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The article discusses a shared-memory-based tooling framework that facilitates
firmware validation processes in enterprise-grade server environments. The framework
enables low-latency communication between test harnesses and simulation
environments, such as Wind River Simics, by overcoming the key weaknesses of
conventional simulator interfaces: command-line and socket-based communications.
.. The architecture uses a file that is memory-mapped and can be accessed by both the
Shared-Memory Communication, sjmylator and the client application, with powerful synchronisation, abstraction of the
Firmware Validation, command, and autonomous performance. Evaluation of the performance of IBM Power
Enterprise Server Simulation,  firmware validation workflows can be shown to achieve significant benefits in
Low-Latency Automation, execution time with respect to the traditional methodology, with direct applications to
Continuous Integration memory controller configuration, service processor execution, and power state
validation. The ability of the framework to be flexible to a wide variety of simulation
environments, such as QEMU and Gemb5/SystemC environments, demonstrates that it is
a more general method of minimising inter-process communication latency.
Combination with continuous integration/continuous delivery pipelines also increases
the usefulness of the framework to enterprise firmware validation, allowing full
automated testing and faster development cycles, and increasing system reliability of
mission-critical applications.

Keywords

enterprise-level servers are usually comprised of
thousands of discrete test operations performed
over dozens of simulated system configurations.
These test operations have to confirm proper
functionality under many power states, error
situations, and communication channels.

1. The Firmware Validation Challenge in
Contemporary Server Architectures

High-fidelity ~ simulation  environments have
revolutionized validation practices in business
computing systems, establishing new avenues for
early defect identification while at the same time

presenting sophisticated workflow problems. IBM
Power Systems leads the way in this industry-wide
transformation, with its development teams making
wide use of WR Simics across the development
cycle for early hardware bring-up, extensive error
injection scenarios, and shift-left validation
approaches.  This  simulation infrastructure
investment has paid enormous dividends in terms of
multiple aspects of the development process,
enabling teams to start software development and
validation far earlier than physical hardware is
available.The design complexity of server
architectures, with  their complex  power
management subsystems, multi-controller memory
hierarchies, and security features, calls for ever
more advanced simulation capabilities. Based on
analyses in the industry, the development cycles for

Simulation of full-system behavior, as laid out by
Jiming Sun et al., allows developers to build
extensive test environments that simulate whole
computer systems with processors, memory
systems, and 1/O devices [1]. The ability is very
useful in firmware development when hardware-
software interaction needs to be carefully
tested.Substantial efficiency hurdles continue to
exist in the integration between simulation
platforms and automated test frameworks. When
communication with the simulator is limited to
command-line interfaces (CLI) or socket-based
communication channels, automation efforts are
subject to huge latency and orchestration
constraints. Conventional socket-based methods
create quantifiable overhead for every transaction,
which piles up exponentially during lengthy
regression testing. For enterprise server firmware


http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

verification suites executing thousands of discrete
test operations, this means wasting huge amounts of
time simply on communication overhead instead of
valid validation work. The limitations of these
conventional interfaces have been captured in
simulation platform literature, where
responsiveness and integrative capabilities are core
difficulties with large-scale deployment [2].The
article presents a new tooling framework that takes
advantage of shared memory architecture to support
low-latency inter-process communication between
the test harness and the simulation engine. In
allowing autonomous execution of firmware
procedures, the framework supports validation
steps to execute without operator intervention,
decreasing overall turnaround time significantly in
controlled benchmark tests. The method extends
proven principles of operating system design where
shared memory offers a high-bandwidth, low-
latency communication path among concurrent
processes.The value of such efficiency only
becomes obviously clear when viewed within the
context of contemporary development cycles.
Firmware groups that are aiming at enterprise
server platforms generally run full regression suites
several times during a development sprint, with
each run possibly taking hours of computer
resources. A significant decrease in execution time
translates directly into increased test coverage
within the same time frames or faster delivery
timelines, satisfying the essential time-to-market
requirements of system developers. As simulation
technology advances, as outlined in the analysis of
full-system simulation methods by Tang, efficient
integration mechanisms become increasingly key to
sustaining productivity in complex development
environments [1].

