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Abstract:  
 

This research presents a comprehensive methodology for optimizing building 

performance in the context of visual and thermal comfort of a computer laboratory in 

higher educational buildings in hot dry climates, focuses on minimizing energy use 

intensity (EUI) and maximizing annual thermal comfort ratio and daylighting through 

maximizing useful daylighting illumination (UDI) and spatial daylighting Autonomy 

(sDA). This study conducts a parametric optimization approach of building envelope 

openings and materials to integrate multi-objective optimization (MOO), aiming to 

explore and find optimal solutions for improving the laboratory's overall performance. 

Throughout Rhino Grasshopper platform for simulation purpose. The methodology 

begins with the development of a parametric model of the computer laboratory, which 

allows for the manipulation of key design variables, including window size, Window 

wall ratio (WWR) orientation, shading devices, wall materials and properties, glazing 

types. These variables are used as design parameters   linked to performance metrics 

that capture the visual comfort (via daylighting analysis), thermal comfort (evaluating 

indoor temperature variations and HVAC loads), and EUI (calculated through energy 

simulation). The design space is explored using multi-objective optimization by Genetic 

algorithms NSGAII with Wallacie solver, which balance trade-offs between the 124 key 

design parameters to enhance five objective functions performance criteria. The results 

show that significant improvements can be achieved in the computer laboratory’s visual 

and thermal comfort, while simultaneously reducing energy use intensity by around 

2.35% maximizing (sDA) and (UDI) to 1.3%, maximizing annual thermal comfort ratio 

(ATCR) to 1.9%.  The optimized solutions exhibit a balance between natural and 

artificial lighting, effective thermal insulation, and strategic shading. In some cases, up 

to a 26% reduction in energy consumption (EUI) is observed, with notable 

improvements in both daylight quality and occupant thermal satisfaction. 

 

1. Introduction 
 

Building Performance Optimization (BPO) is a 

crucial approach in sustainable architecture, aimed 

at enhancing energy efficiency, occupant comfort, 

and environmental impact. It involves using 

simulation tools and optimization algorithms as 

genetic algorithms to evaluate design alternatives 

and improve key performance metrics such as 

energy use, thermal comfort, and lighting quality. 

Parametric design plays a vital role in this process, 

allowing designers to explore multiple design 

variables and their impact on building performance. 

Multi-objective optimization (MOO) methods are 

often employed to balance competing objectives, 

such as minimizing energy consumption while 

maximizing occupant comfort and daylighting, 

visual comfort. [1]. Many studies have been 

http://dergipark.org.tr/en/pub/ijcesen
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investigating (BPO) to enhance building 

performance through optimizing energy 

consumption, improving the daylighting 

performance, economic viability, to tackle local 

housing deficits improving sustainability issue, a 

study in Cyprus [2] used a mixed-method strategy 

that combines literature review, taxonomy 

classification of prefab systems, energy and 

daylight simulations (utilizing DIVA/Rhino), and 

comparative cost analysis, the study reveals a 

prototype that attains near-zero energy levels (53.7 

kWh/m²/year) with embedded solar systems the 

results emphasize the cost benefit of prefab 

construction (€292.45/m² compared to traditional 

€440.78/m²) and enhanced daylight performance 

through adaptive shading.Another study in Egypt, 

focuses on combining disassembly and circular 

adaptive façades to introduce hybrid reusable, 

biodegradable façade module utilizing local 

resources and smart controls (Arduino) to enhance 

energy efficiency and minimize waste with an 

emphasis on Egypt’s climate. Integrates 

computational simulations (Ladybug/Honeybee), 

empirical prototyping, and sensor-based automation 

to create adjustable shading conditions, diminishing 

glare (by as much as 50%) and thermal loads. 

