

Copyright © IJCESEN

International Journal of Computational and Experimental
Science and ENgineering
(IJCESEN)

Vol. 11-No.4 (2025) pp. 8407-8415 http://www.ijcesen.com

ISSN: 2149-9144

Research Article

### Augmented Intelligence in Enterprise Content Management: Human-in-the-Loop Systems and Conversational Interfaces for Enhanced Content Retrieval and Workflow Integration

#### Anshu Kalia\*

Citizens Property Insurance Corporation, FL, USA
\* Corresponding Author Email: anshukalia09@gmail.com - ORCID: 0000-0002-5247-9950

#### **Article Info:**

**DOI:** 10.22399/ijcesen.4245 **Received:** 25 September 2025 **Accepted:** 03 November 2025

#### **Keywords**

Augmented Intelligence, Human-in-the-Loop Systems, Conversational Interfaces, Enterprise Content Management, Workflow Automation

#### **Abstract:**

Abstract should be about 100-250 words. It should be written times new roman and 10 punto. Business entities throughout various industries gather substantial collections of documents, communications, contractual materials, and administrative records, necessitating robust organizational and access frameworks. Traditional management approaches depend on human-driven classification, keyword-based location methods, and rigid procedural architectures that struggle amid rapidly escalating information volumes. Computational intelligence provides significant automation capabilities for document operations, yet fully automated systems create vulnerability in regulated contexts where errors produce serious consequences. Augmented intelligence frameworks address this tension by combining machine processing power with human judgment, framing technology as an enhancement rather than a replacement of professional expertise. Automated classification generates suggested categories and metadata that knowledgeable personnel verify before adoption, improving accuracy while decreasing repetitive effort. Intelligent redaction identifies potentially protected information requiring expert review and approval before release, maintaining control over legally significant choices. Voice and text-based conversational systems allow staff to retrieve materials, launch approval processes, and generate summaries using natural language queries instead of complex navigation paths. Insurance operations provide concrete evidence of practical benefit through streamlined policy handling, faster claims processing, and seamless connections between content systems and underwriting platforms. Deployment outcomes show meaningful productivity improvements while maintaining accuracy standards. Achieving an effective balance between automation benefits and oversight requirements demands careful framework construction, determining which decisions operate autonomously and which require human involvement, supported by ongoing monitoring of system performance and user experience measures. Intelligent redaction mechanisms identify potentially sensitive materials requiring human examination and authorization before document distribution, preserving oversight in legally consequential decisions. Conversational interfaces utilizing voice recognition and natural language interpretation enable personnel to locate documents, initiate approval sequences, and produce content summaries through intuitive spoken or typed requests rather than navigating elaborate menu architectures. Insurance sector implementations demonstrate tangible value through automated policy document processing, accelerated claims handling, and cross-platform integration connecting content repositories with underwriting and adjudication infrastructure. Implementation results indicate substantial productivity enhancements alongside sustained accuracy benchmarks. Balancing automation advantages against oversight necessities requires deliberate framework design specifying which determinations machines manage autonomously and which demand human participation, supported by continuous performance monitoring and user satisfaction assessment

Enterprises across sectors generate digital materials at accelerating volumes, producing organizational

difficulties that exceed the capacity of conventional systems dependent on manual handling and fixed categorization structures. Content management solutions are developed to structure documents, correspondence, records, and multimedia resources within unified repositories, enabling search functionality, revision tracking, and regulatory adherence [4]. These systems improved upon paper-based filing but maintained fundamentally manual approaches to categorization, metadata assignment, and search operations. Information workers spend substantial portions of their workdays locating documents, awaiting approval workflows, and performing repetitive classification tasks that artificial intelligence technologies could potentially automate [3]. Algorithms processing text and images now handle classification tasks, extract relevant entities, and identify patterns within documents that previously required manual human analysis. Language understanding capabilities enable systems to interpret meaning within unstructured text and respond to information requests phrased in natural conversational terms rather than structured query syntax. Visual processing technologies automatically capture data from scanned forms and images without manual transcription [5]. These automation capabilities offer substantial productivity potential by managing repetitive content operations, allowing personnel to concentrate on complex analytical tasks demanding and creative problem-solving.Full automation creates vulnerabilities in organizational environments where content mismanagement produces serious consequences. Documents classified incorrectly may breach regulatory obligations or inappropriately disclose confidential materials. Redaction errors could expose protected personal information, violating privacy statutes. Routing errors in automated workflows could direct confidential approvals toward unauthorized personnel or circumvent mandatory processes [8]. These vulnerabilities require human participation at decisive moments, particularly when outcomes influence compliance obligations, external relationships, or organizational reputation. Augmented intelligence approaches manage this equilibrium by positioning computational systems as supportive instruments enhancing professional capabilities rather than supplanting produce Automated mechanisms suggested categorizations and descriptive attributes that specialists confirm prior to implementation.Detection algorithms flag potentially sensitive content requiring expert examination prior to document dissemination. Escalation protocols direct uncertain scenarios to qualified personnel for informed resolution [5].

