

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7990-7997
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Low-Latency Communication Framework for Enterprise Server Simulation

Vijay Francis Gregary Lobo*

Independent Researcher, USA
* Corresponding Author Email: vijayfglobo@gmail.com- ORCID: 0000-0002-5207-7850

Article Info:

DOI: 10.22399/ijcesen.4175

Received : 08 September 2025

Accepted : 21 October 2025

Keywords

Shared-Memory Communication,

Firmware Validation,

Enterprise Server Simulation,

Low-Latency Automation,

Continuous Integration

Abstract:

The article discusses a shared-memory-based tooling framework that facilitates

firmware validation processes in enterprise-grade server environments. The framework

enables low-latency communication between test harnesses and simulation

environments, such as Wind River Simics, by overcoming the key weaknesses of

conventional simulator interfaces: command-line and socket-based communications.

The architecture uses a file that is memory-mapped and can be accessed by both the

simulator and the client application, with powerful synchronisation, abstraction of the

command, and autonomous performance. Evaluation of the performance of IBM Power

firmware validation workflows can be shown to achieve significant benefits in

execution time with respect to the traditional methodology, with direct applications to

memory controller configuration, service processor execution, and power state

validation. The ability of the framework to be flexible to a wide variety of simulation

environments, such as QEMU and Gem5/SystemC environments, demonstrates that it is

a more general method of minimising inter-process communication latency.

Combination with continuous integration/continuous delivery pipelines also increases

the usefulness of the framework to enterprise firmware validation, allowing full

automated testing and faster development cycles, and increasing system reliability of

mission-critical applications.

1. The Firmware Validation Challenge in

Contemporary Server Architectures
High-fidelity simulation environments have

revolutionized validation practices in business

computing systems, establishing new avenues for

early defect identification while at the same time

presenting sophisticated workflow problems. IBM

Power Systems leads the way in this industry-wide

transformation, with its development teams making

wide use of WR Simics across the development

cycle for early hardware bring-up, extensive error

injection scenarios, and shift-left validation

approaches. This simulation infrastructure

investment has paid enormous dividends in terms of

multiple aspects of the development process,

enabling teams to start software development and

validation far earlier than physical hardware is

available.The design complexity of server

architectures, with their complex power

management subsystems, multi-controller memory

hierarchies, and security features, calls for ever

more advanced simulation capabilities. Based on

analyses in the industry, the development cycles for

enterprise-level servers are usually comprised of

thousands of discrete test operations performed

over dozens of simulated system configurations.

These test operations have to confirm proper

functionality under many power states, error

situations, and communication channels.

Simulation of full-system behavior, as laid out by

Jiming Sun et al., allows developers to build

extensive test environments that simulate whole

computer systems with processors, memory

systems, and I/O devices [1]. The ability is very

useful in firmware development when hardware-

software interaction needs to be carefully

tested.Substantial efficiency hurdles continue to

exist in the integration between simulation

platforms and automated test frameworks. When

communication with the simulator is limited to

command-line interfaces (CLI) or socket-based

communication channels, automation efforts are

subject to huge latency and orchestration

constraints. Conventional socket-based methods

create quantifiable overhead for every transaction,

which piles up exponentially during lengthy

regression testing. For enterprise server firmware

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7991

verification suites executing thousands of discrete

test operations, this means wasting huge amounts of

time simply on communication overhead instead of

valid validation work. The limitations of these

conventional interfaces have been captured in

simulation platform literature, where

responsiveness and integrative capabilities are core

difficulties with large-scale deployment [2].The

article presents a new tooling framework that takes

advantage of shared memory architecture to support

low-latency inter-process communication between

the test harness and the simulation engine. In

allowing autonomous execution of firmware

procedures, the framework supports validation

steps to execute without operator intervention,

decreasing overall turnaround time significantly in

controlled benchmark tests. The method extends

proven principles of operating system design where

shared memory offers a high-bandwidth, low-

latency communication path among concurrent

processes.The value of such efficiency only

becomes obviously clear when viewed within the

context of contemporary development cycles.