tackling the absence of circular lifecycle strategies 

in adaptive façades [3]another research optimizes 

west-oriented façades in Vietnam to boost daylight 

efficiency while meeting LEED v4.1 standards, 

concentrating on balancing Spatial Daylight 

Autonomy (sDA) and Annual Sunlight Exposure 

(ASE). By employing the African Vulture 

Optimization Algorithm (AVOA) in conjunction 

with parametric modeling and ClimateStudio 

simulations, the approach attained 100% LEED 

compliance, surpassing random designs (6.7% 

compliance). Main discoveries emphasize that 

light-hued materials and clear glazing are ideal for 

achieving a balance between sDA and ASE. [4] a 

study examines how courtyard geometry—location, 

orientation, and aspect ratio—affects energy 

efficiency in residential structures in Al-Kharga 

City, in Egypt's arid and hot climate, the study 

reinstates classic courtyard techniques to lower 

energy usage. Through DesignBuilder simulations, 

9 courtyard configurations, 6 aspect ratios (ranging 

from 1:1 to 2.5:1), and two orientations (east-west 

and north-south) were evaluated. Significant gaps 

involve scarce research connecting courtyard 

shapes to energy measurements in Egypt and 

dependence on traditional designs lacking 

quantitative verification. Constraints include the 

lack of accessible real-world energy data and an 

emphasis on individual low-rise homes in a single 

city. Findings revealed that a southwestern 

courtyard with a 2.5:1 ratio (north-south direction) 

is ideal, attaining 18.73% energy savings and 

17.88% decrease in CO₂  emissions. The research 

promotes the inclusion of courtyards in 

contemporary designs while emphasizing the 

necessity for evaluations of vertical and economic 

scalability [5]another research focuses on 

optimizing building shape and window design to 

improve daylighting and thermal energy efficiency 

in three Egyptian cities (Cairo, Alexandria, Aswan) 

that exemplify different aspects of a hot-arid 

climate. it focuses on the oversight of intra-climate 

variations in current research and the dominance of 

inflexible building designs in Egypt that increase 

energy usage. Employing a multi-objective genetic 

algorithm (Octopus) combined with parametric 

modeling (Grasshopper) and simulations 

(Ladybug/Honeybee), the research optimizes 

various dynamic factors such as building 

expansion, orientation, WWR, skylights, and 

shading. Significant gaps consist of a restricted 

emphasis on sub-climate variations and an 

excessive focus on envelope retrofitting instead of 

form optimization in earlier Egyptian research. 

Constraints include static fixed parameters (e.g., 

ceiling height), in a study of optimizing building 

fenestration [6] to optimize an office building 

thermal energy and daylighting through dynamic 

parameters manipulation using Rhino 6 + 

Grasshopper Ladybug/Honeybee for EnergyPlus 

thermal simulations and Radiance daylighting 

analysis, and Octopus plugin implementing SPEA-

2 genetic algorithms for Pareto-front optimization, 

Achieved significant improvements over baseline 

designs - up to 36.14% EUI reduction and 15.15% 

UDI enhancement, with optimal solutions showing 

city-specific characteristics: skylights beneficial for 

UDI in Cairo (20%) vs. Alexandria/Aswan (10%), 

and shading devices essential for all EUI-optimal 

solutions.Another study investigates the isolated 

impact of diverse building forms on thermal energy 

performance in Cairo’s hot climate, addressing gaps 

in prior research that conflated form optimization 

with other parameters (e.g., WWR, HVAC). Four 

novel form families—polygon, pixels, letters, and 

round—are parametrically modeled by 

(Grasshopper/Rhino), simulated (Energy Plus), and 

optimized (genetic algorithm) to minimize energy 

use intensity (EUI). Results identify round forms as 

optimal (27.9% EUI reduction) but computationally 

intensive, prompting an ANN model (R²=0.798) to 

expedite predictions. Limitations include climate 

specificity, exclusion of envelope parameters (e.g., 

windows), and constrained optimization iterations. 

[7] Energy consumption in laboratory spaces is 

high compared to other similar case studies of a full 

building assessment in previous studies (217.1 

kWh/m2 by Hamida et al. The findings are slightly 
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higher those reported by [9] for university campus 

buildings in Australia across various classifications 

(academic, administration, library, research, 

teaching, etc.), Research buildings had the highest 

EUI at 379 kWh/m2. However, values of 800 

kWh/m2, 338 kWh/m2, 404.7 kWh/m2 and 270 

kWh/m2 are reported for lab spaces, Simulation labs 

require 36.79% more energy than other labs due to 

the prolonged use of computers [10]. 

