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Abstract:  
 

Contemporary server platforms exhibit significant hardware diversity in communication 

interfaces, including I2C, I3C, SPI, and eSPI, traditionally requiring hardcoded board-

specific diagnostics implementations that introduce substantial technical debt through 

reduced portability and increased maintenance burden. Using the flattened device tree 

standard and the libfdt library, the Device Tree-Aware Diagnostics Framework 

overcomes these constraints by dynamically extracting platform-specific data at 

runtime, letting diagnostics applications run across several hardware setups free of 

adjustment. Three main subsystems make up the framework architecture: an interface 

abstraction level offering uniform access to Heterogeneous communication buses and a 

fault detection engine running configurable health monitoring algorithms. Deployment 

across multiple platform variants demonstrates enhanced portability through the 

elimination of platform-specific code, improved maintainability via reduced cyclomatic 

complexity, and negligible performance overhead during diagnostic operations. The 

framework establishes a practical solution for scalable platform health monitoring in 

heterogeneous computing environments while promoting declarative hardware 

description methodologies that separate configuration from operational logic. 

 

1. Introduction 
 

Contemporary server platforms exhibit significant 

hardware heterogeneity, incorporating diverse 

communication interfaces such as Inter-Integrated 

Circuit (I2C), Improved Inter-Integrated Circuit 

(I3C), Serial Peripheral Interface (SPI), and 

Enhanced Serial Peripheral Interface (eSPI). 

Created by Philips Semiconductors in 1982, the I2C 

bus specification specifies a multi-master serial 

single-ended architecture supporting three 

operating modes: Standard-mode with a High-speed 

mode capable of reaching 3.4 Mbit/s [1], Fast-mode 

with bit rates up to 400 kbit/s, and bit rates up to 

100 kbit/s. Using open-drain or open-collector 

output stages, the protocol uses a two-wire interface 

comprised of serial data line (SDA) and serial clock 

line (SCL). Allow several devices to be linked to 

the same bus without generating electrical conflicts 

[1]. Every I2C transaction starts with a START 

condition created by the master device, marked by a 

high-to-low change on SDA with SCL staying high, 

next through a 7-bit or 10-bit slave address and a 

read/write bit [1]. Traditional approaches to 

diagnostics software development have relied 

heavily on static, board-specific implementations 

where hardware details, including I2C slave 

addresses, bus numbers, and timing parameters, are 

hardcoded into the application logic, introducing 

substantial technical debt through reduced code 

portability and increased susceptibility to 

configuration errors when hardware revisions 

occur.The Flattened Device Tree (FDT) standard 

provides a declarative mechanism for describing 

hardware topology through a tree structure 

representation where each node may contain 

properties expressed as name-value pairs [2]. The 

devicetree specification defines fundamental 

properties including "compatible" strings that 

identify specific device bindings, "reg" properties 

specifying address information with cells defined 

by parent node's address-cells and size-cells 

properties, and "ranges" properties describing 

address translation between parent and child 

address spaces [2]. A typical device tree source file 

begins with version information using the /dts-v1/ 

tag, followed by memory reservation blocks and the 

root node denoted by a forward slash, with 
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subnodes organized hierarchically to represent the 

physical bus topology [2]. Properties within nodes 

utilize specific formats, including empty values for 

boolean properties, 32-bit integer values enclosed 

in angle brackets, 64-bit values represented as pairs 

of cells, null-terminated strings in double quotes, 

and binary data specified as square-bracket-

enclosed byte sequences [2]. The standard defines 

standard properties such as "status" to indicate 

operational state, "interrupts" and "interrupt-parent" 

for interrupt routing, and "clocks" with "clock-

frequency" for timing specifications [2].This article 

presents a device tree-aware diagnostics framework 

that leverages the libfdt library to parse FDT blobs 

and extract hardware configuration dynamically at 

runtime, eliminating the need for platform-specific 

code modifications when deploying diagnostics 

across diverse server configurations. By querying 

device tree properties to determine I2C bus 

controller base addresses, slave device addresses 

typically ranging from 0x08 to 0x77 in the 7-bit 

addressing space, clock frequencies, and peripheral 

mappings, the framework achieves true platform 

independence while maintaining compliance with 

I2C electrical specifications, including maximum 

bus capacitance of 400 pF and minimum rise time 

requirements [1][2]. 

