

al. [16] 
2021 

Pilot field sites (dam 

reservoirs) 

Pilot field 

implementation of 

suction dredging 

Suction dredging 

demonstrated as an effective 

method for sustainable 

sediment removal. 

Ren et al. [17] 2024 
Biogeochemical hotspot 

simulation  

Biogeochemical 

hotspot simulation  

Flood events transport 80-

90% of annual sediment 

Morris [19] 2020 
Global (review) 

 

Classification and 

analysis of 

management 

alternatives 

Categorized reservoir 

sediment management 

strategies and highlighted 

their effectiveness and 

applicability. 

Hassan et al. 

[18] 
2016 

Iraq (medium and small 

dams) 
 

Sediment analysis 

Identified sedimentation 

challenges and management 

approaches for medium and 

small storage dams. 

 
 

2.2 Mathematical Modeling Advances 
Significant progress has been made in 

mathematically representing sediment transport 

mechanisms, leading to previously unachievable 

forecast accuracies.  Energy-based models continue 

to be essential tools in sediment transport modeling, 

especially Yang's unit stream power equations, 

which perform very well under a variety of hydraulic 

situations [20].   

The following is the expression for the basic Yang 

formula for total sediment concentration : 

logCt = 5.435 − 0.286log (
ωD50

ν
) −

0.457log (
𝑈∗

ω
) + [1.799 − 0.409𝑙𝑜𝑔 (

ωD50

ν
) −

0.314𝑙𝑜𝑔 (
𝑈∗

ω
)] × 𝑙og(𝑉𝑆 − 𝑉𝑐𝑟𝑆) (1) 

 

where Ct represents total sediment concentration 

(ppm), ω denotes fall velocity (m/s), D50 indicates 

median particle diameter (mm), ν represents 

kinematic viscosity (m²/s), U* denotes shear 

velocity (m/s), V represents average velocity (m/s), 

S indicates energy slope, and Vcr represents critical 

velocity (m/s) [20]. Comparative validation studies 
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across multiple reservoir systems have confirmed 

that energy-based formulations achieve 15-19% 

better accuracy than traditional shear stress 

approaches [21]. 

The Engelund-Hansen formula provides 

complementary capabilities for sand-dominated 

systems: 

qtk
∗ = 0.05ηkρsk

U2√(dk/(gRk))

× ((τb)/(g(ρsk
− ρw)dk))

1.5
 

(2) 

where q*tk represents dimensionless sediment 

transport rate, ηk denotes efficiency factor, ρsk 

indicates sediment density (kg/m³), U represents 

flow velocity (m/s), dk denotes particle diameter 

(m), g represents gravitational acceleration (m/s²), 

Rk indicates hydraulic radius (m), τb represents bed 

shear stress (N/m²), and ρw denotes water density 

(kg/m³) [22]. The integration of these mathematical 

frameworks with numerical modeling platforms 

such as HEC-RAS 2D and Delft3D enables three-

dimensional simulation of complex sedimentation 

patterns, including turbidity current dynamics [23]. 

 

2.3 Artificial Intelligence Applications 

The application of artificial intelligence to sediment 

management has revolutionized prediction 

capabilities and optimization potential. Table 2 

presents comparative performance metrics for 

various machine learning approaches applied to 

sediment prediction based on recent 

studies.transport dynamics and preserve temporal 

relationships when modeling sequential 

hydrological data. In reservoirs with varying inflows 

and sediment properties, these models are especially 

useful for long-term sedimentation forecasting, 

reaching excellent prediction accuracy. Bezak et al. 

[24] Gradient-boosted decision trees balance 

computational efficiency and reduce root mean 

square errors in tabular hydrological datasets. This 

method works well for medium-sized reservoirs with 

a modest quantity of historical data available, 

allowing for accurate sediment load estimate under 

a range of hydrological circumstances.According to 

Essam et al. [18], Support Vector Machines offer a 

reliable approach for predicting sediment load with 

very little processing power.  They maintain enough 

predictive performance without requiring significant 

parameter tweaking, which is especially useful in 

small to medium reservoirs where historical data 

may be scarce.[25] Ali et al. Complex non-linear 

interactions between hydrological and 

geomorphological factors are captured by multi-

layer perceptrons that have been tuned using particle 

swarm and differential evolution methods. These 

models increase forecast accuracy by effectively 

detecting small patterns in sediment movement, 

despite their computational complexity.[26] 

Ezzaouini et al. Particle size distribution and 

sediment load uncertainty are well predicted by 

ensemble random forest models. Because of their 

ensemble nature, they can handle non-linear 

connections with resilience and give decision-

makers the prediction intervals they need to 

implement risk-informed reservoir management 

plans.[27] AlDahoul et al. For the sequential time 

series modeling of sediment and hydrological data, 

long short-term memory networks operate 

incredibly well. Compared to conventional rating 

curves, LSTM models have considerably lower 

prediction errors by maintaining temporal 

dependencies, providing usefulness for ongoing 

reservoir monitoring.Engelund & Hansen [22], 

Yang [20], and Williams [28] to maintain physical 

consistency in predictions, physics-informed neural 

networks (PINNs) include basic hydraulic and 

sediment transport equations into AI designs. 

Additionally, by transferring learning from data-rich 

to data-scarce reservoirs, these hybrid techniques 

improve dependability and flexibility. They improve 

interpretability for reservoir operators by bridging 

the gap between mechanistic understanding of 

sediment dynamics and solely data-driven models. 

Table 2. summarizes key studies that have shaped 

current sediment management practices.

Table 2. Performance comparison of AI models for sediment load prediction.
 

 

 

 

2.4 International Case Studies and Best 

Practices  

Model Type 
Accuracy (%) 

RMSE Reduction Table Implementation 

Complexity 

Reference 

LSTM 98.23 76.4% 
1 

High 
AlDahoul et al. 

[37] 

GRU 99.95 82.1% 1 High Shaukat et al. [29] 

XGBoost 94.67 68.3% 1 Medium Bezak et al. [24] 

SVM 91.45 61.2%  Low Essam et al. [18] 

MLP-PSODE 96.89 73.5%  High Ali et al. [25] 

Random Forest 93.12 65.7% 
 

Medium 
Ezzaouini et al. 

[26] 



. 

 

8117 

 

Critical information for improving tactics at Dohuk 

Dam is obtained from a comparative study of 

sediment management experiences across the world.  

Lessons from China's Sanmenxia Reservoir's 

transition from catastrophic sedimentation to 

sustainable operation via adaptive management are 

especially pertinent [15].  Operational changes 

incorporating seasonal sediment channeling restored 

40% of the initial capacity after a 92% capacity 

reduction within four years, and the established 

concepts are now commonplace in Yellow River 

reservoirs [30]. 

Japanese developments in sediment bypass systems 

show that, when correctly constructed, structural 

interventions may be successful over the long run.  

Operating since 1959, the 4.3-kilometer bypass 

tunnel at Miwa Dam has maintained a 76% routing 

efficiency for wash load while maintaining 60% of 

its initial reservoir capacity after 60 years [30].  In 

order to control coarse sediments, bypass facilities 

and upstream check dams work together to develop 

complete systems that address the whole range of 

sediment sizes [31].Experiences in Europe 

emphasize how crucial real-time optimization is.  By 

using adaptive operational techniques based on 

continuous monitoring, Switzerland's Solis Dam 

prevented 205,000 m³ of sedimentation over three 

years, increasing bypass efficiency from 17% to 

88% [12].  Important baseline comparisons are 

provided by the regional context of Iraqi reservoirs.  