2. Research Problem 

"The efficient utilization of laboratory space in 

university buildings presents a complex Mult i-

objective optimization challenge involving Energy 

Use Intensity (EUI), Annual Thermal Comfort 

Ratio (ATCR), Daylight Autonomy (DA), Useful 

Daylight Illuminance (UDI), and Spatial Daylight 

Autonomy (sDA). Despite advancements in 

building performance simulations and optimization 

techniques, there remains a significant gap in 

understanding how to simultaneously optimize 

these metrics to enhance both energy efficiency and 

indoor environmental quality in laboratory spaces. 

This study aims to develop a novel framework for 

the multi-objective optimization (MOO) of 

laboratory layouts and configurations that 

maximize EUI reduction, improve ATCR, achieve 

high levels of DA, UDI, and sDA." 

3.Objective 

The main objective of the research is to optimize 

the performance of the lab space at architectural 

engineering buildings using Wallacei optimization 

tool of Rhino. identifying a number of variables 

that improve the performance of energy, thermal 

comfort and daylighting comparing alternatives 

created during the optimization through different 

generations. 

5.Methodology 

Applying the experimental approach to propose a 

framework for integrating genetic algorithms with 

simulating the performance of buildings in order to 

narrow the scope for research in choosing optimal 

solutions from the set of solutions selected by the 

multi-objective performance optimization-MOO. 

This will help the decision-making process for 

designers and will be applied to the lab space of a 

university to achieve the objectives of improving 

energy efficiency and increasing the efficiency of 

the and visual Comfort performance of the thermal 

comfort as well. Figure.2 

6. Case study description 

The framework was applied to an existing building 

3 at Cairo university faculty of engineering building 

was built and used in 1989. Figure.3 as a case study 

to assess its applicability, capabilities, and 

limitations. The building Figure.4 consists of 7 

stories of which 4 stories are occupied by 

Department of Architectural Engineering (3rd to 

6th floors), and each one is 3.6 m high. architecture 

students in the building on 4 floors, including the 

third, fourth, fifth, and sixth, as well as an office 

section, a library, printing center, and a conference 

hall in the fifth floor, drawing rooms, and lecture 

halls distributed on all floors,The rest are used for 

different departments (2nd floor) is a computer ICT 

lab. This research focuses on the 2nd floor labs ICT 

Figure.5 where it has the highest energy measures 

and needs to have an optimized solutions for energy 

efficiency and visual and thermal comfort. Climate 

data were conducted using the ladybug standard 

Energy plus Weather data files (.EPW) of with 

climate data for the location of Giza, Egypt (Energy 

Plus weather file (EPW), Typical Meteorological 

Year – TMY).  the building located in Giza 

governorate 28.7666° N, 29.2321° E Figure.6. 

building geometry and systems were modelled in 

the Rhinoceros7 environment using Grasshopper, 

Ladybug 1.6.7.0, a Radiance 5.4-based plug-in for 

Grasshopper, was used to conduct grid-based 

comfort and daylighting analyses. energy 

calculations are provided by Honeybee which use 

the EnergyPlus23.1.0 engine and open studio 3.6.1, 

a genetic algorithm optimization solver is Wallacei 

from Jan to December 2023, the simulation 

performed on the laboratory zone at the second-

floor Figure.5 including all the surrounding 

spaces.The building envelope components (exterior 

walls, structural column fenestration, roof, ground 

floor) are shown in Figure.3 building facades are 

modularly designed, so taking a section in one of 

the facades can determine its components. 

laboratory room Figure.6 which is a 70m2 

rectangular room (7m×10m×3.6 m) with two large 

south facing windows (1.4m×2.8m). sill height 

90cm with total WWR 0.43 form total wall, 

structural columns with 1m length and 0.25m width 

with 0.75m outside as outer shade modularly 

distributed every 1.4m, the building orientation is 

15 degree to the north and also to the south. The 

wall on which windows are located, has been 

divided into three horizontal sections: a fixed part 

at the bottom; a dynamic part in the middle, all of 

the parameters in the model of the window and 

shades can be controlled parametrically to 

accommodate any change in the building geometry 

while searching for the optimum solutions. 

