

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8313-8318
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Copilot Impact Studies: Measuring Productivity, Trust, and Skill Evolution in

Enterprise Developer Teams

Madhuri Koripalli*

University of Louisiana, USA
* Corresponding Author Email: reachmadhurikoripalli@gmail.com - ORCID: 0000-0002-9947-7850

Article Info:

DOI: 10.22399/ijcesen.4217

Received : 03 September 2025

Accepted : 22 October 2025

Keywords

Copilot Impact,

AI,

AI-driven coding assistants

Abstract:

The incorporation of artificial intelligence-driven coding assistants in enterprise

software development is a paradigmatic shift in the way development teams think and

implement technical solutions. This article examines the many-sided effects of AI

copilot technology on developer productivity, trust calibration, and skill development in

different enterprise contexts. By using a mixed-methods paradigm that integrates

quantitative performance data with qualitative data derived from developer experiences,

findings show a multifaceted reality where productivity improvements occur in an

uneven pattern across task types and levels of experience. Although routine

implementation tasks reveal hn≤icated that subjects who had been given an AI assistant

tended to generate incorrect and insecure solutions to cryptography problems, with

those who were provided with the assistant writing substantially less secure code (p =

0.05) and tending to be more confident in their insecure solutions (p < 0.001) [2].

Additionally, the enterprise environment provides special considerations related to

security, compliance, and intellectual property that distinguish it from open-source or

startup environments on which much of the current research has been performed.

1. Introduction

This study answers these essential gaps through an

in-depth analysis of copilot integration among

enterprise development teams. The study uses a

mixed-methods research design that incorporates

quantitative measures of productivity and code

quality along with qualitative information about

developers' experiences, trust relationships, and

skill development. The study covers several

enterprise organizations in multiple industries and

yields a wide view of how Copilot adoption occurs

in various organizational settings and technical

areas. By observing teams longitudinally over a 6-

12 month time frame, the study not only captures

short-term effects, but also the changing patterns of

human-AI collaboration that arise as developers

and organizations learn to work with these new

tools, meeting the imperative for empirical research

on sustainable integration of AI support in

professional software development contexts.

2. Literature Review and Theoretical

Framework

The academic debate about AI-aided software

development borrows from several different

traditions, such as software engineering, human-

computer interaction, organizational psychology,

and science and technology studies. Initial work on

computer-aided programming assistance was

centered mainly on context-free syntactic

completion and template-based code generation,

with the use of IntelliSense laying down early

patterns in developer-tool interaction. The advent of

machine learning-based solutions based on

transformer architectures has dramatically

transformed the paradigm from rule-based aid to

context-sensitive, generative aids.There are recent

empirical studies that have started to measure the

effect of current AI copilots on developer

productivity. A massive study examining more than

2 million completions from neural code completion

systems established that developers accepted

proposals at different rates based on programming

language, with Python having acceptance rates of

29.8%, JavaScript at 27.5%, and TypeScript at

26.9%, whereas the persistence rate (follow-

through use of proposed code following initial

acceptance) was always above 23% across the

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

8314

languages examined [3]. The research also

identified that the latency of completion had a

direct influence on adoption patterns, with

suggestions provided within 100 milliseconds

having 1.5 times greater acceptance compared to

suggestions taking 500 milliseconds or more [3].

Nevertheless, all these studies are mostly concerned

with individual productivity metrics with little

exploration at the organizational and team levels.

The analysis of developer copilot interaction

patterns indicates a range of usage strategies from

active prompt engineering to passive acceptance,

but current work falls short of looking at how these

patterns change over time or differ across enterprise

contexts with different quality needs and

governance arrangements.Trust in AI systems is an

important aspect that has been given limited

consideration in the case of coding assistants. From

the wider literature on human-AI collaboration,

there are established trust calibration frameworks

that highlight the need for proper reliance—neither

over-trusting nor under-leveraging AI capabilities.

