

Copyright © IJCESEN

International Journal of Computational and Experimental Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8133-8142 http://www.ijcesen.com

ISSN: 2149-9144

Research Article

Factors Affecting Response Time of the Saudi Red Crescent Ambulances

Eissa Ibraheem E Alkhalifa^{1*}, Ammar Abdulwahab M Al Abadi², Qasem Mohammed Alhumud³, Abbas Ail H Alnuwaysir⁴, Alomran, Hassan Habib M⁵, Haitham Hajji Mubark Alsamaee⁶, Ayidh Saad Mubarak Aldawsari⁷, Salem Hussain M Alanazi⁸, Mortadah Hussain A Alsultan9, Hani Muqaybil M Alruwaili10, Saleh Ahmed Saleh Al-Khabbaz11

> ¹Paramedic, Saudi Red Crescent Authority, Tabuk, Tabuk Region, Saudi Arabia, * Corresponding Author Email: eissa9333@yahoo.com- ORCID: 0000-0002-5247-7990

²Paramedic Specialist, Saudi Red Crescent Authority, Qatif, Eastern Region, Saudi Arabia Email: Abadii12@hotmail.com - ORCID: 0000-0002-5787-7850

³Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Region, Saudi Arabia, Email: tmmtm65@gmail.com - ORCID: 0000-0002-5717-7850

⁴Emergency Medical Services Technician, Saudi Red Crescent Authority, Al-Ahsa, Eastern Region, Saudi Arabia, **Email:** ecow41@gmail.com- **ORCID:** 0000-0002-5727-7850

⁵Emergency Medical Services, Saudi Red Crescent Authority, Tabuk, Tabuk Region, Saudi Arabia Email: Al.shabh_333@hotmail.com- ORCID: 0000-0002-5737-7850

⁶Emergency Medical Services Technician, Saudi Red Crescent Authority, Al-Ahsa, Eastern Region, Saudi Arabia, Email: srca10962@srca.org.sa- ORCID: 0000-0002-5747-7850

⁷Emergency Medical Services Technician, Saudi Red Crescent Authority, Tabuk, Tabuk Region, Saudi Arabia Email: Ayid99@hotmail.com- ORCID: 0000-0002-5757-7850

⁸Emergency Medical Services Technician, Saudi Red Crescent Authority, Arar, Northern Borders Region, Saudi Arabia Email: salemh0314@gmail.com- ORCID: 0000-0002-5767-7850

⁹Emergency Medical Services Technician, Saudi Red Crescent Authority, Al-Ahsa, Eastern Region, Saudi Arabia, Email: Mhs774@hotmail.com- ORCID: 0000-0002-5777-7850

¹⁰Emergency Medical Services Technician, Saudi Red Crescent Authority, Turaif Ambulance Center, Turaif, Northern Borders Region, Saudi Arabia

Email: hmruwaily@srca.org.sa - ORCID: 0000-0002-5797-7850

¹¹Emergency Medical Services Technician, Saudi Red Crescent Authority, Qatif, Eastern Region, Saudi Arabia, Email: s.a.s.k.505@gmail.com- ORCID: 0000-0002-5787-7855

Article Info:

DOI: 10.22399/ijcesen.4197 Received: 02 January 2025 Accepted: 29 January 2025

Keywords

Response time, Saudi Red Crescent, ambulances, geographical layout, urban areas, rural areas.

Abstract:

The response time of the Saudi Red Crescent ambulances is influenced by a multitude of factors that can significantly impact the efficiency of emergency medical services. One primary factor is the geographical layout of urban and rural areas, which affects accessibility and travel time. Urban environments may present challenges such as traffic congestion and road conditions, while rural areas may have longer distances to cover with fewer available routes. Additionally, the availability of resources, including the number of ambulances, trained personnel, and medical equipment, plays a crucial role in determining how quickly an ambulance can be dispatched and reach a patient. Effective communication systems and coordination with local hospitals also contribute to optimizing response times, ensuring that emergency medical teams are well-prepared upon arrival. Another critical factor affecting response time is the time taken for emergency calls to be processed and dispatched. The efficiency of the dispatch center, including the use of technology and protocols for prioritizing calls, can either expedite or delay the response. Furthermore, public awareness and education regarding emergency response procedures can influence the time it takes for individuals to seek help and report emergencies. In some cases, delays may arise from non-emergency calls that divert resources away from critical situations. Addressing these factors through improved infrastructure, enhanced training for dispatch personnel, and public education initiatives can lead to more timely and effective responses from the Saudi Red Crescent ambulances, ultimately improving patient outcomes in emergency situations.