6.1 Building program 
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the laboratory is occupied 5 to 6 days per week, 

from 8:00am to 4:00pm. Higher education 

buildings are used about 200 days per year with 

relatively long periods of non-occupancy. The 

building program were set to most recent ASHREA 

29.1 2019 which is coordinated with the 

international energy conservation code. For the 

academic year 2023 at Cairo University's Faculty of 

Engineering, including the Architecture 

Department, the semester and holiday schedules 

followed the general academic calendar of the 

university about 19 holiday day. The Fall Semester 

began in late September 2023 and typically runs 

until January, followed by the Spring Semester, 

which generally starts in February and ends in June.  

6.2. Parametric Model Setup  

 

Among all parametric modeling programs 

Rhino/Grasshopper is the most extensively used 

platform for parametric optimization, Ladybug too 

provides the ability to conduct climate data to the 

model to peruse climate-based analysis, for 

calculating Energy use efficiency Energy plus is the 

simulation engine open studio for creating energy 

model, Radiance engine for the analysis of 

daylighting and comfort metrics. The research 

proposes a laboratory room unit with an area of 

about 70 m2 and a height of 3.6 m as a 

measurement model for applying the research 

methodology to enhance the performance of higher 

educational building with Multi Objectives 

Optimization (MOO) of visual, thermal comfort 

and energy efficiency using Wallacei plugin as 

genetic algorithm solver. Wallacei (which includes 

Wallacei Analytics and Wallacei X) is an 

evolutionary engine that allows users to run 

evolutionary simulations in Grasshopper 3D 

through utilizing highly detailed analytic tools, and 

make more informed decisions at all stages of the 

evolutionary simulations; including setting up the 

design problem, analyzing the outputted results and 

selecting the desired solution or solutions for the 

final output. Focuses on problem formulation, 

analysis of the outputted results, selection of the 

optimized solutions [8]. 

6.2.1 Performance Simulation 

6.2.1.1 Energy consumption  

The building was zoned into 4 main zones, 

laboratories was the highest energy consumer so it 

was isolated to conduct energy assessment the 

surrounding spaces classrooms, drawing halls, 

laboratories, and corridors, are calculated energy 

use intensity (EUI) is 273.346 kwh/m2 for the total 

zones as the cooling loads are 38027. 8 kwh, 

heating loads 7536.1 kwh, lighting loads 2758.3 

kwh, equipment loads 2047.2 kwh. energy 

simulation was conducted cooling loads are the 

highest energy consumer. Energy use intinsity 

breakdown shows that the cooling loads are the 

heighst between all air conditioned zones. In 

Figure(8) represents energy consumption per month 

it shows that the highst consumption are in summer 

season during summer courses due to solar gain and 

cooling loads and the lowest are in autumn and 

winter season , heat gains from Appliances and 

lighting are nearly the same throughout all 

semesters. 

6.2.2 Comfort Simulation 

According to the Adaptive Comfort Model [11], the 

acceptable indoor operative temperature can be 

determined from the mean monthly outdoor air 

temperature as expressed in the following equation 

(1) the annual operative temperature of the 

laboratory Figure (10), which includes the outside 

south wall, roof, and fenestrations. shows that the 

peak heat gain periods in summer are 21 June and 

August due to extreme hot temperatures highest 

indoor temperature of the year so comfort were 

calculated through it Figure (11) predicted mean 

vote PMV is slightly warm, and average zone 

operative temperature is 27c°. As a result, the 

power consumption of the air conditioning system 

increases significantly during these periods to 

achieve desired thermal comfort in the laboratory. 

Materials, custom Radiance materials were 

assigned to laboratory surfaces. As shown in Fig 

two different sets of adjacent walls were defined: 

one set as interior (adiabatic) walls and another set 

as exterior ones. 