This partnership approach delivers automation benefits while retaining human control over consequential determinations. Voice-enabled and text-based conversational improve tools accessibility by supporting interaction through familiar communication methods. Personnel locate documents by articulating requirements using ordinary language instead of constructing technical search parameters [1]. Spoken instructions trigger workflow processes and produce document summaries without manual navigation through complex interface hierarchies [7]. These natural interaction patterns lower adoption barriers while operational efficiency. enhancing organizations provide tangible demonstrations of value through expedited practical administration, improved claim workflows, and integrated connections linking content systems with underwriting and adjudication platforms [6].

# 2. Augmented intelligence foundations in enterprise content management

Enterprise content repositories expand continuously as organizations digitize operations, creating management challenges that exceed human processing capabilities. Artificial intelligence technologies offer automation potential for classification, extraction, and retrieval tasks, yet complete autonomy introduces risks in contexts where errors produce compliance violations or operational disruptions. Augmented intelligence emerges as an alternative paradigm combining computational efficiency with human judgment, establishing collaborative frameworks where machines handle routine operations while humans maintain authority over consequential decisions [3].

# 2.1 Conceptual framework of augmented intelligence

Augmented intelligence represents a collaborative model positioning artificial intelligence as an amplification tool rather than a replacement for human cognitive capabilities. This framework distinguishes itself from purely autonomous artificial intelligence by maintaining human involvement in decision-making loops, particularly determinations that carry significant organizational or regulatory implications [3]. The underlying framework acknowledges the distinct capabilities that exist between human cognition and computational processing. Automated systems demonstrate proficiency in handling extensive information quantities, detecting mathematical relationships, and performing standardized operations with uniform precision. Professional personnel provide situational interpretation,

principled evaluation, and discernment in uncertain contexts where fixed algorithmic protocols inadequately address complexity [5]Implementation requires defining clear boundaries specifying which operations machines perform independently and which necessitate human review or approval. Document classification in straightforward cases with high confidence scores may proceed automatically, while ambiguous classifications route to knowledge workers for resolution. This division of responsibilities captures efficiency gains from automation while preserving oversight where judgment proves essential. Feedback mechanisms enable continuous improvement as human inform algorithm refinement, corrections progressively expanding the scope of autonomous operations as system accuracy improves through accumulated experience [5].

## 2.2 AI capabilities in content management systems

Computational learning systems deliver various functions, strengthening content administration processes. Categorization algorithms materials to established classifications using textual characteristics, facilitating automated distribution to designated storage locations and operational sequences [4]. Language interpretation technology identifies specific elements, including names, temporal references, geographic locations, and financial figures, within unformatted text, completing descriptive data fields without manual input. Semantic comprehension supports intelligent retrieval responding to requests articulated in conversational language rather than demanding exact terminology correspondence [6]. Visual analysis technologies handle scanned materials and graphic files, capturing text through optical recognition while identifying visual components such as authorization marks, official stamps, and recognition structural formatting. Pattern algorithms assemble comparable documents. exposing organizational relationships within extensive collections and enabling discovery of associated materials [4]. Suggestion mechanisms propose relevant documents according to usage patterns and content similarities, enhancing information location. Deviation detection highlights documents diverging from anticipated characteristics, identifying potential inaccuracies or suspicious submissions warranting examination. These combined capabilities convert content administration from manual, resource-intensive workflows into intelligent, automated operations enhanced by deliberate human engagement at decisive junctures [6].