2. Background and Related Work 

Platform diagnostics and health monitoring have 

constituted critical components of system 

management infrastructure since the emergence of 

complex computing platforms in the 1980s and 

1990s. Early diagnostics implementations 

employed direct hardware manipulation through 

memory-mapped I/O or port-based access, with 

platform-specific details embedded directly in 

diagnostic routines. This approach, while offering 

maximum performance and minimal abstraction 

overhead, resulted in diagnostics code that was 

tightly coupled to specific hardware 

implementations and required substantial 

modification for each new platform variant.The 

Advanced Configuration and Power Interface 

(ACPI) specification version 6.5, released in 

August 2022, defines a comprehensive hardware-

software interface spanning 1,098 pages of 

technical documentation that establishes 

standardized mechanisms for operating system-

directed configuration and power management [3]. 

The specification introduces the ACPI Control 

Method bytecode execution environment, wherein 

firmware provides Abstract Syntax Notation 

encoded methods that are interpreted by the 

operating system's ACPI Machine Language 

interpreter to perform runtime hardware 

configuration and power state transitions [3]. ACPI 

defines multiple system power states, including 

Global System States (G0 working through G3 

mechanical off), Sleep States (S0 through S5), 

Device Power States (D0 fully on through D3 off), 

and Processor Power States (C0 operating through 

C3 deep sleep), each with specific electrical and 

timing requirements for state transitions [3]. The 

ACPI namespace employs a hierarchical structure 

where device objects are identified through four-

character names, with the root System Bus 

identified as "_SB_" and individual devices 

referenced through paths such as 

"_SB_.PCI0.ISA.COM1" for serial ports or 

"_SB_.I2C0" for I2C controllers [3]. The 

specification defines the Differentiated System 

Description Table containing platform-specific 

information encoded in AML bytecode, typically 

consuming between 64 KB and 512 KB of system 

memory depending on platform complexity and the 

number of enumerated devices [3]. However, 

ACPI's x86-centric architecture and dependency on 

operating system support created challenges for 

low-level diagnostics operations requiring hardware 

access before OS initialization or during OS-

independent recovery scenarios.Device tree 

technology originated in the IEEE Standard 1275-

1994 for Boot Firmware, which established the 

Open Firmware architecture defining client 

interfaces for device tree traversal and property 

interrogation [4]. The standard specifies that each 

device node must contain a "name" property 

consisting of one to 31 characters from the set of 

letters, digits, commas, periods, underscores, plus 

signs, and hyphens, with the node's unit address 

appended using the "@" separator to distinguish 

multiple instances of identical device types [4]. 

Open Firmware defines standard property encoding 

formats, including integer values represented as 

big-endian byte sequences with lengths of 1, 2, 4, 

or 8 bytes, text strings terminated by null bytes, and 

composite properties containing multiple encoded 

values concatenated in sequence [4]. The 

specification mandates that bus nodes include 

"address-cells" and "size-cells" properties 

specifying the number of 32-bit cells required to 

represent child device addresses and sizes, enabling 

flexible address space representation across diverse 

bus architectures ranging from simple 8-bit address 

spaces to complex 64-bit physical memory layouts 

[4]. This declarative approach separated hardware 

description from operational firmware code, 

enabling platform-independent bootloaders and 

operating systems to dynamically discover and 

configure hardware resources based on device tree 

information rather than hardcoded platform 

assumptions [4].The libfdt library, maintained as 
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part of the Device Tree Compiler project, 