Firmware groups that are aiming at enterprise

server platforms generally run full regression suites

several times during a development sprint, with

each run possibly taking hours of computer

resources. A significant decrease in execution time

translates directly into increased test coverage

within the same time frames or faster delivery

timelines, satisfying the essential time-to-market

requirements of system developers. As simulation

technology advances, as outlined in the analysis of

full-system simulation methods by Tang, efficient

integration mechanisms become increasingly key to

sustaining productivity in complex development

environments [1].

2. Constraints of Standard Simulator

Interface Methods

Standard simulator interaction methods have

notable performance limitations that make

automation and scaling of firmware validation a

slow process. Standard methods tend to fall under

two leading types, each with different operating

tendencies and limitations when used in large

enterprise testing environments.Command-line

interface (CLI) based interactions are the most

basic method, where engineers enter commands

using a text console output from the simulation

environment. This method was first used in early

simulation platform development, where interactive

debugging and manual execution were the main

applications. While providing simplicity and

explicit control, CLI-driven workflows necessarily

bring in a sequential model of execution, needing

constant human monitoring or scripted command

sequences run linearly. According to research by

Boucif Amar Bensaber and Luca Foschini, human-

initiated CLI interactions bring in variable timing

patterns that undermine reproducibility, with

intervals of command input varying from hundreds

of milliseconds to several seconds between

activities [3]. More importantly, when made

automatic through script execution, these interfaces

continue to execute instructions sequentially,

constraining throughput and causing execution

bottlenecks in extensive regression testing.Socket-

based and Remote Procedure Call (RPC)

communication modes represented the next step in

simulator control, allowing a distributed test

architecture and increased automation capability.

These schemes create network communication

paths between the simulator and outside test

harness programs, allowing remote execution and

observation. But this communication model brings

in several sources of overhead that heavily

influence performance at scale. Each transaction

involves socket initialization, context switching

between kernel and user space, protocol

serialization, and data marshaling/unmarshaling.

Wei-Wei Fan et al., study of communication

patterns within distributed simulation environments

proved that socket-based transactions have both

fixed costs per connection as well as variable costs

proportional to data size [4]. These overheads

appear as quantifiable latency per each simulator

instruction, which snowballs exponentially during

regression test runs with thousands of sequential

operations.The collective effect of these traditional

interfaces is especially troublesome when running

thorough validation suites for enterprise server

firmware. Test sequences for memory training,

power state transitions, error injection, and

recovery procedures sometimes take thousands of

individual simulator operations. Under socket-

based control, every operation involves

communication overhead that may be larger than

the actual execution time of the simulated operation

itself. Moreover, CLI and socket methods both

usually involve polling or callback mechanisms for

determining completion status, adding to

communication volume and system load.Shared

memory architectures offer a distinct paradigm of

simulator interaction based on the creation of a

direct communication channel common to the client

test application and simulator processes. This

model avoids context switching from user to kernel

space, eliminates serialization overheads, and offers

near-instantaneous signaling support.

Implementation of shared memory communication

must pay special attention to synchronization

primitives, with mutex locks, semaphores, or lock-

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7992

free solutions guaranteeing data consistency

between the concurrent processes [3]. Modern

operating systems have optimized primitives for

shared memory management, such as memory-

mapped files and System V IPC facilities, which

provide well-established mechanisms for building

these communication channels.When efficiently

used, shared memory communication has the

potential to scale per-operation latency by orders of

magnitude over socket-based implementations. This

performance gap becomes more important as

verification complexity increases and test suite run

time becomes a vital bottleneck in development

cycles. According to Boucif Amar Bensaber and

Luca Foschini, simulation environments with

performance-critical demands increasingly call for

customized communication mechanisms that

preserve system integrity while keeping overhead

low, especially for use cases that include real-time

feedback loops and automated runs [3].

3. Shared-Memory Communication Model

Design Principles

The design basis of the shared-memory paradigm

draws upon tried-and-tested systems programming

paradigms specifically designed to accommodate

the high-performance requirements of firmware

simulation environments. This design, besides

addressing the more fundamental constraints of

conventional interfaces as discussed in section 2,

creates a one-stop system that, as much as possible,

improves the performance of its execution as well

as maintains integrity in its functioning.The core of

the architecture of the framework is a shared

memory buffer, which is a memory-mapped file.