2. Constraints of Standard Simulator
Interface Methods

Standard simulator interaction methods have
notable performance limitations that make

automation and scaling of firmware validation a
slow process. Standard methods tend to fall under
two leading types, each with different operating
tendencies and limitations when used in large
enterprise  testing  environments.Command-line
interface (CLI) based interactions are the most
basic method, where engineers enter commands
using a text console output from the simulation
environment. This method was first used in early
simulation platform development, where interactive
debugging and manual execution were the main
applications. While providing simplicity and
explicit control, CLI-driven workflows necessarily
bring in a sequential model of execution, needing
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constant human monitoring or scripted command
sequences run linearly. According to research by
Boucif Amar Bensaber and Luca Foschini, human-
initiated CLI interactions bring in variable timing
patterns that undermine reproducibility, with
intervals of command input varying from hundreds
of milliseconds to several seconds between
activities [3]. More importantly, when made
automatic through script execution, these interfaces
continue to execute instructions sequentially,
constraining throughput and causing execution
bottlenecks in extensive regression testing.Socket-
based and Remote Procedure Call (RPC)
communication modes represented the next step in
simulator control, allowing a distributed test
architecture and increased automation capability.
These schemes create network communication
paths between the simulator and outside test
harness programs, allowing remote execution and
observation. But this communication model brings
in several sources of overhead that heavily
influence performance at scale. Each transaction
involves socket initialization, context switching
between kernel and user space, protocol
serialization, and data marshaling/unmarshaling.
Wei-Wei Fan et al.,, study of communication
patterns within distributed simulation environments
proved that socket-based transactions have both
fixed costs per connection as well as variable costs
proportional to data size [4]. These overheads
appear as quantifiable latency per each simulator
instruction, which snowballs exponentially during
regression test runs with thousands of sequential
operations.The collective effect of these traditional
interfaces is especially troublesome when running
thorough validation suites for enterprise server
firmware. Test sequences for memory training,
power state transitions, error injection, and
recovery procedures sometimes take thousands of
individual simulator operations. Under socket-
based control, every operation involves
communication overhead that may be larger than
the actual execution time of the simulated operation
itself. Moreover, CLI and socket methods both
usually involve polling or callback mechanisms for
determining  completion  status, adding to
communication volume and system load.Shared
memory architectures offer a distinct paradigm of
simulator interaction based on the creation of a
direct communication channel common to the client
test application and simulator processes. This
model avoids context switching from user to kernel
space, eliminates serialization overheads, and offers
near-instantaneous signaling support.
Implementation of shared memory communication
must pay special attention to synchronization
primitives, with mutex locks, semaphores, or lock-
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free solutions guaranteeing data consistency
between the concurrent processes [3]. Modern
operating systems have optimized primitives for
shared memory management, such as memory-
mapped files and System V IPC facilities, which
provide well-established mechanisms for building
these communication channels.When efficiently
used, shared memory communication has the
potential to scale per-operation latency by orders of
magnitude over socket-based implementations. This
performance gap becomes more important as
verification complexity increases and test suite run
time becomes a vital bottleneck in development
cycles. According to Boucif Amar Bensaber and
Luca Foschini, simulation environments with
performance-critical demands increasingly call for
customized communication mechanisms  that
preserve system integrity while keeping overhead
low, especially for use cases that include real-time
feedback loops and automated runs [3].

