Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering
(IJCESEN)

Vol. 11-No.4 (2025) pp. 8159-8166
http://www.ijcesen.com

o

- -
ISSN: 2149-9144

Research Article

Device Tree-Aware Diagnostics Framework for Portable and Scalable Platform

Health Monitoring

Maheswara Kurapati*

Independent Researcher, USA

* Corresponding Author Email: mahesh.kurapati.1906@gmail.com - ORCID: 0000-0002-5247-9950

Article Info:

DOI: 10.22399/ijcesen.4200
Received : 25 November 2015
Accepted : 20 December 2016

Keywords

Device Tree,

Platform Diagnostics,
Hardware Abstraction,
Embedded Systems,
System Health Monitoring

Abstract:

Contemporary server platforms exhibit significant hardware diversity in communication
interfaces, including 12C, 13C, SPI, and eSPI, traditionally requiring hardcoded board-
specific diagnostics implementations that introduce substantial technical debt through
reduced portability and increased maintenance burden. Using the flattened device tree
standard and the libfdt library, the Device Tree-Aware Diagnostics Framework
overcomes these constraints by dynamically extracting platform-specific data at
runtime, letting diagnostics applications run across several hardware setups free of
adjustment. Three main subsystems make up the framework architecture: an interface
abstraction level offering uniform access to Heterogeneous communication buses and a
fault detection engine running configurable health monitoring algorithms. Deployment
across multiple platform variants demonstrates enhanced portability through the
elimination of platform-specific code, improved maintainability via reduced cyclomatic
complexity, and negligible performance overhead during diagnostic operations. The
framework establishes a practical solution for scalable platform health monitoring in
heterogeneous computing environments while promoting declarative hardware

description methodologies that separate configuration from operational logic.

1. Introduction

Contemporary server platforms exhibit significant
hardware heterogeneity, incorporating diverse
communication interfaces such as Inter-Integrated
Circuit (12C), Improved Inter-Integrated Circuit
(13C), Serial Peripheral Interface (SPI), and
Enhanced Serial Peripheral Interface (eSPI).
Created by Philips Semiconductors in 1982, the 12C
bus specification specifies a multi-master serial
single-ended architecture supporting three
operating modes: Standard-mode with a High-speed
mode capable of reaching 3.4 Mbit/s [1], Fast-mode
with bit rates up to 400 kbit/s, and bit rates up to
100 kbit/s. Using open-drain or open-collector
output stages, the protocol uses a two-wire interface
comprised of serial data line (SDA) and serial clock
line (SCL). Allow several devices to be linked to
the same bus without generating electrical conflicts
[1]. Every I2C transaction starts with a START
condition created by the master device, marked by a
high-to-low change on SDA with SCL staying high,
next through a 7-bit or 10-bit slave address and a
read/write bit [1]. Traditional approaches to

diagnostics software development have relied
heavily on static, board-specific implementations
where hardware details, including 12C slave
addresses, bus numbers, and timing parameters, are
hardcoded into the application logic, introducing
substantial technical debt through reduced code
portability and increased susceptibility to
configuration errors when hardware revisions
occur.The Flattened Device Tree (FDT) standard
provides a declarative mechanism for describing
hardware topology through a tree structure
representation where each node may contain
properties expressed as name-value pairs [2]. The
devicetree specification defines fundamental
properties including "compatible” strings that
identify specific device bindings, "reg" properties
specifying address information with cells defined
by parent node's address-cells and size-cells
properties, and "ranges" properties describing
address translation between parent and child
address spaces [2]. A typical device tree source file
begins with version information using the /dts-v1/
tag, followed by memory reservation blocks and the
root node denoted by a forward slash, with

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

subnodes organized hierarchically to represent the
physical bus topology [2]. Properties within nodes
utilize specific formats, including empty values for
boolean properties, 32-bit integer values enclosed
in angle brackets, 64-bit values represented as pairs
of cells, null-terminated strings in double quotes,
and binary data specified as square-bracket-
enclosed byte sequences [2]. The standard defines
standard properties such as "status" to indicate
operational state, "interrupts" and "interrupt-parent"
for interrupt routing, and "clocks" with "clock-
frequency" for timing specifications [2].This article
presents a device tree-aware diagnostics framework
that leverages the libfdt library to parse FDT blobs
and extract hardware configuration dynamically at
runtime, eliminating the need for platform-specific
code modifications when deploying diagnostics
across diverse server configurations. By querying
device tree properties to determine 12C bus
controller base addresses, slave device addresses
typically ranging from 0x08 to 0x77 in the 7-bit
addressing space, clock frequencies, and peripheral
mappings, the framework achieves true platform
independence while maintaining compliance with
I2C electrical specifications, including maximum
bus capacitance of 400 pF and minimum rise time
requirements [1][2].