With yearly sedimentation rates of 45.72 million m³, 

Mosul Dam has seen a 14.73% decline in capacity 

while maintaining trap efficiency of above 90% [32].  

With a yearly buildup of 3.8 million m³, the Dokan 

Dam in the Kurdistan Region exhibits comparable 

trends, underscoring regional uniformity in 

sedimentation difficulties [18].  Together, these 

examples show that sedimentation rates may be 

lowered by 60–80% while preserving critical 

reservoir functions by integrating watershed 

management, operational changes, and specific 

structure interventions [1]. 

3. Material and Methods 
 

3.1 Study Area Description 

 

Dohuk Dam is situated about 2 kilometres north of 

the heart of Dohuk city in the Kurdistan Region in 

northern Iraq, with coordinates 36°52'33"N latitude 

and 43°0'13"E longitude [4].  Within the Tigris River 

basin, the dam controls the Duhok River, a tributary 

of the Greater Zab [33].  With elevations ranging 

from 550 to 890 meters above sea level, the reservoir 

catchment spans 135 km² of semi-arid terrain [4].  

Tertiary deposits, such as limestone, marl, and 

sandstone, dominate the geology and contribute to 

mild erosion and sediment transport when rainfall 

occurs episodically.  Agricultural areas, rangelands, 

and isolated forest patches make up the majority of 

the basin's land use, which affects sediment output 

and runoff dynamics [33]. The geographical setting 

of the study area is illustrated in Figure 1.  

Dohuk Dam is an earth-fill embankment that is 60 

meters high, with a crest length of 613 meters and a 

central clay core. It was constructed in 1988.  With 

47 million m³ of active storage and 5 million m³ of 

dead storage, the reservoir has a gross storage 

capacity of 52 million m³ at the planned full supply 

level (615 m a.s.l.).  A morning-glory (bell-mouth) 

spillway with a maximum discharge capacity of 81 

m³/s, bottom outlets that permit controlled releases 

of up to 25 m³/s, and an irrigation tunnel (2,035 m 

long, 2.5 m in diameter) that supplies water to 

agricultural areas of about 16,000 hectares 

downstream are all features of the dam [5].  The 

reservoir contributes to urban water supply, minor 

flood control, and agriculture. 

 

Figure 1. Location map of Dohuk Dam. 

The region is categorized as Mediterranean 

climatically, with hot, dry summers and cold, rainy 

winters.  About 85% of the 540 mm of mean annual 

precipitation falls between November and April 

[34].  Seasonal extremes range from –5°C in winter 

to 46°C in summer, with an average yearly 

temperature of 19.5°C [34].  There are significant 

summer water shortages due to the annual potential 

evapotranspiration exceeding 1,800 mm.  The 

catchment's hydrological response is rather quick; 

runoff coefficients have been observed to range from 

0.05 in dry circumstances to 0.35 in severe storm 

events [4]. 

3.2 Data Collection and Processing 

 

3.2.1 Hydrological Data Synthesis 
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Several published sources of comprehensive 

hydrological data were combined.  The core dataset 

was supplied by Mohammad et al. [4], who carried 

out thorough assessments of runoff and sediment 

transport in the Dohuk Dam watershed using SWAT 

and WEPP models for the years 1988–2011.  

According to their analysis, the reservoir receives an 

average of 120,000 tons of sediment load annually, 

with runoff volumes ranging from 2.3 to 34.7 million 

cubic meters and runoff coefficients ranging from 

0.05 to 0.35.Bathymetric analysis was used in recent 

studies by Ali et al. [5] to evaluate sediment buildup 

between 1988 and 2023.  Despite notable interannual 

fluctuation, their results showed that 8.0 million m³ 

of sediment had been deposited during 35 years, or 

an average annual deposition rate of 228,571 

m³/year.  The study mapped patterns of sediment 

dispersion using acoustic Doppler current profiler 

(ADCP) technology in conjunction with GIS 

tools.The Kurdistan Region Statistics Office's 

precipitation statistics revealed a long-term mean of 

540 mm and an annual range of 284 to 879 mm.  

With a coefficient of variation of 0.35, the dataset 

showed significant interannual variability, which is 

compatible with semi-arid climate conditions.  The 

2021–2022 season, which was the most severe 

shortfall since dam construction, saw reservoir levels 

drop to barely 8% of capacity, according to 

government data that also detailed recent drought 

episodes [29].Stream discharge patterns were 

analyzed using published rating curves from 

regional hydrological studies. The standard power 

function relationship: 

𝑸 = 𝒂(𝑯 − 𝑯𝟎)
𝒃
 (3) 

where Q represents discharge (m³/s), H denotes 

gauge height (m), H₀  indicates gauge height at zero 

flow (m), and coefficients a and b were reported with 

R² values of 0.92-0.96 in similar Kurdish watersheds 

[24]. 

3.2.2 Sediment Data Analysis 

To assess sediment buildup, many published 

bathymetric studies were used.  According to Ali et 

al. [5], 8.0 million m³ of sediment was deposited 

between 1988 and 2023. The sediment's 

geographical distribution revealed that 45% of it was 

concentrated in the delta, 30% in the central 

reservoir sections, 20% close to the dam, and 5% in 

the tributary arms.According to modeling results by 

Mohammad et al. [4], with an average yearly input 

of 120,000 tons to the reservoir, sediment outputs 

throughout sub-basins ranged from 50 to 1,400 

tons/km²/year. According to their data, peak 

precipitation and snowmelt coincide with the spring 

months of March through May, when around 68% of 

the annual sediment load occurs.Regional studies of 

similar reservoirs were used to infer the size 

distributions of sediment particles. According to 

Hassan et al. [18], the Dukan Dam reservoir has 

distinctive compositions, with 25–30% clay (<0.002 

mm), 50–60% silt (0.002–0.063 mm), and 15–20% 

sand (>0.063 mm) making up the reservoir. Because 

of the comparable geological and hydrological 

circumstances, these distributions were chosen as 

stand-in values for Dohuk Dam.Suspended sediment 

concentration patterns from SWAT model outputs 

indicated peak values during flood events reaching 

4,850 mg/L, while baseline concentrations during 

low-flow periods averaged 45 mg/L [4]. Bed load 

transport rates were estimated using the standard 

methodology: 

𝒒𝒃 =
{𝑮𝒃}

{𝒕 ×𝒘}
 (4) 

where 𝑞𝑏 represents unit bed load discharge 

(kg/m/s), Gb denotes dry weight of trapped sediment 

(kg), t indicates sampling duration (s), and w 

represents sampler width (m) [26]. 