3. Shared-Memory Communication Model
Design Principles

The design basis of the shared-memory paradigm
draws upon tried-and-tested systems programming
paradigms specifically designed to accommodate
the high-performance requirements of firmware
simulation environments. This design, besides
addressing the more fundamental constraints of
conventional interfaces as discussed in section 2,
creates a one-stop system that, as much as possible,
improves the performance of its execution as well
as maintains integrity in its functioning.The core of
the architecture of the framework is a shared
memory buffer, which is a memory-mapped file.
This construct uses operating system resources to
map physical pages of memory into the virtual
address space of both client and simulator
applications at the same time. In contrast to
conventional inter-process communication
channels, this method does away with intermediary
buffering, protocol overheads, and data copying
operations. The design employs a well-structured
memory layout with separate areas for response
data, command queues, and status. Memory
allocation policies favor cache-line alignment to
achieve good performance on contemporary CPU
architectures. As pointed out by Maurice Herlihy &
Nir Shavit in the investigation of concurrent data
structures, being mindful of the memory layout can
have a considerable effect on the efficiency of
shared memory operations in  multi-process
scenarios [5].Strong synchronization mechanisms
constitute the second essential design component,
avoiding data corruption without introducing
significant performance penalties. The design
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utilizes a hybrid strategy with atomic operations for
status flags and fine-grained mutex locks for
intricate data structures. This approach leverages
proven  concurrent  programming  patterns,
minimizing contention while maintaining data
consistency. Benchmarking proved that
synchronized optimization lowered contention-
related latency by 94% over naive locking methods
under  high-frequency command  execution.
Memory barriers and compiler fences are used to
maintain processor core consistency in the
synchronization layer, solving the memory ordering
issues described in recent concurrent systems
literature [5].Command abstraction is the third
architectural element, offering a formalized
interface that encapsulates firmware operations
within  discrete, self-contained units. Every
command includes operation codes, parameters,
target addresses, and completion conditions
encoded in a standard format. This abstraction level
allows sophisticated operations (such as register
read/write sequences or memory initialization
routines) to be defined as atomic transactions from
the point of view of the client program. The
command format includes version information and
parameter checking, providing compatibility
between simulator versions and avoiding typical
failure modes. This technique is aligned with
enterprise system architecture concepts outlined by
Rahul Goel, such that abstraction boundaries allow
scalability in intricate system interaction [6].The
autonomous  execution  feature  forms the
culmination of the design aspect, which allows test
cases to run without human interaction. This feature
complements the earlier three principles, thus
forming a programming model in which client
programs can build full test sequences that run
synchronously with the simulator. State machines
internal to the command capture progress and
handle error states with configurable timeout and
retry that provide fault-resilient operation. The
client library utilizes advanced capabilities such as
conditional execution paths, logging, and extensible
reporting mechanisms to support integration into
larger validation frameworks.The deployment was
verified with IBM Power10 and Powerll firmware
processes,  particularly  memory  controller
initialization, DIMM training processes, and system
boot sequences. These validation scenarios are key
paths in enterprise server firmware that
conventionally take a long time to test and verify
manually.

4. Empirical Results from Enterprise-Class
Server Validation
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Overall performance analysis of the shared-memory
framework was performed using IBM Power
production-grade firmware validation test flows,
creating significant empirical evidence of efficiency
gains in a variety of test scenarios. The framework
was tested extensively within WR  Simics
environments set up to simulate entire enterprise
server systems, with measurements taken under
controlled conditions to guarantee reproducibility
and  statistical  validity.Primary  validation
concentrated on three essential firmware areas,
which usually pose major bottlenecks in
conventional  testing  approaches.  Memory
subsystem validation, such as intricate DIMM
training cycles and controller setup processes,
showed the most spectacular performance
enhancements. These processes entail a large
amount of register manipulation with stringent
timing interdependencies, involving hundreds of
sequential simulator interactions. Service processor
initialization and hostboot execution sequences
were also tested, recording the performance of the
framework on system initialization paths crossing
multiple firmware components. Power state
transition validation was also performed, testing
whether the framework is capable of sustaining
synchronization in the course of intricate state
transitions affecting multiple subsystems at
once.Performance metrics were recorded with high-
resolution timing equipment embedded directly into
both the framework and baseline socket
implementation, with statistical collection across
multiple test iterations to provide measurement
reliability. For automation based on sockets,
command latency was 2.47 ms on average per
operation with a standard deviation of 0.32 ms for
all test cases. In contrast, the shared-memory
implementation had average latencies of 237 ps per
command with much less variability (standard
deviation of 28 pus). This is a 10.4x raw
communication improvement, which translates
proportionally to reductions in total test execution
time.The performance gap was most evident in long
regression suites. A typical memory validation
sequence consisting of 4,800 unique operations
took 11.8 seconds with the shared-memory
implementation compared to 127.3 seconds via
socket-based communication. The same trends
were observed in all areas of testing, with gains
proportionate to test size. When applied to full
system validation suites that include all firmware
areas, execution time savings turned sequential
processes that took hours into minutes.In addition
to raw performance gains, the architecture also
demonstrated other operational advantages, such as
improved test determinism and reduced resource
usage. Command execution time had 94% less
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variance than in socket-based solutions, resulting in
better test reproducibility and easier failure
analysis. System monitoring of resources revealed a
68% decrease in CPU usage during test running, in
line with the removal of context switching and
kernel mode transitions involved with socket
communication. Communication overhead tends to
dominate system resource utilization in large
validation environments, particularly in virtualized
systems where simulation fidelity is critical. Recent
research in virtualization systems has demonstrated
that  inter-process  communication  patterns
significantly impact both performance and
reliability metrics in complex validation scenarios
[7]. Analysis of fault injection techniques further
reinforces the importance of  minimizing
communication latency when validating system
behavior under stress conditions, especially in
enterprise-grade server environments.These
empirical findings are consistent with theoretical
performance models of inter-process
communication mechanisms reported by Abhay B.
Rathod, who laid out analytical frameworks for
communication efficiency prediction in memory-
bound programs [8]. The observed performance
benefits show that shared-memory solutions can
efficiently  overcome  the  communication
bottlenecks characteristic of conventional simulator
interfaces.

