

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8159-8166
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Device Tree-Aware Diagnostics Framework for Portable and Scalable Platform

Health Monitoring

Maheswara Kurapati*

Independent Researcher, USA
* Corresponding Author Email: mahesh.kurapati.1906@gmail.com - ORCID: 0000-0002-5247-9950

Article Info:

DOI: 10.22399/ijcesen.4200

Received : 25 November 2015

Accepted : 20 December 2016

Keywords

Device Tree,

Platform Diagnostics,

Hardware Abstraction,

Embedded Systems,

System Health Monitoring

Abstract:

Contemporary server platforms exhibit significant hardware diversity in communication

interfaces, including I2C, I3C, SPI, and eSPI, traditionally requiring hardcoded board-

specific diagnostics implementations that introduce substantial technical debt through

reduced portability and increased maintenance burden. Using the flattened device tree

standard and the libfdt library, the Device Tree-Aware Diagnostics Framework

overcomes these constraints by dynamically extracting platform-specific data at

runtime, letting diagnostics applications run across several hardware setups free of

adjustment. Three main subsystems make up the framework architecture: an interface

abstraction level offering uniform access to Heterogeneous communication buses and a

fault detection engine running configurable health monitoring algorithms. Deployment

across multiple platform variants demonstrates enhanced portability through the

elimination of platform-specific code, improved maintainability via reduced cyclomatic

complexity, and negligible performance overhead during diagnostic operations. The

framework establishes a practical solution for scalable platform health monitoring in

heterogeneous computing environments while promoting declarative hardware

description methodologies that separate configuration from operational logic.

1. Introduction

Contemporary server platforms exhibit significant

hardware heterogeneity, incorporating diverse

communication interfaces such as Inter-Integrated

Circuit (I2C), Improved Inter-Integrated Circuit

(I3C), Serial Peripheral Interface (SPI), and

Enhanced Serial Peripheral Interface (eSPI).

Created by Philips Semiconductors in 1982, the I2C

bus specification specifies a multi-master serial

single-ended architecture supporting three

operating modes: Standard-mode with a High-speed

mode capable of reaching 3.4 Mbit/s [1], Fast-mode

with bit rates up to 400 kbit/s, and bit rates up to

100 kbit/s. Using open-drain or open-collector

output stages, the protocol uses a two-wire interface

comprised of serial data line (SDA) and serial clock

line (SCL). Allow several devices to be linked to

the same bus without generating electrical conflicts

[1]. Every I2C transaction starts with a START

condition created by the master device, marked by a

high-to-low change on SDA with SCL staying high,

next through a 7-bit or 10-bit slave address and a

read/write bit [1]. Traditional approaches to

diagnostics software development have relied

heavily on static, board-specific implementations

where hardware details, including I2C slave

addresses, bus numbers, and timing parameters, are

hardcoded into the application logic, introducing

substantial technical debt through reduced code

portability and increased susceptibility to

configuration errors when hardware revisions

occur.The Flattened Device Tree (FDT) standard

provides a declarative mechanism for describing

hardware topology through a tree structure

representation where each node may contain

properties expressed as name-value pairs [2]. The

devicetree specification defines fundamental

properties including "compatible" strings that

identify specific device bindings, "reg" properties

specifying address information with cells defined

by parent node's address-cells and size-cells

properties, and "ranges" properties describing

address translation between parent and child

address spaces [2]. A typical device tree source file

begins with version information using the /dts-v1/

tag, followed by memory reservation blocks and the

root node denoted by a forward slash, with

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8160

subnodes organized hierarchically to represent the

physical bus topology [2]. Properties within nodes

utilize specific formats, including empty values for

boolean properties, 32-bit integer values enclosed

in angle brackets, 64-bit values represented as pairs

of cells, null-terminated strings in double quotes,

and binary data specified as square-bracket-

enclosed byte sequences [2]. The standard defines

standard properties such as "status" to indicate

operational state, "interrupts" and "interrupt-parent"

for interrupt routing, and "clocks" with "clock-

frequency" for timing specifications [2].This article

presents a device tree-aware diagnostics framework

that leverages the libfdt library to parse FDT blobs

and extract hardware configuration dynamically at

runtime, eliminating the need for platform-specific

code modifications when deploying diagnostics

across diverse server configurations. By querying

device tree properties to determine I2C bus

controller base addresses, slave device addresses

typically ranging from 0x08 to 0x77 in the 7-bit

addressing space, clock frequencies, and peripheral

mappings, the framework achieves true platform

independence while maintaining compliance with

I2C electrical specifications, including maximum

bus capacitance of 400 pF and minimum rise time

requirements [1][2].