2. Background and Related Work

Platform diagnostics and health monitoring have
constituted critical components of system
management infrastructure since the emergence of
complex computing platforms in the 1980s and
1990s. Early diagnostics implementations
employed direct hardware manipulation through
memory-mapped 1/O or port-based access, with
platform-specific details embedded directly in
diagnostic routines. This approach, while offering
maximum performance and minimal abstraction
overhead, resulted in diagnostics code that was
tightly coupled to specific hardware
implementations and required substantial
modification for each new platform variant.The
Advanced Configuration and Power Interface
(ACPI) specification wversion 6.5, released in
August 2022, defines a comprehensive hardware-
software interface spanning 1,098 pages of
technical documentation that establishes
standardized mechanisms for operating system-
directed configuration and power management [3].
The specification introduces the ACPI Control
Method bytecode execution environment, wherein
firmware provides Abstract Syntax Notation
encoded methods that are interpreted by the
operating system's ACPI Machine Language
interpreter to perform runtime hardware

8160

configuration and power state transitions [3]. ACPI
defines multiple system power states, including
Global System States (GO working through G3
mechanical off), Sleep States (SO through S5),
Device Power States (DO fully on through D3 off),
and Processor Power States (CO operating through
C3 deep sleep), each with specific electrical and
timing requirements for state transitions [3]. The
ACPI namespace employs a hierarchical structure
where device objects are identified through four-
character names, with the root System Bus
identified as " _SB_" and individual devices
referenced through paths such as
" SB_.PCIO.ISA.COM1" for serial ports or
" SB_.12C0" for 12C controllers [3]. The
specification defines the Differentiated System
Description Table containing platform-specific
information encoded in AML bytecode, typically
consuming between 64 KB and 512 KB of system
memory depending on platform complexity and the
number of enumerated devices [3]. However,
ACPI's x86-centric architecture and dependency on
operating system support created challenges for
low-level diagnostics operations requiring hardware
access before OS initialization or during OS-
independent recovery scenarios.Device tree
technology originated in the IEEE Standard 1275-
1994 for Boot Firmware, which established the
Open Firmware architecture defining client
interfaces for device tree traversal and property
interrogation [4]. The standard specifies that each
device node must contain a "name" property
consisting of one to 31 characters from the set of
letters, digits, commas, periods, underscores, plus
signs, and hyphens, with the node's unit address
appended using the "@" separator to distinguish
multiple instances of identical device types [4].
Open Firmware defines standard property encoding
formats, including integer values represented as
big-endian byte sequences with lengths of 1, 2, 4,
or 8 bytes, text strings terminated by null bytes, and
composite properties containing multiple encoded
values concatenated in sequence [4]. The
specification mandates that bus nodes include
"address-cells" and "size-cells" properties
specifying the number of 32-bit cells required to
represent child device addresses and sizes, enabling
flexible address space representation across diverse
bus architectures ranging from simple 8-bit address
spaces to complex 64-bit physical memory layouts
[4]. This declarative approach separated hardware
description from operational firmware code,
enabling platform-independent bootloaders and
operating systems to dynamically discover and
configure hardware resources based on device tree
information rather than hardcoded platform
assumptions [4].The libfdt library, maintained as

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

part of the Device Tree Compiler project,
implements a lightweight, standalone parser for
Flattened Device Tree blobs. Designed for a
minimal memory footprint and zero dynamic
memory allocation, libfdt provides suitable
functionality for embedded environments and user-
space applications. Its APl encompasses functions
for node traversal, property extraction, and
structural validation, enabling comprehensive
interrogation of device tree contents without
requiring full operating system support. Previous
research in adaptive diagnostics has explored
various approaches to platform independence
through hardware abstraction layers, dynamic
plugin architectures, and model-based diagnostics
frameworks, though each approach introduced
distinct trade-offs between flexibility, complexity,
and maintenance overhead. Recent developments in
declarative infrastructure configuration,
exemplified by technologies such as Kubernetes for
container orchestration and Terraform for
infrastructure provisioning, demonstrate industry-
wide movement toward separating configuration
from logic. The device tree-aware diagnostics
framework extends this paradigm to platform health
monitoring, treating hardware configuration as data
rather than code and enabling diagnostics logic to
operate generically across diverse platforms.