This construct uses operating system resources to

map physical pages of memory into the virtual

address space of both client and simulator

applications at the same time. In contrast to

conventional inter-process communication

channels, this method does away with intermediary

buffering, protocol overheads, and data copying

operations. The design employs a well-structured

memory layout with separate areas for response

data, command queues, and status. Memory

allocation policies favor cache-line alignment to

achieve good performance on contemporary CPU

architectures. As pointed out by Maurice Herlihy &

Nir Shavit in the investigation of concurrent data

structures, being mindful of the memory layout can

have a considerable effect on the efficiency of

shared memory operations in multi-process

scenarios [5].Strong synchronization mechanisms

constitute the second essential design component,

avoiding data corruption without introducing

significant performance penalties. The design

utilizes a hybrid strategy with atomic operations for

status flags and fine-grained mutex locks for

intricate data structures. This approach leverages

proven concurrent programming patterns,

minimizing contention while maintaining data

consistency. Benchmarking proved that

synchronized optimization lowered contention-

related latency by 94% over naive locking methods

under high-frequency command execution.

Memory barriers and compiler fences are used to

maintain processor core consistency in the

synchronization layer, solving the memory ordering

issues described in recent concurrent systems

literature [5].Command abstraction is the third

architectural element, offering a formalized

interface that encapsulates firmware operations

within discrete, self-contained units. Every

command includes operation codes, parameters,

target addresses, and completion conditions

encoded in a standard format. This abstraction level

allows sophisticated operations (such as register

read/write sequences or memory initialization

routines) to be defined as atomic transactions from

the point of view of the client program. The

command format includes version information and

parameter checking, providing compatibility

between simulator versions and avoiding typical

failure modes. This technique is aligned with

enterprise system architecture concepts outlined by

Rahul Goel, such that abstraction boundaries allow

scalability in intricate system interaction [6].The

autonomous execution feature forms the

culmination of the design aspect, which allows test

cases to run without human interaction. This feature

complements the earlier three principles, thus

forming a programming model in which client

programs can build full test sequences that run

synchronously with the simulator. State machines

internal to the command capture progress and

handle error states with configurable timeout and

retry that provide fault-resilient operation. The

client library utilizes advanced capabilities such as

conditional execution paths, logging, and extensible

reporting mechanisms to support integration into

larger validation frameworks.The deployment was

verified with IBM Power10 and Power11 firmware

processes, particularly memory controller

initialization, DIMM training processes, and system

boot sequences. These validation scenarios are key

paths in enterprise server firmware that

conventionally take a long time to test and verify

manually.