In the software development scenario, trust

calibration is especially challenging given the high

stakes of production code and the inability to check

for the correctness of AI-provided solutions. A

comparative knowledge transfer mechanism study

revealed that developers using AI copilots exhibited

varied learning trends from conventional pair

programming, and while AI-supported developers

were 38% quicker at completing tasks, they had

25% poorer retention of problem-solving strategies

when tested without support after a week [4]. The

notion of "automation bias," extensively

documented elsewhere, has its specific form in

programming environments where programmers

need to weigh efficiency improvements against

code quality and maintainability issues.The issue of

skill development under AI support relates to larger

discussions regarding technological deskilling and

reskilling in knowledge work. Studies of the shift

from human pair programming to AI-copiloting

found that although AI copilots achieved almost

immediate productivity gains, knowledge transfer

mechanisms were quite different, with human pairs

enabling tacit knowledge transmission through

explanation and context-specific discussion that

cannot yet be done by AI systems [4]. Framework

analysis of complementary innovation indicates that

benefits from new technologies are reaped only

when processes are redesigned and new

competencies are created in organizations. In the

context of copilots, this implies that optimal

outcomes require not just tool adoption but also

deliberate cultivation of new skills in prompt

engineering, AI output evaluation, and system-level

thinking.

3. Research Methodology

The mixed-methods research design combines

quantitative performance metrics with qualitative

insights to provide a comprehensive understanding

of copilot impact in enterprise settings. The

research covers 24 development teams in 8

enterprise organizations in a variety of industries

such as financial services, health care, retail, and

technology. Teams were chosen using stratified

sampling in order to provide representation in

different organizational sizes, development

approaches (Agile, DevOps, waterfall), and

technology stacks. Half of the teams were assigned

as treatment groups with full copilot access, while

control groups maintained regular development

environments, enabling effective comparative

studies. This methodological strategy is in line with

current practice within software engineering

research, where systematic mapping studies have

established that combining repository mining

methods with architectural analysis provides the

best overall view of development practices and

system evolution [5].Quantitative data collection

targets explicit productivity and quality measures

retrieved from development toolchains and project

management systems. The approach measures code

completion rates, both lines of code and functional

story points delivered per sprint. Defect density is

monitored using bug tracking systems with a

specific focus on the type of defects (human-written

vs. AI-recommended code). Sprint velocity

measurements measure changes in team-level

productivity across time, while code review

turnaround times reflect the quality and readability

of copilot-assisted code. A systematic review of

mining software repositories showed that

architectural recovery methods obtain precision

levels of 72% to 89% in the analysis of commit

patterns and code structure evolution, giving

assurance of the automatic metric collection

process used in this study [5]. The analysis also

investigates commit patterns, refactoring density,

and test coverage to determine the impact of

Copilot use on development habits. These measures

are gathered constantly using automated

instrumentation, reducing observer effect and

providing data completeness.The qualitative aspect

uses a range of methods for gathering the everyday

experiences of developers using copilots. Semi-

structured interviews are carried out monthly with a

changing sample of developers, team leaders, and

architects, investigating trust, skill acquisition, and

workflow adjustment. The methods employ

standardized survey tools, such as modified forms

of the Technology Acceptance Model (TAM) and

the Human-Computer Trust Scale, at baseline, 3

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

8315

months, and 6 months. Studies of technology

acceptance in information systems have shown

TAM constructs to account for 40% to 60%

variance in user acceptance behavior, with

perceived usefulness having better predictive

capability (correlation coefficient of 0.63) than

perceived ease of use (correlation coefficient of

0.45) in the context of professional software

development [6]. Ethnographic observation of

sprint planning, code reviews, and debug sessions

provides contextual insight into the copilot

reworking of collaborative practice.To measure

skill development, the evaluation framework

integrates standardized coding tests with

architectural design problems. Participants solve

timed problem-solving exercises without AI

support regularly, enabling monitoring of shifts in

core programming abilities. The evaluation

protocol borrows from validated assessment

approaches that have demonstrated test-retest

reliability coefficients between 0.71 and 0.84 on

programming skill evaluations when given three

months apart [6]. Architectural cognition is tested

with system design practice involving abstraction,

trade-off analysis, and planning for the long term—

abilities that are not directly available from today's

copilots.