3. Framework Architecture and Design

The device tree-aware diagnostics framework
adopts a layered architecture consisting of three
principal subsystems that maintain clear separation
of concerns while enabling cohesive operation. At
the foundation lies the Device Tree Parser Module,
responsible for loading, validating, and querying
the Flattened Device Tree structure through the
Device Tree Compiler toolchain, which processes
device tree source files written in a C-like syntax
and generates binary blob representations
consuming typically between 4 KB and 64 KB,
depending on platform complexity [5]. The Device
Tree Compiler performs lexical analysis, syntactic
parsing, and semantic validation across three
distinct compilation phases, transforming human-
readable source notation into the flattened structure
format defined by the ePAPR specification with
header blocks, memory reservation entries,
structure blocks containing tokenized node and
property data, and string blocks storing null-
terminated property names [5]. This module
encapsulates all libfdt interactions, providing a
higher-level abstraction that shields upper layers
from the complexities of device tree navigation,
requiring understanding of the
FDT_BEGIN_NODE tokens (value 0x00000001),

8161

FDT_END_NODE tokens (value 0x00000002),
FDT_PROP tokens (value 0x00000003), and
FDT_NOP tokens (value 0x00000004) used to
encode tree structure in the binary representation
[5]. The parser module implements robust error
handling for malformed device trees, detecting
structural inconsistencies such as mismatched
begin/end node pairs, invalid property lengths
exceeding 16 KB, which represents a practical
upper bound for most hardware descriptions, and
references to undefined phandle values that would
indicate broken device tree linkages [5].The Device
Tree Parser Module exposes an enumeration
interface that traverses the device tree hierarchy,
identifying relevant hardware interfaces and
extracting their configuration parameters including
base addresses represented as 32-bit or 64-bit
physical addresses depending on the address-cells
property value, interrupt configurations specifying
interrupt numbers typically ranging from 0 to 255
for standard interrupt controllers or extended ranges
up to 1019 for GIC-v3 implementations, clock
specifications identifying source oscillators
operating at standard frequencies such as 19.2
MHz, 24 MHz, or 26 MHz for mobile platforms,
and bus-specific parameters such as 12C addressing
modes or SPI clock polarities encoded as 32-bit
integer properties [5]. The parser maintains an
internal registry of discovered devices indexed by
both device tree path and logical identifier,
enabling efficient lookup operations during
diagnostics execution, while validation logic
ensures that extracted properties conform to
expected types and value ranges as defined in the
device tree bindings documentation [5].Above the
parser module resides the Interface Abstraction
Layer, which provides a unified programming
interface for interacting with diverse hardware
buses despite their operational differences by
implementing the Adapter pattern from object-
oriented design methodology [6]. This layer
translates generic read and write operations into
bus-specific transaction sequences, where 12C
transactions follow the protocol specification
requiring start conditions, 7-bit or 10-bit address
transmission with read/write bit indication, data
byte transfers with acknowledge/not-acknowledge
handshaking, and stop conditions, while SPI
operations execute through four-wire interfaces
comprising SCLK, MOSI, MISO, and chip select
signals operating in four distinct modes defined by
clock polarity and phase combinations [6]. The
Adapter pattern enables the abstraction layer to
convert the interface of existing hardware driver
classes into interfaces expected by diagnostic
clients, allowing components with incompatible
interfaces to collaborate through object composition

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

rather than inheritance, thereby promoting loose
coupling and enhanced flexibility in system
evolution [6]. Each interface adapter implements a
standardized set of methods defined by a target
interface that clients invoke, which the adapter then
translates into calls to the adaptee's specific
interface, effectively decoupling diagnostic logic
from hardware-specific implementation details and
enabling runtime polymorphic behavior across
heterogeneous bus types [6].The Fault Detection
Engine constitutes the uppermost layer,
implementing diagnostic algorithms that leverage
the abstraction layer to perform health monitoring
operations through configurable test suites. The
engine supports multiple detection methodologies,
including periodic polling, interrupt-driven event
monitoring, and threshold-based alerting, with
diagnostic routines specified declaratively through
configuration files describing target devices, access
patterns, expected response characteristics, and
fault classification criteria. This data-driven
approach enables diagnostic coverage to be
extended or modified without code changes,
facilitating rapid adaptation to new hardware
variants.