𝑇0(𝑐𝑜𝑚𝑓)  =  0.31 𝑇𝑎(𝑜𝑢𝑡)  +  17.8          (1) 

Where, T0(comf) is the optimum comfort operative 

temperature in °C, and Ta(out) is the mean monthly 

outdoor air temperature in °C. Further, the 90% 

acceptability limits of indoor operative 

temperature can be calculated with [12]  

90% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡𝑠 =  𝑇𝑜(𝑐𝑜𝑚𝑓) ±
2.5 °𝐶.  (2) 

For the predicted mean vote (PMV) is used to 

measure the comfort into a conditioned space and 

adaptive comfort is used to analyze comfort in non-

conditioned spaces, the Annual thermal comfort 

ratio (ATCR) is 65.70% not meeting the comfort 

model as the average Operative temperature is a 

weighted average of the air temperature and the 

mean radiant temperature (MRT). It represents the 

combined effect of air temperature and the radiant 
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heat exchange between the human body and the 

surrounding surfaces [13]. And it is 34.8 C, 

measures at 21 Jun, the Time Not Meeting the 

Adaptive Comfort Models during Occupied Hours 

for ASHRAE55 90% Acceptability Limits, 

Laboratories 27°C, PMV for laboratory room 

6.2.3 Daylight Simulation 

Daylighting simulations were run over the period of 

one year, The internal loads and schedules were set 

according to the actual building the standardized 

values for the Higher education buildings category 

a minimum illuminance level of 500 lx on the work 

plane at a height of 80 cm above ground. Analysis 

grid of the Daylighting performance was simulated 

on one plane, resulting in a set of analysis points a 

grid of 0.5 m × 0.5 m at a working level height of 

0.8 m, with 210 sensor point at the grid. Daylight 

Availability (DA) metric is, 33.8% which is below 

the standard Figure (12), Useful Daylight 

Illuminance (UDI) is a used to assess the quality 

and quantity of natural daylight in a space where 

the lower limit is 100 LT >100 T >3000 UT figure 

(14) the Useful daylight illuminance is 89.3% for 

UDI between 500-3000, and 3.8% for UDI<100, 

and 7.2% for UDI>3000, While general lab lighting 

standards are around 500 lux, for daylight, the goal 

is a range that supports precision tasks. A useful 

range of 100-2000 lux is a common starting point. 

spatial daylight autonomy sDA percentage 31.5%, 

Aiming for Preferred Sufficiency of daylighting a 

target would be for at least 75% of the floor area to 

have an sDA300/50% of 75% or greater. Assesing 

metrics like sDA and UDI can go beyond simple 

illumination levels to evaluate the quality and 

consistency of daylight in a laboratory throughout 

the year. recommended by organizations like the 

IESNA, quantify the availability of sufficient and 

comfortable daylight over timeEnsuring visual 

comfort Glare autonomy was measured figure (13) 

So for a threshold of Daylight glare probability 

DGP > 0.45, a GA of 100% means that the 

probability of experiencing daylight glare at a given 

view never exceeds 45%. In this study it is 100% so 

the lab wont face problems with glare. 

6.3 Optimization 

Wallacei X employs the NSGA-II algorithm [14] as 

the primary evolutionary algorithm, and utilizes the 

K-means method as the clustering algorithm [10] 

The framework used NSGA-II as an optimizer to 

perform evolutionary Mult objective optimization 

simulations, is provided by Wallacei add-on for 

Grasshopper 3D Wallacei (including Wallacei 

Analytics and Wallacei X Components) is an 

Evolutionary multi-objective optimization engine 

that runs evolutionary simulations in Grasshopper 

3D. Produces multiple solutions decisions during 

the evolutionary simulation, assessing the results, 

applying selection strategies, and exporting the 

resulting genotypes by a set of components it can 

analyze the fitness values generated by each 

generation. five objectives set in the optimization 

were to minimize the Energy use intensity use 

(EUI) by decreasing the energy consumption using 

Energy Plus and Open studio. a Radiance model to 

maximize the amount of adaptive comfort by 

calculating annual operative temperature, by 

maximizing annual thermal comfort ratio (ATCR), 

also maximizing daylighting level in the zone 

measured as the daylight autonomy (DA). Useful 

Daylight illuminance (UDI) to ensure uniform 

distribution of daylight into the space the 

occupancy hours, Spatial daylight Autonomy (sDA) 

to meet the LEED V4 standards in this category of 

buildings. 

