Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - o ’
(IJCESEN) N

Vol. 11-No.4 (2025) pp. 8313-8318 —-

http://www.ijcesen.com o
D | ISSN: 2149-9144

Research Article

Copilot Impact Studies: Measuring Productivity, Trust, and Skill Evolution in

Enterprise Developer Teams

Madhuri Koripalli*

University of Louisiana, USA

* Corresponding Author Email: reachmadhurikoripalli@gmail.com - ORCID: 0000-0002-9947-7850

Article Info:

DOI: 10.22399/ijcesen.4217
Received : 03 September 2025
Accepted : 22 October 2025

Keywords

Copilot Impact,
Al,
Al-driven coding assistants

Abstract:

The incorporation of artificial intelligence-driven coding assistants in enterprise
software development is a paradigmatic shift in the way development teams think and
implement technical solutions. This article examines the many-sided effects of Al
copilot technology on developer productivity, trust calibration, and skill development in
different enterprise contexts. By using a mixed-methods paradigm that integrates
quantitative performance data with qualitative data derived from developer experiences,
findings show a multifaceted reality where productivity improvements occur in an
uneven pattern across task types and levels of experience. Although routine
implementation tasks reveal hn<icated that subjects who had been given an Al assistant
tended to generate incorrect and insecure solutions to cryptography problems, with
those who were provided with the assistant writing substantially less secure code (p =
0.05) and tending to be more confident in their insecure solutions (p < 0.001) [2].
Additionally, the enterprise environment provides special considerations related to
security, compliance, and intellectual property that distinguish it from open-source or

startup environments on which much of the current research has been performed.

1. Introduction

This study answers these essential gaps through an
in-depth analysis of copilot integration among
enterprise development teams. The study uses a
mixed-methods research design that incorporates
guantitative measures of productivity and code
guality along with qualitative information about
developers' experiences, trust relationships, and
skill development. The study covers several
enterprise organizations in multiple industries and
yields a wide view of how Copilot adoption occurs
in various organizational settings and technical
areas. By observing teams longitudinally over a 6-
12 month time frame, the study not only captures
short-term effects, but also the changing patterns of
human-Al collaboration that arise as developers
and organizations learn to work with these new
tools, meeting the imperative for empirical research
on sustainable integration of Al support in
professional software development contexts.

2. Literature Review and Theoretical
Framework

The academic debate about Al-aided software
development borrows from several different
traditions, such as software engineering, human-
computer interaction, organizational psychology,
and science and technology studies. Initial work on
computer-aided programming assistance was
centered mainly on context-free syntactic
completion and template-based code generation,
with the use of IntelliSense laying down early
patterns in developer-tool interaction. The advent of
machine learning-based solutions based on
transformer architectures has dramatically
transformed the paradigm from rule-based aid to
context-sensitive, generative aids.There are recent
empirical studies that have started to measure the
effect of current Al copilots on developer
productivity. A massive study examining more than
2 million completions from neural code completion
systems established that developers accepted
proposals at different rates based on programming
language, with Python having acceptance rates of
29.8%, JavaScript at 27.5%, and TypeScript at
26.9%, whereas the persistence rate (follow-
through use of proposed code following initial
acceptance) was always above 23% across the