4. Empirical Results from Enterprise-Class

Server Validation

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7993

Overall performance analysis of the shared-memory

framework was performed using IBM Power

production-grade firmware validation test flows,

creating significant empirical evidence of efficiency

gains in a variety of test scenarios. The framework

was tested extensively within WR Simics

environments set up to simulate entire enterprise

server systems, with measurements taken under

controlled conditions to guarantee reproducibility

and statistical validity.Primary validation

concentrated on three essential firmware areas,

which usually pose major bottlenecks in

conventional testing approaches. Memory

subsystem validation, such as intricate DIMM

training cycles and controller setup processes,

showed the most spectacular performance

enhancements. These processes entail a large

amount of register manipulation with stringent

timing interdependencies, involving hundreds of

sequential simulator interactions. Service processor

initialization and hostboot execution sequences

were also tested, recording the performance of the

framework on system initialization paths crossing

multiple firmware components. Power state

transition validation was also performed, testing

whether the framework is capable of sustaining

synchronization in the course of intricate state

transitions affecting multiple subsystems at

once.Performance metrics were recorded with high-

resolution timing equipment embedded directly into

both the framework and baseline socket

implementation, with statistical collection across

multiple test iterations to provide measurement

reliability. For automation based on sockets,

command latency was 2.47 ms on average per

operation with a standard deviation of 0.32 ms for

all test cases. In contrast, the shared-memory

implementation had average latencies of 237 μs per

command with much less variability (standard

deviation of 28 μs). This is a 10.4× raw

communication improvement, which translates

proportionally to reductions in total test execution

time.The performance gap was most evident in long

regression suites. A typical memory validation

sequence consisting of 4,800 unique operations

took 11.8 seconds with the shared-memory

implementation compared to 127.3 seconds via

socket-based communication. The same trends

were observed in all areas of testing, with gains

proportionate to test size. When applied to full

system validation suites that include all firmware

areas, execution time savings turned sequential

processes that took hours into minutes.In addition

to raw performance gains, the architecture also

demonstrated other operational advantages, such as

improved test determinism and reduced resource

usage. Command execution time had 94% less

variance than in socket-based solutions, resulting in

better test reproducibility and easier failure

analysis. System monitoring of resources revealed a

68% decrease in CPU usage during test running, in

line with the removal of context switching and

kernel mode transitions involved with socket

communication. Communication overhead tends to

dominate system resource utilization in large

validation environments, particularly in virtualized

systems where simulation fidelity is critical. Recent

research in virtualization systems has demonstrated

that inter-process communication patterns

significantly impact both performance and

reliability metrics in complex validation scenarios

[7]. Analysis of fault injection techniques further

reinforces the importance of minimizing

communication latency when validating system

behavior under stress conditions, especially in

enterprise-grade server environments.These

empirical findings are consistent with theoretical

performance models of inter-process

communication mechanisms reported by Abhay B.

Rathod, who laid out analytical frameworks for

communication efficiency prediction in memory-

bound programs [8]. The observed performance

benefits show that shared-memory solutions can

efficiently overcome the communication

bottlenecks characteristic of conventional simulator

interfaces.

5. Extending the Framework to Varied

Simulation Ecosystems

Although the shared-memory model was first

developed and tested within WR Simics

environments, its architectural foundations form a

platform-independent paradigm for simulation

control that can be ported across a wide range of

simulation frameworks. Initial experiments show

significant performance improvement opportunities

in several simulation platforms presently dependent

on typical communication interfaces.QEMU

virtualization is an especially interesting application

area. Existing QEMU designs employ monitor

sockets for external control and introspection,

which incur the same kind of latency seen in legacy

Simics interfaces. Shared-memory communication

channels can be integrated to supplant these socket

interactions, allowing for memory-based direct

communication between the hypervisor and the

outside world of test tools. Prototyping work has

shown the feasibility of this strategy through the

alteration of the monitor subsystem within QEMU

to identify shared regions of memory for command

receipt and state reporting. Performance estimates

using observed socket overhead in typical QEMU

instances predict possible latency decreases of 85-

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7994

92% for typical virtual machine inspection and

control operations. This is consistent with results

from virtualization optimization studies, which

point out I/O communication as a major

performance bottleneck in hypervisor control paths

[9].The Gem5 and SystemC simulation domains are

other candidates for framework adoption, especially

in co-simulation scenarios where these platforms

have to synchronize with external test harnesses.

Both domains use socket-based or file-based

communication for external control, which provides

the same bottlenecks seen in Simics. Shared-

memory interface implementation would involve

modifying the framework's synchronization

mechanisms to support the special execution

models of such environments, but would have

fundamental communication principles that can still

be applied. Architectural adjustments would be

mostly implemented in the command abstraction

layer to model simulation-specific operation, but

keeping the underlying shared memory transport

intact.Most importantly, hybrid simulation

environments that integrate several simulator

technologies may use shared memory as an

integration communication framework. Many

modern environments for validation use

heterogeneous simulation models, where

specialized system components are managed by

different simulators. Shared-memory

communication across these environments would

provide a common interface framework for

consistent, high-performance interfaces

independent of the base simulation technology.

This design follows layered architecture patterns

that are usually used for complex systems

integration, where standardizing interfaces allows

components to be integrated [10].The extensibility

of the framework comes from its inherent design as

a general approach to minimizing inter-process

communication latency and not as a simulator-

specific approach. In addressing communication

bottlenecks pervasive across simulation

environments, it provides widely applicable

performance gains across the simulation landscape.