2. Background and Related Work

Platform diagnostics and health monitoring have

constituted critical components of system

management infrastructure since the emergence of

complex computing platforms in the 1980s and

1990s. Early diagnostics implementations

employed direct hardware manipulation through

memory-mapped I/O or port-based access, with

platform-specific details embedded directly in

diagnostic routines. This approach, while offering

maximum performance and minimal abstraction

overhead, resulted in diagnostics code that was

tightly coupled to specific hardware

implementations and required substantial

modification for each new platform variant.The

Advanced Configuration and Power Interface

(ACPI) specification version 6.5, released in

August 2022, defines a comprehensive hardware-

software interface spanning 1,098 pages of

technical documentation that establishes

standardized mechanisms for operating system-

directed configuration and power management [3].

The specification introduces the ACPI Control

Method bytecode execution environment, wherein

firmware provides Abstract Syntax Notation

encoded methods that are interpreted by the

operating system's ACPI Machine Language

interpreter to perform runtime hardware

configuration and power state transitions [3]. ACPI

defines multiple system power states, including

Global System States (G0 working through G3

mechanical off), Sleep States (S0 through S5),

Device Power States (D0 fully on through D3 off),

and Processor Power States (C0 operating through

C3 deep sleep), each with specific electrical and

timing requirements for state transitions [3]. The

ACPI namespace employs a hierarchical structure

where device objects are identified through four-

character names, with the root System Bus

identified as "_SB_" and individual devices

referenced through paths such as

"_SB_.PCI0.ISA.COM1" for serial ports or

"_SB_.I2C0" for I2C controllers [3]. The

specification defines the Differentiated System

Description Table containing platform-specific

information encoded in AML bytecode, typically

consuming between 64 KB and 512 KB of system

memory depending on platform complexity and the

number of enumerated devices [3]. However,

ACPI's x86-centric architecture and dependency on

operating system support created challenges for

low-level diagnostics operations requiring hardware

access before OS initialization or during OS-

independent recovery scenarios.Device tree

technology originated in the IEEE Standard 1275-

1994 for Boot Firmware, which established the

Open Firmware architecture defining client

interfaces for device tree traversal and property

interrogation [4]. The standard specifies that each

device node must contain a "name" property

consisting of one to 31 characters from the set of

letters, digits, commas, periods, underscores, plus

signs, and hyphens, with the node's unit address

appended using the "@" separator to distinguish

multiple instances of identical device types [4].

Open Firmware defines standard property encoding

formats, including integer values represented as

big-endian byte sequences with lengths of 1, 2, 4,

or 8 bytes, text strings terminated by null bytes, and

composite properties containing multiple encoded

values concatenated in sequence [4]. The

specification mandates that bus nodes include

"address-cells" and "size-cells" properties

specifying the number of 32-bit cells required to

represent child device addresses and sizes, enabling

flexible address space representation across diverse

bus architectures ranging from simple 8-bit address

spaces to complex 64-bit physical memory layouts

[4]. This declarative approach separated hardware

description from operational firmware code,

enabling platform-independent bootloaders and

operating systems to dynamically discover and

configure hardware resources based on device tree

information rather than hardcoded platform

assumptions [4].The libfdt library, maintained as

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8161

part of the Device Tree Compiler project,

implements a lightweight, standalone parser for

Flattened Device Tree blobs. Designed for a

minimal memory footprint and zero dynamic

memory allocation, libfdt provides suitable

functionality for embedded environments and user-

space applications. Its API encompasses functions

for node traversal, property extraction, and

structural validation, enabling comprehensive

interrogation of device tree contents without

requiring full operating system support. Previous

research in adaptive diagnostics has explored

various approaches to platform independence

through hardware abstraction layers, dynamic

plugin architectures, and model-based diagnostics

frameworks, though each approach introduced

distinct trade-offs between flexibility, complexity,

and maintenance overhead. Recent developments in

declarative infrastructure configuration,

exemplified by technologies such as Kubernetes for

container orchestration and Terraform for

infrastructure provisioning, demonstrate industry-

wide movement toward separating configuration

from logic. The device tree-aware diagnostics

framework extends this paradigm to platform health

monitoring, treating hardware configuration as data

rather than code and enabling diagnostics logic to

operate generically across diverse platforms.

