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Abstract:  
 

Permanent magnet synchronous motor (PMSM) is known as one of the most promis- ing 

machines for electric vehicle (EV) propulsion due to its high torque density, efficiency 

and excellent speed regulation. However, motor faults may seriously affect the 

performance, safety, and reliability of the system. Traditional methods of fault detection 

cannot provide satisfactory performance in the aspects of accuracy, adap- tation to 

dynamic working condition and real-time performance.  To address these issues, in this 

paper, we propose a hybrid fault classification framework by combining features from 

MFCC and wavelet transform.  Comprehensive information from the time and frequency 

domains is combined together in the proposed method, which improves the discriminator 

for distinguishing the fault types better. The tests were conducted on dataset in two cases: 

with MFCC only and the combined version using two classifiers catboost and random 

forest.  Finally, the obtained results are very encouraging with 97.10 % in the first case 

and 86.00 % in the second case. 

 

1. Introduction 
 

In the last few years, Permanent Magnet 

Synchronous Motors (PMSMs) have emerged as a 

major part of the propulsion system in electric 

vehicles (EVs) based on their excellent performance 

[1, 2].  They also have a higher torque density, high 

efficiency, small size and high speed fidelity in 

comparison to other motor types on the automotive 

landscape.  Considering the worldwide urges for 

decreased carbon 

emissions and sustainable transportation, prevalence 

of PMSMs in modern electric vehicles will continue 

to increase in importance. While these benefits are 

compelling, PMSMs have their drawbacks [3].  Like 

all electrical machines, PMSMs are suscep- tible to 

a number of faults (i.e.   demagnetization, stator 

winding faults, bearing faults, eccentricity, etc.)   

that may significantly affect the safety, reliability, 

and performance of electric vehicles. These faults 

may produce first-order consequences of severe 

system degradation, unexpected break down of 

hardware, or catastrophic failure given that they go 

undetected, and indicate the need for effective fault 

detec- tion and classification methods to reinforce 

the robustness and reliability of PMSM- based 

systems for electric vehicles [4, 5]. Traditional fault 

detection methodologies, including model-based 

and signal-processing models, have been extensively 

investi- gated.  While traditional fault detection 

methodologies yield valuable information about 

fault dynamics, they are often inadequate in the 

assessment of fault detection methods under 

complicated or dynamic operating conditions .  

Factors such as low accuracy, limited ability to adapt 

to varying operating speeds and loads, and insuf- 

ficient real-time performance capability impede the 

practical use of fault detection methods in actual EV 

systems.  Moreover, as EV systems evolve to 

become more intelligent and data-driven, there is a 

rising demand for higher level fault diagnosis 

strategies that are both data-efficient and reliable 

under varying conditions [6, 7, 8]. To address some 

of these issues, this work proposes a new hybrid fault 

classification method with features derived from 

Mel-Frequency Cepstral Coefficients (MFCC) and 

wavelet transform.  The MFCC method has been 

widely used in audio signal pro- cessing and has 

been shown to capture relevant characteristics of the 

signals in the frequency domain [9, 10, 11], while 
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wavelet transform offers advantages when dealing 

with the revealing transient and non-stationary 

behaviours in time-frequency domain [12, 13].  

Combining the extracted features of both methods 

provided a more com- prehensive representation of 

the operational state of the motor and was aimed at 

achieving improved fault classification accuracy.  

The performance of the proposed approach was 

assessed based on a labeled dataset and through two 

different feature extraction scenarios. The first case 

utilizes MFCC-based features only. The second case 

utilizes the MFCC features and additional features of 

the wavelet transform. Classification performance 

was assessed using two sophisticated machine 

learning classifiers, CatBoost and Random Forest.  

The results confirmed that classification 

performance was promising - with the MFCC only 

model providing 75% classifica- tion accuracy, 

while the hybrid model with MFCC and wavelet 

features provided classification accuracy of 91%. 

These results reinforce the value of combining 

various signal features in conjunction with machine 

learning models to improve fault detec- tion in 

PMSMs. In conclusion, the proposed hybrid 

framework represented a notable advancement in the 

domain of motor fault diagnosis, with specific focus 

on EV ap- plications. The proposed hybrid 

framework, besides providing improvement in fault 

classification accuracy, also exhibited robustness 

and adaptability which is promising for future 

intelligent condition monitoring systems for electric 

vehicle propulsion [14]. 