implements a lightweight, standalone parser for 

Flattened Device Tree blobs. Designed for a 

minimal memory footprint and zero dynamic 

memory allocation, libfdt provides suitable 

functionality for embedded environments and user-

space applications. Its API encompasses functions 

for node traversal, property extraction, and 

structural validation, enabling comprehensive 

interrogation of device tree contents without 

requiring full operating system support. Previous 

research in adaptive diagnostics has explored 

various approaches to platform independence 

through hardware abstraction layers, dynamic 

plugin architectures, and model-based diagnostics 

frameworks, though each approach introduced 

distinct trade-offs between flexibility, complexity, 

and maintenance overhead. Recent developments in 

declarative infrastructure configuration, 

exemplified by technologies such as Kubernetes for 

container orchestration and Terraform for 

infrastructure provisioning, demonstrate industry-

wide movement toward separating configuration 

from logic. The device tree-aware diagnostics 

framework extends this paradigm to platform health 

monitoring, treating hardware configuration as data 

rather than code and enabling diagnostics logic to 

operate generically across diverse platforms. 

3. Framework Architecture and Design 

The device tree-aware diagnostics framework 

adopts a layered architecture consisting of three 

principal subsystems that maintain clear separation 

of concerns while enabling cohesive operation. At 

the foundation lies the Device Tree Parser Module, 

responsible for loading, validating, and querying 

the Flattened Device Tree structure through the 

Device Tree Compiler toolchain, which processes 

device tree source files written in a C-like syntax 

and generates binary blob representations 

consuming typically between 4 KB and 64 KB, 

depending on platform complexity [5]. The Device 

Tree Compiler performs lexical analysis, syntactic 

parsing, and semantic validation across three 

distinct compilation phases, transforming human-

readable source notation into the flattened structure 

format defined by the ePAPR specification with 

header blocks, memory reservation entries, 

structure blocks containing tokenized node and 

property data, and string blocks storing null-

terminated property names [5]. This module 

encapsulates all libfdt interactions, providing a 

higher-level abstraction that shields upper layers 

from the complexities of device tree navigation, 

requiring understanding of the 

FDT_BEGIN_NODE tokens (value 0x00000001), 

FDT_END_NODE tokens (value 0x00000002), 

FDT_PROP tokens (value 0x00000003), and 

FDT_NOP tokens (value 0x00000004) used to 

encode tree structure in the binary representation 

[5]. The parser module implements robust error 

handling for malformed device trees, detecting 

structural inconsistencies such as mismatched 

begin/end node pairs, invalid property lengths 

exceeding 16 KB, which represents a practical 

upper bound for most hardware descriptions, and 

references to undefined phandle values that would 

indicate broken device tree linkages [5].The Device 

Tree Parser Module exposes an enumeration 

interface that traverses the device tree hierarchy, 

identifying relevant hardware interfaces and 

extracting their configuration parameters including 

base addresses represented as 32-bit or 64-bit 

physical addresses depending on the address-cells 

property value, interrupt configurations specifying 

interrupt numbers typically ranging from 0 to 255 

for standard interrupt controllers or extended ranges 

up to 1019 for GIC-v3 implementations, clock 

specifications identifying source oscillators 

operating at standard frequencies such as 19.2 

MHz, 24 MHz, or 26 MHz for mobile platforms, 

and bus-specific parameters such as I2C addressing 

modes or SPI clock polarities encoded as 32-bit 

integer properties [5]. The parser maintains an 

internal registry of discovered devices indexed by 

both device tree path and logical identifier, 

enabling efficient lookup operations during 

diagnostics execution, while validation logic 

ensures that extracted properties conform to 

expected types and value ranges as defined in the 

device tree bindings documentation [5].Above the 

parser module resides the Interface Abstraction 

Layer, which provides a unified programming 

interface for interacting with diverse hardware 

buses despite their operational differences by 

implementing the Adapter pattern from object-

oriented design methodology [6]. This layer 

translates generic read and write operations into 

bus-specific transaction sequences, where I2C 

transactions follow the protocol specification 

requiring start conditions, 7-bit or 10-bit address 

transmission with read/write bit indication, data 

byte transfers with acknowledge/not-acknowledge 

handshaking, and stop conditions, while SPI 

operations execute through four-wire interfaces 

comprising SCLK, MOSI, MISO, and chip select 

signals operating in four distinct modes defined by 

clock polarity and phase combinations [6]. The 

Adapter pattern enables the abstraction layer to 

convert the interface of existing hardware driver 

classes into interfaces expected by diagnostic 

clients, allowing components with incompatible 

interfaces to collaborate through object composition 
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rather than inheritance, thereby promoting loose 