5. Extending the Framework to Varied
Simulation Ecosystems

Although the shared-memory model was first
developed and tested within WR  Simics
environments, its architectural foundations form a
platform-independent paradigm for simulation
control that can be ported across a wide range of
simulation frameworks. Initial experiments show
significant performance improvement opportunities
in several simulation platforms presently dependent
on typical communication interfaces.QEMU
virtualization is an especially interesting application
area. Existing QEMU designs employ monitor
sockets for external control and introspection,
which incur the same kind of latency seen in legacy
Simics interfaces. Shared-memory communication
channels can be integrated to supplant these socket
interactions, allowing for memory-based direct
communication between the hypervisor and the
outside world of test tools. Prototyping work has
shown the feasibility of this strategy through the
alteration of the monitor subsystem within QEMU
to identify shared regions of memory for command
receipt and state reporting. Performance estimates
using observed socket overhead in typical QEMU
instances predict possible latency decreases of 85-
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92% for typical virtual machine inspection and
control operations. This is consistent with results
from virtualization optimization studies, which
point out 1/O communication as a major
performance bottleneck in hypervisor control paths
[9]. The Gem5 and SystemC simulation domains are
other candidates for framework adoption, especially
in co-simulation scenarios where these platforms
have to synchronize with external test harnesses.
Both domains use socket-based or file-based
communication for external control, which provides
the same bottlenecks seen in Simics. Shared-
memory interface implementation would involve
modifying the framework's  synchronization
mechanisms to support the special execution
models of such environments, but would have
fundamental communication principles that can still
be applied. Architectural adjustments would be
mostly implemented in the command abstraction
layer to model simulation-specific operation, but
keeping the underlying shared memory transport
intact. Most  importantly,  hybrid  simulation
environments that integrate several simulator
technologies may use shared memory as an

integration communication framework. Many
modern  environments for validation use
heterogeneous simulation models, where

specialized system components are managed by
different simulators. Shared-memory
communication across these environments would
provide a common interface framework for
consistent, high-performance interfaces
independent of the base simulation technology.
This design follows layered architecture patterns
that are wusually used for complex systems
integration, where standardizing interfaces allows
components to be integrated [10].The extensibility
of the framework comes from its inherent design as
a general approach to minimizing inter-process
communication latency and not as a simulator-
specific approach. In addressing communication
bottlenecks pervasive across simulation
environments, it provides widely applicable
performance gains across the simulation landscape.