 

2. Related works 
 

Recently, there has been considerable interest in the 

reliability and performance of Permanent Magnet 

Synchronous Motors (PMSMs), especially with its 

applications in electric vehicles (EVs).   PMSMs are 

popular in EV propelling systems, owing to their 

high torque density, high efficiency, and good speed 

control capabilities. Performance degradation 

caused by faults, such as inter-turn short circuit, 

demag- netization, and bearing faults can degrade 

performance and reliability, thus suitable detection 

and classification of the faults is necessary.   

Traditionally, PMSM fault diagnosis was 

accomplished through model based techniques and 

signal processing techniques. Model based 

techniques often require knowledge of detailed 

parameters of the motor, which makes them 

susceptible to failure due to parameter deviations, 

thereby making model-based diagnosis defective in 

dynamic operating modes [1]. Sig- nal processing 

techniques, including Fast Fourier Transform (FFT) 

and Park’s Vector method, have been extensively 

used for feature extraction, but also do not capture 

the non-stationary nonlinear signal; real-world 

signals [15].  Increasingly, academic literature has 

focused on time-frequency domain analysis for 

greater and more effec- tive fault detection. For 

example, the Discrete Wavelet Transform (DWT) is 

useful for detecting localized attributes in transient 

signal making it very viable for the fault 

classification of rotating machinery [3]. 

Additionally, the original application of Mel-

Frequency Cepstral Coefficients (MFCCs) comes 

from speech processing but has since gained 

popularity for motor fault diagnosis because of their 

ability to detect minor changes in signal envelope 

[16].  Ortega et al.  (2025) present two adaptive 

observer structures—one simple linear and one 

parameter-estimation based—to de- tect inter-turn 

short-circuit faults (ITSCFs) in interior PMSMs. The 

linear observer offers exponential convergence, with 

a rate entirely determined by motor parameters; 

however, this convergence may be slow in practice. 

To address this, the parameter- estimation-based 

observer employs an adaptive mechanism that 

estimates resistance and inductance online, resulting 

in guaranteed finite-time convergence under 

minimal interval excitation assumptions.  Unlike 

Kalman-based approaches, these observers yield an 

explicit estimate of the fault current amplitude and 

severity.  Simulation results using realistic motor 

models show robust, fast detection performance.  

This work advances model-based diagnostics by 

offering both simplicity and speed in ITSC detection 

[17]. Lv et al. tackle the challenge of not only 

detecting but locating fault coils in direct-drive 

PMSMs with parallel branch winding.  Existing 

FFT, voltage- sequence, and wavelet methods could 

detect the presence of inter-turn short circuits (ITSC) 

but lacked coil-level localization. The authors 

propose branch differential cur- rent (BDC) and 

branch residual current (BRC) indicators, which can 

be extracted using external current sensors on each 

branch—simplifying retrofit applications. To 

automate localization, they construct a knowledge 

graph (KG) that captures relation- ships among fault 

indicators, coil branches, and known fault patterns. 

This graph- based structure allows intelligent 

reasoning to pinpoint faulty coils without retraining 

or extensive offline models. Experimental validation 

confirms accurate coil-level fault localization and 

improved maintenance decision-making. This 

method uniquely en- ables early-stage fault 

localization in finished motors using minimal 

sensors and AI reasoning [18]. Pietrzak et al. (2024) 

present a diagnostic pipeline for PMSM stator- 

winding inter-turn short-circuit faults that utilizes 

Continuous Wavelet Transform (CWT) to extract 

features from three-phase stator currents. They 

compute wavelet coefficients that are sensitive to the 
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fault severity, and then feed these as the features into 