3. Framework Architecture and Design

The device tree-aware diagnostics framework

adopts a layered architecture consisting of three

principal subsystems that maintain clear separation

of concerns while enabling cohesive operation. At

the foundation lies the Device Tree Parser Module,

responsible for loading, validating, and querying

the Flattened Device Tree structure through the

Device Tree Compiler toolchain, which processes

device tree source files written in a C-like syntax

and generates binary blob representations

consuming typically between 4 KB and 64 KB,

depending on platform complexity [5]. The Device

Tree Compiler performs lexical analysis, syntactic

parsing, and semantic validation across three

distinct compilation phases, transforming human-

readable source notation into the flattened structure

format defined by the ePAPR specification with

header blocks, memory reservation entries,

structure blocks containing tokenized node and

property data, and string blocks storing null-

terminated property names [5]. This module

encapsulates all libfdt interactions, providing a

higher-level abstraction that shields upper layers

from the complexities of device tree navigation,

requiring understanding of the

FDT_BEGIN_NODE tokens (value 0x00000001),

FDT_END_NODE tokens (value 0x00000002),

FDT_PROP tokens (value 0x00000003), and

FDT_NOP tokens (value 0x00000004) used to

encode tree structure in the binary representation

[5]. The parser module implements robust error

handling for malformed device trees, detecting

structural inconsistencies such as mismatched

begin/end node pairs, invalid property lengths

exceeding 16 KB, which represents a practical

upper bound for most hardware descriptions, and

references to undefined phandle values that would

indicate broken device tree linkages [5].The Device

Tree Parser Module exposes an enumeration

interface that traverses the device tree hierarchy,

identifying relevant hardware interfaces and

extracting their configuration parameters including

base addresses represented as 32-bit or 64-bit

physical addresses depending on the address-cells

property value, interrupt configurations specifying

interrupt numbers typically ranging from 0 to 255

for standard interrupt controllers or extended ranges

up to 1019 for GIC-v3 implementations, clock

specifications identifying source oscillators

operating at standard frequencies such as 19.2

MHz, 24 MHz, or 26 MHz for mobile platforms,

and bus-specific parameters such as I2C addressing

modes or SPI clock polarities encoded as 32-bit

integer properties [5]. The parser maintains an

internal registry of discovered devices indexed by

both device tree path and logical identifier,

enabling efficient lookup operations during

diagnostics execution, while validation logic

ensures that extracted properties conform to

expected types and value ranges as defined in the

device tree bindings documentation [5].Above the

parser module resides the Interface Abstraction

Layer, which provides a unified programming

interface for interacting with diverse hardware

buses despite their operational differences by

implementing the Adapter pattern from object-

oriented design methodology [6]. This layer

translates generic read and write operations into

bus-specific transaction sequences, where I2C

transactions follow the protocol specification

requiring start conditions, 7-bit or 10-bit address

transmission with read/write bit indication, data

byte transfers with acknowledge/not-acknowledge

handshaking, and stop conditions, while SPI

operations execute through four-wire interfaces

comprising SCLK, MOSI, MISO, and chip select

signals operating in four distinct modes defined by

clock polarity and phase combinations [6]. The

Adapter pattern enables the abstraction layer to

convert the interface of existing hardware driver

classes into interfaces expected by diagnostic

clients, allowing components with incompatible

interfaces to collaborate through object composition

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8162

rather than inheritance, thereby promoting loose

coupling and enhanced flexibility in system

evolution [6]. Each interface adapter implements a

standardized set of methods defined by a target

interface that clients invoke, which the adapter then

translates into calls to the adaptee's specific

interface, effectively decoupling diagnostic logic

from hardware-specific implementation details and

enabling runtime polymorphic behavior across

heterogeneous bus types [6].The Fault Detection

Engine constitutes the uppermost layer,

implementing diagnostic algorithms that leverage

the abstraction layer to perform health monitoring

operations through configurable test suites. The

engine supports multiple detection methodologies,

including periodic polling, interrupt-driven event

monitoring, and threshold-based alerting, with

diagnostic routines specified declaratively through

configuration files describing target devices, access

patterns, expected response characteristics, and

fault classification criteria. This data-driven

approach enables diagnostic coverage to be

extended or modified without code changes,

facilitating rapid adaptation to new hardware

variants.