6. Technical Trade-offs and Engineering
Considerations

Implementation of shared-memory framework
structures brings both compelling benefits and non-
trivial engineering challenges that have to be
reasonably traded when planning architectures. The
framework development decisions immediately
affect not just the performance attributes, but also
maintenance, reliability, and deployment simplicity.
The knowledge of such trade-offs allows
engineering teams to rightly utilize shared-memory
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techniques to right validation use cases.The main
benefit of the shared-memory architecture is still
the spectacular reduction in communication latency
resulting from protocol overhead and context
switch elimination. The performance gain is
linearly scalable to test complexity, producing ever
more substantial benefits as validation suites get
larger. The autonomous execution ability made
possible by this performance gain converts what are
otherwise manual processes into automated
workflows with significantly expanded test
coverage while minimizing human resource needs.
A study by Taiwo et al. illustrates that
communication overhead usually takes 40-60% of
overall execution time in simulation-based
validation, rendering such optimization of critical
importance [11]. The extensibility of the framework
to various simulation environments also allows
organizations to have a unified methodology for
heterogeneous toolchains, enabling easy
maintenance  and  knowledge  transfer.The
advantages do come with some engineering
expenses that need to be acknowledged and
managed. The need for synchronized actions
between multiple processes adds depth of
complexity and race condition potential.
Implementations require thorough knowledge of
memory management and concurrent programming
patterns to guarantee deterministic behavior.
Integration with current simulator codebases
necessitates  thoughtful  alteration of core
communication paths, where risk of simulator
instability exists if not managed efficiently. As
Protit et al. note in their discussion of shared
memory systems, the shared-memory programming
complexity grows non-linearly with the number of
components to interact, making it difficult for
systems involving numerous concurrent processes
[12]. Most notably, debugging shared-memory
interfaces is much more involved than using socket-
based interfaces, since monitoring communication
state necessitates specialized instrumentation rather
than typical network monitoring tools.In spite of
these difficulties, the benefits in operations always
outweigh the engineering complexity in enterprise
firmware validation environments. The overall
beneficial effect on efficiency of validation is
especially worthwhile for organizations that are
creating mission-critical firmware where total
testing is crucial. In exchange for increased upfront
implementation complexity, organizations achieve
significant long-term efficiency gains in their
validation processes. Thoughtful architectural
design, strong synchronization primitives, and
thorough logging mechanisms can successfully
counter the key issues without sacrificing the
benefits of performance. Leverage of well-known
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shared-memory design paradigms and specific
instrumentation  tools further decreases the
engineering overhead of implementation and
maintenance.

7. Continuous Integration Applications and
Future Research Directions

The shared-memory-based tooling framework for
WR  Simics redefines firmware validation
paradigms in two ways: Performance improvement
and automation facilitation. With performance
improvements of 10x over conventional socket-
based approaches, the framework lowers execution
times for advanced validation sequences by many
orders of magnitude. This gain in efficiency is
directly translated into tangible advantages for
development organizations through feedback loops
reduction and increased test coverage within
constrained development cycles.Adoption of the
framework in current continuous
integration/continuous delivery (CI/CD) pipelines
is one very promising use case with widespread
implications on firmware quality and development
speed. Deployment of Jenkins-based orchestration
layers on top of the shared-memory framework
forms an end-to-end automation system capable of
automating sophisticated validation workflows
across emulated server environments independently
of human involvement. This ability allows
organizations to implement genuine continuous
validation practices, in which every code change
initiates automatic, extensive regression testing
against emulated hardware platforms. As recorded
in industry best practices for continuous integration,
organizations using automated validation for
firmware realize drastically fewer post-release
defects than with conventional milestone-based
testing practices [13].Practical deployments of
CI/CD integration take various architectural forms.

Pipeline-run execution models use Jenkins or
equivalent orchestration tools to drive test
execution across simulation farms, with the shared-
memory  framework delivering the high-
performance communication layer between test
harnesses  and simulators. Configuration
management systems store simulator environments
and test scenarios as code, allowing reproducible
test runs and environment portability. Results
aggregation platforms gather performance data and
validation results, delivering centralized insight into
validation status and trends.A few promising
avenues for future research are apparent from the
existing implementation. Investigation of lock-free
synchronization methods may be able to further
lower communication overhead, perhaps with
further performance benefits for particular
workloads. Integration of adaptive timeout and
retry strategies via machine learning models offers
possibilities for enhancing robustness in high-scale
deployment scenarios. Integration with novel
virtualized hardware platforms can further the
applicability of the framework outside of the purely
simulated environment into hybrid validation
applications integrating simulated and real-world
elements. According to Yehui Shi et al. in
integrated simulation framework research, hybrid
methods integrating simulation and hardware-in-
loop testing are an emerging area in enterprise
firmware validation [14].In enterprise-level servers
where reliability expectations are extremely high,
the ability of the framework to facilitate thorough
regression testing directly benefits system stability
and lowers operational risk. By allowing
performance levels to run through validation sets
within standard development processes, the
framework allows organizations to adopt genuine
shift-left testing practices, finding potential
problems earlier in the development process when
it is much cheaper to repair.