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

languages examined [3]. The research also
identified that the latency of completion had a
direct influence on adoption patterns, with
suggestions provided within 100 milliseconds
having 1.5 times greater acceptance compared to
suggestions taking 500 milliseconds or more [3].
Nevertheless, all these studies are mostly concerned
with individual productivity metrics with little
exploration at the organizational and team levels.
The analysis of developer copilot interaction
patterns indicates a range of usage strategies from
active prompt engineering to passive acceptance,
but current work falls short of looking at how these
patterns change over time or differ across enterprise
contexts with different quality needs and
governance arrangements.Trust in Al systems is an
important aspect that has been given limited
consideration in the case of coding assistants. From
the wider literature on human-Al collaboration,
there are established trust calibration frameworks
that highlight the need for proper reliance—neither
over-trusting nor under-leveraging Al capabilities.
In the software development scenario, trust
calibration is especially challenging given the high
stakes of production code and the inability to check
for the correctness of Al-provided solutions. A
comparative knowledge transfer mechanism study
revealed that developers using Al copilots exhibited
varied learning trends from conventional pair
programming, and while Al-supported developers
were 38% quicker at completing tasks, they had
25% poorer retention of problem-solving strategies
when tested without support after a week [4]. The
notion of "automation bias,” extensively
documented elsewhere, has its specific form in
programming environments where programmers
need to weigh efficiency improvements against
code quality and maintainability issues.The issue of
skill development under Al support relates to larger
discussions regarding technological deskilling and
reskilling in knowledge work. Studies of the shift
from human pair programming to Al-copiloting
found that although Al copilots achieved almost
immediate productivity gains, knowledge transfer
mechanisms were quite different, with human pairs
enabling tacit knowledge transmission through
explanation and context-specific discussion that
cannot yet be done by Al systems [4]. Framework
analysis of complementary innovation indicates that
benefits from new technologies are reaped only
when processes are redesigned and new
competencies are created in organizations. In the
context of copilots, this implies that optimal
outcomes require not just tool adoption but also
deliberate cultivation of new skills in prompt
engineering, Al output evaluation, and system-level
thinking.

8314

3. Research Methodology

The mixed-methods research design combines
quantitative performance metrics with qualitative
insights to provide a comprehensive understanding
of copilot impact in enterprise settings. The
research covers 24 development teams in 8
enterprise organizations in a variety of industries
such as financial services, health care, retail, and
technology. Teams were chosen using stratified
sampling in order to provide representation in
different organizational sizes, development
approaches (Agile, DevOps, waterfall), and
technology stacks. Half of the teams were assigned
as treatment groups with full copilot access, while
control groups maintained regular development
environments, enabling effective comparative
studies. This methodological strategy is in line with
current practice within software engineering
research, where systematic mapping studies have
established that combining repository mining
methods with architectural analysis provides the
best overall view of development practices and
system evolution [5].Quantitative data collection
targets explicit productivity and quality measures
retrieved from development toolchains and project
management systems. The approach measures code
completion rates, both lines of code and functional
story points delivered per sprint. Defect density is
monitored using bug tracking systems with a
specific focus on the type of defects (human-written
vs. Al-recommended code). Sprint velocity
measurements measure changes in team-level
productivity across time, while code review
turnaround times reflect the quality and readability
of copilot-assisted code. A systematic review of
mining software repositories showed that
architectural recovery methods obtain precision
levels of 72% to 89% in the analysis of commit
patterns and code structure evolution, giving
assurance of the automatic metric collection
process used in this study [5]. The analysis also
investigates commit patterns, refactoring density,
and test coverage to determine the impact of
Copilot use on development habits. These measures
are gathered constantly using automated
instrumentation, reducing observer effect and
providing data completeness.The qualitative aspect
uses a range of methods for gathering the everyday
experiences of developers using copilots. Semi-
structured interviews are carried out monthly with a
changing sample of developers, team leaders, and
architects, investigating trust, skill acquisition, and
workflow adjustment. The methods employ
standardized survey tools, such as modified forms
of the Technology Acceptance Model (TAM) and
the Human-Computer Trust Scale, at baseline, 3

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

months, and 6 months. Studies of technology
acceptance in information systems have shown
TAM constructs to account for 40% to 60%
variance in user acceptance behavior, with
perceived usefulness having better predictive
capability (correlation coefficient of 0.63) than
perceived ease of use (correlation coefficient of
0.45) in the context of professional software
development [6]. Ethnographic observation of
sprint planning, code reviews, and debug sessions
provides contextual insight into the copilot
reworking of collaborative practice.To measure
skill development, the evaluation framework
integrates standardized coding tests with
architectural design problems. Participants solve
timed problem-solving exercises without Al
support regularly, enabling monitoring of shifts in
core programming abilities. The evaluation
protocol borrows from validated assessment
approaches that have demonstrated test-retest
reliability coefficients between 0.71 and 0.84 on
programming skill evaluations when given three
months apart [6]. Architectural cognition is tested
with system design practice involving abstraction,
trade-off analysis, and planning for the long term—
abilities that are not directly available from today's
copilots.