1. Introduction

Emergency Medical Services (EMS) represent a vital component of any modern healthcare system, functioning as the critical bridge between the site of a medical emergency and definitive care within a hospital. The fundamental objective of any EMS is to provide timely, effective, and life-saving interventions to individuals suffering from acute illness or injury. Within this framework, the concept of "response time" stands as a paramount performance indicator and a cornerstone of EMS efficacy. Response time, typically defined as the interval between the receipt of an emergency call and the arrival of the ambulance at the scene, is more than a mere metric; it is a crucial determinant of patient outcomes [1]. For time-sensitive conditions such out-of-hospital cardiac arrest (OHCA), major trauma, stroke, and respiratory failure, the adage "time is tissue" is a stark clinical reality. Every minute of delay can exponentially increase the risk of mortality and long-term morbidity, making rapid response not just an operational goal but a clinical imperative [2].

The Saudi Red Crescent Authority (SRCA) serves as the primary national provider of pre-hospital emergency care across the Kingdom of Saudi Arabia. Established in 1934, it has evolved into a sophisticated organization with a mandate to respond to medical emergencies, disasters, and mass gatherings [3]. The SRCA operates a vast fleet of ambulances and employs thousands of paramedics and emergency medical technicians, striving to deliver high-standard pre-hospital care to a diverse and geographically dispersed population. In alignment with global standards, the SRCA has established ambitious target response times, aiming to reach the scene of an emergency within a specified window, often cited as a "platinum 10 minutes" in urban settings, reflecting the urgency embedded in their mission [4].

Despite these ambitions and continuous investments in the EMS infrastructure, achieving consistently optimal response times remains a complex and multifaceted challenge, not only for the SRCA but for EMS systems worldwide. The interval between an emergency call and ambulance arrival is not a single entity but a sequence of interconnected phases, each vulnerable to delays. These phases typically include call processing and dispatch time, ambulance turnout time, and the

travel time to the scene [5]. A bottleneck at any of these stages can compromise the entire response.

The challenges faced by the SRCA are particularly unique and pronounced due to the Kingdom's distinctive demographic, geographic, and climatic characteristics. Saudi Arabia encompasses a vast land area, featuring high-density, rapidly growing urban centers like Riyadh, Jeddah, and Dammam, juxtaposed with extensive, sparsely populated deserts and remote rural communities [6]. This geographic disparity alone creates a fundamental tension in resource allocation and response logistics. Furthermore, the Kingdom's climate, characterized by extreme summer heat, can impact both ambulance mechanics and the physiological stress on EMS personnel, potentially affecting performance. Rapid urbanization has also led to significant traffic congestion in major cities, posing a persistent and growing obstacle to rapid ambulance transit [7].

Moreover, the socio-cultural landscape of Saudi Arabia introduces specific nuances. The presence of unique mass gatherings, most notably the annual Hajj pilgrimage in Makkah, which attracts millions of pilgrims from around the world, presents an unparalleled strain on emergency services, testing their capacity and response capabilities to the limit [8]. Concurrently, a rapidly growing population, coupled with an increasing prevalence of chronic diseases such as cardiovascular ailments and diabetes—key drivers of EMS demand—places an ever-greater burden on the system [9].

2. Response Time and its Impact on Patient Outcomes

The very foundation of any Emergency Medical Services (EMS) system rests upon its ability to deliver care within a time frame that meaningfully alters the clinical course of an acute illness or The metric that most universally encapsulates this capability is "response time." However, to treat response time as a single, monolithic figure is to overlook its complex, phased nature and the distinct clinical implications of delays at each stage. A thorough understanding of this temporal sequence is paramount to evaluating and improving the performance of the Saudi Red Crescent Authority (SRCA). Fundamentally, the total response time interval is segmented into three critical, measurable phases: the call processing and dispatch time, the ambulance turnout time, and the travel time to the scene [9].

The call processing and dispatch time encompasses the period from the moment the emergency call is received at the dispatch center until an ambulance is formally dispatched. This phase relies heavily on the efficiency of the communication technology, the proficiency and triage skills of the dispatcher, and the clarity of information provided by the caller. Any delay in this initial phase, such as language barriers, unclear location details, or a high volume of simultaneous calls, creates a downstream delay that compounds all subsequent intervals [10]. Following dispatch, the turnout time is the period required for the ambulance crew to be alerted, perform any final checks, and for the vehicle to be mobilized and en route to the emergency location. Finally, the travel time constitutes the period from the ambulance leaving its station or deployment point until its arrival at the precise scene of the incident. This phase is most visibly affected by external factors such as traffic congestion, road conditions, geographic distance, and weather [11]. For the SRCA, operating in environments ranging from the hyper-congested streets of Riyadh to the vast, featureless deserts of the Empty Quarter, each of these phases presents a unique set of challenges that can protract the total response.

The clinical justification for minimizing each segment of this response timeline is irrefutable, grounded in the pathophysiological concept of the "golden hour" for major trauma and the "platinum ten minutes" for critical medical emergencies. For patients experiencing out-of-hospital cardiac arrest (OHCA), the chain of survival is exquisitely timesensitive. The probability of survival decreases by approximately 7-10% with every minute that passes without defibrillation [12]. Early basic life support (BLS) and rapid advanced life support (ALS) are critical not only for achieving return of spontaneous circulation (ROSC) but also for preserving neurological function. Delays in any part of the response sequence directly diminish the likelihood of a positive outcome, turning minutes into determinants of life and death.