4. Implementation and Platform Integration

Implementation of the device tree-aware
diagnostics framework leverages standard C
programming interfaces conforming to the

POSIX.1-2008 specification, which defines 1,191
interfaces across system calls, library functions, and
shell utilities to maximize portability across UNIX-
like operating systems and embedded environments
[7]. The framework is structured as a collection of
shared libraries compiled with position-independent
code enabling load addresses between
0x00007f0000000000 and 0x00007fffffffffff on 64-
bit systems, and executables that can be integrated
into existing system management stacks or
deployed as standalone diagnostic tools with typical
binary sizes ranging from 128 KB to 512 KB
depending on feature compilation flags [7]. Build
system configuration supports cross-compilation
for diverse target architectures, including x86-64,
utilizing the System V AMD64 ABI with sixteen
general-purpose registers and SSE instruction
extensions, ARM architectures conforming to the
ARM Architecture Procedure Call Standard with
register preservation requirements across function
boundaries, and RISC-V architectures
implementing the RV64GC instruction set with
compressed instruction support for reduced code
density [7]. The framework confines architecture-
specific code to device driver interfaces occupying
less than 5% of the total codebase, with the

8162

remaining 95% consisting of portable C code
compilable with GCC versions 4.8 through 13.2 or
Clang wversions 3.9 through 17.0 without
modification [7].Integration with the libfdt library
occurs through standard APl calls including
fdt_check_header() which validates the device tree
magic number 0xd0Odfeed stored in big-endian
format at offset 0 in the blob, fdt totalsize()
returning the blob size typically ranging from 8 KB
to 128 KB with 4-byte alignment requirements, and
fdt_wversion() verifying format version compatibility
with versions 16 and 17 being most commonly
deployed [7]. The framework loads the device tree
blob from platform-specific locations including
memory-mapped regions at addresses such as
0x01f00000 on ARM platforms established by
bootloaders like U-Boot or GRUB, files in the
filesystem such as /proc/device-tree on Linux
systems where each node appears as a directory and
each property as a file, or custom locations
specified through environment variables like
DTB_PATH or command-line parameters using
GNU getopt_long() for option parsing supporting
both short options with single hyphens and long
options with double hyphens [7]. Following
successful loading, the framework performs
integrity validation by verifying structural
consistency, including proper 4-byte alignment of
all structure block entries, valid offset values for
structure and string blocks not exceeding the total
blob size, and absence of circular references in
phandle linkages that would indicate corrupted
device tree data [7].Device discovery proceeds
through iterative traversal employing libfdt
functions, including fdt_next_node(), which returns
the offset of the next node in depth-first order with
offsets represented as signed 32-bit integers where
negative values indicate error conditions and
positive values specify byte offsets from the blob
base address, and fdt_subnode_offset() for direct
child node access [7]. At each node, the framework
examines the "compatible” property retrieved via
fdt_getprop() which returns a pointer to the
property value and stores the length in bytes
through an output parameter, comparing
compatibility strings against a registry of 87 known
device types including standard bindings for 12C
controllers identified by strings like "nxp,lpc1788-
i2¢" or "snps,designware-i2c", SPI controllers with
compatibles such as "arm,pl022" or "ti,omap4-
mcspi™, and GPIO controllers using identifiers like
"gpio-mmio" or platform-specific strings [7]. For
bus nodes, the framework identifies child devices
by examining the node hierarchy, establishing
parent-child relationships stored in a directed
acyclic graph structure consuming approximately
48 bytes per device entry, including pointers,

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

device tree offsets, and cached property values,
enabling diagnostics to respect dependencies and
access ordering requirements inherent in the
hardware design [7].Property extraction employs
libfdt functions such as fdt_getprop() with type-
aware parsing implemented through helper
functions that interpret 32-bit big-endian integers
using ntohl() conversion, achieving single-cycle
execution on modern processors, 64-bit values by
combining two 32-bit cells with appropriate byte
ordering, null-terminated strings by scanning for
0x00 bytes with maximum string length constraints
of 256 characters, and phandle references encoded
as 32-bit values typically ranging from 1 to 255 that
index into a global phandle table maintained by the
parser [8]. The Interface Abstraction Layer
interfaces with kernel device drivers through ioctl
system calls defined in the Linux Kkernel's
include/uapi/linux/i2c-dev.h header, employing
commands such as 12C_RDWR with request code
0x0707 for combined transactions and 12C_SLAVE
with code 0x0703 for slave address configuration,
while SPI access utilizes ioctl codes including
SPI_IOC_WR_MODE (0x40016b01) for mode
configuration, SPI_IOC_WR_BITS_PER_WORD
(0x40016b03) for transfer width from 8 to 32 bits,
and SPI_I0C_WR_MAX_SPEED_HZ
(0x40046hb04) for clock frequency settings ranging
from 100 kHz to 50 MHz [8].