## 3. Human-in-the-loop systems for content operations

operations involving Content management classification accuracy, sensitive information protection, and regulatory compliance require balancing automation efficiency against oversight Human-in-the-loop necessity. architectures establish collaborative frameworks where algorithms perform initial analysis and generate recommendations while human practitioners maintain decision authority for consequential determinations. This partnership model enables processing scalability through automation while preserving judgment and accountability at critical control points [5].

# 3.1 Document classification and metadata management

Automated classification systems analyze incoming documents and propose category assignments based on learned patterns from historical training data. These algorithms examine textual content, structural features, and contextual signals to determine appropriate classification with associated confidence scores indicating prediction certainty High-confidence classifications meeting predefined threshold values proceed to automatic assignment, while lower-confidence predictions route to human reviewers for validation. This tiered approach balances processing efficiency against accuracy requirements, allowing routine cases to flow automatically while directing ambiguous requiring judgment to personnel.Metadata generation follows similar collaborative patterns where algorithms extract descriptive attributes from document content and suggest values for standardized fields. Natural language processing identifies entities, dates, monetary amounts. and other information embedded within unstructured text [4]. Human validators review these automated suggestions, correcting errors and supplementing missing information that algorithms failed to identify. This validation process serves dual purposes: ensuring metadata accuracy documents while simultaneously individual generating training feedback that improves future algorithmic performance.The feedback mechanism represents a critical component enabling continuous system improvement. When human reviewers correct algorithmic errors or provide annotations for cases the system handled incorrectly, these corrections feed back into training datasets used for model refinement [5]. Through successive operational cycles, computational systems incorporate lessons from collected

corrections, systematically decreasing mistake frequencies and broadening the spectrum of scenarios they manage reliably without human participation. Institutions witness quantifiable advancement in automation coverage as platforms develop, with the percentage of materials necessitating human examination diminishing as algorithms assimilate patterns from prior adjustments while sustaining consistent precision levels through continued oversight protocols.

### 3.2 Redaction and retention decision frameworks

Sensitive information protection demands reliable identification of content requiring redaction before public disclosure or external sharing. Automated detection systems scan documents for patterns matching personally identifiable information, financial account numbers, social security identifiers, health records, and other protected data categories [4]. Format recognition algorithms detect structured sequences including payment card identifiers and telephone numbers, while entity extraction systems locate personal names, physical addresses, and institutional references. These automated identification processes mark potentially protected content for human assessment rather than implementing redactions independently, maintaining human control over determinations bearing legal consequences. Human reviewers evaluate flagged content within the surrounding context to determine appropriate redaction actions. Automated systems may incorrectly flag innocuous content sharing superficial similarity with protected information patterns, requiring contextual judgment to distinguish genuinely sensitive material from positives. Conversely, novel sensitive information types not matching predefined patterns may evade automated detection, necessitating comprehensive human review for high-stakes documents [8]. This collaborative approach combines algorithmic efficiency in identifying potential issues with human discernment in making final redaction determinations. Retention decisions involve similar human-in-the-loop frameworks where algorithms recommend retention or disposal actions based on document classification, creation dates, and regulatory schedule matching. Systems propose actions according to predefined retention policies but route recommendations to compliance personnel for approval before executing irreversible deletion operations [8]. Through successive operational cycles, computational systems incorporate lessons from collected corrections, systematically decreasing mistake frequencies and broadening the spectrum of scenarios they manage reliably without human participation. Institutions witness quantifiable advancement in automation coverage as platforms develop, with the percentage of materials necessitating human examination diminishing as algorithms assimilate patterns from prior adjustments while sustaining consistent precision levels through continued oversight protocols.

### 4. Conversational interfaces for content retrieval and workflow automation

Traditional content management interfaces require users to navigate hierarchical menu structures, construct precise search queries, and manually initiate workflow processes through multi-step form completion. Conversational interfaces employing voice recognition and text-based chat capabilities transform these interactions by enabling natural language communication patterns that reduce technical barriers and accelerate task completion [1].