SVM, KNN, and MLP classifiers.  The important 

part:  systematic feature se- lection to identify the 

most discriminative wavelet-based coefficients 

reduced waste in the detection accuracy through 

computation, one important aspect in a real time 

implementation setting. Testing classification 

accuracy over various loads and fault severities 

produced significant classification accuracy ( 98–

99%), and detection per- formance remains 

achievable for real-time implementation. By 

emphasizing human- enginereed interpretable 

features from classic ML and avoid using "deep-

learning" models, the work demonstrates an 

effective low-complexity solution to reliable fault 

detection in cognitively easy to explain and 

implement approaches—suitable for an embedded 

or industrial platform under repetitive constraints 

[19].   Zerdani et al. (2020) explore the idea of fault 

detection of inter-turn stator winding faults via 

Power Spectral Density (PSD) extracted from stator 

current signals as a supporting background for our 

work. Their study compared PSD estimators using 

Fourier anal- ysis (Welch and Burg) which extracted 

frequency domain features that are sensitive to 

faults.  Following a feature selection process, the 

authors noted that some PSD bands correlated more 

with severity of fault level than others, which 

increases inter- pretability of a model and reduces 

dimension of features to model.  These specific 

features were ultimately used as an input to a linear 

SVM. They found the linear SVM had optimized 

performance using the Welch estimator. They 

validated the ap- proach through simulation, and 

showed that the models were robust to classification 

of fault or healthy models across motor operating 

regimes. This paper demonstrates how spectral 

feature engineering together with a selective ML 

approach can provide minimalistic but effective 

PMSM fault detectors without the need of heavy 

deep models [20].   In addition, machine learning 

methods have shown promise for au- tomating the 

classification of motor faults. Algorithms, like 

Support Vector Machine (SVM), Random Forest 

(RF), and most recently, gradient boosting methods 

such as CatBoost, have been used to develop higher 

classification accuracy under vary- ing operating 

conditions.  However, there are still many studies 

that look at either time-domain or frequency-domain 

features. Focusing only on one or the other may limit 

the classification ability of each classifier by 

increasing the specific classifier’s dependence on 

individual fault types and operational states [21]. 

 

3. Methods 
 

3.1. PMSM Faults types 

 

Permanent Magnet Synchronous Motors (PMSM) 

are becoming more attractive to a number of 

applications because of higher efficiency and the 

ability to precisely control motor operation.  

However, PMSMs are susceptible to numerous 

different types of faults, which may compromise the 

performance of the motor or lead to a failure.  Faults 

can usually be characterized as one of five different 

types: electrical faults, mechanical faults, thermal 

faults, control system faults, and magnetic faults. 

Electrical faults can be devastating losses, such as 

shorting out of stator windings or magnet 

demagnetization.  Mechanical faults usually involve 

errors such as bearing wear or misalignment of the 

rotor. Thermal faults can usually be attributed to 

some form of over-temperature. Control faults are 

typically associated with sensor faults or possible 

failures of the drive. Magnetic faults could interrupts 

torque activity or introduce some additional 

harmonic distortion. 

Inter-turn stator winding faults are included in this 

list and those faults may lead to even worse 

situations if not remedied quickly and they may also 

be particularly serious depending on how many turns 

are shorted together. Some severity of inter- turn 

short circuit fault is based on how many turns are 

shorted together. In the work presented herein, we 

focus particularly on analyzing and diagnosing 1-

turn and 5-turn inter-turn short circuit faults, as these 

represent early-stage and moderate stage fault 

situations, respectively, and also allow us to study 

and understand the evolution and effect of stator 

winding faults in permanent magnet synchronous 

motors (PMSMs), as shown in figure 1. 

 

3.2. Dataset used 

 

In this work we used the dataset used by S. kang and 

N. Kim in [22].  Table 1 show the main parameters 

of permanent magnet synchronous. Data information 

and categories are shown in Table 2. Also, we 

organized data for a binary classification as shown 

in the next tree figure 

 

4. Proposed system 
 

The proposed system is designed to perform efficient 

and accurate classification of audio signals (or any 

other applicable signals such as speech, biomedical, 

etc.) using a modular pipeline consisting of four 

main stages: Preprocessing, Feature Extraction, 

Feature Selection, and Classification.  Each stage 

plays a critical role in enhancing the performance 

and reliability of the final model.  The overall system 

architecture is depicted in Figure 3. 
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4.1. Data acquisition 

 

Every analysis process has a preprocessing stage that 

accepts a raw input signal and prepares it for feature 

extraction and classification. Preprocessing is 

important because it circumvents complications 

such as inconsistencies, noise, and undesirable 

artifacts to ensure that the signal is segmented 

properly, and can be cleanly processed. The 

following preprocesses are dealt with on the input: 