4. Empirical Findings and Analysis

The empirical analysis reveals a complex landscape

of productivity gains, trust dynamics, and skill

evolution that defies simple characterization.

Quantitatively, teams using Copilot demonstrated

an average 34% increase in code production

velocity during the first three months, measured by

functional story points delivered. However, this

headline figure masks significant variation across

task types and team compositions. Routine

implementation tasks showed the highest

productivity gains (up to 55% improvement), while

complex architectural work and algorithm design

showed minimal improvement (8-12%). An

observational study of developer interactions with

code-generating models found that participants

engaged in two primary modes of interaction:

acceleration mode, where developers knew the

desired solution and used the assistant to speed

implementation, and exploration mode, where

developers iteratively refined prompts to discover

solutions, with the former showing significantly

higher acceptance rates and productivity gains [7].

It is important to note that productivity gains were

not equally distributed among team members.

Senior developers showed 40-45% time savings in

their regular tasks and could reinvest in

architectural planning and code review, and junior

developers exhibited 15-20 percent improvement

and said that learning opportunities had been

diminished. Code quality metrics portray a subtle

image that goes against expectations regarding AI-

assisted development. While initial defect rates

increased by 23% in the first month of copilot

adoption, stabilization occurred with ultimate

decreases to 15% below baseline by month six.

This U-shaped curve suggests a learning period

during which developers calibrate trust and develop

strategies for effective copilot utilization. Analysis

of defect types reveals that copilot-assisted code

exhibits fewer syntax errors and logical bugs but

shows increased rates of subtle semantic errors and

security vulnerabilities. Security assessment of AI-

generated code revealed that without prompt

engineering, the baseline security score averaged

2.18 out of 10, indicating substantial vulnerability

presence, particularly in areas involving string

handling, memory management, and cryptographic

operations [8]. Code review data indicates that

copilot-generated code requires 40% more review

comments related to business logic validation and

edge case handling, suggesting that while AI

assistance accelerates initial implementation,

quality assurance burden shifts to later development

stages.Trust calibration emerged as a critical factor

determining copilot effectiveness. Through

qualitative analysis, three distinct trust trajectories

were identified: early adopters who quickly

integrated copilots into workflows but required

recalibration after encountering quality issues;

skeptical evaluators who maintained critical

distance and gradually increased usage; and

resistant minimalists who used copilots sparingly

despite organizational encouragement. The

grounded theory analysis of programmer behavior

revealed that developers developed sophisticated

mental models for predicting when AI suggestions

would be reliable, with participants reporting higher

confidence for "breadth" tasks requiring knowledge

of APIs and libraries versus "depth" tasks requiring

algorithmic reasoning [7]. Interestingly, the

skeptical evaluators achieved the best long-term

outcomes in terms of both productivity and code

quality, suggesting that measured trust calibration

proves optimal.The evolution of developer skills

under Copilot assistance reveals both concerning

trends and unexpected opportunities. Standardized

assessments without AI assistance showed a 15%

decline in syntax recall and basic algorithm

implementation among junior developers after six

months of heavy Copilot use. However, these same

developers demonstrated improved performance on

system design and code organization tasks, with

architectural thinking capabilities showing marked

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

8316

enhancement when measured through design

complexity metrics [8].

5. Discussion and Implications

The results of this research shed light on the

revolutionary but multifaceted nature of copilot

integration in company development landscapes.

The productivity benefits realized, as significant as

they are, are neither homogeneous nor absolute.