# 4.1 Voice and chat-based document search capabilities

Conversational platforms revolutionize information retrieval by allowing personnel to express requirements through everyday language instead of formulating precise queries with rigid structural conventions. Voice-enabled mechanisms handle spoken inquiries, transforming audio signals into textual representations through recognition technologies before analyzing semantic intent and performing relevant search functions [1]. Textdriven chat systems accommodate typed requests articulated in common conversational phrasing, removing technical obstacles linked to conventional search tools demanding Boolean logic, fieldconstraints, terminology specific or exact These intuitive engagement correspondence. methods decrease mental effort and expedite material location. especially advantaging without technical individuals specialized knowledge or understanding of organizational repository structures.Language comprehension capabilities permit systems to discern a request's purpose even when inquiries include vague terminology, informal expressions, or partial details. Computational processes examine linguistic patterns, identify equivalent terms, and deduce implicit criteria according to user roles, historical interactions, and institutional parameters [7]. When requests vield unclear interpretations, conversational platforms initiate clarifying exchanges, posing focused questions to refine search boundaries rather than delivering unrelated outcomes. Sustained dialogue functionality enables

individuals to progressively restrict search domains through sequential communications, with platforms preserving contextual awareness throughout extended interactions. Voice-based tools deliver a particular advantage in mobile situations where hands-free functionality facilitates document access manual activities or when during visual concentration is directed elsewhere, extending content accessibility beyond conventional stationary computing contexts.

### 4.2 Workflow initiation and process automation

Conversational interfaces extend beyond information retrieval to support workflow initiation and process execution through voice or chat commands. Personnel initiate approval workflows, generate document summaries, or trigger automated processes using natural language instructions rather than navigating complex menu hierarchies or completing structured forms [7]. Voice commands like "submit this invoice for approval" or "generate a summary of the quarterly report" translate into automated actions executing predefined workflows appropriate parameters derived with conversational context and user permissions. This interaction paradigm reduces friction in process initiation, enabling rapid task completion without requiring users to recall specific procedural steps or navigation paths.Integration interface enterprise systems allows conversational interfaces to execute actions spanning multiple applications and repositories. Process automation links content administration functions with subsequent operational workflows, directing materials to designated personnel automatically, refreshing status monitoring platforms, and activating alert mechanisms without manual intervention [1]. Adaptive assistance systems acquire knowledge of individual usage preferences and institutional behavioral patterns, preemptively recommending according pertinent actions to document characteristics and contextual circumstances.Summary generation capabilities extract key information from lengthy documents, providing concise overviews enabling rapid comprehension without requiring complete document review. These automation capabilities demonstrate measurable productivity improvements as personnel complete routine tasks through brief conversational interactions rather than multi-step manual procedures, with usage metrics indicating high adoption rates among users preferring natural interaction patterns over traditional interface paradigms [2].

# **5. Practical implementation in insurance operations**

Insurance organizations manage extensive document throughout volumes policy administration and claims adjudication lifecycles, creating operational demands well-suited for intelligence applications. augmented **Policy** contracts, endorsements, claim forms, medical records, damage assessments, and correspondence flow through multiple processing stages requiring classification, data extraction, approval routing, and regulatory compliance verification [6].

### 5.1 Policy management and claims processing integration

Automated document ingestion systems capture policy applications and supporting materials from diverse submission channels, including email attachments, web portals, and electronic data feeds. Classification interchange algorithms identify document types and route materials to appropriate processing queues without manual sorting [4]. Optical character recognition extracts structured data from application forms, transferring information directly into policy administration systems and eliminating manual data entry for routine fields. Intelligent validation compares extracted values against business rules and regulatory requirements, flagging discrepancies requiring human review before issuance. Claims processing integration applies similar automation patterns where initial loss notices trigger automated document collection workflows gathering relevant policy contracts, coverage endorsements, and historical claim records. Natural language processing analyzes claim descriptions and supporting documentation, extracting incident details, damage assessments, and liability indicators that populate claims management systems [6]. Automated workflows route claims to appropriate adjuster queues based on claim type, coverage complexity, and monetary thresholds, with high-value or ambiguous claims escalating to experienced personnel for detailed examination. Cross-platform integration connects content repositories with underwriting systems, actuarial databases, and fraud detection platforms, enabling comprehensive information access during decision-making processes without manual data gathering across disparate applications.