4. Empirical Findings and Analysis

The empirical analysis reveals a complex landscape
of productivity gains, trust dynamics, and skill
evolution that defies simple characterization.
Quantitatively, teams using Copilot demonstrated
an average 34% increase in code production
velocity during the first three months, measured by
functional story points delivered. However, this
headline figure masks significant variation across
task types and team compositions. Routine
implementation tasks showed the highest
productivity gains (up to 55% improvement), while
complex architectural work and algorithm design
showed minimal improvement (8-12%). An
observational study of developer interactions with
code-generating models found that participants
engaged in two primary modes of interaction:
acceleration mode, where developers knew the
desired solution and used the assistant to speed
implementation, and exploration mode, where
developers iteratively refined prompts to discover
solutions, with the former showing significantly
higher acceptance rates and productivity gains [7].
It is important to note that productivity gains were
not equally distributed among team members.
Senior developers showed 40-45% time savings in
their regular tasks and could reinvest in
architectural planning and code review, and junior

8315

developers exhibited 15-20 percent improvement
and said that learning opportunities had been
diminished. Code quality metrics portray a subtle
image that goes against expectations regarding Al-
assisted development. While initial defect rates
increased by 23% in the first month of copilot
adoption, stabilization occurred with ultimate
decreases to 15% below baseline by month six.
This U-shaped curve suggests a learning period
during which developers calibrate trust and develop
strategies for effective copilot utilization. Analysis
of defect types reveals that copilot-assisted code
exhibits fewer syntax errors and logical bugs but
shows increased rates of subtle semantic errors and
security vulnerabilities. Security assessment of Al-
generated code revealed that without prompt
engineering, the baseline security score averaged
2.18 out of 10, indicating substantial vulnerability
presence, particularly in areas involving string
handling, memory management, and cryptographic
operations [8]. Code review data indicates that
copilot-generated code requires 40% more review
comments related to business logic validation and
edge case handling, suggesting that while Al
assistance accelerates initial implementation,
quality assurance burden shifts to later development
stages. Trust calibration emerged as a critical factor
determining copilot effectiveness. Through
qualitative analysis, three distinct trust trajectories
were identified: early adopters who quickly
integrated copilots into workflows but required
recalibration after encountering quality issues;
skeptical evaluators who maintained critical
distance and gradually increased usage; and
resistant minimalists who used copilots sparingly
despite organizational encouragement. The
grounded theory analysis of programmer behavior
revealed that developers developed sophisticated
mental models for predicting when Al suggestions
would be reliable, with participants reporting higher
confidence for "breadth" tasks requiring knowledge
of APIs and libraries versus "depth™ tasks requiring
algorithmic reasoning [7]. Interestingly, the
skeptical evaluators achieved the best long-term
outcomes in terms of both productivity and code
quality, suggesting that measured trust calibration
proves optimal.The evolution of developer skills
under Copilot assistance reveals both concerning
trends and unexpected opportunities. Standardized
assessments without Al assistance showed a 15%
decline in syntax recall and basic algorithm
implementation among junior developers after six
months of heavy Copilot use. However, these same
developers demonstrated improved performance on
system design and code organization tasks, with
architectural thinking capabilities showing marked

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

enhancement when measured through design
complexity metrics [8].

5. Discussion and Implications

The results of this research shed light on the
revolutionary but multifaceted nature of copilot
integration in company development landscapes.
The productivity benefits realized, as significant as
they are, are neither homogeneous nor absolute.
Task factors, developer skill levels, and
organizational support infrastructures play critically
important roles in determining outcomes. The focus
on benefits in normal implementation tasks
indicates that copilots are currently best suited to
operate as accelerators of well-known patterns,
rather than as innovative problem solvers of new
challenges. An inspection looking at the copilot
effect via the Software Engineering Body of
Knowledge (SWEBOK) framework indicated that
Al support showed greatest efficacy in software
building tasks, with 45% time savings in coding
according to developers, while software design and
requirements engineering recorded little or no
improvement at 8% and 5% respectively [9]. This
carries deep implications for the manner in which
businesses ought to embrace Copilot,
recommending strategic deployment toward high-
volume, standard development work while
maintaining human-centric methods for innovative
and critical system elements.The dynamics of trust
emphasize organizational culture and training as
pivotal for copilot adoption success. The better
performance of skeptical assessors implies that
companies ought to promote a culture of critical
reflection instead of blind acceptance of Al support.
This revelation contradicts the common narrative of
smooth Al integration and highlights the
importance of intentional trust calibration
mechanisms. Organizations need to create new
guality assurance processes that address Al-
generated code's specific failure modes, such as
more rigorous testing for edge cases and semantic
correctness. A study examining developer