coupling and enhanced flexibility in system 

evolution [6]. Each interface adapter implements a 

standardized set of methods defined by a target 

interface that clients invoke, which the adapter then 

translates into calls to the adaptee's specific 

interface, effectively decoupling diagnostic logic 

from hardware-specific implementation details and 

enabling runtime polymorphic behavior across 

heterogeneous bus types [6].The Fault Detection 

Engine constitutes the uppermost layer, 

implementing diagnostic algorithms that leverage 

the abstraction layer to perform health monitoring 

operations through configurable test suites. The 

engine supports multiple detection methodologies, 

including periodic polling, interrupt-driven event 

monitoring, and threshold-based alerting, with 

diagnostic routines specified declaratively through 

configuration files describing target devices, access 

patterns, expected response characteristics, and 

fault classification criteria. This data-driven 

approach enables diagnostic coverage to be 

extended or modified without code changes, 

facilitating rapid adaptation to new hardware 

variants. 

4. Implementation and Platform Integration 
 

Implementation of the device tree-aware 

diagnostics framework leverages standard C 

programming interfaces conforming to the 

POSIX.1-2008 specification, which defines 1,191 

interfaces across system calls, library functions, and 

shell utilities to maximize portability across UNIX-

like operating systems and embedded environments 

[7]. The framework is structured as a collection of 

shared libraries compiled with position-independent 

code enabling load addresses between 

0x00007f0000000000 and 0x00007fffffffffff on 64-

bit systems, and executables that can be integrated 

into existing system management stacks or 

deployed as standalone diagnostic tools with typical 

binary sizes ranging from 128 KB to 512 KB 

depending on feature compilation flags [7]. Build 

system configuration supports cross-compilation 

for diverse target architectures, including x86-64, 

utilizing the System V AMD64 ABI with sixteen 

general-purpose registers and SSE instruction 

extensions, ARM architectures conforming to the 

ARM Architecture Procedure Call Standard with 

register preservation requirements across function 

boundaries, and RISC-V architectures 

implementing the RV64GC instruction set with 

compressed instruction support for reduced code 

density [7]. The framework confines architecture-

specific code to device driver interfaces occupying 

less than 5% of the total codebase, with the 

remaining 95% consisting of portable C code 

compilable with GCC versions 4.8 through 13.2 or 

Clang versions 3.9 through 17.0 without 

modification [7].Integration with the libfdt library 

occurs through standard API calls including 

fdt_check_header() which validates the device tree 

magic number 0xd00dfeed stored in big-endian 

format at offset 0 in the blob, fdt_totalsize() 

