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Abstract:

Permanent magnet synchronous motor (PMSM) is known as one of the most promis- ing
machines for electric vehicle (EV) propulsion due to its high torque density, efficiency
and excellent speed regulation. However, motor faults may seriously affect the
performance, safety, and reliability of the system. Traditional methods of fault detection
cannot provide satisfactory performance in the aspects of accuracy, adap- tation to
dynamic working condition and real-time performance. To address these issues, in this
paper, we propose a hybrid fault classification framework by combining features from
MFCC and wavelet transform. Comprehensive information from the time and frequency
domains is combined together in the proposed method, which improves the discriminator
for distinguishing the fault types better. The tests were conducted on dataset in two cases:
with MFCC only and the combined version using two classifiers catboost and random
forest. Finally, the obtained results are very encouraging with 97.10 % in the first case

and 86.00 % in the second case.

1. Introduction

In the last few years, Permanent Magnet
Synchronous Motors (PMSMSs) have emerged as a
major part of the propulsion system in electric
vehicles (EVs) based on their excellent performance
[1, 2]. They also have a higher torque density, high
efficiency, small size and high speed fidelity in
comparison to other motor types on the automotive
landscape. Considering the worldwide urges for
decreased carbon

emissions and sustainable transportation, prevalence
of PMSMs in modern electric vehicles will continue
to increase in importance. While these benefits are
compelling, PMSMs have their drawbacks [3]. Like
all electrical machines, PMSMs are suscep- tible to
a number of faults (i.e. demagnetization, stator
winding faults, bearing faults, eccentricity, etc.)
that may significantly affect the safety, reliability,
and performance of electric vehicles. These faults
may produce first-order consequences of severe
system degradation, unexpected break down of
hardware, or catastrophic failure given that they go
undetected, and indicate the need for effective fault
detec- tion and classification methods to reinforce

the robustness and reliability of PMSM- based
systems for electric vehicles [4, 5]. Traditional fault
detection methodologies, including model-based
and signal-processing models, have been extensively
investi- gated. While traditional fault detection
methodologies yield valuable information about
fault dynamics, they are often inadequate in the
assessment of fault detection methods under
complicated or dynamic operating conditions

Factors such as low accuracy, limited ability to adapt
to varying operating speeds and loads, and insuf-
ficient real-time performance capability impede the
practical use of fault detection methods in actual EV
systems.  Moreover, as EV systems evolve to
become more intelligent and data-driven, there is a
rising demand for higher level fault diagnosis
strategies that are both data-efficient and reliable
under varying conditions [6, 7, 8]. To address some
of these issues, this work proposes a new hybrid fault
classification method with features derived from
Mel-Frequency Cepstral Coefficients (MFCC) and
wavelet transform. The MFCC method has been
widely used in audio signal pro- cessing and has
been shown to capture relevant characteristics of the
signals in the frequency domain [9, 10, 11], while
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wavelet transform offers advantages when dealing
with the revealing transient and non-stationary
behaviours in time-frequency domain [12, 13].
Combining the extracted features of both methods
provided a more com- prehensive representation of
the operational state of the motor and was aimed at
achieving improved fault classification accuracy.
The performance of the proposed approach was
assessed based on a labeled dataset and through two
different feature extraction scenarios. The first case
utilizes MFCC-based features only. The second case
utilizes the MFCC features and additional features of
the wavelet transform. Classification performance
was assessed using two sophisticated machine
learning classifiers, CatBoost and Random Forest.
The results confirmed that classification
performance was promising - with the MFCC only
model providing 75% classifica- tion accuracy,
while the hybrid model with MFCC and wavelet
features provided classification accuracy of 91%.
These results reinforce the value of combining
various signal features in conjunction with machine
learning models to improve fault detec- tion in
PMSMs. In conclusion, the proposed hybrid
framework represented a notable advancement in the
domain of motor fault diagnosis, with specific focus
on EV ap- plications. The proposed hybrid
framework, besides providing improvement in fault
classification accuracy, also exhibited robustness
and adaptability which is promising for future
intelligent condition monitoring systems for electric
vehicle propulsion [14].