6.3.1 Description of the numerical model's 

objectives and settings 

The optimization procedure was conducted out 

utilizing the Multi objective optimization (MOO) 

Genetic algorithms apply evolutionary concepts to 

identify optimal solutions to a problem based on 

certain objectives. To simulate the problem, a 

parametric approach is required. Variable inputs, 

such as, shade depth and distribution, count of 

louvers, and tilt angle of vertical of the louvre-

blades, Window wall ratio, resistance of Exterior 

walls R-Wall, U-value for windows glass, windows 

height and sill (Table). The way the model is 

scripted, the vertical louvers move freely around 

the vertical axis z the table below describe the 

whole design parameters that set to optimize the 

lab. are utilized to adjust the model's measured 

outputs (EUI, ATCR, UDI, DA, sDA). The method 

evaluates output based on a fitness function to 

quantify solution performance. 

6.3.2 Design parameters 

This study taking into account several types of 

influential parameters affecting the optimization 

which are (WWR, shade depth, distance between 

shades, shade count, louver angle, U-value, R-

Wall) affects cooling, heating loads, and also EUI, 

ATCR, UDI, DA, sDA, as shown Table (3).  

genetic algorithm begins by creating a random 

population of solutions and then evaluating their 

fitness. Then a loop begins, with each iteration 

representing what is known as a generation. The 

loop consists of selecting the best-fit individuals 

from the population for reproduction, breeding new 

people, evaluating the fitness of the new offspring, 

and eventually replacing a portion of the population 
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with the fittest offspring. Breeding new people 

based on genetic operators such as crossover- and 

mutation rates, as well as crossover- and mutation 

probability, ensures that the genetic algorithm 

evaluates a wide range of solutions and discovers 

new alternatives. The number of solutions created 

is determined to maintain a balance between 

processing time and having a sufficient number of 

examples for the algorithm to find Pareto-optimal 

solutions. When these solutions are plotted, they 

form what is known as the Pareto front-in our 

instance, a 3-dimensional plot. All of the points on 

the Pareto front are non-dominated solutions, which 

means they reflect the optimal compromise 

(tradeoff) of performance between conflicting 

objectives. All other points developed during the 

optimization process are referred to as dominated 

solutions since at least one other solution 

consistently outperforms them. This stage involves 

many performance design characteristics to meet 

standards, including building envelope window to 

wall ratio (WWR), materials, and more. After 

creating parametric models, performance 

simulation evaluates performance for each criterion 

and passes decision-making to multi objective 

optimization stage. 

6.3.3 Design Objectives 

Design objective is shown in table (4), The 

framework.* can use objective functions to define 

design objectives, such as minimizing Energy use 

intensity, maximizing thermal comfort, or 

maximizing visual comfort. Performance 

optimization begins with converting or 

reconfiguring the design parameters to meet 

performance objectives. Evolutionary algorithms 

analyze the relationship between Design parameters 

and fitness values, generates design alternatives for 

improved performance, and identifies the Pareto 

front for trade-offs between objectives. After the 

optimization process, the solver component exports 

generated phenotypes (PHE), genomes (GE), and 

optimization parameters via export components. 

Furthermore, it enables the viewing of EMO 

simulation results in the form of objective space. 

Architects can analyze the performance of set 

objectives using charts such as fitness value (FVC), 

standard deviation (SDC), standard deviation 

trendline (SDTC), and mean fitness trendline 

(MFTC). 

7. Results 

Pareto front solutions in Figure (15) depicts the 

laboratory performance problem's 5th-dimensional 

                                                           
 

objective space, which includes five energy 

efficiency targets (EUI, ATCR, DA, UDI, and 

sDA) The X, Y, and Z axes indicate the objective 

functions, respectively. The Pareto Front 

component calculates the non-dominance value for 

any generation within the population and draws the 

pareto front for any given generation. Parallel 

coordinate plot (PCP) method was used to visualize 

and represent the objectives’ fitness values for all 

solutions over the entire population. (EUI) reached 

202.98 kwh/m2, (ATCR) reached the value of 

93.8%, (DA) reached 79.7, (UDI) reached 66%, 

and (sDA) reached 100% as shown in figure (16) it 

shows the optimum results of every objective 

function in all generations.each fitness objective is 

attributed a y-axis, in which the first objective is the 

left most y-axis, and the last objective is the right 

most y-axis. The polyline that connects the 

corresponding fitness values across the y-axes 

represents a solution. A colored form ranges from 

red to blue colors was used to indicate the first 

solution and the last solution respectively. The 

solver found 88 pareto front solutions for all 

generations the replicated solutions has been 

eliminated and below are the 10 solutions figure 

(17) that considered to be optimum solutions table 

(6)these solutions (chromosomes or genotypes) 