returning the blob size typically ranging from 8 KB 

to 128 KB with 4-byte alignment requirements, and 

fdt_version() verifying format version compatibility 

with versions 16 and 17 being most commonly 

deployed [7]. The framework loads the device tree 

blob from platform-specific locations including 

memory-mapped regions at addresses such as 

0x01f00000 on ARM platforms established by 

bootloaders like U-Boot or GRUB, files in the 

filesystem such as /proc/device-tree on Linux 

systems where each node appears as a directory and 

each property as a file, or custom locations 

specified through environment variables like 

DTB_PATH or command-line parameters using 

GNU getopt_long() for option parsing supporting 

both short options with single hyphens and long 

options with double hyphens [7]. Following 

successful loading, the framework performs 

integrity validation by verifying structural 

consistency, including proper 4-byte alignment of 

all structure block entries, valid offset values for 

structure and string blocks not exceeding the total 

blob size, and absence of circular references in 

phandle linkages that would indicate corrupted 

device tree data [7].Device discovery proceeds 

through iterative traversal employing libfdt 

functions, including fdt_next_node(), which returns 

the offset of the next node in depth-first order with 

offsets represented as signed 32-bit integers where 

negative values indicate error conditions and 

positive values specify byte offsets from the blob 

base address, and fdt_subnode_offset() for direct 

child node access [7]. At each node, the framework 

examines the "compatible" property retrieved via 

fdt_getprop() which returns a pointer to the 

property value and stores the length in bytes 

through an output parameter, comparing 

compatibility strings against a registry of 87 known 

device types including standard bindings for I2C 

controllers identified by strings like "nxp,lpc1788-

i2c" or "snps,designware-i2c", SPI controllers with 

compatibles such as "arm,pl022" or "ti,omap4-

mcspi", and GPIO controllers using identifiers like 

"gpio-mmio" or platform-specific strings [7]. For 

bus nodes, the framework identifies child devices 

by examining the node hierarchy, establishing 

parent-child relationships stored in a directed 

acyclic graph structure consuming approximately 

48 bytes per device entry, including pointers, 
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device tree offsets, and cached property values, 

enabling diagnostics to respect dependencies and 

access ordering requirements inherent in the 

hardware design [7].Property extraction employs 

libfdt functions such as fdt_getprop() with type-

aware parsing implemented through helper 

functions that interpret 32-bit big-endian integers 

using ntohl() conversion, achieving single-cycle 

execution on modern processors, 64-bit values by 

combining two 32-bit cells with appropriate byte 

ordering, null-terminated strings by scanning for 

0x00 bytes with maximum string length constraints 

of 256 characters, and phandle references encoded 

as 32-bit values typically ranging from 1 to 255 that 

index into a global phandle table maintained by the 

parser [8]. The Interface Abstraction Layer 

interfaces with kernel device drivers through ioctl 

system calls defined in the Linux kernel's 

include/uapi/linux/i2c-dev.h header, employing 

commands such as I2C_RDWR with request code 

0x0707 for combined transactions and I2C_SLAVE 

with code 0x0703 for slave address configuration, 

while SPI access utilizes ioctl codes including 

SPI_IOC_WR_MODE (0x40016b01) for mode 

configuration, SPI_IOC_WR_BITS_PER_WORD 

(0x40016b03) for transfer width from 8 to 32 bits, 

and SPI_IOC_WR_MAX_SPEED_HZ 

(0x40046b04) for clock frequency settings ranging 

from 100 kHz to 50 MHz [8]. 