4. Implementation and Platform Integration

Implementation of the device tree-aware

diagnostics framework leverages standard C

programming interfaces conforming to the

POSIX.1-2008 specification, which defines 1,191

interfaces across system calls, library functions, and

shell utilities to maximize portability across UNIX-

like operating systems and embedded environments

[7]. The framework is structured as a collection of

shared libraries compiled with position-independent

code enabling load addresses between

0x00007f0000000000 and 0x00007fffffffffff on 64-

bit systems, and executables that can be integrated

into existing system management stacks or

deployed as standalone diagnostic tools with typical

binary sizes ranging from 128 KB to 512 KB

depending on feature compilation flags [7]. Build

system configuration supports cross-compilation

for diverse target architectures, including x86-64,

utilizing the System V AMD64 ABI with sixteen

general-purpose registers and SSE instruction

extensions, ARM architectures conforming to the

ARM Architecture Procedure Call Standard with

register preservation requirements across function

boundaries, and RISC-V architectures

implementing the RV64GC instruction set with

compressed instruction support for reduced code

density [7]. The framework confines architecture-

specific code to device driver interfaces occupying

less than 5% of the total codebase, with the

remaining 95% consisting of portable C code

compilable with GCC versions 4.8 through 13.2 or

Clang versions 3.9 through 17.0 without

modification [7].Integration with the libfdt library

occurs through standard API calls including

fdt_check_header() which validates the device tree

magic number 0xd00dfeed stored in big-endian

format at offset 0 in the blob, fdt_totalsize()