2. Related works

Recently, there has been considerable interest in the
reliability and performance of Permanent Magnet
Synchronous Motors (PMSMs), especially with its
applications in electric vehicles (EVs). PMSMs are
popular in EV propelling systems, owing to their
high torque density, high efficiency, and good speed
control  capabilities. Performance degradation
caused by faults, such as inter-turn short circuit,
demag- netization, and bearing faults can degrade
performance and reliability, thus suitable detection
and classification of the faults is necessary.
Traditionally, PMSM fault diagnosis was
accomplished through model based techniques and
signal  processing techniques. Model based
techniques often require knowledge of detailed
parameters of the motor, which makes them
susceptible to failure due to parameter deviations,
thereby making model-based diagnosis defective in
dynamic operating modes [1]. Sig- nal processing
techniques, including Fast Fourier Transform (FFT)
and Park’s Vector method, have been extensively
used for feature extraction, but also do not capture
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the non-stationary nonlinear signal; real-world
signals [15]. Increasingly, academic literature has
focused on time-frequency domain analysis for
greater and more effec- tive fault detection. For
example, the Discrete Wavelet Transform (DWT) is
useful for detecting localized attributes in transient
signal making it very viable for the fault
classification of rotating machinery  [3].
Additionally, the original application of Mel-
Frequency Cepstral Coefficients (MFCCs) comes
from speech processing but has since gained
popularity for motor fault diagnosis because of their
ability to detect minor changes in signal envelope
[16]. Ortega et al. (2025) present two adaptive
observer structures—one simple linear and one
parameter-estimation based—to de- tect inter-turn
short-circuit faults (ITSCFs) in interior PMSMs. The
linear observer offers exponential convergence, with
a rate entirely determined by motor parameters;
however, this convergence may be slow in practice.
To address this, the parameter- estimation-based
observer employs an adaptive mechanism that
estimates resistance and inductance online, resulting
in guaranteed finite-time convergence under
minimal interval excitation assumptions. Unlike
Kalman-based approaches, these observers yield an
explicit estimate of the fault current amplitude and
severity. Simulation results using realistic motor
models show robust, fast detection performance.
This work advances model-based diagnostics by
offering both simplicity and speed in ITSC detection
[17]. Lv et al. tackle the challenge of not only
detecting but locating fault coils in direct-drive
PMSMs with parallel branch winding. Existing
FFT, voltage- sequence, and wavelet methods could
detect the presence of inter-turn short circuits (ITSC)
but lacked coil-level localization. The authors
propose branch differential cur- rent (BDC) and
branch residual current (BRC) indicators, which can
be extracted using external current sensors on each
branch—simplifying retrofit applications. To
automate localization, they construct a knowledge
graph (KG) that captures relation- ships among fault
indicators, coil branches, and known fault patterns.
This graph- based structure allows intelligent
reasoning to pinpoint faulty coils without retraining
or extensive offline models. Experimental validation
confirms accurate coil-level fault localization and
improved maintenance decision-making. This
method uniquely en- ables early-stage fault
localization in finished motors using minimal
sensors and Al reasoning [18]. Pietrzak et al. (2024)
present a diagnostic pipeline for PMSM stator-
winding inter-turn short-circuit faults that utilizes
Continuous Wavelet Transform (CWT) to extract
features from three-phase stator currents. They
compute wavelet coefficients that are sensitive to the
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fault severity, and then feed these as the features into
SVM, KNN, and MLP classifiers. The important
part: systematic feature se- lection to identify the
most discriminative wavelet-based coefficients
reduced waste in the detection accuracy through
computation, one important aspect in a real time
implementation  setting. Testing classification
accuracy over various loads and fault severities
produced significant classification accuracy ( 98-
99%), and detection per- formance remains
achievable for real-time implementation. By
emphasizing human- enginereed interpretable
features from classic ML and avoid using "deep-
learning" models, the work demonstrates an
effective low-complexity solution to reliable fault
detection in cognitively easy to explain and
implement approaches—suitable for an embedded
or industrial platform under repetitive constraints
[19]. Zerdani et al. (2020) explore the idea of fault
detection of inter-turn stator winding faults via
Power Spectral Density (PSD) extracted from stator
current signals as a supporting background for our
work. Their study compared PSD estimators using
Fourier anal- ysis (Welch and Burg) which extracted
frequency domain features that are sensitive to
faults. Following a feature selection process, the
authors noted that some PSD bands correlated more
with severity of fault level than others, which
increases inter- pretability of a model and reduces
dimension of features to model. These specific
features were ultimately used as an input to a linear
SVM. They found the linear SVM had optimized
performance using the Welch estimator. They
validated the ap- proach through simulation, and
showed that the models were robust to classification
of fault or healthy models across motor operating
regimes. This paper demonstrates how spectral
feature engineering together with a selective ML
approach can provide minimalistic but effective
PMSM fault detectors without the need of heavy
deep models [20]. In addition, machine learning
methods have shown promise for au- tomating the
classification of motor faults. Algorithms, like
Support Vector Machine (SVM), Random Forest
(RF), and most recently, gradient boosting methods
such as CatBoost, have been used to develop higher
classification accuracy under vary- ing operating
conditions. However, there are still many studies
that look at either time-domain or frequency-domain
features. Focusing only on one or the other may limit
the classification ability of each classifier by
increasing the specific classifier’s dependence on
individual fault types and operational states [21].