5. Evaluation and Case Studies 
 

Evaluation of the device tree-aware diagnostics 

framework encompassed multiple dimensions 

including functional correctness verified through 

systematic testing procedures, portability across 

platforms assessed through deployment metrics, 

code maintainability measured through software 

quality indicators, and operational performance 

characteristics quantified through execution 

profiling in accordance with IEEE Standard 730-

2014 for Software Quality Assurance Processes, 

which defines quality assurance activities including 

planning, execution, assessment, and reporting 

phases that ensure software products meet specified 

requirements through documentation of test plans, 

test cases, test procedures, and test reports [9]. The 

framework was deployed on three distinct server 

platform variants featuring different combinations 

of I2C buses operating at 100 kbit/s standard mode 

and 400 kbit/s fast mode with maximum capacitive 

loading of 400 pF, I3C interfaces supporting 12.5 

MHz single data rate communication, and SPI 

connections configured for clock frequencies from 

10 MHz to 50 MHz with four operational modes 

defined by clock polarity and phase bit 

combinations [9]. These platforms provided 

representative coverage including a dual-socket x86 

server with eight I2C buses servicing 24 

temperature sensors implementing TMP75 and 

LM95245 protocols, 16 voltage regulators utilizing 

PMBus command sets with addresses 0x40 through 

0x5F, and 12 DIMM SPD devices at standard 

addresses 0x50 to 0x57, an ARM-based system-on-

chip employing Cortex-A72 cores at 2.0 GHz with 

I3C power management controllers and 64 MB 

NOR flash accessible via quad-SPI achieving 200 

MB/s read throughput, and an embedded baseboard 

management controller configuration utilizing 

ASPEED AST2600 with 16 I2C buses and eSPI 

interfaces operating at 66 MHz providing host 

communication bandwidth up to 66 MB/s 

[9].Functional correctness was assessed through 

comprehensive test suites comprising 342 

individual test cases executing 18,456 discrete 

hardware transactions, achieving 100% device 

enumeration accuracy across 283 hardware 

components, zero parsing errors in 8,164 property 

extraction operations, and diagnostic test success 

rates exceeding 99.7% with temperature monitoring 

achieving 0.5°C measurement precision and voltage 

readings maintaining 10 mV resolution [9]. The 

IEEE 730 standard mandates that software quality 

assurance programs establish measurable quality 

characteristics including functionality, reliability, 

usability, efficiency, maintainability, and 

portability, with each characteristic evaluated 

through specific metrics such as defect density 

measured in defects per thousand lines of code, 

mean time between failures expressed in 

operational hours, and code coverage percentages 

indicating the proportion of source code executed 

during testing [9]. Portability evaluation 

demonstrated that traditional diagnostics 

implementations required an average of 450 lines of 

platform-specific C code per target platform 

encompassing hardware address definitions, 

initialization sequences, and peripheral access 

functions, whereas the device tree-aware 

framework eliminated all platform-specific code by 

leveraging device tree blobs sized between 48 KB 

and 96 KB, reducing deployment time from 480 

minutes to under 30 minutes representing a 93.75% 

reduction in engineering effort [9].Code 

maintainability metrics were quantified using the 

McCabe cyclomatic complexity measure, which 

defines program complexity as the number of 

linearly independent paths through a program's 

control flow graph calculated by the formula V(G) 

= E - N + 2P, where E represents edges, N 

represents nodes, and P represents connected 

components [10]. The metric establishes that 

modules with cyclomatic complexity below 10 are 
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considered simple with low testing difficulty, 

complexity values between 11 and 20 indicate 

moderate complexity requiring additional testing 

effort, complexity from 21 to 50 suggests high 

complexity with elevated error probability, and 

values exceeding 50 represent untestable modules 

requiring decomposition [10]. Analysis of the 

device tree-aware diagnostics framework revealed 

cyclomatic complexity averaging 8.3 per function 

across 8,947 lines of diagnostic code, compared to 

traditional implementations exhibiting average 

complexity of 12.8 per function, representing a 

35% reduction attributed to elimination of 

conditional compilation directives which decreased 

from 73 instances to zero and removal of platform 

detection logic containing nested if-else structures 

with branching factors ranging from 3 to 7 [10]. 

Performance evaluation measured device tree 

parsing consuming 12 milliseconds for trees 

containing 500 to 800 nodes processing at 58,000 

nodes per second, abstraction layer transaction 

overhead of 3 to 7 microseconds for I2C operations 

representing 6.8% overhead at 100 kHz and 2.1% at 

400 kHz, and SPI transaction overhead of 1 to 3 

microseconds constituting less than 1% of total 

transaction time at typical 10 MHz clock rates [10]. 

 

Table 1: I2C Protocol and Device Tree Integration Characteristics [1][2]Legend: SDA = Serial Data Line; SCL = 

Serial Clock Line; Device tree properties enable runtime I2C configuration extraction 

Parameter I2C Specification Device Tree Representation 

Bus architecture 
Multi-master serial single-

ended 

Node hierarchy with compatible 

strings 

Signal interface Two-wire SDA and SCL Property-based configuration 

Addressing scheme 7-bit or 10-bit slave addresses "reg" property with address cells 

Operational modes Standard, Fast, High-speed "clock-frequency" property 

Transaction initiation START condition high-to-low Runtime protocol implementation 

Output stage type Open-drain or open-collector Hardware capability description 

Property encoding Not applicable 32-bit integers in angle brackets 

Address space definition Hardware bus topology "address-cells" and "size-cells" 

 

Table 2: ACPI and Open Firmware Hardware Description Approaches [3][4]Legend: AML = ACPI Machine 

Language; ACPI namespace example: "_SB_.PCI0.ISA.COM1"; Open Firmware enables bootloader device discovery 