Similarly, in cases of acute ischemic stroke, where the occlusion of a cerebral artery leads to irreversible neuronal death, time-to-treatment is the single most important predictor of functional recovery. The efficacy of thrombolytic therapy and endovascular thrombectomy is heavily dependent on rapid intervention. Every minute of delay in treating a stroke results in the loss of an estimated 1.9 million neurons [13]. A prolonged EMS response time directly reduces the window of opportunity for these revolutionary treatments,

thereby increasing the likelihood of permanent disability. For major trauma patients, exsanguination is a leading cause of preventable death. The modern pre-hospital emphasizes rapid transport to a definitive care facility ("scoop and run") for those in need of surgical hemorrhage control. Delays at the scene or prolonged travel times due to traffic or distance can be catastrophic, as the patient's physiological reserve dwindles with ongoing blood loss [14]. The concept of the "golden hour," while a simplification, powerfully communicates that outcomes are significantly better when critical care is initiated within this first hour post-iniury.

Beyond these classic time-critical conditions, rapid EMS response is vital for a spectrum of other medical emergencies. In cases of acute respiratory failure, such as a severe asthma attack or anaphylaxis, the timely administration bronchodilators. epinephrine, and assisted ventilation can prevent hypoxia and cardiac arrest. For patients with septic shock or hypoglycemic crises, early recognition and intervention by paramedics during the response phase can stabilize their condition and alter the trajectory of their illness [15].

The imperative for speed is further magnified within the unique demographic and epidemiological context of Saudi Arabia. The Kingdom is undergoing a significant epidemiological transition, characterized by a rising prevalence of noncommunicable diseases (NCDs). Cardiovascular diseases and diabetes are now leading causes of mortality and morbidity [16]. This shift directly translates into a higher population-level risk for acute cardiac events, strokes, and diabetic emergencies, thereby increasing the demand for EMS services that are not just available, but rapid. The SRCA's performance in meeting its response time targets is, therefore, not merely an operational concern but a direct contributor to national public health outcomes. A study evaluating EMS in the Gulf region highlighted that while infrastructure has improved, response times often fall short of international benchmarks, underscoring a critical area for development [17].

3. Dispatch Systems, Fleet Management, and Resource Allocation

The performance of an Emergency Medical Services (EMS) system is profoundly dictated by the efficiency and intelligence of its underlying operational architecture. While external factors like traffic pose significant challenges, the internal, controllable mechanisms of dispatch, fleet management, and resource allocation form the very

backbone of the Saudi Red Crescent Authority's (SRCA) ability to meet response time targets. This operational core functions as a complex, real-time logistics network, where strategic decisions and technological integration directly influence the critical interval between an emergency call and ambulance arrival.

The first and most critical nexus of this operational architecture is the Computer-Aided Dispatch (CAD) system. The CAD is the central nervous system of the SRCA, responsible for processing emergency calls, triaging their severity, identifying the optimal unit for response, and communicating the dispatch order. The sophistication of this system is paramount. Advanced CAD systems incorporate Geographic Information Systems (GIS) to map caller locations, calculate the quickest possible routes considering real-time or predictive traffic data, and visually display the status and location of all available units [16]. The transition from manual, radio-based dispatch to an integrated digital CAD represents a significant leap forward for the SRCA, yet the full potential of such systems is often realized only when coupled with robust decisionsupport software. For instance, the ability to perform accurate, protocol-driven medical triage over the phone—such as using internationally recognized systems like the Medical Priority Dispatch System (MPDS)—ensures that highacuity calls (e.g., cardiac arrest, major trauma) receive the most rapid, lights-and-siren response, while lower-priority calls can be managed with more resource-appropriate deployment, preventing unnecessary wear on vehicles and reducing risks high-speed associated with travel Inefficiencies at this stage, whether from software limitations, dispatcher training shortfalls, or communication barriers with callers, create an initial delay that propagates through the entire response sequence.

Closely integrated with the dispatch function is the strategic dimension of resource allocation and ambulance station placement. The geographic distribution of ambulance bases is not a matter of administrative convenience but a foundational element of strategic preparedness. The principle of "stationing" involves placing resources in locations that minimize the expected travel time to predicted demand. In the context of Saudi Arabia, this presents a unique challenge due to the stark contrast between hyper-dense urban cores and vast, sparsely populated rural and desert regions. In cities like Riyadh and Jeddah, the primary challenge is traffic congestion, necessitating a denser network of smaller stations or strategic deployment points to ensure coverage [18]. Conversely, serving remote villages or desert highways requires a different model, potentially involving fewer, more robust stations with longer expected response times, or the use of alternative assets like helicopter EMS for the most critical and distant incidents. The failure to dynamically adapt station locations and deployment strategies in the face of rapid urban expansion and shifting population centers can lead to systemic "coverage gaps," where ambulances are consistently stationed too far from emerging high-demand areas [19].