6. Technical Trade-offs and Engineering

Considerations

Implementation of shared-memory framework

structures brings both compelling benefits and non-

trivial engineering challenges that have to be

reasonably traded when planning architectures. The

framework development decisions immediately

affect not just the performance attributes, but also

maintenance, reliability, and deployment simplicity.

The knowledge of such trade-offs allows

engineering teams to rightly utilize shared-memory

techniques to right validation use cases.The main

benefit of the shared-memory architecture is still

the spectacular reduction in communication latency

resulting from protocol overhead and context

switch elimination. The performance gain is

linearly scalable to test complexity, producing ever

more substantial benefits as validation suites get

larger. The autonomous execution ability made

possible by this performance gain converts what are

otherwise manual processes into automated

workflows with significantly expanded test

coverage while minimizing human resource needs.

A study by Taiwo et al. illustrates that

communication overhead usually takes 40-60% of

overall execution time in simulation-based

validation, rendering such optimization of critical

importance [11]. The extensibility of the framework

to various simulation environments also allows

organizations to have a unified methodology for

heterogeneous toolchains, enabling easy

maintenance and knowledge transfer.The

advantages do come with some engineering

expenses that need to be acknowledged and

managed. The need for synchronized actions

between multiple processes adds depth of

complexity and race condition potential.

Implementations require thorough knowledge of

memory management and concurrent programming

patterns to guarantee deterministic behavior.

Integration with current simulator codebases

necessitates thoughtful alteration of core

communication paths, where risk of simulator

instability exists if not managed efficiently. As

Protit et al. note in their discussion of shared

memory systems, the shared-memory programming

complexity grows non-linearly with the number of

components to interact, making it difficult for

systems involving numerous concurrent processes

[12]. Most notably, debugging shared-memory

interfaces is much more involved than using socket-

based interfaces, since monitoring communication

state necessitates specialized instrumentation rather

than typical network monitoring tools.In spite of

these difficulties, the benefits in operations always

outweigh the engineering complexity in enterprise

firmware validation environments. The overall

beneficial effect on efficiency of validation is

especially worthwhile for organizations that are

creating mission-critical firmware where total

testing is crucial. In exchange for increased upfront

implementation complexity, organizations achieve

significant long-term efficiency gains in their

validation processes. Thoughtful architectural

design, strong synchronization primitives, and

thorough logging mechanisms can successfully

counter the key issues without sacrificing the

benefits of performance. Leverage of well-known

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7995

shared-memory design paradigms and specific

instrumentation tools further decreases the

engineering overhead of implementation and

maintenance.

7. Continuous Integration Applications and

Future Research Directions

The shared-memory-based tooling framework for

WR Simics redefines firmware validation

paradigms in two ways: Performance improvement

and automation facilitation. With performance

improvements of 10× over conventional socket-

based approaches, the framework lowers execution

times for advanced validation sequences by many

orders of magnitude. This gain in efficiency is

directly translated into tangible advantages for

development organizations through feedback loops

reduction and increased test coverage within

constrained development cycles.Adoption of the

framework in current continuous

integration/continuous delivery (CI/CD) pipelines

is one very promising use case with widespread

implications on firmware quality and development

speed. Deployment of Jenkins-based orchestration

layers on top of the shared-memory framework

forms an end-to-end automation system capable of

automating sophisticated validation workflows

across emulated server environments independently

of human involvement. This ability allows

organizations to implement genuine continuous

validation practices, in which every code change

initiates automatic, extensive regression testing

against emulated hardware platforms. As recorded

in industry best practices for continuous integration,

organizations using automated validation for

firmware realize drastically fewer post-release

defects than with conventional milestone-based

testing practices [13].Practical deployments of

CI/CD integration take various architectural forms.

Pipeline-run execution models use Jenkins or

equivalent orchestration tools to drive test

execution across simulation farms, with the shared-

memory framework delivering the high-

performance communication layer between test

harnesses and simulators. Configuration

management systems store simulator environments

and test scenarios as code, allowing reproducible

test runs and environment portability. Results

aggregation platforms gather performance data and

validation results, delivering centralized insight into

validation status and trends.A few promising

avenues for future research are apparent from the

existing implementation. Investigation of lock-free

synchronization methods may be able to further

lower communication overhead, perhaps with

further performance benefits for particular

workloads. Integration of adaptive timeout and

retry strategies via machine learning models offers

possibilities for enhancing robustness in high-scale

deployment scenarios. Integration with novel

virtualized hardware platforms can further the

applicability of the framework outside of the purely

simulated environment into hybrid validation

applications integrating simulated and real-world

elements. According to Yehui Shi et al. in

integrated simulation framework research, hybrid

methods integrating simulation and hardware-in-

loop testing are an emerging area in enterprise

firmware validation [14].In enterprise-level servers

where reliability expectations are extremely high,

the ability of the framework to facilitate thorough

regression testing directly benefits system stability

and lowers operational risk. By allowing

performance levels to run through validation sets

within standard development processes, the

framework allows organizations to adopt genuine

shift-left testing practices, finding potential

problems earlier in the development process when

it is much cheaper to repair.

Table 1: Latency Comparison Across Simulator Interface Methods [3, 4]

Interface Type
Communication

Latency

Context

Switching

Serialization

Overhead

Scalability for

Regression

Testing

Implementat

ion

Complexity

CLI-based
High (100ms-several

seconds)
Yes Yes Poor Low

Socket/RPC
Medium (milliseconds

range)
Yes Yes Moderate Medium

Shared

Memory

Low (microseconds

range)
No No Excellent High

Table 2: Architectural Components of Shared-Memory Framework [5, 6]

Component Purpose
Implementation

Approach
Performance Benefit

Design

Consideration

Shared Memory

Buffer

Direct

communication
Memory-mapped file

Eliminates

intermediary

Cache-line

alignment

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7996

channel buffering

Synchronization

Mechanisms

Prevent data

corruption

Hybrid approach (atomic

operations + mutex locks)

94% reduction in

contention-related

delays

Memory barriers

and compiler

fences

Command

Abstraction

Structure

firmware

operations

Standard format with

operation codes and

parameters

Enables atomic

transactions

Versioning and

parameter

validation

Autonomous

Execution

Enable

automated testing

State machines with

configurable timeouts

Removes the human

intervention

requirement

Conditional

execution paths

Table 3: Performance Comparison: Shared-Memory vs. Socket-Based Communication [7, 8]

Communication

Type

Command Latency

(μs)
Latency StdDev (μs)

Memory Test

Duration (s)

CPU Usage

(%)

Socket-Based 2,470 320 127.3 100

Shared-Memory 237 28 11.8 32

Table 4: Cross-Platform Applicability of Shared-Memory Communication Framework [9, 10]

Simulation

Platform

Current Interface

Method
Performance Bottleneck

Shared Memory

Integration

Approach

Projected

Latency

Reduction

WR Simics Socket/CLI
Command transmission

overhead
Direct implementation

10.4×

(measured)

QEMU Monitor sockets Hypervisor control path
Monitor subsystem

modification
85-92%

Gem5/SystemC Socket/File-based
External control

synchronization

Command abstraction

adaptation

Similar to

Simics

Hybrid

Environments
Multiple interfaces

Cross-simulator

communication

Unified

communication layer

Dependent on

specific

integration

4. Conclusions

The shared-memory tooling implementation is an

important breakthrough in enterprise server-based

simulation-based firmware validation. The

framework provides significant performance gains

by radically redefining the communication

approach used by test harnesses with simulation

platforms, which change the aspects of validation

capability in a variety of dimensions. The radical

cut in the communication latency can allow more

test coverage, reduce the development cycle,

enhance test determinism, and decrease the use of

resources. In addition to increased performance, the

combination of the framework with continuous

integration pipelines provides a platform of actual

shift-left validation, in which full testing is a part of

the daily development processes, not a phase. This

feature is especially useful in larger server-based

environments of the enterprise, whereby the

reliability of the systems has a direct effect on the

business. Although shared-memory communication

indeed adds complexity, the engineering cost is

always superseded by operating advantages,

particularly to organizations that need to create

mission-critical firmware. With the ongoing

development of simulation technology, this method

of high-performance simulator control is a

promising direction of future research in the topics

of lock-free synchronization, adaptive retry, and

hybrid validation that uses both simulated and real

components. The principles of the platform-

agnostic design of the framework make the

framework relevant to the greater simulation

ecosystem, which may become a new norm of

simulation-based engineering practices.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

Vijay Francis Gregary Lobo / IJCESEN 11-4(2025)7990-7997

7997

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Jiming Sun et al., "Embedded Firmware Solutions:

Development Best Practices for the Internet of

Things,".

https://library.oapen.org/bitstream/handle/20.500.1

2657/28169/1/1001825.pdf

[2] Peter Magnusson et al., "Simics: A Full System

Simulation Platform," ResearchGate, 2002.

https://www.researchgate.net/publication/2955586_

Simics_A_Full_System_Simulation_Platform

[3] Boucif Amar Bensaber and Luca Foschini,

"Performance evaluation of communications in

distributed systems and web-based service

architectures," ResearchGate, 2017.

https://www.researchgate.net/publication/32091880

5_Performance_evaluation_of_communications_in

_distributed_systems_and_web_based_service_arc

hitectures

[4] Wei-Wei Fan et al., "Review of Large-Scale

Simulation Optimization," Springer, 2025.

https://link.springer.com/article/10.1007/s40305-

025-00599-8

[5] Maurice Herlihy & Nir Shavit, "The Art of

Multiprocessor Programming," Morgan Kaufmann

Publishers, Burlington, MA, 2008.

https://cs.ipm.ac.ir/asoc2016/Resources/Theartofm

ulticore.pdf

[6] Rahul Goel, "Design Patterns For Enterprise

Application," ResearchGate, 2025.

https://www.researchgate.net/publication/39074205

1_Design_Patterns_For_Enterprise_Application

[7] Shinoy Vengaramkode Bhaskaran, "EnterpriseAI: A

Transformer-Based Framework for Cost

Optimization and Process Enhancement in

Enterprise Systems," Computers, 2025.

https://www.mdpi.com/2073-431X/14/3/106

[8] Abhay B. Rathod, "Performance Analysis of Multi-

Core Systems in Multistage Interconnection

Networks: Investigating Challenges in Inter-

Processor Communication," ResearchGate, 2024.

https://www.researchgate.net/publication/38587094

0_Performance_Analysis_of_Multi-

Core_Systems_in_Multistage_Interconnection_Net

works_Investigating_Challenges_in_Inter-

Processor_Communication

[9] Argha Roy, "Performance Optimization Under A

Virtualized Environment," Journal of Global

Research in Computer Sciences.

https://www.rroij.com/open-access/performance-

optimization-under-a-virtualized-

environment.php?aid=38317

[10] GeeksforGeeks, "Types of Software Architecture

Patterns," 2025.

https://www.geeksforgeeks.org/software-

engineering/types-of-software-architecture-

patterns/

[11] Abdulahi Akintayo Taiwo et al., "Computing

Performance Optimization Through Parallelization:

Techniques and Evaluation," ResearchGate, 2024.

https://www.researchgate.net/publication/38623331

6_Computing_Performance_Optimization_Through

_Parallelization_Techniques_and_Evaluation

[12] Jelica Protit, Milo Tomasevit, and Veljko

Milutinovic, "Distributed Shared Memory:

Concepts and Systems," University of Belgrade,

1996.

https://www.dcc.fc.up.pt/~ines/aulas/CP/milosevicd

sm96.pdf

[13] GitLab, "Continuous integration best practices,".

https://about.gitlab.com/topics/ci-cd/continuous-

integration-best-practices/

[14] Yehui Shi et al, "A New Generation of Hardware-

in-the-loop Simulation Technology Combined with

High-performance Computers and Digital Twins,"