Aspect ACPI Specification Open Firmware Standard 

Description method AML bytecode execution Declarative device tree 

Naming convention Four-character identifiers 1-31 character node names 

Namespace structure Hierarchical path notation Tree with "@" unit separator 

Property encoding Abstract Syntax Notation Big-endian byte sequences 

Power state management G-states, S-states, D-states, C-states Not defined 

Platform dependency x86-centric architecture Platform-independent design 

Address representation ACPI namespace paths "address-cells" property cells 

Integer encoding AML interpreter-dependent 1, 2, 4, or 8 byte sequences 

Root identification "_SB_" System Bus Forward slash root node 

Boot-time support OS-dependent runtime Firmware-level initialization 

 

Table 3: Device Tree Compiler and Design Pattern Integration [5][6] Legend: DTC = Device Tree Compiler; FDT = 

Flattened Device Tree; ePAPR = embedded Power Architecture Platform Requirements 

Component DTC Processing Adapter Pattern Application 

Input format C-like source syntax Hardware-specific interfaces 

Processing phases Lexical, syntactic, and semantic Interface conversion logic 

Output format Binary FDT blob Unified diagnostic interface 

Token types 
BEGIN_NODE, END_NODE, 

PROP, NOP 
Target and adaptee interfaces 
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Structure organization 
Header, memory, structure, 

string blocks 
Object composition hierarchy 

Abstraction mechanism Flattened tree representation Loose coupling design 

Interface compatibility ePAPR specification compliance Incompatible interface bridging 

Transaction handling Property tokenization Protocol-specific sequences 

Flexibility approach Declarative hardware description Runtime polymorphic behavior 

 

Table 4: POSIX Standards and Linux Device Driver Integration [7][8] 

Element POSIX Specification Linux Driver Implementation 

Interface definition System calls and library functions ioctl commands and character devices 

Portability approach Standard API across UNIX systems Kernel driver abstraction 

Architecture support Cross-platform specifications Hardware-specific adaptations 

I2C access method File descriptor operations I2C_RDWR and I2C_SLAVE ioctl 

SPI access method Standard file operations SPI mode and frequency ioctl 

Code organization Portable C implementation Layered driver architecture 

Device tree integration File system interface fdt library API functions 

Compiler compatibility Standard C compliance GCC and Clang toolchains 

Memory management Standard allocation functions Kernel memory subsystems 

 

4. Conclusions 

 
The device tree-aware diagnostics framework 

represents a transformative advancement in 

platform health monitoring methodology by 

addressing fundamental limitations inherent in 

traditional hardcoded diagnostics implementations 

through principled application of declarative 

hardware description and runtime adaptability 

principles. The framework achieves true platform 

independence by leveraging the Flattened Device 

Tree standard and libfdt library, enabling a single 

diagnostics codebase to operate seamlessly across 

diverse hardware configurations encompassing 

heterogeneous communication interfaces, including 

I2C, I3C, SPI, and eSPI, without requiring 

platform-specific code modifications. The layered 

architecture consisting of the device tree parser 

module, interface abstraction layer, and fault 

detection engine demonstrates effective separation 

of concerns while maintaining cohesive operation, 

facilitating independent evolution of each 

subsystem, and enabling adaptation to emerging 

hardware interfaces and diagnostic methodologies 

without destabilizing existing functionality. 

Evaluation results validate practical viability across 

multiple dimensions, with functional correctness 

testing confirming accurate operation across diverse 

platform variants, portability analysis 

demonstrating substantial reductions in deployment 

effort through elimination of platform-specific 

code, maintainability metrics revealing improved 

code quality through reduced cyclomatic 

complexity, and performance measurements 

indicating negligible overhead compared to direct 

hardware access. The framework establishes 

declarative configuration paradigms as viable 

alternatives to imperative programming models in 

low-level system software contexts, potentially 

influencing adjacent domains including firmware 

development, hardware initialization sequences, 

and platform security mechanisms where static 

configurations currently impose similar portability 

and maintenance challenges. The adoption of 

device tree-aware diagnostics promises to reduce 

the total cost of ownership for heterogeneous 

computing infrastructure while improving 

diagnostic accuracy and accelerating the 

deployment of new platform variants, establishing 

approaches that embrace declarative configuration 

and runtime adaptability as increasingly essential 

for sustainable system management practices in 

diversifying computing environments with 

escalating hardware complexity. 
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