Task factors, developer skill levels, and

organizational support infrastructures play critically

important roles in determining outcomes. The focus

on benefits in normal implementation tasks

indicates that copilots are currently best suited to

operate as accelerators of well-known patterns,

rather than as innovative problem solvers of new

challenges. An inspection looking at the copilot

effect via the Software Engineering Body of

Knowledge (SWEBOK) framework indicated that

AI support showed greatest efficacy in software

building tasks, with 45% time savings in coding

according to developers, while software design and

requirements engineering recorded little or no

improvement at 8% and 5% respectively [9]. This

carries deep implications for the manner in which

businesses ought to embrace Copilot,

recommending strategic deployment toward high-

volume, standard development work while

maintaining human-centric methods for innovative

and critical system elements.The dynamics of trust

emphasize organizational culture and training as

pivotal for copilot adoption success. The better

performance of skeptical assessors implies that

companies ought to promote a culture of critical

reflection instead of blind acceptance of AI support.

This revelation contradicts the common narrative of

smooth AI integration and highlights the

importance of intentional trust calibration

mechanisms. Organizations need to create new

quality assurance processes that address AI-

generated code's specific failure modes, such as

more rigorous testing for edge cases and semantic

correctness. A study examining developer

workflows discovered that teams using structured

review procedures for AI-generated code had 32%

fewer production incidents than teams using

copilots without altered quality assurance

procedures [10]. The added review burden seen is

evidence that productivity benefits from copilots

can be at least partially balanced by increased

quality assurance needs, calling for an integrated

perspective of development lifecycle effects.The

patterns of skill evolution reported challenge basic

questions regarding the future of software

engineering professional expertise and career

advancement. The reduction in fundamental

implementation capability among junior coders

who work with copilots extensively indicates a

latent skill gap that may be viewed as diminished

problem-solving capacity when AI support is not

present. Empirical evaluation of various

development teams indicated that less-experienced

developers demonstrated 28% lower performance

in algorithmic problem-solving when tested without

AI support following six months of continuous

Copilot use [9]. This bears on technical interviews,

skills measurement, and career advancement

frameworks that today focus on algorithmic

problem-solving and syntax expertise. In contrast,

the development of architectural thinking and

system design skills suggests a possible rise of the

developer profession, refocusing from code

creation to system coordination and strategic

technical choice-making.The framework for

responsible copilot adoption outlined here

integrates these findings into practical

recommendations for business leaders. A graduated

adoption strategy needs to start with low-risk, high-

volume development activities since research

confirms that confining early AI support to clearly

defined code sections less than 100 lines yields

78% acceptance rates and 12% defect reduction

against uncontrolled usage [10]. Repeat evaluation

frameworks need to track productivity measures as

well as skill development so that short-term

productivity boosts do not undermine long-term

organizational strengths.

Table 1: Developer interaction patterns with neural code completion systems [3,4]

Programming Language/Metric Acceptance Rate/ Value

Python acceptance rate 29.8%

JavaScript acceptance rate 27.5%

TypeScript acceptance rate 26.9%

Code persistence rate threshold 23%

AI-assisted task completion speed increase 38%

Problem-solving retention decreases after one week 25%

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

8317

Figure 1: Validation Metrics for Mixed-Methods Design [5,6]

Table 2: Empirical measurements of copilot impact on development teams [7,8]

Performance Indicator Measurement

Average code production velocity increase 34%

Routine implementation task improvement 55%

Complex architectural work improvement 8-12%

Senior developer time savings 40-45%

Junior developer improvement 15-20%

AI code baseline security score 2.18/10

Review comments increase for business logic 40%

Figure 2: Long-term organizational impacts of AI copilot integration [9,10]

Madhuri Koripalli / IJCESEN 11-4(2025)8313-8318

8318

6. Conclusions

The AI-facilitated reengineering of enterprise

software development is much more than just a

one-off technological advance; it is a revolution in

the very heart of development processes, team

interactions, and professional skills. What the

evidence here shows is that although copilot

technologies achieve significant productivity gains,

these are largely accreted in low-level, defined

tasks as opposed to novel problem-solving or

architectural innovation. The establishment of

differential trust pathways among developers, with

critical evaluators realizing best results, highlights

the need for developing critical interaction instead

of passive reliance on AI recommendations. Not

least of all, evidence of the transformation of

developer work from implementation to

architecture roles may indicate a possible

professionalization of the field, though this change

must be actively fostered by organizations to avoid

skill degradation in less-experienced team

members. Organizations considering adopting

Copilot technology need to understand that

effective integration requires more than deploying

technology; it requires end-to-end rethinking of

quality assurance workflows, career growth paths,

and team collaboration patterns. The model of

responsible adoption calls for phased-in rollout,

ongoing skill evaluation, and retention of unassisted

development space to ensure the entire engineering

skill continuum is preserved. At this turning point,

the future of the software development vocation

involves reconciling the undeniable productivity

benefits of AI support with the necessity of

maintaining human imagination, discernment, and

profound technical knowledge that are irreplaceable

in resolving new problems and fueling innovation.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Sida Peng et al., "The Impact of AI on Developer

Productivity: Evidence from GitHub Copilot",

arXiv, 2023. [Online]. Available:

https://arxiv.org/pdf/2302.06590

[2] Neil Perry et al., "Do Users Write More Insecure

Code with AI Assistants?", arXiv, 2023. [Online].

Available: https://arxiv.org/pdf/2211.03622

[3] Albert Ziegler et al., "Productivity Assessment of

Neural Code Completion", arXiv, 2022. [Online].

Available: https://arxiv.org/pdf/2205.06537

[4] Alisa Welter et al., "From Developer Pairs to AI

Copilots: A Comparative Study on Knowledge

Transfer", arXiv, Jun. 2025. [Online]. Available:

https://arxiv.org/pdf/2506.04785

[5] Mohamed Soliman et al., "Mining software

repositories for software architecture — A

systematic mapping study", ScienceDirect, May

2025. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S

0950584925000163

[6] Patrice Seuwou et al., "User Acceptance of

Information Technology: A Critical Review of

Technology Acceptance Models and the Decision

to Invest in Information Security", ResearchGate,

2016. [Online]. Available:

[7] Shraddha Barke et al., "Grounded Copilot: How

Programmers Interact with Code-Generating

Models", arXiv, 2022. [Online]. Available:

https://arxiv.org/pdf/2206.15000

[8] Jakub Res et al., "Enhancing Security of AI-Based

Code Synthesis with GitHub Copilot via Cheap and

Efficient Prompt-Engineering", arXiv/Semantic

Scholar, 2024. [Online]. Available:

https://www.semanticscholar.org/reader/707d50923

a9c758bd06eccc30efcb83352fccfd4

[9] Danie Smit et al., "The impact of GitHub Copilot on

developer productivity from a software engineering

body of knowledge perspective", ResearchGate,

2024. [Online]. Available:

https://www.researchgate.net/publication/38160941

7_The_impact_of_GitHub_Copilot_on_developer_

productivity_from_a_software_engineering_body_

of_knowledge_perspective

[10] Gaurav Rohatgi, "Unlocking Developer

Productivity: A Deep Dive into GitHub Copilot’s

AI-Powered Code Completion", IJERT, 2024.

[Online]. Available:

https://www.ijert.org/unlocking-developer-

productivity-a-deep-dive-into-github-copilots-ai-

powered-code-completion

https://arxiv.org/pdf/2302.06590
https://arxiv.org/pdf/2211.03622
https://arxiv.org/pdf/2205.06537
https://arxiv.org/pdf/2506.04785
https://www.sciencedirect.com/science/article/pii/S0950584925000163
https://www.sciencedirect.com/science/article/pii/S0950584925000163
https://arxiv.org/pdf/2206.15000
https://www.semanticscholar.org/reader/707d50923a9c758bd06eccc30efcb83352fccfd4
https://www.semanticscholar.org/reader/707d50923a9c758bd06eccc30efcb83352fccfd4
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.researchgate.net/publication/381609417_The_impact_of_GitHub_Copilot_on_developer_productivity_from_a_software_engineering_body_of_knowledge_perspective
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion
https://www.ijert.org/unlocking-developer-productivity-a-deep-dive-into-github-copilots-ai-powered-code-completion