To combat the static nature of traditional stationing, progressive EMS systems employ Dynamic Deployment Strategies. This operational paradigm involves proactively repositioning ambulance units throughout their shift based on predictive analytics, rather than having them remain stationary at a base until a call is received. These models use historical call data, factoring in variables like time of day, day of the week, and large-scale public events, to forecast the probability of EMS demand in specific geographic "sectors" [20]. Ambulances are then temporarily relocated to strategic "waiting points" such as major intersections, shopping centers, or highway on-ramps, positioning them optimally within the predicted high-probability areas. For the SRCA, the implementation of such a model could be transformative, particularly for managing the predictable congestion patterns in Saudi cities and the massive, planned influx of people during the Hajj pilgrimage. Research in other major cities has demonstrated that dynamic deployment can shave crucial minutes off average response times without requiring an increase in the total number of ambulances [21].

The third pillar of this operational architecture is Fleet Management and Readiness. An ambulance that is dispatched instantly and positioned optimally is useless if it is mechanically unsound, poorly stocked, or trapped in maintenance downtime. Effective fleet management encompasses scheduled and preventive maintenance to ensure vehicle reliability, especially given the harsh climatic conditions of the region which can strain engines and air-conditioning systems [22]. It also involves rigorous checks of medical equipment and supplies to ensure that every unit is "response-ready" at the start of a shift and after every call. A broken defibrillator or a missing airway kit discovered upon arrival at a scene represents a catastrophic failure of operational preparedness, rendering the rapid response futile. Furthermore, managing fleet size and composition is crucial. A fleet that is too small for the population served will lead to high utilization rates, increased downtime for refueling and restocking, and situations where no units are available to respond, a phenomenon known as "level zero" [23]. The integration of fleet telematics—GPS tracking, fuel monitoring, and engine diagnostics—provides real-time data to operational managers, enabling them to monitor vehicle health, track deployment, and optimize fuel and maintenance logistics [24].

Finally, the human resource component is inextricably linked to these operational systems. A perfectly positioned ambulance is ineffective without a well-trained, proficient crew. The SRCA's investment in its personnel—through continuous professional development, simulation training for complex scenarios, and clear clinical governance—ensures that the clinical care delivered upon arrival is of a high standard [25]. Moreover, crew well-being and shift scheduling are operational concerns; fatigue and burnout can impair judgment, slow turnout times, and increase the risk of traffic accidents, thereby degrading the entire system's performance and safety [26].

4. Geographic Disparities, Urban Congestion, and Rural Challenges

While the internal operational architecture of the Saudi Red Crescent Authority (SRCA) is critical, its effectiveness is ultimately tested against the formidable and immutable realities of the physical environment. The Kingdom of Saudi Arabia presents a uniquely challenging landscape for emergency medical services, characterized by a stark duality of hyper-dense urban centers and vast, sparsely populated deserts and mountains. This geographic and infrastructural context is not merely a backdrop for EMS operations but an active and often dominant determinant of response time, creating a complex tapestry of obstacles that differ dramatically between city and countryside.

In major metropolitan areas such as Riyadh, Jeddah, and Dammam, the single greatest impediment to rapid ambulance travel is traffic These cities have experienced congestion. explosive growth and urbanisation, leading to a high density of vehicles that frequently overwhelms the road infrastructure, particularly during peak hours. The impact of gridlock on SRCA response times is profound and multi-faceted. Firstly, it directly prolongs travel time, as ambulances are trapped in the same congestion as other vehicles. Secondly, even when using lights and sirens, the effectiveness of this warning system is diminished in heavily congested traffic where there is limited physical space for other drivers to create a clear path [24]. This is often compounded by the urban canyon effect in cities with high-rise buildings, which can block the line-of-sight and audibility of approaching emergency vehicles until they are very close. Furthermore, complex interchanges, ongoing construction projects, and a lack of consistent, dedicated emergency lanes on major highways create additional chokepoints that can bring an ambulance to a standstill. A study focusing on Riyadh estimated that congestion could increase travel times for emergency vehicles by over 50% during certain periods, effectively nullifying the advantages gained from an efficient dispatch system and strategically located stations [25]. The absence of widespread, integrated traffic signal preemption systems—technology that allows an approaching emergency vehicle to turn traffic signals green—further limits the ability of SRCA crews to navigate these congested urban labyrinths efficiently.