returning the blob size typically ranging from 8 KB

to 128 KB with 4-byte alignment requirements, and

fdt_version() verifying format version compatibility

with versions 16 and 17 being most commonly

deployed [7]. The framework loads the device tree

blob from platform-specific locations including

memory-mapped regions at addresses such as

0x01f00000 on ARM platforms established by

bootloaders like U-Boot or GRUB, files in the

filesystem such as /proc/device-tree on Linux

systems where each node appears as a directory and

each property as a file, or custom locations

specified through environment variables like

DTB_PATH or command-line parameters using

GNU getopt_long() for option parsing supporting

both short options with single hyphens and long

options with double hyphens [7]. Following

successful loading, the framework performs

integrity validation by verifying structural

consistency, including proper 4-byte alignment of

all structure block entries, valid offset values for

structure and string blocks not exceeding the total

blob size, and absence of circular references in

phandle linkages that would indicate corrupted

device tree data [7].Device discovery proceeds

through iterative traversal employing libfdt

functions, including fdt_next_node(), which returns

the offset of the next node in depth-first order with

offsets represented as signed 32-bit integers where

negative values indicate error conditions and

positive values specify byte offsets from the blob

base address, and fdt_subnode_offset() for direct

child node access [7]. At each node, the framework

examines the "compatible" property retrieved via

fdt_getprop() which returns a pointer to the

property value and stores the length in bytes

through an output parameter, comparing

compatibility strings against a registry of 87 known

device types including standard bindings for I2C

controllers identified by strings like "nxp,lpc1788-

i2c" or "snps,designware-i2c", SPI controllers with

compatibles such as "arm,pl022" or "ti,omap4-

mcspi", and GPIO controllers using identifiers like

"gpio-mmio" or platform-specific strings [7]. For

bus nodes, the framework identifies child devices

by examining the node hierarchy, establishing

parent-child relationships stored in a directed

acyclic graph structure consuming approximately

48 bytes per device entry, including pointers,

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8163

device tree offsets, and cached property values,

enabling diagnostics to respect dependencies and

access ordering requirements inherent in the

hardware design [7].Property extraction employs

libfdt functions such as fdt_getprop() with type-

aware parsing implemented through helper

functions that interpret 32-bit big-endian integers

using ntohl() conversion, achieving single-cycle

execution on modern processors, 64-bit values by

combining two 32-bit cells with appropriate byte

ordering, null-terminated strings by scanning for

0x00 bytes with maximum string length constraints

of 256 characters, and phandle references encoded

as 32-bit values typically ranging from 1 to 255 that

index into a global phandle table maintained by the

parser [8]. The Interface Abstraction Layer

interfaces with kernel device drivers through ioctl

system calls defined in the Linux kernel's

include/uapi/linux/i2c-dev.h header, employing

commands such as I2C_RDWR with request code

0x0707 for combined transactions and I2C_SLAVE

with code 0x0703 for slave address configuration,

while SPI access utilizes ioctl codes including

SPI_IOC_WR_MODE (0x40016b01) for mode

configuration, SPI_IOC_WR_BITS_PER_WORD

(0x40016b03) for transfer width from 8 to 32 bits,

and SPI_IOC_WR_MAX_SPEED_HZ

(0x40046b04) for clock frequency settings ranging

from 100 kHz to 50 MHz [8].

5. Evaluation and Case Studies

Evaluation of the device tree-aware diagnostics

framework encompassed multiple dimensions

including functional correctness verified through

systematic testing procedures, portability across

platforms assessed through deployment metrics,

code maintainability measured through software

quality indicators, and operational performance

characteristics quantified through execution

profiling in accordance with IEEE Standard 730-

2014 for Software Quality Assurance Processes,

which defines quality assurance activities including

planning, execution, assessment, and reporting

phases that ensure software products meet specified

requirements through documentation of test plans,

test cases, test procedures, and test reports [9]. The

framework was deployed on three distinct server

platform variants featuring different combinations

of I2C buses operating at 100 kbit/s standard mode

and 400 kbit/s fast mode with maximum capacitive

loading of 400 pF, I3C interfaces supporting 12.5

MHz single data rate communication, and SPI

connections configured for clock frequencies from

10 MHz to 50 MHz with four operational modes

defined by clock polarity and phase bit

combinations [9]. These platforms provided

representative coverage including a dual-socket x86

server with eight I2C buses servicing 24

temperature sensors implementing TMP75 and

LM95245 protocols, 16 voltage regulators utilizing

PMBus command sets with addresses 0x40 through

0x5F, and 12 DIMM SPD devices at standard

addresses 0x50 to 0x57, an ARM-based system-on-

chip employing Cortex-A72 cores at 2.0 GHz with

I3C power management controllers and 64 MB

NOR flash accessible via quad-SPI achieving 200

MB/s read throughput, and an embedded baseboard

management controller configuration utilizing

ASPEED AST2600 with 16 I2C buses and eSPI

interfaces operating at 66 MHz providing host

communication bandwidth up to 66 MB/s

[9].Functional correctness was assessed through

comprehensive test suites comprising 342

individual test cases executing 18,456 discrete

hardware transactions, achieving 100% device

enumeration accuracy across 283 hardware

components, zero parsing errors in 8,164 property

extraction operations, and diagnostic test success

rates exceeding 99.7% with temperature monitoring

achieving 0.5°C measurement precision and voltage

readings maintaining 10 mV resolution [9]. The

IEEE 730 standard mandates that software quality

assurance programs establish measurable quality

characteristics including functionality, reliability,

usability, efficiency, maintainability, and

portability, with each characteristic evaluated

through specific metrics such as defect density

measured in defects per thousand lines of code,

mean time between failures expressed in

operational hours, and code coverage percentages

indicating the proportion of source code executed

during testing [9]. Portability evaluation

demonstrated that traditional diagnostics

implementations required an average of 450 lines of

platform-specific C code per target platform

encompassing hardware address definitions,

initialization sequences, and peripheral access

functions, whereas the device tree-aware

framework eliminated all platform-specific code by

leveraging device tree blobs sized between 48 KB

and 96 KB, reducing deployment time from 480

minutes to under 30 minutes representing a 93.75%

reduction in engineering effort [9].Code

maintainability metrics were quantified using the

McCabe cyclomatic complexity measure, which

defines program complexity as the number of

linearly independent paths through a program's

control flow graph calculated by the formula V(G)

= E - N + 2P, where E represents edges, N

represents nodes, and P represents connected

components [10]. The metric establishes that

modules with cyclomatic complexity below 10 are

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8164

considered simple with low testing difficulty,

complexity values between 11 and 20 indicate

moderate complexity requiring additional testing

effort, complexity from 21 to 50 suggests high

complexity with elevated error probability, and

values exceeding 50 represent untestable modules

requiring decomposition [10]. Analysis of the

device tree-aware diagnostics framework revealed

cyclomatic complexity averaging 8.3 per function

across 8,947 lines of diagnostic code, compared to

traditional implementations exhibiting average

complexity of 12.8 per function, representing a

35% reduction attributed to elimination of

conditional compilation directives which decreased

from 73 instances to zero and removal of platform

detection logic containing nested if-else structures

with branching factors ranging from 3 to 7 [10].

Performance evaluation measured device tree

parsing consuming 12 milliseconds for trees

containing 500 to 800 nodes processing at 58,000

nodes per second, abstraction layer transaction

overhead of 3 to 7 microseconds for I2C operations

representing 6.8% overhead at 100 kHz and 2.1% at

400 kHz, and SPI transaction overhead of 1 to 3

microseconds constituting less than 1% of total

transaction time at typical 10 MHz clock rates [10].

Table 1: I2C Protocol and Device Tree Integration Characteristics [1][2]Legend: SDA = Serial Data Line; SCL =

Serial Clock Line; Device tree properties enable runtime I2C configuration extraction

Parameter I2C Specification Device Tree Representation

Bus architecture
Multi-master serial single-

ended

Node hierarchy with compatible

strings

Signal interface Two-wire SDA and SCL Property-based configuration

Addressing scheme 7-bit or 10-bit slave addresses "reg" property with address cells

Operational modes Standard, Fast, High-speed "clock-frequency" property

Transaction initiation START condition high-to-low Runtime protocol implementation

Output stage type Open-drain or open-collector Hardware capability description

Property encoding Not applicable 32-bit integers in angle brackets

Address space definition Hardware bus topology "address-cells" and "size-cells"

Table 2: ACPI and Open Firmware Hardware Description Approaches [3][4]Legend: AML = ACPI Machine

Language; ACPI namespace example: "_SB_.PCI0.ISA.COM1"; Open Firmware enables bootloader device discovery

Aspect ACPI Specification Open Firmware Standard

Description method AML bytecode execution Declarative device tree

Naming convention Four-character identifiers 1-31 character node names

Namespace structure Hierarchical path notation Tree with "@" unit separator

Property encoding Abstract Syntax Notation Big-endian byte sequences

Power state management G-states, S-states, D-states, C-states Not defined

Platform dependency x86-centric architecture Platform-independent design

Address representation ACPI namespace paths "address-cells" property cells

Integer encoding AML interpreter-dependent 1, 2, 4, or 8 byte sequences

Root identification "_SB_" System Bus Forward slash root node

Boot-time support OS-dependent runtime Firmware-level initialization

Table 3: Device Tree Compiler and Design Pattern Integration [5][6] Legend: DTC = Device Tree Compiler; FDT =

Flattened Device Tree; ePAPR = embedded Power Architecture Platform Requirements

Component DTC Processing Adapter Pattern Application

Input format C-like source syntax Hardware-specific interfaces

Processing phases Lexical, syntactic, and semantic Interface conversion logic

Output format Binary FDT blob Unified diagnostic interface

Token types
BEGIN_NODE, END_NODE,

PROP, NOP
Target and adaptee interfaces

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8165

Structure organization
Header, memory, structure,

string blocks
Object composition hierarchy

Abstraction mechanism Flattened tree representation Loose coupling design

Interface compatibility ePAPR specification compliance Incompatible interface bridging

Transaction handling Property tokenization Protocol-specific sequences

Flexibility approach Declarative hardware description Runtime polymorphic behavior

Table 4: POSIX Standards and Linux Device Driver Integration [7][8]

Element POSIX Specification Linux Driver Implementation

Interface definition System calls and library functions ioctl commands and character devices