corresponding to Pareto front compared to baseline 

case study, managed to decrease (EUI) objectove 

and increase (ATRC), (DA), (UDI), (sDA) as 

shown in figure (17) 

4. Conclusions 

 
This research demonstrates the efficacy of abilities 

parametric multi-objective optimization in 

delivering high-performance building solutions, 

providing us with actionable insights for achieving 

energy-efficient and occupant-comfort-oriented 

design alternatives. This paper proposed 

methodology and workflow to optimize building 

performance by inducing optimum and near 

optimum solutions of the building envelope and 

inner walls which is highly adaptable and can be 

extended to other building typologies and 

performance criteria specially in existing buildings. 

Decreasing (EUI) by 26%, increasing (ATCR) by 

1.9%, increasing (DA) by 2.35%, increasing (UDI) 

by 1.3%, and increasing (sDA) 3.17%. which is a 

complex tradeoff.The case studies reviewed in this 

research demonstrate the potential for significant 

energy savings and enhancements in occupant 

comfort when MOO techniques are applied. As the 

demand for energy-efficient, occupant-friendly 

buildings continues to grow, MOO techniques will 

become increasingly valuable in helping designers 

navigate complex performance trade-offs. 
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Figure 1 Flowchart summary conducted from the literature to design the research methodology. 
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Figure 8. Energy consumption simulation through a year 

 

      

    

 

 

 

Figure 8.  Energy model created to conduct energy consumption and simulation 
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Figure 11. Daylight Autonomy through a year    Figure 12. Glare Autonomy through a year    

 

Figure 13. Useful daylight illumenance 

 

Table 1 Summary of base case energy, comfort, and daylighting metrics 

Metric Value unit 

EUI 273.35 Kwh/m2 

heating 7536.09 kwh 

cooling 38027.78 kwh 

interior lighting 2758.34 kwh 

electric equipment 2047.24 kwh 

ANNUAL THERMAL COMFORT RATIO (ATCR) 48.66 % 

DAYLIGHT AUTONOMY (DA) % 33.85 % 

UDI 100 - 3000 49.9 % 

UDI < 100 3.89 % 

UDI > 3000 7.22 % 

SDA 50% 31.5 % 

 

Table 2 Evolutionary Multi-Objective Optimization Algorithm Settings (NSGA-II) 

Population  

Generation Size 10 Solutions 

Generation Count 40 Generations 

Population Size = Generation Size x Generation Count 400 Solutions 

Algorithm Parameters  

Crossover Probability 0.9 

Mutation Probability 1/n (n= No of Genes) 

Crossover Distribution Index  20 

Mutation Distribution Index  20 

Random Seed  1 

Simulation Parameters  
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No. of Genes (Sliders)  9 Genes 

No. of Design Variables  (Slider Values) 178 

No of Objective Values  5 

Size of Search Space  2 x 109 

 
Table 3 Design parameters 

Variable attributes Number of values 

Shade depth 0.15, 0.2, 0.25, 0.3 4 

Distance between 

shades 
Increment from 0.1 to 1 10 

Shade count From 1 to 12  12 

Louver angle From -50 to 50 with n increment of 10 11 

WWR from 18% to 82% with increment of 4 64 

R-wall 
Values from ASHREA 2019 of external walls materials 

0.85, 0.9, 0.95, 1, 1.2, 1.4, 1.6 
7 

U-value glass 

Several types of glass obtained from ASHREA 2019 

0.81, 1.4, 1.5, 1.6, 2.6, 5.8 

Generic Low-e Glass, Generic Window Air Gap, Generic 

Window Argon Gap, LoE TINT 6MM, U 0.32 SHGC 

0.22 Simple Glazing, COATED POLY-55 

6 

Windows height 3.4, 3.2, 3, 2.8, 2.6 5 

Windows sill 0.5,1, 1.5, 2, 2.5 5 

Total design parameter  124 

 

Table 4 objective functions 
Objective functions Reason of choose   

Minimize Energy use intensity (EUI) 

energy per meter per year. It is calculated by dividing the total 

energy consumed by the building in one year by the total gross 

floor area of the building  

Maximize Adaptive comfort Annual 

thermal comfort ratio (ATCR) [16] 

By using the adaptive thermal comfort model, the periods of 

discomfort, and so the potential energy demand for active 

cooling, are not overestimated. 

Maximize visual comfort 

 Daylight Autonomy (DA) [17] 

it is signified as a percentage of annual daytime hours that a 

given point in a space is above a specified illuminance level 

Maximize Useful daylight Illuminance 

(UDI) [18] 

It is the annual time fraction that indoor horizontal daylight 

illuminance at a given test point reaches in a given domain. UDI 

contains lower and upper thresholds and an acceptable range as 

UDI u underlit, UDI overlit and UDI useful respectively. 

Maximize  

Spatial Daylight Autonomy (sDA) [19] 

sDA has become the most common due to its inclusion in LEED 

v4  

 

Table 5 Optimizing laboratory three stages modeling, simulation, and optimizing  

1- Parametric model 2- Performance Simulation 3- Optimization 

1- Geometry 2 -Energy simulation analysis 3-Design Parameters 

1-1 Room program  2-1 Energy model 3-1 Genes 

   
1-2 Windows and Shades 2-2 Energy balance 3-2 Objective functions 

 
  

1-3 Construction for Every 

Element of The Building Walls 

2-3 Laboratories are the highest cooling 

loads between all the Conditioned zones 

3-3 Optimizing by 

Wallacei X 2.7 
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1- Parametric model 2- Performance Simulation 3- Optimization 

Floors Roofs Ceilings  

 
 

 

 

1-4 Annual Loads Due To 

program using Energy Plus 

2-4 Comfort Simulation 3-4 Wallacei Analytics 

 

 

 

 

 

 
 

1-0 Weather files 2-5 Daylight Simulation 3-4 Wallacei Selection 

 

 
 

 

 

  

 
   Figure 14. Objective space pareto front solution 
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 Table 6 objective functions results 

Objective function Base case results Optimum objective results Variation ratio% 

EUI Kwh/m2 273.35  202.98 26  

ANNUAL THERMAL COMFORT RATIO (ATCR) 48.66 93.84 1.9 

DAYLIGHT AUTONOMY (DA) % 33.85 79.7 2.35  

UDI 100 - 3000 49.9 66.03 1.32  

SDA 50% 31.5 100 3.17 

 

Table 7 pareto front solutions genomes 

 
shade 

depth 

dist. Between 

shade 

shade 

count 

Louver 

Angle 

WW

R 

R-

Wall 

U value 

glass 

win 

height 

win 

sill 

(0,0) 0.15 0.2 6 30 0.62 1.2 1.5 3.4 0.75 

(0,4) 0.2 0.2 7 0 0.34 1.4 2.6 1.4 0.75 

(8,9) 0.2 0.2 12 0 0.34 1.6 5.8 2.6 0.75 

(9, 9) 0.15 0.2 4 10 0.42 1.2 2.6 2.6 0.75 

(10,0) 0.2 0.2 12 0 0.34 1.6 5.8 2.8 0.75 

(11,8) 0.2 0.2 5 0 0.34 1.4 0.81 2.8 0.75 

(17,7) 0.2 0.2 2 0 0.38 1.4 0.81 3.2 1.25 

(21,6) 0.2 0.7 12 0 0.34 1.4 5.8 2.8 0.75 

(26,6) 0.2 0.2 6 -10 0.34 1.6 5.8 3.2 0.75 

(35,9) 0.2 0.1 7 10 0.34 1.4 5.8 2.8 0.75 

 

 

Figure 15. Parallel coordinate plot for objective function 

 

Figure 16. The variance of objective functions and fitness values 
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Figure 17. A group of 10 pareto front solutions 
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