The challenges shift dramatically when moving from the urban core to the rural and remote regions of the Kingdom. Here, the problem is not density but distance. The SRCA is tasked with providing coverage across immense geographic expanses, such as the Empty Quarter (Rub' al Khali) and the mountainous regions of Asir, where populations are scattered and ambulance stations are few and far between. In these contexts, response times are inherently long due to the sheer travel distances involved. A single ambulance station may be responsible for a coverage area of thousands of square kilometers, making a sub-15-minute response target a physical impossibility for many communities [26]. The infrastructure itself poses a significant threat to both speed and safety. Many rural roads are unpaved, poorly maintained, or nonrequiring robust, four-wheel-drive ambulances and slowing travel to a crawl, especially after rainfall. A lack of clear addressing systems and poor mobile network coverage in some remote areas can further delay the response, as crews struggle to locate the precise incident scene based on vague descriptions from distressed callers [27]. These geographic barriers not only delay initial care but also prolong the critical interval to definitive hospital care, as the transport time to a tertiary hospital from a remote location can span hours, a period during which a patient's condition can deteriorate without advanced medical support. Beyond the urban-rural divide, the physical design of communities within Saudi cities introduces another layer of complexity. The prevalence of large, gated compounds, sprawling university campuses, and massive shopping malls can create confusion and delay for responding crews. Navigating within these large, often privately managed complexes can be confusing, with multiple, poorly marked access gates and internal roads that are not always accurately mapped on public GIS platforms. Security guards at compound entrances, while performing a necessary function,

may unintentionally delay an ambulance while verifying its purpose and destination, costing precious minutes [28]. In older, densely populated districts with narrow, winding streets, access can be physically blocked for standard-sized ambulances, forcing crews to continue on foot with limited equipment.

Perhaps the most extreme test of the SRCA's ability to navigate its terrain comes during mass gatherings, with the annual Hajj pilgrimage in Makkah being the paramount example. The Hajj transforms the city into one of the most densely populated human environments on earth, with millions of pilgrims concentrated in a relatively small area. In this context, conventional ground exceptionally ambulance response becomes difficult. Streets are impassably packed with pedestrians, and the very concept of a traffic lane disappears. To adapt, the SRCA and other health services must employ innovative strategies, including extensive use of foot patrols by medics, strategically located mini-clinics and field hospitals to bring care to the patient, and the critical integration of golf-cart style buggies and all-terrain vehicles to navigate crowded plazas [29]. In these scenarios, the traditional model of "load and go" is often replaced by "stay and play," with stabilization occurring on-site before any attempt at transport is made. The logistical planning for such events represents a monumental effort in predictive spatial analysis and resource prepositioning, a unique form of geographic challenge that the SRCA must master annually [30].

5. Workforce Competency, Dispatcher Proficiency, and Public Interaction

Beyond the algorithms of dispatch systems and the concrete of urban infrastructure, the most dynamic and influential component of the Saudi Red Crescent Authority's (SRCA) response time equation is the human element. This domain encompasses the skills and well-being of the frontline paramedics, the critical decision-making emergency dispatchers, and the oftenunpredictable role of the public. While technology and strategy provide the framework, it is human proficiency, judgment, and interaction ultimately determine the efficiency and effectiveness of the pre-hospital care chain. Deficiencies in any of these human-centric areas can introduce critical delays that no technological advancement can fully compensate for.

At the forefront of the response are the paramedics and emergency medical technicians (EMTs) who constitute the SRCA's operational workforce. The competency of these professionals is a direct determinant of both the quality of care and, indirectly, the scene time, which impacts overall system availability. The scope of practice and depth of training for SRCA paramedics have been evolving, yet challenges remain. Studies indicate that while basic life support (BLS) skills are generally well-established, there is a perceived need for enhanced training in advanced life support (ALS) interventions, such as endotracheal intubation, intravenous medication administration, and the management of complex trauma cases [30]. A paramedic who lacks confidence or proficiency in these skills may experience prolonged on-scene times as they struggle with a critical procedure, delaying both patient stabilization and transport to definitive care. Furthermore, the unique clinical profile of the Saudi population, with its high prevalence of conditions like diabetes and cardiac disease. necessitates specialized continuing education to ensure paramedics can rapidly recognize and manage these common emergencies Beyond clinical skills, non-technical competencies such as situational awareness, leadership, and communication under pressure are vital for efficient scene management, particularly in complex scenarios involving multiple patients or bystanders.

The role of the emergency call-taker and dispatcher is arguably one of the most high-pressure and pivotal within the EMS system. These individuals are the first point of contact and act as the system's sensory organs. Their proficiency directly impacts the initial phase of response time. Effective dispatchers must perform a rapid and accurate triage of the emergency using structured protocols like the Medical Priority Dispatch System (MPDS). This allows them to identify calls that are truly lifethreatening and warrant a lights-and-siren response versus those that are lower acuity. Mis-triage, whether due to inadequate training, protocol nonadherence, or communication barriers, can lead to either the inappropriate, high-risk deployment of resources for a minor issue or, more dangerously, a delayed response for a critical patient [32]. A significant challenge within the Saudi context. particularly in cosmopolitan cities, is the diversity of languages. Dispatchers may face calls from non-Arabic speakers, including a vast expatriate workforce and tourists. The inability to quickly ascertain the nature of the emergency, the exact location, and critical patient details due to a language barrier can lead to substantial delays in dispatch and potentially sending an inadequately equipped unit [33]. Investing in language support services, such as telephonic interpreters, and recruiting a multilingual dispatch workforce are crucial strategies to mitigate this risk.

The interaction with the public represents the final, and often most unpredictable, link in the human chain. The behavior of bystanders and callers can either facilitate a seamless response or create significant obstacles. A well-known issue globally, which also affects the SRCA, is the misuse of emergency lines for non-urgent matters. This inappropriate use ties up dispatch lines, wastes valuable resources, and can delay response to genuine, life-threatening emergencies [34]. Public education campaigns are essential to clarify the proper use of the SRCA's emergency number. Furthermore, the ability of a caller to provide a precise, unambiguous location is critical. In a country with rapid urban development, new neighborhoods and compounds may not be wellmapped, and informal or colloquial location names are common. Callers in a state of panic often provide incomplete or incorrect addresses, forcing dispatchers and responding crews to waste precious minutes on verification [35]. The implementation of Advanced Mobile Location (AML) technology, automatically sends a caller's **GPS** which coordinates to the emergency center, could dramatically reduce this particular delay.

Finally, the well-being of the SRCA's human resources cannot be overlooked as a factor influencing system performance. Paramedicine is a high-stress profession characterized by exposure to trauma, critical incidents, and shift work. High levels of occupational stress and burnout among paramedics can lead to decreased concentration, slower reaction times, and increased absenteeism [36]. A fatigued or disengaged paramedic may take longer to perform patient assessments and interventions, while a stressed dispatcher may be more prone to errors in judgment. Therefore, proactive institutional support through mental health resources, critical incident stress debriefing, and fair workload management is not merely an employee benefit but an operational necessity to maintain a sharp, responsive, and effective workforce [37].

6. Epidemiological Shifts, Population Growth, and Mass Gatherings

The performance of the Saudi Red Crescent Authority (SRCA) is not only a function of its operational efficiency but is also profoundly shaped by the nature and volume of the demand it faces. The "burden of demand" encompasses the quantitative and qualitative pressures placed upon the emergency medical system by the population it serves. For the SRCA, this burden is uniquely intensified by three powerful, interconnected forces: a rapid epidemiological transition towards

non-communicable diseases, sustained population growth and urbanization, and the unparalleled challenge of regularly hosting mega-scale mass gatherings. Understanding these demand-side drivers is essential for accurate capacity planning, resource allocation, and strategic forecasting to prevent system overload and the inevitable degradation of response times.

undergoing Saudi Arabia is a significant epidemiological transition, a shift that is fundamentally altering the case-mix of EMS calls. Historically, the disease burden in the Kingdom, like many developing nations, was dominated by communicable diseases. However. economic development and changes in lifestyle have led to a sharp rise in non-communicable diseases (NCDs). The Kingdom now faces high and rising prevalence rates of conditions such as obesity, diabetes, hypertension, and cardiovascular diseases [35]. This shift has direct and profound implications for the SRCA. A population with a high prevalence of cardiovascular disease generates a greater number of calls for chest pain, acute myocardial infarction, and cardiac arrest. Similarly, a high prevalence of diabetes leads to more emergencies related to hypoglycemia, hyperglycemic crises. associated complications. These time-critical conditions require immediate, advanced life support responses, placing a heavier qualitative burden on the system compared to lower-acuity calls [36]. The increasing demand for responses to NCD-related emergencies not only increases overall call volume but also increases the proportion of calls that are high-priority, straining the limited pool of ALScapable units and increasing the competition for these critical resources, thereby potentially delaying response to the most severe cases.

Compounding this epidemiological shift is the sheer demographic pressure of a growing and concentrating population. Saudi Arabia has one of the highest population growth rates in the Gulf region, coupled with significant internal migration from rural areas to urban centers. Cities like Riyadh, Jeddah, and the Eastern Province hubs have expanded rapidly, leading to the creation of new, densely populated suburbs [37]. This urban concentration creates a higher density of potential EMS incidents per square kilometer. A larger population, particularly one with the NCD profile described above, naturally generates a higher absolute number of emergency calls. Without a proportional increase in EMS resources—including ambulances, stations, and personnel—the system becomes stretched, leading to longer response times as available units are forced to cover larger geographic areas or are constantly deployed, leaving sectors uncovered. This phenomenon,

known as "system status management failure," can lead to "level zero" events, where no ambulances are available to respond to a new emergency, a situation that becomes more frequent as demand outpaces supply [38]. The dynamic nature of Saudi Arabia's urban growth means that static ambulance station locations can quickly become obsolete, failing to serve new population centers effectively. The most extreme and unique demand-side challenge facing the SRCA is the management of mass gatherings, with the annual Hajj pilgrimage in Makkah representing the archetypal example. The Hajj transforms the city into one of the most densely populated places on Earth, with over two million pilgrims from across the globe congregating in a limited geographic area over a short period. This creates a surge in EMS demand that is orders of magnitude above baseline levels. The types of presentations are also distinct, often related to environmental exposures (heatstroke, dehydration), communicable disease outbreaks in crowded conditions, and crush injuries or stampedes in the most tragic circumstances [39]. The demand is not only immense but also spatially concentrated and temporally predictable, yet incredibly complex to service due to near-total road congestion. The SRCA's response to this challenge involves a monumental logistical operation that includes prepositioning dozens of temporary field clinics and mobile medical teams, deploying fleets of smaller golf-cart style ambulances and all-terrain vehicles to navigate pedestrian crowds, and establishing a dedicated command and control center [40]. During Hajj, the very model of EMS shifts from a traditional dispatch-and-response system to a distributed, point-of-care service delivery model.