3. Methods

3.1. PMSM Faults types
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Permanent Magnet Synchronous Motors (PMSM)
are becoming more attractive to a number of
applications because of higher efficiency and the
ability to precisely control motor operation.
However, PMSMs are susceptible to numerous
different types of faults, which may compromise the
performance of the motor or lead to a failure. Faults
can usually be characterized as one of five different
types: electrical faults, mechanical faults, thermal
faults, control system faults, and magnetic faults.
Electrical faults can be devastating losses, such as
shorting out of stator windings or magnet
demagnetization. Mechanical faults usually involve
errors such as bearing wear or misalignment of the
rotor. Thermal faults can usually be attributed to
some form of over-temperature. Control faults are
typically associated with sensor faults or possible
failures of the drive. Magnetic faults could interrupts
torque activity or introduce some additional
harmonic distortion.

Inter-turn stator winding faults are included in this
list and those faults may lead to even worse
situations if not remedied quickly and they may also
be particularly serious depending on how many turns
are shorted together. Some severity of inter- turn
short circuit fault is based on how many turns are
shorted together. In the work presented herein, we
focus particularly on analyzing and diagnosing 1-
turn and 5-turn inter-turn short circuit faults, as these
represent early-stage and moderate stage fault
situations, respectively, and also allow us to study
and understand the evolution and effect of stator
winding faults in permanent magnet synchronous
motors (PMSMSs), as shown in figure 1.

3.2. Dataset used

In this work we used the dataset used by S. kang and
N. Kim in [22]. Table 1 show the main parameters
of permanent magnet synchronous. Data information
and categories are shown in Table 2. Also, we
organized data for a binary classification as shown
in the next tree figure

4. Proposed system

The proposed system is designed to perform efficient
and accurate classification of audio signals (or any
other applicable signals such as speech, biomedical,
etc.) using a modular pipeline consisting of four
main stages: Preprocessing, Feature Extraction,
Feature Selection, and Classification. Each stage
plays a critical role in enhancing the performance
and reliability of the final model. The overall system
architecture is depicted in Figure 3.
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4.1. Data acquisition