workflows discovered that teams using structured
review procedures for Al-generated code had 32%
fewer production incidents than teams using
copilots without altered quality assurance
procedures [10]. The added review burden seen is
evidence that productivity benefits from copilots
can be at least partially balanced by increased
quality assurance needs, calling for an integrated
perspective of development lifecycle effects.The
patterns of skill evolution reported challenge basic
questions regarding the future of software
engineering professional expertise and career
advancement. The reduction in fundamental
implementation capability among junior coders
who work with copilots extensively indicates a
latent skill gap that may be viewed as diminished
problem-solving capacity when Al support is not
present. Empirical evaluation of various
development teams indicated that less-experienced
developers demonstrated 28% lower performance
in algorithmic problem-solving when tested without
Al support following six months of continuous
Copilot use [9]. This bears on technical interviews,
skills measurement, and career advancement
frameworks that today focus on algorithmic
problem-solving and syntax expertise. In contrast,
the development of architectural thinking and
system design skills suggests a possible rise of the
developer profession, refocusing from code
creation to system coordination and strategic
technical choice-making.The framework for
responsible copilot adoption outlined here
integrates these findings into practical
recommendations for business leaders. A graduated
adoption strategy needs to start with low-risk, high-
volume development activities since research
confirms that confining early Al support to clearly
defined code sections less than 100 lines yields
78% acceptance rates and 12% defect reduction
against uncontrolled usage [10]. Repeat evaluation
frameworks need to track productivity measures as
well as skill development so that short-term
productivity boosts do not undermine long-term
organizational strengths.

Table 1: Developer interaction patterns with neural code completion systems [3,4]

Programming Language/Metric Acceptance Rate/ Value
Python acceptance rate 29.8%
JavaScript acceptance rate 27.5%
TypeScript acceptance rate 26.9%
Code persistence rate threshold 23%
Al-assisted task completion speed increase 38%
Problem-solving retention decreases after one week 25%

8316

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

Validation Metrics for Mixed-Methods Design

0.9
0.8

0.84
0.71

0.7 0.63
0.6
0.5 0.45
0.4
0.3
0.2
0.1

0

Perceived usefulness Perceived ease of use Test-retest reliability Test-retest reliability

correlation correlation {(minimum) {maximum)
coefficient coefficient
M Reliability/
Accuracy

Figure 1: Validation Metrics for Mixed-Methods Design [5,6]

Table 2: Empirical measurements of copilot impact on development teams [7,8]

Performance Indicator Measurement
Average code production velocity increase 34%
Routine implementation task improvement 55%
Complex architectural work improvement 8-12%
Senior developer time savings 40-45%
Junior developer improvement 15-20%
Al code baseline security score 2.18/10
Review comments increase for business logic 40%

Long-term organizational impacts of Al copilot integration

Defect reduction with restricted usage - 12%

Acceptance rate for sub-100 line segments [N 755
Production Incident reduction with structured review _ 32%

Requirements engineering improvement - 5%

Software design improvement - 8%

Software construction time reduction [N <5

0% 1% 20% 30% 40% SOX 60% 70% 80% 90%

N Measurement

Figure 2: Long-term organizational impacts of Al copilot integration [9,10]