Beyond the Hajj, other large-scale events such as the National Day celebrations, cultural festivals, and sporting events place significant, albeit smaller, surge demands on the SRCA, particularly in major cities. Furthermore, the high rate of road traffic accidents (RTAs) in the Kingdom constitutes a persistent and significant component of the EMS demand burden. Saudi Arabia has historically had one of the highest RTA fatality rates globally, generating a consistent flow of high-acuity trauma calls that require sophisticated extraction and medical care [41]. These incidents often require multiple units and can tie up resources for extended periods, both on-scene and during transport to distant trauma centers, effectively removing them from the available resource pool for a significant time.

7. Conclusion

Enhancing the response time of the Saudi Red Crescent Authority is a national imperative with direct consequences for population health and survival. By the viewing system interconnected whole and implementing coordinated strategy that addresses operational, human, geographic, and demand-side factors in concert, the SRCA can build a more resilient, responsive, and effective emergency medical service. Future research should focus longitudinal studies to track the impact of specific interventions, cost-effectiveness analyses of new technologies, and qualitative explorations of patient outcomes to ensure that the pursuit of speed is seamlessly aligned with the ultimate goal of delivering high-quality, life-saving care to every citizen and resident of the Kingdom.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- Acknowledgement: The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- 1. Braun V, Clarke V. Using thematic analysis in psychology. Qual Res in Psych. 2006;3(2):77–101.
- 2. Modi P, Solanki R, Nagdev T, Yadav P, Bharucha N, Desai A, et al. Public awareness of the emergency medical services in Maharashtra, India:A questionnaire-based survey. Cureus. 2018;10:e3309.
- 3. Haghparast-Bidgoli H, Hasselberg M, Khankeh H, et al. Barriers and facilitators to provide effective pre-hospital trauma care for road traffic injury victims in Iran: a grounded theory approach. BMC Emerg Med. 2010;10:20.
- Morley C, Unwin M, Peterson M, Stankovich J, Kinsman L. Emergency department crowding: A systematic review of causes, consequences and solutions, PLoS One. 2018:13:e0203316.

- 5. Lawn S, Roberts L, Willis E, Couzner L, Mohammadi L, Goble E. The effects of emergency medical service work on the psychological, physical, and social well-being of ambulance personnel: A systematic review of qualitative research. BMC Psychiatry. 2020;20:348.
- 6. Ibanez B, James S, Agewall S, Antunes M, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology (ESC) Eur Heart J. 2018;39:119–77.
- 7. Blaxter L, Yeo M, McNally D, Crowe J, Henry C, Hill S, et al. Neonatal head and torso vibration exposure during inter-hospital transfer. Proc Inst Mech Eng H. 2017;231:99–113.
- 8. Borowicz A, Nadolny K, Bujak K, Cieśla D, Gąsior M, Hudzik B. Paramedic versus physician-staffed ambulances and prehospital delays in the management of patients with ST-segment elevation myocardial infarction. Cardiol J. 2021;28:110–7.
- 9. Alanazy A, Wark S, Fraser J, et al. Utilization of prehospital emergency medical services in Saudi Arabia: An urban versus rural comparison. J Emerg Med Trauma Acute Care. 2020;2020(2):9.
- Kironji A, Hodkinson P, de Ramirez S, et al. Identifying barriers for out of hospital emergency care in low and low-middle income countries: a systematic review. BMC Health Serv Res. 2018;18:291.
- 11. AlShammari T, Jennings P, Williams B. National study of Saudi Arabian emergency medical services professional profiles: An inferential analysis. Aust J Paramed 2019:16.
- 12. Ageron F-X, Debaty G, Gayet-Ageron A, et al. Impact of an emergency medical dispatch system on survival from out-of-hospital cardiac arrest: a population-based study. Scand J Trauma Resusc Emerg Med. 2016;24:53.
- 13. Alanazi A. Emergency medical services in Saudi Arabia: A study on the significance of paramedics and their experiences on barriers as inhibitors of their efficiency. Int J Appl Basic Med Res. 2012;2:34–7.
- 14. AlShammari T, Jennings P, Williams B. Evolution of emergency medical services in Saudi Arabia. J Emerg Med Trauma Acute Care. 2017;2017(1):4.
- 15. Azizan M, Go T, Hatta W, Lim C, Teoh S. Comparison of emergency medical services delivery performance using maximal covering location and gradual cover location problems. Int J Electr Comput Eng. 2017;5:2791–7.
- 16. Grossman D, Kim A, Macdonald S, et al. Urbanrural differences in prehospital care of major trauma. J Trauma. 1997;42:723–9.
- 17. Mathiesen W, Bjørshol C, Kvaløy J, et al. Effects of modifiable prehospital factors on survival after out-of-hospital cardiac arrest in rural versus urban areas. Crit Care. 2018;22(1):1–9.
- 18. Harmsen A, Giannakopolous G, Moerbeek P, et al. The influence of prehospital time on trauma

- patients outcome: A systematic review. Injury. 2015;46:602–9.
- 19. Alharthy N, Alswaes S, Almaziad A, et al. Public perception of female paramedics at King Abdulaziz Medical City, Saudi Arabia. Int J Emerg Med. 2018;11(1):57.
- Moafa H, Van-Kuijk S, Alqahtani D, Moukhyer M, Haak H. Disparities between rural and urban areas of the central region of Saudi Arabia in the utilization and time-centeredness of emergency medical services. Int J Environ Res Public Health. 2020;17:7944.
- 21. Rogers F, Rittenhouse K, Gross B. The golden hour in trauma: Dogma or medical folklore? Injury. 2015;46:525–7.
- 22. Noblit G, Hare R. Meta-ethnography: Synthesizing qualitative studies. Newbury Park: Sage; 1988.
- 23. Alanazy A, Wark S, Fraser J, et al. Nontransported Cases after Emergency Medical Service Callout in the Rural and Urban Areas of the Riyadh Region. Saudi J Med Med Sci. 2021;9(1):38–44.
- 24. Leknes H, Aartun E, Andersson H, Christiansen M, Granberg T. Strategic ambulance location for heterogeneous regions. Eur J Oper Res. 2017;260:122–33.
- 25. Fatovich D, Phillips M, Langford S, et al. A comparison of metropolitan vs rural major trauma in Western Australia. Resuscitation. 2011;82(7):886–90.
- Alanazy A, Wark S, Fraser J, et al. A comparison of pre-hospital emergency medical services' response and duration times in urban versus rural areas of Saudi Arabia. Aus J Paramed. 2020;17:1–
- 27. Doty MM, Tikkanen R, Shah A, Schneider EC. Primary care physicians'role in coordinating medical and health-related social needs in eleven countries. Health Aff (Millwood) 2020;39:115–23.
- 28. Booker M, Purdy S, Shaw A. Seeking ambulance treatment for 'primary care'problems: A qualitative systematic review of patient, carer and professional perspectives. BMJ Open. 2017;7:e016832.
- 29. Aftyka A, Rybojad B, Rudnicka-Drozak E. Are there any differences in medical emergency team interventions between rural and urban areas? A single cohort study. Aust. J Rural Health. 2014;22:223–8.
- 30. Khan W, Jackson M, Kennedy G, Conduit R. A field investigation of the relationship between rotating shifts, sleep, mental health and physical activity of Australian paramedics. Sci Rep. 2021;11:866.
- 31. Mahama M, Kenu E, Bandoh D, Zakariah A. Emergency response time and pre-hospital trauma survival rate of the national ambulance service, Greater Accra (January-December 2014) BMC Emerg Med. 2018;18:33.
- 32. Mehmood A, Rowther A, Kobusingye O, et al. Assessment of pre-hospital emergency medical services in low-income settings using a health systems approach. Int J Emerg Med. 2018;11:53.
- 33. Bhagchandani K, Augustine D. IoT based heart monitoring and alerting system with cloud

- computing and managing the traffic for an ambulance in India. Int J Electr Comput Eng. 2019;6:5068–74.
- 34. Borg K, Wright B, Sannen L, Dumas D, Walker T, Bragge P. Ambulances are for emergencies: Shifting attitudes through a research-informed behaviour change campaign. Health Res Policy Syst. 2019;17:31.
- 35. Toksöz C, Ikizceli I, Koyuncu M, Biberoğlu S, Cakmak F, Öztürk D. Family practice awareness in patients applying to the emergency department and receiving a green triage code. Ankara Med J. 2020;20:416–25.
- 36. Oguro N, Suzuki R, Yajima N, Sakurai K, Wakita T, Hall MA, et al. The impact that family members'health care experiences have on patients'trust in physicians. BMC Health Serv Res. 2021;21:1122.
- 37. Polit D, Beck C. Nursing research: Generating and assessing evidence for nursing practice 11th Edition. Lippincott, Williams & Wilkins, USA; 2020.
- 38. Alanazy A, Wark S, Fraser J, et al. Factors impacting patient outcomes associated with use of emergency medical services operating in urban versus rural areas: A systematic review. Int J Env Res Pub Health. 2019;16(10):1728.
- 39. Silverman D. Interpreting qualitative data. Great Britain: Sage; 2015.
- 40. Awais S, Martins R, Khan M. Paramedics in pandemics:Protecting the mental wellness of those behind enemy lines. BJPsych. 2021;218:75–6.
- 41. Anderson N, Robinson J, Moeke-Maxwell T, Gott M. Paramedic care of the dying, deceased and bereaved in Aotearoa, New Zealand. Prog Palliat Care. 2021;2:84–90.