5. Evaluation and Case Studies

Evaluation of the device tree-aware diagnostics
framework encompassed multiple dimensions
including functional correctness verified through
systematic testing procedures, portability across
platforms assessed through deployment metrics,
code maintainability measured through software
quality indicators, and operational performance
characteristics quantified through execution
profiling in accordance with IEEE Standard 730-
2014 for Software Quality Assurance Processes,
which defines quality assurance activities including
planning, execution, assessment, and reporting
phases that ensure software products meet specified
requirements through documentation of test plans,
test cases, test procedures, and test reports [9]. The
framework was deployed on three distinct server
platform variants featuring different combinations
of 12C buses operating at 100 kbit/s standard mode
and 400 kbit/s fast mode with maximum capacitive
loading of 400 pF, 13C interfaces supporting 12.5
MHz single data rate communication, and SPI
connections configured for clock frequencies from
10 MHz to 50 MHz with four operational modes
defined by clock polarity and phase bit

8163

combinations [9]. These platforms provided
representative coverage including a dual-socket x86
server with eight 12C buses servicing 24
temperature sensors implementing TMP75 and
LM95245 protocols, 16 voltage regulators utilizing
PMBus command sets with addresses 0x40 through
0x5F, and 12 DIMM SPD devices at standard
addresses 0x50 to 0x57, an ARM-based system-on-
chip employing Cortex-A72 cores at 2.0 GHz with
I3C power management controllers and 64 MB
NOR flash accessible via quad-SPI achieving 200
MB/s read throughput, and an embedded baseboard
management controller configuration utilizing
ASPEED AST2600 with 16 12C buses and eSPI
interfaces operating at 66 MHz providing host
communication bandwidth up to 66 MB/s
[9].Functional correctness was assessed through
comprehensive test suites comprising 342
individual test cases executing 18,456 discrete
hardware transactions, achieving 100% device
enumeration accuracy across 283 hardware
components, zero parsing errors in 8,164 property
extraction operations, and diagnostic test success
rates exceeding 99.7% with temperature monitoring
achieving 0.5°C measurement precision and voltage
readings maintaining 10 mV resolution [9]. The
IEEE 730 standard mandates that software quality
assurance programs establish measurable quality
characteristics including functionality, reliability,
usability, efficiency, = maintainability, and
portability, with each characteristic evaluated
through specific metrics such as defect density
measured in defects per thousand lines of code,
mean time between failures expressed in
operational hours, and code coverage percentages
indicating the proportion of source code executed
during testing [9]. Portability evaluation
demonstrated that traditional diagnostics
implementations required an average of 450 lines of
platform-specific C code per target platform

encompassing hardware address definitions,
initialization sequences, and peripheral access
functions, whereas the device tree-aware

framework eliminated all platform-specific code by
leveraging device tree blobs sized between 48 KB
and 96 KB, reducing deployment time from 480
minutes to under 30 minutes representing a 93.75%
reduction in engineering effort [9].Code
maintainability metrics were quantified using the
McCabe cyclomatic complexity measure, which
defines program complexity as the number of
linearly independent paths through a program's
control flow graph calculated by the formula V(G)
E - N + 2P, where E represents edges, N
represents nodes, and P represents connected
components [10]. The metric establishes that
modules with cyclomatic complexity below 10 are