Every analysis process has a preprocessing stage that
accepts a raw input signal and prepares it for feature
extraction and classification. Preprocessing is
important because it circumvents complications
such as inconsistencies, noise, and undesirable
artifacts to ensure that the signal is segmented
properly, and can be cleanly processed. The
following preprocesses are dealt with on the input:
Noise-reduction: Environmental and system noise
must be removed from the signal. A variety of basic
noise removing filters can be used (see spectral
subtraction), and more advanced technigques using
adaptivity, stability, and step response.Bandpass
filtering: Now that noisy segments of the signal have
been removed, we now can bandpass filter the signal
to keep the frequency components of interest. This
has the effect of removing low-frequency drifting
from the signal, while also removing high-frequency
noise. The bandpass filter will pass through a Low
cut-off frequency of 40 Hz and high cut-off
frequency = 500 Hz. As the spectral properties of the
signal vary (e.g., voice or physiological signals),
these cut-off frequencies are determined to be the
informative frequency components of interest while
controlling for extremes that are not informative or
desired.

4.2. Feature Extraction

The core of the processing pipeline involves
segmentation of the input current signal into
overlapping windows to enable efficient feature
extraction and fault diag- nosis. Specifically, the
signal is divided using a sliding window approach,
where each segment contains 1000 consecutive
samples, and the window slides backward with a step
size of 500 samples. This results in a 50% overlap
between consecutive segments, ensuring temporal
continuity and improving the system’s sensitivity to
transient fea- tures. The system constructs an initial
feature vector of 1,060 dimensions for each audio
instance, combining two sets of descriptors: 1,034
features derived from Mel- Frequency Cepstral
Coefficients (MFCC), which encode the spectral
characteristics of the signal, Delta 1 and Delta 2 of
MFCC in 22 features, and 26 features obtained from
wavelet transformation, offering additional time-
frequency resolution. To en- sure uniformity across
all samples, vectors with fewer than 1,082
elements—typically due to variation in signal
length—are padded with zeros. The figure 4
illustrates the difference between Healthy and Not
Healthy in the three cases of test.

4.3. Feature Selection

8043

Once a consistent feature representation is
established, a feature selection process is applied to
reduce dimensionality and enhance model
performance. Specifically, the Recursive Feature
Elimination (RFE) algorithm is employed to identify
and retain the 150 most informative features. RFE
iteratively trains a base estimator and removes the
least important features based on model weights,
resulting in a reduced feature set that preserves the
most  discriminative  information  for  the
classification task.

4.4, Faults Classification

For the classification phase, the system uses two
supervised learning algorithms; Random Forest and
CatBoost. Random Forest is an ensemble method
that creates many decision trees and averages their
output to improve prediction accuracy and mitigate
overfitting. CatBoost is also used, as it is an
ensemble gradient boosting algorithm adapted to
mutable features; it was chosen due to its high
performance and resiliency to different feature types.
Both classifiers (Random Forest and CatBoost) are
trained on the 150 features chosen from our feature
selection, using standard measure to use measure the
performance of each model.

4.5, Results and Discussion

The classification performance of three models
(SVM, Random Forest, and Cat- Boost) was
evaluated using three different feature sets: MFCC
only, MFCC + first and second order deltas (D1D2),
and MFCC + D1D2 + Wavelet features (WL). This
process was done in the two cases:1) Healthy versus
Not Healthy, than, 2) 1Turn ver- sus 5Turn. The
accuracy results are summarized in the tables and
histograms.

The SVM classifier maintained a consistent 90.33%
accuracy across all sets of fea- tures, showing that it
could not capitalize on additional temporal or
wavelet features. Random Forest started with
relatively low accuracy using MFCCs alone
(84.44%), but improved significantly with the
addition of wavelet features to 95.59%. CatBoost
consistently performed the best, with 90.78% using
MFCCs, decreasing slightly with the addition of
delta features, before leaping to 97.10% with
wavelet features (see table 3).