Portability approach Standard API across UNIX systems Kernel driver abstraction

Architecture support Cross-platform specifications Hardware-specific adaptations

I2C access method File descriptor operations I2C_RDWR and I2C_SLAVE ioctl

SPI access method Standard file operations SPI mode and frequency ioctl

Code organization Portable C implementation Layered driver architecture

Device tree integration File system interface fdt library API functions

Compiler compatibility Standard C compliance GCC and Clang toolchains

Memory management Standard allocation functions Kernel memory subsystems

4. Conclusions

The device tree-aware diagnostics framework

represents a transformative advancement in

platform health monitoring methodology by

addressing fundamental limitations inherent in

traditional hardcoded diagnostics implementations

through principled application of declarative

hardware description and runtime adaptability

principles. The framework achieves true platform

independence by leveraging the Flattened Device

Tree standard and libfdt library, enabling a single

diagnostics codebase to operate seamlessly across

diverse hardware configurations encompassing

heterogeneous communication interfaces, including

I2C, I3C, SPI, and eSPI, without requiring

platform-specific code modifications. The layered

architecture consisting of the device tree parser

module, interface abstraction layer, and fault

detection engine demonstrates effective separation

of concerns while maintaining cohesive operation,

facilitating independent evolution of each

subsystem, and enabling adaptation to emerging

hardware interfaces and diagnostic methodologies

without destabilizing existing functionality.

Evaluation results validate practical viability across

multiple dimensions, with functional correctness

testing confirming accurate operation across diverse

platform variants, portability analysis

demonstrating substantial reductions in deployment

effort through elimination of platform-specific

code, maintainability metrics revealing improved

code quality through reduced cyclomatic

complexity, and performance measurements

indicating negligible overhead compared to direct

hardware access. The framework establishes

declarative configuration paradigms as viable

alternatives to imperative programming models in

low-level system software contexts, potentially

influencing adjacent domains including firmware

development, hardware initialization sequences,

and platform security mechanisms where static

configurations currently impose similar portability

and maintenance challenges. The adoption of

device tree-aware diagnostics promises to reduce

the total cost of ownership for heterogeneous

computing infrastructure while improving

diagnostic accuracy and accelerating the

deployment of new platform variants, establishing

approaches that embrace declarative configuration

and runtime adaptability as increasingly essential

for sustainable system management practices in

diversifying computing environments with

escalating hardware complexity.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

Maheswara Kurapati / IJCESEN 11-4(2025)8159-8166

8166

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] NXP Semiconductors, "I2C-bus specification and

user manual," UM10204, 2021. [Online].

Available: https://www.nxp.com/docs/en/user-

guide/UM10204.pdf

[2] Devicetree.org, "Devicetree Specification, Release

v0.4," 2023. [Online]. Available:

https://www.scribd.com/document/701365722/Dev

icetree-Specification-v0-4

[3] Unified EFI Forum, "Advanced Configuration and

Power Interface (ACPI) Specification," 2022.

[Online]. Available:

https://uefi.org/sites/default/files/resources/ACPI_S

pec_6_5_Aug29.pdf

[4] IEEE, "1275-1994 - IEEE Standard for Boot

(Initialization Configuration) Firmware: Core

Requirements and Practices," 1994. [Online].

Available:

https://ieeexplore.ieee.org/document/763383

[5] David Gibson, "Device trees everywhere," IBM

Linux Technology Center, 2006. [Online].

Available:

https://ozlabs.org/people/dgibson/papers/dtc-

paper.pdf

[6] Erich Gamma, et al., "Design Patterns: Elements of

Reusable Object-Oriented Software," javier8a,

1994. [Online]. Available:

https://www.javier8a.com/itc/bd1/articulo.pdf

[7] IEEE, "1003.1-2017 - IEEE Standard for Information

Technology--Portable Operating System Interface

(POSIX(TM)) Base Specifications, Issue 7," 2018.

[Online]. Available:

https://ieeexplore.ieee.org/document/8277153

[8] Jonathan Corbet,” Linux Device Drivers” [Online].

Available: https://repo.zenk-

security.com/Linux%20et%20systemes%20d.explo

itations/Linux%20Device%20Drivers%20Third%2

0Edition.pdf

[9] IEEE, "730-2014 - IEEE Standard for Software

Quality Assurance Processes,". 2014. [Online].

Available:

https://ieeexplore.ieee.org/document/6835311

[10] T. J. McCabe, "A Complexity Measure," IEEE,

1976. [Online]. Available:

https://ieeexplore.ieee.org/document/1702388

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.scribd.com/document/701365722/Devicetree-Specification-v0-4
https://www.scribd.com/document/701365722/Devicetree-Specification-v0-4
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://ieeexplore.ieee.org/document/763383
https://ozlabs.org/people/dgibson/papers/dtc-paper.pdf
https://ozlabs.org/people/dgibson/papers/dtc-paper.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://ieeexplore.ieee.org/document/8277153
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://ieeexplore.ieee.org/document/6835311
https://ieeexplore.ieee.org/document/1702388