Noise-reduction:  Environmental and system noise 

must be removed from the signal. A variety of basic 

noise removing filters can be used (see spectral 

subtraction), and more advanced techniques using 

adaptivity, stability, and step response.Bandpass 

filtering:  Now that noisy segments of the signal have 

been removed, we now can bandpass filter the signal 

to keep the frequency components of interest. This 

has the effect of removing low-frequency drifting 

from the signal, while also removing high-frequency 

noise. The bandpass filter will pass through a Low 

cut-off frequency of 40 Hz and high cut-off 

frequency = 500 Hz. As the spectral properties of the 

signal vary (e.g., voice or physiological signals), 

these cut-off frequencies are determined to be the 

informative frequency components of interest while 

controlling for extremes that are not informative or 

desired. 

 

4.2. Feature Extraction 

 

The core of the processing pipeline involves 

segmentation of the input current signal into 

overlapping windows to enable efficient feature 

extraction and fault diag- nosis. Specifically, the 

signal is divided using a sliding window approach, 

where each segment contains 1000 consecutive 

samples, and the window slides backward with a step 

size of 500 samples. This results in a 50% overlap 

between consecutive segments, ensuring temporal 

continuity and improving the system’s sensitivity to 

transient fea- tures.  The system constructs an initial 

feature vector of 1,060 dimensions for each audio 

instance, combining two sets of descriptors: 1,034 

features derived from Mel- Frequency Cepstral 

Coefficients (MFCC), which encode the spectral 

characteristics of the signal, Delta 1 and Delta 2 of 

MFCC in 22 features, and 26 features obtained from 

wavelet transformation, offering additional time-

frequency resolution.  To en- sure uniformity across 

all samples, vectors with fewer than 1,082 

elements—typically due to variation in signal 

length—are padded with zeros. The figure 4 

illustrates the difference between Healthy and Not 

Healthy in the three cases of test. 

 

4.3. Feature Selection 

 

Once a consistent feature representation is 

established, a feature selection process is applied to 

reduce dimensionality and enhance model 

performance. Specifically, the Recursive Feature 

Elimination (RFE) algorithm is employed to identify 

and retain the 150 most informative features.   RFE 

iteratively trains a base estimator and removes the 

least important features based on model weights, 

resulting in a reduced feature set that preserves the 

most discriminative information for the 

classification task. 

 

4.4. Faults Classification 

 

For the classification phase, the system uses two 

supervised learning algorithms; Random Forest and 

CatBoost. Random Forest is an ensemble method 

that creates many decision trees and averages their 

output to improve prediction accuracy and mitigate 

overfitting.  CatBoost is also used, as it is an 

ensemble gradient boosting algorithm adapted to 

mutable features; it was chosen due to its high 

performance and resiliency to different feature types. 

Both classifiers (Random Forest and CatBoost) are 

trained on the 150 features chosen from our feature 

selection, using standard measure to use measure the 

performance of each model. 

 

4.5. Results and Discussion 

 

The classification performance of three models 

(SVM, Random Forest, and Cat- Boost) was 

evaluated using three different feature sets: MFCC 

only, MFCC + first and second order deltas (D1D2), 

and MFCC + D1D2 + Wavelet features (WL). This 

process was done in the two cases:1) Healthy versus 

Not Healthy, than, 2) 1Turn ver- sus 5Turn. The 

accuracy results are summarized in the tables and 

histograms. 

The SVM classifier maintained a consistent 90.33% 

accuracy across all sets of fea- tures, showing that it 

could not capitalize on additional temporal or 

wavelet features. Random Forest started with 

relatively low accuracy using MFCCs alone 

(84.44%), but improved significantly with the 

addition of wavelet features to 95.59%. CatBoost 

consistently performed the best, with 90.78% using 

MFCCs, decreasing slightly with the addition of 

delta features, before leaping to 97.10% with 

wavelet features (see table 3). 

Overall, these results highlight that MFCC features 

are already good descriptors, and delta features have 

limited extra value.  In contrast, wavelet features 

provide significant gain in classification 

performance, particularly for ensemble classifiers. 

Among the classifiers, CatBoost was the most robust 
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and powerful, with Random Forest giving the 

highest relative improvement, and SVM being 

unconcerned by feature enhancement (see figure 5). 

Performance of classifiers was very varied for 

various feature sets.   SVM was experiencing low 

and almost constant accuracy (around 57%), 

indicating that it could not make any use of the 

introduced temporal or wavelet features.  Random 

Forest was doing better, starting at 71.19% when 

MFCCs were used, slightly higher when delta 

features were included, and then a huge jump to 

91.73% when wavelet features were used.  

Moreover, CatBoost started at 64.02% using 

MFCCs, slightly gained using delta features, and 

reached 86.00% using wavelets (see table 4). 

These results confirm that MFCCs alone provide a 

limiting baseline, with delta features adding little 

performance.  Wavelet features improve 

significantly by uti- lizing more richer time-

frequency information.  Ensemble classifiers 

(CatBoost and Random Forest) benefitted the most 

from these features, although Random Forest 

achieved the best overall accuracy. SVM remained 

ineffective with all feature combi- nations, again 

highlighting its poor ability to generalize compared 

to ensemble-based classifiers (see figure 6). 

 
Figure 1: Phase A,B,C 

Table 1: Main parameters of permanent magnet synchronous motor. 
P a r a me t e r  Value  

Stator outer diameter / mm 

Stator inner diameter / mm 

Number of stator slots / one 

Number of turns per slot Winding 

layer / layer 

Polar logarithm / pair 

Rated voltage / V Rated 

power / kW  

120 

75 

24 

26 2 

4 

220 

5 

 

Table 2: Fault conditions for each Electromagnetic transient simulation 
R P M  Fault  R s ho r t ( R fa u l t )  

3600 X 

1 turn 

5 turns 

X 

1, 0.01 

1, 0.01 

4800 X 

1 turn 

5 turns 

X 

1, 0.01 

1, 0.01 

6000 X 

1 turn 

5 turns 

X 

1, 0.01 

1, 0.01 
7200 X 

1 turn 

5 turns 

X 

1, 0.01 

1, 0.01 
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Figure 2: Classes hierarchy for binary classification. 

 
Figure 3: Smart Fault Diagnosis Flowchart 

 
Figure 4: Difference between Healthy and Not Healthy in the three cases of test. 
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Table 3: Classifier performance with different feature sets in the case of Healthy / Not Healthy. 

Classifier M F C C  M F C C  +  D 1 D 2  M F C C  +  D 1 D 2  +  W L  

SVM 

Random Forest 

Catboost 

90.33 

84.44 

90.78 

90.33 

85.07 

90.08 

90.33 

95.59 

97.10 

 

Table 4: Classifier performance with different feature sets in the case of 1Turn / 5Turn. 
Classifier  M F C C  M F C C  +  D 1 D 2  M F C C  +  D 1 D 2  +  W L  

SVM 
Random Forest 

Catboost 

57.54 

71.19 

70.02 

55.73 

72.66 

72.22 

57.61 

91.73 

86.00 

 

4. Conclusions and Future works 

 
This work provides a hybrid fault classification 

framework for Permanent Magnet Synchronous 

Motors, (PMSMs), in attempts to provide more 

accurate and reliable high level fault detection in 

electric vehicle applications.This research evaluated 

the performance of different sets of features (MFCC, 

MFCC with delta features, and MFCC with wavelet 

features) in classification with SVM, Random 

Forest, and Cat- Boost. The results of accuracy 

showed that SVM performed low and nearly uniform 

accuracy with all sets of features, demonstrating 

poor adaptability. Random Forest and CatBoost, 

however, showed good improvement as wavelet 

features were incorpo- rated, with 97.10% and 

86.00% accuracy, respectively. These findings 

present that, while MFCCs in isolation provide a 

weak baseline and delta features slightly enhance it, 

wavelet features play a crucial part in enhancing 

classification performance. En- semble methods, 

namely Random Forest, were shown to perform best 

at utilizing such richer representations and therefore 

are good candidates for noise-insensitive signal 

classification tasks. These results suggest the 

proposed framework under de- velopment will have 

an immense benefit and directly correlate towards 

real-time and accurate fault finding possible in real-

time PM motors that are employed in the elec- 

tromagnetic propulsion industry. Future work could 

include real-time deployment in these fields and 

variations on a larger selections of faults. 
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