8317

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

6. Conclusions

The Al-facilitated reengineering of enterprise
software development is much more than just a
one-off technological advance; it is a revolution in
the very heart of development processes, team
interactions, and professional skills. What the
evidence here shows is that although copilot
technologies achieve significant productivity gains,
these are largely accreted in low-level, defined
tasks as opposed to novel problem-solving or
architectural innovation. The establishment of
differential trust pathways among developers, with
critical evaluators realizing best results, highlights
the need for developing critical interaction instead
of passive reliance on Al recommendations. Not
least of all, evidence of the transformation of
developer work from implementation to
architecture roles may indicate a possible
professionalization of the field, though this change
must be actively fostered by organizations to avoid
skill degradation in less-experienced team
members. Organizations considering adopting
Copilot technology need to wunderstand that
effective integration requires more than deploying
technology; it requires end-to-end rethinking of
quality assurance workflows, career growth paths,
and team collaboration patterns. The model of
responsible adoption calls for phased-in rollout,
ongoing skill evaluation, and retention of unassisted
development space to ensure the entire engineering
skill continuum is preserved. At this turning point,
the future of the software development vocation
involves reconciling the undeniable productivity
benefits of Al support with the necessity of
maintaining human imagination, discernment, and
profound technical knowledge that are irreplaceable
in resolving new problems and fueling innovation.

Author Statements:

Ethical approval: The conducted research is
not related to either human or animal use.
Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

Author contributions: The authors declare that
they have equal right on this paper.

Funding information: The authors declare that
there is no funding to be acknowledged.

8318

Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1] Sida Peng et al., "The Impact of Al on Developer
Productivity: Evidence from GitHub Copilot",
arXiv, 2023. [Online]. Available:
https://arxiv.org/pdf/2302.06590

[2] Neil Perry et al., "Do Users Write More Insecure
Code with Al Assistants?”, arXiv, 2023. [Online].
Available: https://arxiv.org/pdf/2211.03622

[3] Albert Ziegler et al., "Productivity Assessment of
Neural Code Completion”, arXiv, 2022. [Online].
Available: https://arxiv.org/pdf/2205.06537

[4] Alisa Welter et al., "From Developer Pairs to Al
Copilots: A Comparative Study on Knowledge
Transfer”, arXiv, Jun. 2025. [Online]. Available:
https://arxiv.org/pdf/2506.04785

[5] Mohamed Soliman et al., "Mining software
repositories for software architecture — A
systematic mapping study", ScienceDirect, May
2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S
0950584925000163

[6] Patrice Seuwou et al., "User Acceptance of

Information Technology: A Critical Review of
Technology Acceptance Models and the Decision
to Invest in Information Security”, ResearchGate,
2016. [Online]. Available:

[7] Shraddha Barke et al., "Grounded Copilot: How
Programmers Interact with Code-Generating
Models", arXiv, 2022. [Online]. Awvailable:
https://arxiv.org/pdf/2206.15000

[8] Jakub Res et al., "Enhancing Security of Al-Based
Code Synthesis with GitHub Copilot via Cheap and
Efficient Prompt-Engineering”, arXiv/Semantic
Scholar, 2024, [Online]. Available:
https://www.semanticscholar.org/reader/707d50923
a9c¢758bd06eccc30efch83352fccfd4

[9] Danie Smit et al., "The impact of GitHub Copilot on

developer productivity from a software engineering

body of knowledge perspective”, ResearchGate,

2024. [Online]. Available:

https://www.researchgate.net/publication/38160941

7_The_impact_of GitHub_Copilot_on_developer
productivity from_a_software_engineering_body
of _knowledge_perspective

Gaurav Rohatgi, "Unlocking Developer

Productivity: A Deep Dive into GitHub Copilot’s

Al-Powered Code Completion”, 1JERT, 2024.

[Online]. Available:

https://www.ijert.org/unlocking-developer-

productivity-a-deep-dive-into-github-copilots-ai-
powered-code-completion

[10]

https://arxiv.org/pdf/2302.06590
https://arxiv.org/pdf/2211.03622
https://arxiv.org/pdf/2205.06537
https://arxiv.org/pdf/2506.04785
https://www.sciencedirect.com/science/article/pii/S0950584925000163
https://www.sciencedirect.com/science/article/pii/S0950584925000163
https://arxiv.org/pdf/2206.15000
https://www.semanticscholar.org/reader/707d50923a9c758bd06eccc30efcb83352fccfd4
https://www.semanticscholar.org/reader/707d50923a9c758bd06eccc30efcb83352fccfd4
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion