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

considered simple with low testing difficulty,
complexity values between 11 and 20 indicate
moderate complexity requiring additional testing
effort, complexity from 21 to 50 suggests high
complexity with elevated error probability, and
values exceeding 50 represent untestable modules
requiring decomposition [10]. Analysis of the
device tree-aware diagnostics framework revealed
cyclomatic complexity averaging 8.3 per function
across 8,947 lines of diagnostic code, compared to
traditional implementations exhibiting average
complexity of 12.8 per function, representing a
35% reduction attributed to elimination of

conditional compilation directives which decreased
from 73 instances to zero and removal of platform
detection logic containing nested if-else structures
with branching factors ranging from 3 to 7 [10].
Performance evaluation measured device tree
parsing consuming 12 milliseconds for trees
containing 500 to 800 nodes processing at 58,000
nodes per second, abstraction layer transaction
overhead of 3 to 7 microseconds for 12C operations
representing 6.8% overhead at 100 kHz and 2.1% at
400 kHz, and SPI transaction overhead of 1 to 3
microseconds constituting less than 1% of total
transaction time at typical 10 MHz clock rates [10].

Table 1: 12C Protocol and Device Tree Integration Characteristics [1][2] Legend: SDA = Serial Data Line; SCL =
Serial Clock Line; Device tree properties enable runtime 12C configuration extraction

Parameter

12C Specification

Device Tree Representation

Bus architecture ended

Multi-master serial single-

Node hierarchy with compatible
strings

Signal interface

Two-wire SDA and SCL

Property-based configuration

Addressing scheme

7-bit or 10-bit slave addresses

"reg" property with address cells

Operational modes

Standard, Fast, High-speed

"clock-frequency" property

Transaction initiation

START condition high-to-low

Runtime protocol implementation

Output stage type

Open-drain or open-collector

Hardware capability description

Property encoding Not applicable

32-bit integers in angle brackets

Address space definition

Hardware bus topology

"address-cells" and "size-cells"

Table 2: ACPI and Open Firmware Hardware Description Approaches [3][4]Legend: AML = ACPI Machine
Language; ACPI namespace example: " SB_.PCI0.ISA.COM1"; Open Firmware enables bootloader device discovery

Aspect

ACPI Specification

Open Firmware Standard

Description method

AML bytecode execution

Declarative device tree

Naming convention

Four-character identifiers

1-31 character node names

Namespace structure

Hierarchical path notation

Tree with "@" unit separator

Property encoding

Abstract Syntax Notation

Big-endian byte sequences

Power state management

G-states, S-states, D-states, C-states

Not defined

Platform dependency

x86-centric architecture

Platform-independent design

Address representation

ACPI namespace paths

"address-cells" property cells

Integer encoding

AML interpreter-dependent

1, 2, 4, or 8 byte sequences

Root identification

" _SB_" System Bus

Forward slash root node

Boot-time support

OS-dependent runtime

Firmware-level initialization

Table 3: Device Tree Compiler and Design Pattern Integration [5][6] Legend:

Flattened Device Tree; ePAPR = embedded Power Architecture Platform Requirements

Component

DTC Processing

Adapter Pattern Application

Input format

C-like source syntax

DTC = Device Tree Compiler; FDT =

Hardware-specific interfaces

Processing phases

Lexical, syntactic, and semantic

Interface conversion logic

Output format

Binary FDT blob

Unified diagnostic interface

Token types

BEGIN_NODE, END_NODE,
PROP, NOP

Target and adaptee interfaces

8164

Structure organization

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

Header, memory, structure,
string blocks

Object composition hierarchy

Abstraction mechanism

Flattened tree representation

Loose coupling design

Interface compatibility

ePAPR specification compliance

Incompatible interface bridging

Transaction handling

Property tokenization

Protocol-specific sequences

Flexibility approach

Declarative hardware description

Runtime polymorphic behavior

Table 4: POSIX Standards and Linux Device Driver Integration [7][8]

Element

POSIX Specification

Linux Driver Implementation

Interface definition

System calls and library functions

ioctl commands and character devices

Portability approach

Standard API across UNIX systems

Kernel driver abstraction

Architecture support

Cross-platform specifications

Hardware-specific adaptations

12C access method

File descriptor operations

12C_RDWR and 12C_SLAVE ioctl

SPI access method

Standard file operations

SP1 mode and frequency ioctl

Code organization

Portable C implementation

Layered driver architecture

Device tree integration File system interface

fdt library API functions

Compiler compatibility

Standard C compliance

GCC and Clang toolchains

Memory management

Standard allocation functions

Kernel memory subsystems

4. Conclusions

The device tree-aware diagnostics framework
represents a transformative advancement in
platform health monitoring methodology by
addressing fundamental limitations inherent in
traditional hardcoded diagnostics implementations
through principled application of declarative
hardware description and runtime adaptability
principles. The framework achieves true platform
independence by leveraging the Flattened Device
Tree standard and libfdt library, enabling a single
diagnostics codebase to operate seamlessly across
diverse hardware configurations encompassing
heterogeneous communication interfaces, including
12C, 13C, SPI, and eSPI, without requiring
platform-specific code modifications. The layered
architecture consisting of the device tree parser
module, interface abstraction layer, and fault
detection engine demonstrates effective separation
of concerns while maintaining cohesive operation,
facilitating independent evolution of each
subsystem, and enabling adaptation to emerging
hardware interfaces and diagnostic methodologies
without destabilizing existing functionality.
Evaluation results validate practical viability across
multiple dimensions, with functional correctness
testing confirming accurate operation across diverse
platform variants, portability analysis
demonstrating substantial reductions in deployment
effort through elimination of platform-specific
code, maintainability metrics revealing improved

8165

code quality through reduced cyclomatic
complexity, and performance measurements
indicating negligible overhead compared to direct
hardware access. The framework establishes
declarative configuration paradigms as viable
alternatives to imperative programming models in
low-level system software contexts, potentially
influencing adjacent domains including firmware
development, hardware initialization sequences,
and platform security mechanisms where static
configurations currently impose similar portability
and maintenance challenges. The adoption of
device tree-aware diagnostics promises to reduce
the total cost of ownership for heterogeneous
computing infrastructure while improving
diagnostic accuracy and accelerating the
deployment of new platform variants, establishing
approaches that embrace declarative configuration
and runtime adaptability as increasingly essential
for sustainable system management practices in
diversifying computing environments with
escalating hardware complexity.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

Maheswara Kurapati / I[JCESEN 11-4(2025)8159-8166

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

o Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1] NXP Semiconductors, "12C-bus specification and
user manual," UM10204, 2021. [Online].
Available: https://www.nxp.com/docs/en/user-
quide/UM10204.pdf

[2] Devicetree.org, "Devicetree Specification, Release
v0.4," 2023. [Online]. Available:
https://www.scribd.com/document/701365722/Dev
icetree-Specification-v0-4

[3] Unified EFI Forum, "Advanced Configuration and
Power Interface (ACPI) Specification," 2022.
[Online]. Available:
https://uefi.org/sites/default/files/resources/ACPI_S
pec_6 5 Aug29.pdf

[4] IEEE, "1275-1994 - IEEE Standard for Boot
(Initialization Configuration) Firmware: Core
Requirements and Practices,” 1994. [Online].
Available:
https://ieeexplore.ieee.org/document/763383

[5] David Gibson, "Device trees everywhere,” IBM
Linux Technology Center, 2006. [Online].
Available:
https://ozlabs.org/people/dgibson/papers/dtc-
paper.pdf

[6] Erich Gamma, et al., "Design Patterns: Elements of
Reusable Object-Oriented Software," javier8a,
1994. [Online]. Available:
https://www.javier8a.com/itc/bd1/articulo.pdf

[7] IEEE, "1003.1-2017 - IEEE Standard for Information
Technology--Portable Operating System Interface
(POSIX(TM)) Base Specifications, Issue 7," 2018.
[Online]. Available:
https://ieeexplore.ieee.org/document/8277153

[8] Jonathan Corbet,” Linux Device Drivers” [Online].
Available: https://repo.zenk-
security.com/Linux%20et%20systemes%20d.explo
itations/Linux%20Device%20Drivers%20Third%2
OEdition.pdf

[9] IEEE, "730-2014 - IEEE Standard for Software
Quality Assurance Processes,”. 2014. [Online].
Available:
https://ieeexplore.ieee.org/document/6835311

[10] T. J. McCabe, "A Complexity Measure," IEEE,
1976. [Online]. Auvailable:
https://ieeexplore.ieee.org/document/1702388

8166

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.scribd.com/document/701365722/Devicetree-Specification-v0-4
https://www.scribd.com/document/701365722/Devicetree-Specification-v0-4
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://ieeexplore.ieee.org/document/763383
https://ozlabs.org/people/dgibson/papers/dtc-paper.pdf
https://ozlabs.org/people/dgibson/papers/dtc-paper.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://ieeexplore.ieee.org/document/8277153
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Linux%20Device%20Drivers%20Third%20Edition.pdf
https://ieeexplore.ieee.org/document/6835311
https://ieeexplore.ieee.org/document/1702388