Journal of Physics: Conference Series, 2022.

https://iopscience.iop.org/article/10.1088/1742-

6596/2218/1/012032/pdf

https://library.oapen.org/bitstream/handle/20.500.12657/28169/1/1001825.pdf
https://library.oapen.org/bitstream/handle/20.500.12657/28169/1/1001825.pdf
https://www.researchgate.net/publication/2955586_Simics_A_Full_System_Simulation_Platform
https://www.researchgate.net/publication/2955586_Simics_A_Full_System_Simulation_Platform
https://www.researchgate.net/publication/320918805_Performance_evaluation_of_communications_in_distributed_systems_and_web_based_service_architectures
https://www.researchgate.net/publication/320918805_Performance_evaluation_of_communications_in_distributed_systems_and_web_based_service_architectures
https://www.researchgate.net/publication/320918805_Performance_evaluation_of_communications_in_distributed_systems_and_web_based_service_architectures
https://www.researchgate.net/publication/320918805_Performance_evaluation_of_communications_in_distributed_systems_and_web_based_service_architectures
https://link.springer.com/article/10.1007/s40305-025-00599-8
https://link.springer.com/article/10.1007/s40305-025-00599-8
https://cs.ipm.ac.ir/asoc2016/Resources/Theartofmulticore.pdf
https://cs.ipm.ac.ir/asoc2016/Resources/Theartofmulticore.pdf
https://www.researchgate.net/publication/390742051_Design_Patterns_For_Enterprise_Application
https://www.researchgate.net/publication/390742051_Design_Patterns_For_Enterprise_Application
https://www.mdpi.com/2073-431X/14/3/106
https://www.researchgate.net/publication/385870940_Performance_Analysis_of_Multi-Core_Systems_in_Multistage_Interconnection_Networks_Investigating_Challenges_in_Inter-Processor_Communication
https://www.researchgate.net/publication/385870940_Performance_Analysis_of_Multi-Core_Systems_in_Multistage_Interconnection_Networks_Investigating_Challenges_in_Inter-Processor_Communication
https://www.researchgate.net/publication/385870940_Performance_Analysis_of_Multi-Core_Systems_in_Multistage_Interconnection_Networks_Investigating_Challenges_in_Inter-Processor_Communication
https://www.researchgate.net/publication/385870940_Performance_Analysis_of_Multi-Core_Systems_in_Multistage_Interconnection_Networks_Investigating_Challenges_in_Inter-Processor_Communication
https://www.researchgate.net/publication/385870940_Performance_Analysis_of_Multi-Core_Systems_in_Multistage_Interconnection_Networks_Investigating_Challenges_in_Inter-Processor_Communication
https://www.rroij.com/open-access/performance-optimization-under-a-virtualized-environment.php?aid=38317
https://www.rroij.com/open-access/performance-optimization-under-a-virtualized-environment.php?aid=38317
https://www.rroij.com/open-access/performance-optimization-under-a-virtualized-environment.php?aid=38317
https://www.geeksforgeeks.org/software-engineering/types-of-software-architecture-patterns/
https://www.geeksforgeeks.org/software-engineering/types-of-software-architecture-patterns/
https://www.geeksforgeeks.org/software-engineering/types-of-software-architecture-patterns/
https://www.researchgate.net/publication/386233316_Computing_Performance_Optimization_Through_Parallelization_Techniques_and_Evaluation
https://www.researchgate.net/publication/386233316_Computing_Performance_Optimization_Through_Parallelization_Techniques_and_Evaluation
https://www.researchgate.net/publication/386233316_Computing_Performance_Optimization_Through_Parallelization_Techniques_and_Evaluation
https://www.dcc.fc.up.pt/~ines/aulas/CP/milosevicdsm96.pdf
https://www.dcc.fc.up.pt/~ines/aulas/CP/milosevicdsm96.pdf
https://about.gitlab.com/topics/ci-cd/continuous-integration-best-practices/
https://about.gitlab.com/topics/ci-cd/continuous-integration-best-practices/
https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012032/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012032/pdf