Table 1: Latency Comparison Across Simulator Interface Methods [3, 4]
Communication Context Serialization Scalab|l|ty for Imph_ementat
Interface Type o Regression ion
Latency Switching Overhead ; .
Testing Complexity
CLI-based High (100ms-several Yes Yes Poor Low
seconds)
Socket/RPC 'r\gﬁgél;m (milliseconds Yes Yes Moderate Medium
Shared Low (microseconds No No Excellent High
Memory range)
Table 2: Architectural Components of Shared-Memory Framework [5, 6]
Implementation . Design
Component Purpose Approach Performance Benefit Consideration
Shared Memory Direct Memorv-maned file Eliminates Cache-line
Buffer communication y-mapp intermediary alignment
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channel buffering
5 — -
Synchronization Prevent data Hybrid approach (atomic 94% ret_juctlon in Memory parrlers
. - . contention-related and compiler
Mechanisms corruption operations + mutex locks)
delays fences
Structure Standard format with . Versioning and
Command . ; Enables atomic
. firmware operation codes and - parameter
Abstraction ; transactions N
operations parameters validation
Autonomous Enable State machines with Removes_ the human Conditional
. . . : intervention .
Execution automated testing | configurable timeouts . execution paths
requirement

Table 3: Performance Comparison: Shared-Memory vs. Socket-Based Communication [7, 8]

Communication Command Latency Memory Test CPU Usage
Type (ns) Latency StdDev (ps) Duration (s) (%)
Socket-Based 2,470 320 127.3 100
Shared-Memory 237 28 11.8 32

Table 4: Cross-Platform Applicability of Shared-Memory Communication Framework [9, 10]

. . Shared Memory Projected
Simulation Current Interface f | K .
Platform Method Performance Bottlenec Integration Laten(_:y
Approach Reduction
WR Simics Socket/CLI Command transmission Direct implementation 10.4x
overhead (measured)
QEMU Monitor sockets Hypervisor control path Mon_lt_o r s_ubsystem 85-92%
modification
Gems/SystemC Socket/File-based External _conFroI Comma}nd abstraction S!m!lar to
synchronization adaptation Simics
Hybrid Lo Cross-simulator Unified Depgn_dent on
. Multiple interfaces - I specific
Environments communication communication layer : .
integration

4. Conclusions

The shared-memory tooling implementation is an
important breakthrough in enterprise server-based
simulation-based  firmware  validation.  The
framework provides significant performance gains
by radically redefining the communication
approach used by test harnesses with simulation
platforms, which change the aspects of validation
capability in a variety of dimensions. The radical
cut in the communication latency can allow more
test coverage, reduce the development cycle,
enhance test determinism, and decrease the use of
resources. In addition to increased performance, the
combination of the framework with continuous
integration pipelines provides a platform of actual
shift-left validation, in which full testing is a part of
the daily development processes, not a phase. This
feature is especially useful in larger server-based
environments of the enterprise, whereby the
reliability of the systems has a direct effect on the
business. Although shared-memory communication
indeed adds complexity, the engineering cost is
always superseded by operating advantages,
particularly to organizations that need to create
mission-critical firmware. With the ongoing
development of simulation technology, this method
of high-performance simulator control is a
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promising direction of future research in the topics
of lock-free synchronization, adaptive retry, and
hybrid validation that uses both simulated and real
components. The principles of the platform-
agnostic design of the framework make the
framework relevant to the greater simulation
ecosystem, which may become a new norm of
simulation-based engineering practices.
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