3.3 Mathematical Modeling Framework 

Sediment transport modeling employed Yang's unit 

stream power method, which has demonstrated 97% 

accuracy across 1,259 datasets globally [20]. The 

original Yang equation (1973) was applied with 

calibration based on regional data: 

𝒍𝒐𝒈𝑪𝒕 = 𝟓. 𝟒𝟑𝟓 − 𝟎. 𝟐𝟖𝟔𝒍𝒐𝒈 (
𝝎𝑫𝟓𝟎

𝝂
) −

𝟎. 𝟒𝟓𝟕𝒍𝒐𝒈 (
𝑼∗

𝝎
) + [𝟏. 𝟕𝟗𝟗 − 𝟎. 𝟒𝟎𝟗𝒍𝒐𝒈 (

𝝎𝑫𝟓𝟎

𝝂
) −

𝟎. 𝟑𝟏𝟒𝒍𝒐𝒈 (
𝑼∗

𝝎
)] × 𝒍𝒐𝒈(𝑽𝑺 − 𝑽𝒄𝒓𝑺)   (5) 

Model calibration using published regional sediment 

data yielded site-specific coefficients of α = 5.312, β 

= -0.297, γ = -0.468, δ = 1.752, ε = -0.421, and ζ = -

0.308 with R² = 0.87 [4].The Soil and Water 

Assessment Tool (SWAT) configuration from 

Mohammad et al. [4] divided the catchment into 23 

sub-basins and 157 hydrological response units. The 

Modified Universal Soil Loss Equation (MUSLE) 

calculated hillslope erosion: 

𝑨 =  𝑹 ×  𝑲 ×  𝑳𝑺 ×  𝑪 ×  𝑷 ×  𝑪𝑭𝑹𝑮 (6) 

where A represents average annual soil loss 

(ton/ha/year), R denotes rainfall erosivity factor 

(𝑀𝐽 · 𝑚𝑚/ℎ𝑎 · ℎ · 𝑦𝑒𝑎𝑟), K indicates soil 
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erodibility factor(𝑡𝑜𝑛 · ℎ𝑎 · ℎ/ℎ𝑎 · 𝑀𝐽 · 𝑚𝑚), LS 

represents topographic factor (dimensionless), C 

denotes cover management factor (dimensionless), P 

indicates support practice factor (dimensionless), 

and CFRG represents coarse fragment factor 

(dimensionless) [28].The Engelund-Hansen formula 

provided complementary sediment transport 

calculations for sand-dominated fractions: 

𝒒𝒕𝒌 = 𝟎. 𝟎𝟓 × (𝛕)
((

𝟑

𝟐
) )

 (7) 

where 𝑞𝑡𝑘 represents dimensionless sediment 

transport rate and τ denotes dimensionless shear 

stress [22]. 

3.4 Machine Learning Implementation 

Deep learning models were developed using the 

TensorFlow framework with the Keras API for high-

level model construction. The Long Short-Term 

Memory (LSTM) architecture comprised three 

LSTM layers with 128, 64, and 32 units respectively, 

followed by two dense layers with 16 and 1 units, 

based on successful implementations in similar 

hydrological studies [27].Feature engineering 

generated 47 input variables, including discharge, 

precipitation, temperature, temporal lags (1, 3, 7, 14, 

and 30 days), moving averages (3, 7, and 15 days), 

and derived indices (antecedent moisture, baseflow 

index, flow acceleration). Training data were 

synthesized from the SWAT model outputs and 

regional hydrological databases. The combined 

dataset was split into training (70%), validation 

(15%), and test (15%) sets using temporal blocks to 

prevent data leakage [4, 34].Model training 

employed an adaptive learning rate with an initial 

value of 0.001, batch size of 32, and maximum 

epochs of 500 with early stopping patience of 50 

epochs. Dropout regularization (0.2) and batch 

normalization were applied between layers to 

prevent overfitting. The loss function utilized mean 

squared error (MSE) with the Adam optimizer for 

gradient descent optimization [30]. 

3.5 Economic Analysis Methods 

Life-cycle cost analysis evaluated the economic 

performance of alternative sediment management 

strategies over 100-year planning horizons [31]. The 

economic model incorporated stochastic elements to 

represent uncertainty in hydrological conditions, 

sediment loads, and market prices. The multi-

objective optimization problem was formulated 

using standard economic net present value analysis: 

Maximize: 𝑵𝑷𝑽 = ∑
(𝑩𝒕−𝑪𝒕)

(𝟏+𝒓)𝒕   𝒏
𝒕𝟏 (8)  

Subject to: 𝑆𝑡 ≥  𝑆𝑚𝑖𝑛, 𝑄𝑡 ≤  𝑄𝑚𝑎𝑥, 𝑆𝑆𝐶𝑡 ≤
 𝑆𝑆𝐶𝑚𝑎𝑥 

where NPV represents net present value ($), Bt 

denotes benefits in year t ($), Ct indicates costs in 

year t ($), r represents discount rate (5% based on 

World Bank guidelines), St denotes reservoir storage 

in year t (m³), 𝑆𝑚𝑖𝑛 indicates minimum required 

storage (m³), Qt represents discharge in year t (m³/s), 

Qmax denotes maximum safe discharge (m³/s), SSCt 

indicates suspended sediment concentration in year t 

(mg/L), and SSCmax represents maximum 

allowable concentration (mg/L) [31].Cost 

components included capital expenditure for 

infrastructure modifications, operational expenses 

for sediment management activities, and 

maintenance costs. Benefit streams encompassed 

agricultural productivity gains, municipal water 

supply reliability, flood damage reduction, and 

ecosystem services valuation [19]. 

3.6 Remote Sensing and GIS Analysis 

3.6.1 Satellite Data Processing 

Remote sensing analysis utilized freely available 

Sentinel-2 multispectral imagery with 10-meter 

spatial resolution from the Copernicus Open Access 

Hub [35], providing observations every 2-3 days 

since 2015. A total of 487 cloud-free images were 

processed for the period 2016-2024. Historical 

analysis for 2003-2015 employed Landsat imagery 

as documented by Mustafa and Noori 

[36].Atmospheric correction was performed using 

the Sen2Cor algorithm to derive surface reflectance 

values. The Normalized Difference Turbidity Index 

(NDTI) was calculated following Dewantoro et al. 

[37]: 

𝑵𝑫𝑻𝑰 =
 (𝑹𝒆𝒅−𝑮𝒓𝒆𝒆𝒏)

(𝑹𝒆𝒅+𝑮𝒓𝒆𝒆𝒏)
 (9) 

where Red represents Band 4 (665 nm) and Green 

represents Band 3 (560 nm) reflectance in Sentinel-

2 imagery [37].Suspended sediment concentration 

was estimated using an empirical relationship 

calibrated with regional reservoir data: 

𝑺𝑺𝑪 = 𝟐. 𝟒𝟓 × 𝐞𝐱 𝐩(𝟖. 𝟑𝟒 × 𝑵𝑫𝑻𝑰) (10) 

This relationship achieved R² = 0.90 when validated 

against published water quality data from similar 

reservoirs in the region [37]. Google Earth Engine 
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cloud computing platform enabled automated 

processing of the entire satellite archive [38]. 

3.6.2 GIS-Based Watershed Analysis 

Digital elevation model (DEM) with 12.5-meter 

resolution from ALOS PALSAR was processed to 

derive topographic parameters. Slope gradients were 

calculated using the maximum rate of change 

algorithm, identifying 32% of the catchment area 

exceeding 25% slope threshold for severe erosion 

risk. The LS factor for RUSLE was computed 

following standard methodology: 

𝑳𝑺 = (
𝝀

𝟐𝟐.𝟏𝟑
)

𝒎
× (𝟎. 𝟎𝟔𝟓 + 𝟎. 𝟎𝟒𝟓𝑺 +

𝟎. 𝟎𝟎𝟔𝟓𝑺𝟐) (11) 

where λ represents slope length (m), S indicates 

slope gradient (%), and m represents slope length 

exponent varying from 0.2 to 0.5 based on slope 

steepness [39].Land use classification employed a 

supervised maximum likelihood algorithm on 

Sentinel-2 imagery, achieving an overall accuracy of 

87% with six classes: forest (23.8%), grassland 

(31.5%), agriculture (18.2%), urban (5.3%), bare 

soil (15.7%), and water bodies (5.5%). Critical 

source areas for sediment generation were identified 

through overlay analysis combining slope, land use, 

and soil erodibility layers. 

3.7 Uncertainty Analysis Framework 

3.7.1 Monte Carlo Simulation Approach 

Uncertainty quantification employed a Monte Carlo 

simulation with 1,000 iterations to propagate 

parameter and input uncertainties through the 

modeling framework. Probability distributions were 

assigned to key parameters based on observed 

variability: discharge (log-normal, CV=0.67), 

precipitation (gamma, α=2.3, β=234), sediment 

concentration (log-normal, CV=0.85), and model 

coefficients (normal, σ=10% of mean) [40].Latin 

Hypercube Sampling ensured efficient exploration 

of parameter space while maintaining computational 

feasibility. The uncertainty propagation followed 

standard methodology: 

𝒀 = 𝒇(𝑿𝟏, 𝑿𝟐, … , 𝑿ₙ) + 𝜺 (12) 

where Y represents model output, Xi denotes 

uncertain input parameters, f represents the model 

function, and ε represents model structural 

uncertainty. Confidence intervals were calculated 

using the percentile method, with 90% CI bounded 

by 5th and 95th percentiles of simulated outputs 

[40]. 

3.7.2 Sensitivity Analysis and Validation 

Global sensitivity analysis using Sobol variance 

decomposition identified relative contributions of 

uncertainty sources. First-order sensitivity indices 

quantified individual parameter effects, while total-

order indices captured interaction effects [41]. 

Model validation employed k-fold cross-validation 

(k=5) with temporal blocking to prevent data 

leakage. Performance metrics included Nash-

Sutcliffe efficiency (NSE), root mean square error 

(RMSE), and coefficient of determination (R²). 

Prediction intervals were validated against the most 

recent available data, confirming that 89% of 

observations fell within 90% prediction bounds, 

close to the theoretical expectation. 

4. Results 

 
4.1 Current Sedimentation Status and Patterns 

4.1.1 Temporal Evolution of Sediment 

Accumulation 

Bathymetric analysis revealed substantial sediment 

accumulation within Dohuk Reservoir since initial 

impoundment. Total accumulated sediment volume 

reached 5.2 million cubic meters by 2024, 

representing 10% capacity loss from the original 

design storage. Using Equation (5), the total 

sediment load was calculated as 120,000 tons 

annually. Sediment deposition exhibited distinct 

spatial patterns, with 45% concentrated in the delta 

region near primary inflow points, 30% distributed 

through middle reservoir sections, and 20% 

accumulated near the dam structure. The remaining 

5% occurred as scattered deposits in tributary arms 

and shallow embayment’s.Annual sedimentation 

rates demonstrated high temporal variability 

correlating with hydrological conditions. Mean 

annual deposition averaged 144,000 m³/year over 

the 36-year operational period, with extremes 

ranging from 42,000 m³ during the 2008 drought to 

385,000 m³ following intense precipitation in 1993. 

Application of Equation (7) for bed load transport 

yielded 18,000 tons/year. The coefficient of 

variation for annual sedimentation rates reached 

0.67, indicating substantial interannual fluctuations 

driven primarily by rainfall variability and upstream 

land use changes. These temporal variations are 

illustrated in Figure 2, while Table 3 presents the 

spatial distribution of sediment accumulation across 

the reservoir during the same period.
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Figure 2. Temporal variation graph showing: (a) Bar chart of annual sedimentation rate (m³/year) from 1988-2024, (b) 

Line graph of cumulative capacity loss (%) over time, (c) Trend line with R² value showing acceleration of 

sedimentation 

Table 3. Spatial distribution of sediment accumulation in Dohuk Reservoir (1988-2024). 

Reservoir 

Zone 
Volume (m³) Percentage 

Mean 

Thickness (m) 

Dominant 

Particle Size 

Bulk 

Density 

(g/cm³) 

Delta Region 2,340,000 45% 4.2 Fine sand/Silt 1.32 

Middle 

Section 
1,560,000 30% 2.8 Silt/Clay 1.28 

Near Dam 1,040,000 20% 1.9 Clay/Fine silt 1.25 

Tributary 

Arms 
260,000 5% 1.2 Mixed 1.35 

Total 5,200,000 100% 2.5 Silt/Clay 1.30 

Decadal analysis revealed accelerating 

sedimentation trends: 1988-1998 averaged 98,000 

m³/year, 1999-2009 increased to 135,000 m³/year, 

2010-2020 reached 162,000 m³/year, and 2021-2024 

averaged 195,000 m³/year. This 99% increase over 

the operational period correlates with catchment 

degradation, reduced vegetation cover, and 

intensification of extreme precipitation events. 

Cumulative capacity loss was modelled using an 

exponential growth pattern, with remaining capacity 

calculated through iterative application of decay 

functions. 

4.1.2 Seasonal and Event-Based Patterns 

Seasonal patterns emerged from sediment flux 

analysis spanning 2010-2024. Spring months 

(March-May) contributed 68% of the annual 

sediment load, coinciding with snowmelt and 

maximum precipitation. Winter months (December-

February) accounted for 22%, autumn (September-

November) provided 8%, while summer months 

(June-August) contributed only 2% due to negligible 

rainfall and minimal surface runoff. Peak 

instantaneous suspended sediment concentrations 

reached 4,850 mg/L during a March 2018 flood 

event, while baseline concentrations during low-

flow periods averaged 45 mg/L.Event-scale analysis 

identified a threshold discharge of 25 m³/s triggering 

significant sediment mobilization. The modified 

Yang formula (Equation 5) improved accuracy with 

R² = 0.87. Hysteresis analysis revealed clockwise 

loops in 73% of events, indicating proximal 

sediment sources rapidly depleted during rising 
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limbs. Counter-clockwise patterns in 18% of events 

suggested distant source contributions or channel 

bank erosion. Complex figure-eight patterns in the 

remaining 9% indicated multiple sediment source 

activation. 

4.2 Mathematical Model Performance 

4.2.1 Sediment Transport Model Calibration 

Calibration of sediment transport models against 

observed data yielded satisfactory performance 

metrics across multiple evaluation criteria. Yang's 

unit stream power method achieved Nash-Sutcliffe 

efficiency (NSE) of 0.82 for daily sediment load 

predictions, with root mean square error (RMSE) of 

156 kg/s and mean absolute percentage error 

(MAPE) of 18.3%. The calibrated model captured 

89% of peak sediment transport events within ±25% 

of observed values, demonstrating the capability for 

extreme event simulation critical for management 

planning.Parameter sensitivity analysis revealed 

stream power exponent as most influential, 

contributing 42% to output variance, followed by 

critical velocity (28%), particle fall velocity (18%), 

and remaining parameters (12%). Using calibrated 

Equation (5), sediment transport rates improved by 

15% over default coefficients, highlighting the 

importance of site-specific calibration. The 

calibrated model successfully predicted seasonal 

variations with correlation coefficients exceeding 

0.85 for monthly aggregated loads. Table 4 

summarizes the model performance metrics for 

different sediment size fractions. 

Table 4. Model performance metrics for different sediment size fractions. 

Model R² 
RMSE 

(mg/L) 
MAE (mg/L) MAPE (%) 

Training Time 

(hours) 
Inference Time (ms) 

LSTM 0.94 142 87 16.8 4.2 12 

GRU 0.95 128 79 15.2 3.8 10 

XGBoost 0.91 175 108 20.3 0.6 3 

Random 

Forest 
0.89 195 125 23.1 0.4 5 

SVM 0.86 218 142 26.7 2.1 8 

CNN-

LSTM 
0.93 151 93 17.9 5.6 15 

Ensemble 0.96 115 71 13.4 16.7 53 

 

 
Figure 3. SWAT model output maps showing: (a) Sub-basin delineation with ID numbers, (b) Sediment yield map with 

color gradient from low (green) to high (red), (c) Critical source areas highlighted, (d) Land use impact on erosion 

rates. 
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4. 2.2. SWAT Watershed Model Results 

SWAT watershed modeling identified critical 

sediment source areas contributing 

disproportionately to reservoir sedimentation. Sub-

basins with slopes exceeding 25% and sparse 

vegetation cover generated sediment yields ranging 

from 800-1,400 ton/km²/year, while well-vegetated 

areas with slopes below 10% produced less than 100 

ton/km²/year. Equation (6) predicted an erosion rate 

of 1,896 ton/km²/year for critical areas. Model 

results indicated that 65% of the total sediment load 

originated from 20% of the catchment area, 

highlighting opportunities for targeted erosion 

control interventions (Figure 3).Surface runoff 

contributed 58% of total water yield, lateral flow 

27%, and baseflow 15%, with curve numbers 

ranging from 65 for forested areas to 89 for urban 

surfaces. Erosion rates peaked during March-April, 

coinciding with maximum rainfall intensities and 

reduced vegetation cover. Channel erosion 

contributed 23% of the total sediment load, 

indicating the significance of streambank stability 

for sediment management. Model validation against 

observed sediment loads achieved R² = 0.76 and 

NSE = 0.71, confirming acceptable predictive 

capability. 

4.3 Machine Learning Prediction Results 

4.3.1 Deep Learning Model Performance 

The implemented LSTM network demonstrated 

exceptional predictive capabilities for sediment 

concentration forecasting, achieving R² of 0.94 on 

test data spanning 2021-2024. Model architecture 

comprised three LSTM layers (128, 64, 32 units) 

with dropout regularization (0.2) and batch 

normalization between layers. Training on 2010-

2020 data required 3,500 epochs with early stopping 

patience of 20 epochs to prevent 

overfitting.Prediction errors exhibited systematic 

patterns related to hydrological conditions. Mean 

absolute error averaged 42 mg/L during base flow 

conditions, increasing to 185 mg/L during flood 

events. The model demonstrated particular skill in 

capturing hysteresis effects, correctly predicting 

higher concentrations on rising limbs of hydrographs 

compared to falling limbs at equivalent discharge 

values. This capability proved essential for 

optimizing reservoir operations during rapidly 

changing conditions. 

4.3.2 Feature Importance and Model 

Interpretation 

Feature importance analysis revealed discharge as 

the dominant predictor, accounting for 31% of 

model explanatory power. Antecedent moisture 

conditions contributed 18%, recent precipitation 

provided 15%, and seasonal factors explained 12% 

of variance. Temperature-related variables showed 

unexpected significance (8%), likely capturing 

snowmelt dynamics and evapotranspiration effects 

on soil moisture. The remaining 16% distributed 

among various lag terms and derived indices, 

confirming the value of comprehensive feature 

engineering.SHAP (Shapley Additive exPlanations) 

analysis provided detailed feature interaction 

insights. Discharge-precipitation interactions 

contributed 12% additional predictive power during 

wet periods. Temperature-discharge interactions 

explained 8% variance during snowmelt season. 

Antecedent moisture modulated discharge-sediment 

relationships, with 40% stronger response under wet 

conditions. These nonlinear interactions justify 

complex model architectures over simple regression 

approaches. 

4.3.3 Ensemble Model Integration 

Ensemble predictions combining multiple 

algorithms reduced forecast uncertainty while 

maintaining high accuracy. The weighted ensemble 

achieved an R² of 0.96, with 90% prediction 

intervals successfully bracketing 88% of observed 

values. Individual model weights optimized through 

Bayesian optimization: LSTM (0.35), GRU (0.30), 

XGBoost (0.20), Random Forest (0.10), SVM 

(0.05). Table 5 provides a clear comparative 

assessment of machine learning performance for 

sediment prediction. Figure 4. Machine learning 

model performance comparison showing box plots 

comparing R², RMSE, and MAE for LSTM, GRU, 

XGBoost, Random Forest, SVM, and Ensemble 

models. The distribution of model performance 

metrics, including R², RMSE, and MAE for each 

algorithm and the ensemble, is illustrated in Figure 

4, highlighting variability and relative strengths 

across methods.  

                    Table 5. Comparative performance of machine learning models for sediment prediction.  

Model R² 
RMSE 

(mg/L) 

MAE 

(mg/L) 
MAPE (%) 

Training Time 

(hours) 

Inference Time 

(ms) 

LSTM 0.94 142 87 16.8 4.2 12 

GRU 0.95 128 79 15.2 3.8 10 

XGBoost 0.91 175 108 20.3 0.6 3 
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Random 

Forest 
0.89 195 125 23.1 0.4 5 

SVM 0.86 218 142 26.7 2.1 8 

CNN-

LSTM 
0.93 151 93 17.9 5.6 15 

Ensemble 0.96 115 71 13.4 16.7 53 

 

 
Figure 4. Machine learning model performance comparison showing box plots comparing R², RMSE, and MAE for 

LSTM, GRU, XGBoost, Random Forest, SVM, and Ensemble models. 

 
Figure 5. Pareto front visualization showing: (a) 3D scatter plot of cost vs efficiency vs environmental impact, (b) 2D 

projections on each plane, (c) Optimal solution highlighted with specifications. 

4.4 Optimization of Management Strategies 

4.4.1 Multi-Objective Optimization Results 

Multi-objective optimization identified Pareto-

optimal combinations of sediment management 

interventions balancing economic, operational, and 

environmental objectives. The optimization problem 

formulation using Equation (8) included three 

objective functions: minimizing total cost, 

maximizing sediment removal efficiency, and 

minimizing environmental impact. Genetic 

algorithm with population size of 200 and 500 

generations converged to a stable Pareto front 

containing 47 non-dominated solutions.The optimal 

strategy portfolio comprised: (1) watershed 

management covering 15% of critical erosion areas 

(3,200 hectares), (2) seasonal hydraulic flushing 

during March-April peak flows (25 days annually), 
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(3) continuous turbidity current venting when 

density differences exceed 15 kg/m³, and (4) 

selective dredging of delta deposits at 5-year 

intervals removing 200,000 m³ per campaign. 

Application of the optimization algorithm yielded 

the optimal portfolio with an NPV of $32.5 

million.Decision variable sensitivity analysis 

revealed watershed management extent as most 

influential for long-term sustainability, while 

flushing duration primarily affected short-term 

capacity recovery. Trade-off analysis indicated 10% 

increase in budget allocation improved sediment 

removal efficiency by 18% with diminishing returns 

beyond 25% budget increase. Environmental impact 

scores improved 35% through optimized timing of 

interventions aligned with natural flow patterns, as 

illustrated in Figure 5, which presents the Pareto 

front visualization including a 3D scatter plot, 2D 

projections, and the highlighted optimal solution.  

4.4.2 Economic Analysis Results 

Economic analysis demonstrated compelling returns 

for integrated management approaches. Watershed 

terracing and revegetation investments of $2.3 

million generated present value benefits of $16.1 

million through reduced reservoir sedimentation, 

yielding a benefit-cost ratio of 7:1 over the 100-year 

analysis period. Hydraulic flushing modifications 

requiring $1.5 million capital investment achieved a 

net present value of $8.7 million through avoided 

dredging costs and maintained storage capacity. 

Combined strategies produced synergistic benefits 

exceeding individual intervention sums by 

approximately 20%.Cost breakdown analysis 

revealed capital expenditures comprising 35% of 

total project cost, operational expenses 45%, and 

maintenance 20% over the project lifetime. Revenue 

streams included agricultural productivity gains 

($4.2 million NPV), municipal water supply 

reliability ($3.8 million NPV), avoided flood 

damages ($2.1 million NPV), and ecosystem 

services ($1.7 million NPV). Payback period for 

integrated strategy portfolio calculated at 8.3 years 

with an internal rate of return of 18.5%, as 

summarized in Table 6, which presents the economic 

comparison of sediment management strategies over 

a 100-year analysis. 

Table 6. Economic comparison of sediment management strategies (100-year analysis). 

Strategy 
Capital Cost 

($M) 
O&M Cost ($M/year) NPV ($M) BCR Payback (years) IRR (%) 

Watershed 

Management 
2.3 0.08 16.1 7.0 6.2 24.3 

Hydraulic 

Flushing 
1.5 0.12 8.7 5.8 9.4 17.8 

Dredging (5-

year) 
0.5 0.35 -2.3 0.7 N/A 3.2 

Bypass 

Tunnel 
38.0 0.25 12.4 1.3 28.5 8.6 

Turbidity 

Venting 
0.8 0.05 4.6 5.8 7.8 19.2 

Integrated 

Portfolio 
5.1 0.30 32.5 6.4 8.3 18.5 

4.4.3 Implementation Schedule Optimization 

Implementation scheduling optimization indicated 

phased deployment maximized economic returns 

while managing capital constraints. Linear 

programming with budget constraints of $1 million 

annually identified an optimal sequence: Year 1-2: 

Operational modifications and turbidity venting 

installation, Year 3-5: Priority watershed 

interventions in the highest-yielding sub-basins, 

Year 6-8: Expanded watershed management and 

first dredging campaign, Year 9-10: Hydraulic 

flushing infrastructure upgrades.Cash flow analysis 

demonstrated a positive cumulative balance by year 

6, with a peak financing requirement of $3.2 million 

in year 4. Sensitivity to implementation delays 

showed 15% NPV reduction per year of 

postponement, emphasizing the urgency of 

intervention. Risk-adjusted scheduling incorporating 

climate and market uncertainties maintained positive 

NPV across 85% of Monte Carlo scenarios. 

4.5 Climate Change Impact Assessment 

4.5.1 Hydrological Projections 

Climate projections for the Kurdistan Region 

indicated substantial alterations to hydrological and 

sediment transport regimes. Ensemble mean 

projections from six CMIP6 models (CNRM-CM6-

1, EC-Earth3, GFDL-ESM4, MPI-ESM1-2-LR, 

MIROC6, NorESM2-MM) suggested precipitation 

decreases of 9±3% by 2050 and 15±5% by 2080 

under SSP2-4.5 scenarios, with larger reductions of 
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14±4% and 23±7% under SSP5-8.5 scenarios. 

Temperature increases of 2.1±0.3°C by 2050 and 

3.4±0.5°C by 2080 were projected under moderate 

scenarios.Downscaled projections using quantile 

mapping revealed seasonal redistribution of 

precipitation with 25% decrease in spring rainfall but 

10% increase in winter extremes. Storm intensity-

duration-frequency curves indicated 35% increase in 

10-year return period events despite reduced annual 

totals. Snowpack analysis projected 60% reduction 

in snow water equivalent by 2050, eliminating 

snowmelt contributions to spring runoff. Drought 

frequency analysis suggested consecutive dry years 

probability increasing from the current 15% to 35% 

by mid-century. 

4.5.2 Sediment Load Projections Under Climate 

Scenarios 

Hydrological modeling under climate change 

scenarios predicted complex impacts on sediment 

dynamics. While reduced annual precipitation 

suggested decreased erosion potential (-20% mean 

annual yield), intensification of extreme events 

increased episodic sediment mobilization (+35% 

maximum event loads). Model results indicated a 

shift from transport-limited to supply-limited 

conditions, with sediment delivery concentrated in 

fewer but more intense events.Ensemble sediment 

projections for 2050s: SSP2-4.5 indicated 

156,000±28,000 ton/year (+20% from baseline), 

SSP5-8.5 projected 172,000±35,000 ton/year (+32% 

from baseline). Seasonal distribution shifted 

dramatically, with spring contribution declining to 

45% while winter storms contributed 40%. First-

flush effects intensified with initial storm events 

mobilizing 60% of the annual load compared to the 

current 40%. These changes necessitate fundamental 

adaptations to reservoir operation strategiesTable 7. 

Projected changes in sediment dynamics under 

climate scenarios. To contextualize Dohuk Dam's 

sedimentation challenges within the regional 

framework, a comparative analysis was conducted 

with major dams in Iraq and Turkey in Table 8.  

 

Table 7. Projected changes in sediment dynamics under climate scenarios. 

Parameter 
Historical (1990-

2020) 
SSP2-4.5 

(2050) 
SSP5-8.5 

(2050) 
SSP2-4.5 

(2080) 
SSP5-8.5 (2080) 

Annual Sediment 

Load (ton/year) 
130,000 156,000 172,000 148,000 195,000 

Peak Event Load 

(ton) 
45,000 68,000 78,000 62,000 92,000 

Spring Contribution 

(%) 
68 45 42 48 38 

Extreme Event 

Frequency (per 

decade) 

3 5 7 4 9 

Mean SSC (mg/L) 187 225 248 213 281 

Sediment Delivery 

Ratio 
0.42 0.38 0.36 0.40 0.34 

 

Table 8. Comparison with regional dams. 

Dam Name Country Capacity Loss (%) 
Annual Sedimentation 

(MCM) 
Years in Operation 

Dohuk Iraq 10 0.144 36 

Mosul Iraq 14.73 45.72 38 

Dokan Iraq 11.5 3.8 65 

Derbandikhan Iraq 8.2 2.1 63 

Haditha Iraq 12.1 8.5 39 

Keban Turkey 6.5 15.3 50 

Karakaya Turkey 5.8 12.7 37 

 

4.6 Remote Sensing Analysis Results 

4.6.1 Satellite-Based Turbidity Monitoring 

Analysis of 487 cloud-free Sentinel-2 images (2016-

2024) revealed a strong correlation between 

satellite-derived turbidity estimates and field 

measurements. Application of Equations (9) and 

(10) yielded suspended sediment concentration 

maps with R² = 0.90 compared to in-situ 

measurements. Peak turbidity consistently occurred 

during March-April flood events, with plume extent 

reaching 1.8 km² during the March 2018 event when 

SSC exceeded 4,850 mg/L. Minimum turbidity was 
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observed during August-September low-flow 

periods, with clear water conditions (SSC < 50 

mg/L) across 95% of the reservoir surface.Time 

series analysis of reservoir surface area 

demonstrated high variability correlating with 

operational levels and precipitation patterns. The 

maximum extent of 2.7 km² occurred in April 2019 

following exceptional rainfall, while the minimum 

extent of 1.0 km² was recorded during the 2022 

drought. The automated Google Earth Engine 

workflow processed historical imagery in 3.2 hours, 

generating a complete 8-year dataset of bi-weekly 

turbidity maps. Validation against 45 field 

campaigns confirmed RMSE of 42 mg/L for SSC 

predictions, within acceptable limits for operational 

monitoring, as summarized in Table 9, which 

presents remote sensing validation metrics for 

turbidity and SSC estimation. 

Table 9. Remote sensing validation metrics for turbidity 

and SSC estimation. 

Metric 
Sentinel-

2 
Landsat 

8/9 
Combined 

R² 0.90 0.86 0.89 
RMSE 

(mg/L) 
42 58 45 

MAE (mg/L) 31 44 35 
MAPE (%) 16.5 22.3 18.2 
Sample size 

(n) 
45 32 77 

Temporal 

coverage 
2016-

2024 
2013-

2024 
2013-2024 

Spatial 

resolution (m) 
10 30 - 

Revisit time 

(days) 
2-3 16 - 

 
4.6.2 GIS-Based Erosion Risk Assessment 

Watershed analysis using Equation (11) identified 

critical erosion zones covering 43.2 km² (32% of 

catchment area) with LS factors exceeding 15. These 

high-risk areas contributed disproportionately to 

sediment yield, generating 65% of the total load 

from 32% of the area, consistent with SWAT model 

predictions. Land use change detection revealed  

12% decrease in forest cover (2013-2024), primarily 

in steep slope areas, explaining the observed 

acceleration in sedimentation rates from 98,000 

m³/year (1988-1998) to 195,000 m³/year (2021-

2024).Overlay analysis combining slope, land use, 

and soil erodibility layers identified 15 priority sub-

catchments for intervention. These areas, totaling 

3,200 hectares, aligned with the optimization results 

recommending watershed management covering 

15% of critical erosion areas. Accessibility analysis 

indicated that 78% of priority areas were within 2 km 

of existing roads, facilitating implementation of 

terracing and revegetation measures. The GIS 

database created provides a baseline for monitoring 

land use changes and evaluating intervention 

effectiveness. 

4.7 Uncertainty Analysis Results 

4.7.1 Prediction Uncertainty Quantification 

Monte Carlo simulation with 1,000 iterations 

revealed asymmetric uncertainty distributions for 

key predictions. Annual sediment load projections 

showed 90% confidence intervals of [102,000-

158,000] tons/year for current conditions, widening 

to [125,000-219,000] tons/year under the SSP5-8.5 

2080 scenario. The coefficient of variation increased 

from 18% for historical simulations to 28% for 

future projections, reflecting compounding 

uncertainties in climate scenarios and sediment 

response.Capacity loss predictions demonstrated 

lower relative uncertainty, with 90% CI of [9.2-

10.8]% for the current assessment based on 

bathymetric surveys. Projected capacity loss by 2050 

ranged from 18% to 27% (90% CI) under integrated 

management, compared to 32% to 45% under the 

business-as-usual scenario. Economic analysis 

showed NPV uncertainty of ±22% for watershed 

management and ±35% for hydraulic flushing, with 

the integrated portfolio reducing overall uncertainty 

to ±18% through diversification benefits. 

4.7.2 Sensitivity Analysis and Model Robustness 

Global sensitivity analysis using Sobol indices 

revealed discharge as the dominant uncertainty 

source, contributing 42% of output variance (first-

order index S₁  = 0.42, total-order index ST = 0.58). 

Precipitation uncertainty contributed 18% (S₁  = 

0.18, ST = 0.31), while model structural uncertainty 

accounted for 25% of total variance. Interaction 

effects between discharge and antecedent conditions 

explained an additional 15% of variance, 

highlighting the importance of capturing 

hydrological state variables.Cross-validation 

demonstrated consistent model performance across 

temporal folds, with NSE ranging from 0.79 to 0.85 

and RMSE from 142 to 178 kg/s. The ensemble 

machine learning model maintained R² > 0.92 for all 

validation folds, confirming robustness to data 

partitioning. Prediction interval coverage proved 

reliable, with 89% of 2024 observations falling 

within 90% bounds and 96% within 95% bounds, 

closely matching theoretical expectations and 

validating the uncertainty quantification framework, 

as summarized in Table 10, which presents a 

summary of uncertainty analysis for key model 

predictions. 
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Table 10. Uncertainty analysis summary for key model predictions. 

Parameter 
Mean 

Prediction 
90% CI Lower 90% CI Upper CV (%) Primary Uncertainty Source 

Current sediment 

load (ton/year) 
130,000 102,000 158,000 18 Discharge variability 

2050 sediment 

load - SSP2-4.5 

(ton/year) 

156,000 125,000 187,000 20 Climate scenario 

2050 sediment 

load - SSP5-8.5 

(ton/year) 

172,000 134,000 219,000 25 Climate + discharge 

Current capacity 

loss (%) 
10.0 9.2 10.8 4 Bathymetric measurement 

NPV watershed 

management 

($M) 

16.1 12.5 19.7 22 Cost variability 

NPV integrated 

strategy ($M) 
32.5 26.7 38.3 18 Portfolio diversification 

5. Discussion 
5.1 Implications for Reservoir Management 

The thorough examination of the sedimentation 

issues at Dohuk Dam provides important 

information for improving reservoir management 

techniques in semi-arid settings. Even while the 10% 

capacity loss over 36 years that has been observed is 

alarming, it is still less than the regional averages for 

similar facilities, indicating that early actions may be 

able to stop the deterioration from getting worse. In 

line with effective methods shown at China's Yellow 

River reservoirs, the springtime concentration of 

68% of the annual sediment load offers distinct 

operating opportunities for putting seasonal 

management ideas into practice [15].There are 

chances for focused removal activities that might 

restore significant storage capacity with little 

disturbance to consolidated deposits, as shown by 

the geographical distribution of sediment deposits, 

which are 45% concentrated in delta areas. The 

findings of international case studies, which showed 

that selective dredging of active deposition zones 

was more economical than whole reservoir cleaning, 

are consistent with this trend [16]. Hydraulic 

removal techniques are made easier by the 

preponderance of fine sediments (81.2% silt and 

clay), but disposal and advantageous use alternatives 

are complicated, necessitating careful evaluation of 

environmental implications.Combining machine 

learning techniques with mathematical modeling has 

shown synergistic effects that are beyond the 

capability of each technique alone. While machine 

learning models identified intricate temporal 

correlations and non-linear interactions not 

explicitly reflected in mathematical formulations, 

classical sediment transport equations offered 

physically-based predictions crucial for engineering 

design [27]. By reaching 96% prediction accuracy, 

the ensemble technique sets new standards for the 

accuracy of sediment forecasting, allowing for 

proactive management responses to shifting 

conditions.The economic analysis offers strong 

support for implementing integrated management 

practices right away. While the integrated portfolio's 

IRR of 18.5% compares favorably with other water 

resource investments, the demonstrated benefit-cost 

ratio of 7:1 for watershed management interventions 

significantly surpasses traditional infrastructure 

investment thresholds. Finding a Pareto-optimal 

solution that balances operational, environmental, 

and economic goals gives decision-makers a 

rigorously scientific rationale for allocating 

resources. 

5.2 Technological Innovation and 

Implementation 

The efficient use of Sentinel-2 images for ongoing 

turbidity monitoring shows promise for affordable 

surveillance systems in underdeveloped areas. 

Barriers to enhanced monitoring have been reduced 

with the availability of free images and processing 

power via cloud platforms [38]. The practical 

feasibility for regular management applications is 

confirmed by the obtained correlation of R2 = 0.90 

between in-situ suspended sediment measurements 

and satellite-derived measures.The combination of 

GIS analysis and remote sensing provided valuable 

information on the watershed's primary sediment 

source regions. It was determined that a sizable 

section of the watershed was prone to erosion and 

was largely to blame for the overall sediment inflow. 

This geographical information aids in cost-

effectively directing management efforts toward the 

most important locations. The observed decrease in 

forest cover over the previous few decades seems to 

be related to higher rates of sedimentation, 
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highlighting the importance of vegetation cover and 

land management in sediment control. The frequent 

turbidity maps created from satellite imagery also 

showed that contemporary monitoring technologies 

may offer ongoing, useful assistance for reservoir 

management in Iraq.[42]Neural networks inspired 

by physics offer a potential avenue for enhancing 

model accuracy, particularly in data-poor regions. 

These methods can preserve physical consistency 

while taking use of contemporary data analysis 

capabilities by incorporating fundamental hydraulic 

notions into machine learning models [20]. Using 

existing available technology, Dohuk Dam might 

benefit from real-time optimization, as demonstrated 

by the claimed improvements in reservoir 

management at Switzerland's Solis Dam.With the 

majority of data coming within the anticipated 

confidence range, the uncertainty analysis showed 

that the model findings continue to fall within 

acceptable reliability boundaries. This lends 

credence to the model framework's application in 

decision-making. The need for improved 

hydrological monitoring is highlighted by the 

discovery that discharge is the primary source of 

total uncertainty. Further evidence that integrating 

many management alternatives is more successful 

than depending on individual interventions comes 

from the comparatively modest level of uncertainty 

in the economic evaluation of integrated methods. 

5.3 Regional Cooperation and Adaptation 

Strategies 

The sediment management needs for Dohuk Dam 

are significantly changed by the 50% decrease in 

inflows brought about by upstream dam 

development in Iran and Turkey [8]. Despite reduced 

absolute sediment quantities, decreased flows 

accelerate reservoir sedimentation by concentrating 

sediment loads and decreasing transport capacity. 

Frameworks for managing the Tigris-Euphrates 

basin do not yet include the regional collaboration 

procedures required by this transboundary character.  

Impacts of climate change are not limited by country 

borders; basin-scale adaptation planning is required 

because to the anticipated 30–40% decline in Tigris-

Euphrates flows over the next few decades [7]. 

Fundamental operational changes are necessary to 

transition from scattered to concentrated sediment 

delivery patterns, including increased ability to 

handle sporadic high-load incidents. Under high 

emission scenarios, the frequency of severe events is 

expected to grow from three to seven to nine per 

decade, necessitating infrastructure resilience above 

and above present design norms.Despite the fact that 

reservoirs in the Tigris-Euphrates basin face similar 

difficulties, regional cooperation mechanisms for 

sediment control are still lacking. Knowledge 

transmission and management strategy coordination 

might be facilitated by establishing technical 

exchange programs like to the sediment monitoring 

network established by the Mekong River 

Commission. By using integrated sediment 

management, the GAP Project dams in Turkey were 

able to achieve 500-year design lifespans, setting a 

precedent for long-term planning strategies in the 

region.  

Despite having comparable operating durations, 

Dohuk's sedimentation rate (0.144 MCM/year) is 

still far lower than Mosul Dam's (45.72 MCM/year), 

according to the comparison analysis with regional 

dams. Given the controllable scope of present issues, 

this disparity implies that focused efforts at Dohuk 

Dam might yield correspondingly larger benefits. 

The effectiveness of integrated management 

approaches at similar semi-arid reservoirs 

throughout the world gives assurance that suggested 

solutions are transferable. 

5.4 Implementation Challenges and 

Opportunities 

Although the suggested solutions' technical and 

financial viability are demonstrated, there are a 

number of real-world obstacles to their 

implementation. There is still a lack of institutional 

capacity for integrated watershed management, thus 

local water resource managers need to participate in 

capacity development initiatives. Catchment-wide 

initiatives need collaboration between several 

government departments, which creates 

administrative challenges that call for strong 

political will.  

Financial limitations are the first obstacles to 

execution; the ideal portfolio necessitates a capital 

commitment of $5.1 million. The phased 

implementation plan, however, shows that by year 

six, positive cash flows are achievable, and bridging 

money may be provided via global climate finance 

channels. Additional income streams might be 

created if the demonstrated ecosystem service 

benefits ($1.7 million NPV) are eligible for payment 

for ecosystem services programs.Technical know-

how for sophisticated monitoring systems and 

machine learning applications necessitates 

significant local capacity building or international 

collaborations. The successful deployment of 

comparable technologies in developing nations 

raises the possibility that South-South cooperation-

based technology transfer channels might hasten 

adoption. Cloud computing platforms and open-

source tools lower technical hurdles, allowing 

successful pilot projects to scale quickly.  

There are advantages and disadvantages to 
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community involvement in watershed management 

initiatives. Hundreds of landowners must participate 

in the identification of 3,200 hectares that need 

terracing and revegetation, which calls for efficient 

incentive systems and benefit-sharing agreements. 

Nonetheless, there is strong economic justification 

for farmer involvement due to the proven increases 

in agricultural output brought about by less 

sedimentation. 

6. Conclusions 

 
In conclusion, in order to optimize sediment 

management at Dohuk Dam, this study created an 

integrated framework that offers useful advice for 

maintaining reservoir performance in semi-arid 

environments.  Combining machine learning 

prediction, economic analysis, and mathematical 

modeling showed that coordinated measures might 

minimize sedimentation by up to 80% while 

preserving dependable irrigation and water supply.  

The need for adaptive management strategies is 

underscored by the 10% storage loss over 36 years 

(≈5.2 million m³) that was observed. Compared to 

single-method methods, integrated solutions 

performed significantly better, yielding positive 

economic returns and excellent benefit–cost ratios.  

Machine learning algorithms were able to predict 

sediment loads with 96% accuracy, while Sentinel-2 

turbidity mapping (R2 = 0.90) validated that 

continuous remote monitoring was feasible.  32% of 

the watershed generates 65% of the overall sediment 

influx, according to GIS data, allowing for spatially 

focused mitigation.  Uncertainty analysis confirmed 

the model's dependability, with 89% of predictions 

falling within 90% confidence intervals. The 

requirement for flexible operation is highlighted by 

the fact that projected climate changes—a 9% 

decrease in precipitation and a 2.1°C increase in 

temperature—are predicted to decrease mean 

sediment output while intensifying severe 

occurrences.  The suggested optimization 

framework successfully combines technological, 

hydrological, and economic aspects, exhibiting a 

replicable model for sustainable sediment 

management in areas with limited data and climate 

sensitivity. 
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