Overall, these results highlight that MFCC features
are already good descriptors, and delta features have
limited extra value. In contrast, wavelet features
provide significant gain in  classification
performance, particularly for ensemble classifiers.
Among the classifiers, CatBoost was the most robust
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and powerful, with Random Forest giving the
highest relative improvement, and SVM being
unconcerned by feature enhancement (see figure 5).
Performance of classifiers was very varied for
various feature sets. SVM was experiencing low
and almost constant accuracy (around 57%),
indicating that it could not make any use of the
introduced temporal or wavelet features. Random
Forest was doing better, starting at 71.19% when
MFCCs were used, slightly higher when delta
features were included, and then a huge jump to
91.73% when wavelet features were used.
Moreover, CatBoost started at 64.02% using

MFCCs, slightly gained using delta features, and
reached 86.00% using wavelets (see table 4).

These results confirm that MFCCs alone provide a
limiting baseline, with delta features adding little
performance. Wavelet  features  improve
significantly by uti- lizing more richer time-
frequency information. Ensemble classifiers
(CatBoost and Random Forest) benefitted the most
from these features, although Random Forest
achieved the best overall accuracy. SVM remained
ineffective with all feature combi- nations, again
highlighting its poor ability to generalize compared
to ensemble-based classifiers (see figure 6).

Phase A

|

|

o b

L]

W

Figure 1: Phase A,B,C

Table 1: Main parameters of permanent magnet synchronous motor.

Parameter Value
Stator outer diameter / mm 120
Stator inner diameter / mm 75
Number of stator slots / one 24
Number of turns per slot Winding 262
layer / layer 4
Polar logarithm / pair 220
Rated voltage / V Rated 5
power / KW

Table 2: Fault conditions for each Electromagnetic transient simulation

RPM Fault Rshort(Rfault)
3600 X X
1 turn 1,0.01
5 turns 1, 0.01
4800 X X
1 turn 1,0.01
5 turns 1, 0.01
6000 X X
1 turn 1,0.01
5 turns 1, 0.01
7200 X X
1 turn 1,0.01
5 turns 1, 0.01
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Figure 2: Classes hierarchy for binary classification.
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Figure 3: Smart Fault Diagnosis Flowchart
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Figure 4: Difference between Healthy and Not Healthy in the three cases of test.
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Table 3: Classifier performance with different feature sets in the case of Healthy / Not Healthy.

Classifier MFCC | MFCC + D1D2 MFCC + D1D2 + WL
SVM 90.33 90.33 90.33

84.44 85.07 95.59
Random Forest | 9078 90.08 97.10
Catboost
Table 4: Classifier performance with different feature sets in the case of 1Turn / 5Turn.
Classifier MFCC MFCC + D1D2 MFCC + D1D2 + WL
SVM 57.54 55.73 57.61
Random Forest 71.19 72.66 91.73
Catboost 70.02 72.22 86.00

4. Conclusions and Future works

This work provides a hybrid fault classification
framework for Permanent Magnet Synchronous
Motors, (PMSMs), in attempts to provide more
accurate and reliable high level fault detection in
electric vehicle applications.This research evaluated
the performance of different sets of features (MFCC,
MFCC with delta features, and MFCC with wavelet
features) in classification with SVM, Random
Forest, and Cat- Boost. The results of accuracy
showed that SVM performed low and nearly uniform
accuracy with all sets of features, demonstrating
poor adaptability. Random Forest and CatBoost,
however, showed good improvement as wavelet
features were incorpo- rated, with 97.10% and
86.00% accuracy, respectively. These findings
present that, while MFCCs in isolation provide a
weak baseline and delta features slightly enhance it,
wavelet features play a crucial part in enhancing
classification performance. En- semble methods,
namely Random Forest, were shown to perform best
at utilizing such richer representations and therefore
are good candidates for noise-insensitive signal
classification tasks. These results suggest the
proposed framework under de- velopment will have
an immense benefit and directly correlate towards
real-time and accurate fault finding possible in real-
time PM motors that are employed in the elec-
tromagnetic propulsion industry. Future work could
include real-time deployment in these fields and
variations on a larger selections of faults.
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