#### 5.2 Business value and automation outcomes

Implementation metrics demonstrate substantial operational improvements across multiple dimensions. Document processing throughput increases as automated classification and data extraction eliminate manual handling bottlenecks

that previously constrained processing capacity. issuance timelines compress automated validation and workflow routing reduce delays between application submission and coverage activation [2]. Claims settlement durations decrease as immediate document access and automated information extraction accelerate adjuster decision-making processes. Error reduction represents another significant value dimension where automated data extraction eliminates transcription mistakes common in manual data entry operations. Validation algorithms enforce consistency checks. preventing incomplete applications from advancing through processing stages, reducing rework cycles caused by missing information discovery late in workflows [6]. Compliance improvements emerge from the systematic application of regulatory rules and retention policies, with audit trails documenting all automated decisions and human interventions supporting regulatory examination requirements. Customer satisfaction metrics improve as faster processing and reduced errors enhance service delivery experiences, with conversational interfaces enabling policyholders to check claim status and retrieve policy documents through self-service interactions without agent assistance [2]. Cost reductions materialize through decreased manual processing labor requirements, allowing personnel reallocation toward complex exception handling and customer relationship activities requiring human expertise rather than routine administrative tasks.

# 6. Balancing automation with human judgment

Successful augmented intelligence deployment depends on establishing appropriate boundaries between automated operations and human decision authority. Organizations must define systematic frameworks determining which processes operate autonomously and which require expert oversight, while ensuring interfaces support effective human-machine collaboration and workforce adoption [5].

### 6.1 Framework for optimal human-AI collaboration

Effective augmented intelligence deployment requires establishing explicit decision boundaries defining which operations proceed autonomously and which demand human involvement. This framework development begins with systematic categorization of organizational decisions according to risk profiles, regulatory requirements, and complexity characteristics [2]. Routine decisions with low error consequences and clear

decision criteria suitable for algorithmic rules proceed automatically without human review. Medium-complexity decisions where algorithms achieve acceptable but imperfect accuracy employ confidence-based routing, with high-confidence predictions proceeding automatically borderline cases escalate to human reviewers. Highstakes decisions affecting legal compliance, significant financial exposure, or customer relationships maintain mandatory human approval regardless of algorithmic confidence levels [5]. Escalation triggers define specific conditions human involvement. activating including confidence scores below predetermined thresholds. detection of anomalous patterns deviating from historical norms, identification of regulatory flags requiring specialized expertise, and explicit user requests for human review. These triggers balance automation efficiency against risk mitigation, preventing fully autonomous operation in scenarios exceeding system capability boundaries [8]. Feedback integration mechanisms capture human corrections and annotations, channeling this information into algorithm refinement processes that progressively expand autonomous operation scope as system accuracy improves through operational experience.

#### **6.2** Usability and adoption considerations

Interface design principles significantly influence adoption success for augmented intelligence systems. Transparent operation modes communicate system confidence levels and reasoning foundations, helping users understand automated recommendations and identify appropriate trust calibration [2]. Explanation interfaces describe factors influencing algorithmic decisions using accessible language rather than technical terminology, supporting informed human judgment when reviewing automated proposals. Override mechanisms allow users to reject automated recommendations and implement alternative decisions when professional expertise identifies limitations in algorithmic reasoning. Educational initiatives acquaint staff with computational intelligence functionalities and constraints, cultivating appropriate expectations regarding system capabilities and dependence Organizational transition programs protocols. employee apprehensions concerning automation effects, highlighting enhancement rather than displacement perspectives illustrating how automation removes monotonous activities while maintaining positions demanding professional judgment [2]. Operational assessment monitors computational precision, intervention frequencies, and user experience indicators, revealing improvement possibilities and validating benefit achievement. Ongoing refinement modifies authority boundaries, certainty parameters, and referral criteria according to collected performance information, systematically

strengthening partnership efficacy as institutions gain proficiency in implementing augmented intelligence platforms within their distinct operational circumstances and compliance frameworks [5].

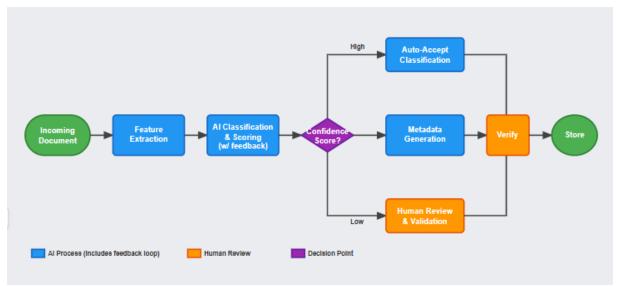



Figure 1. Human-in-the-loop classification and metadata validation workflow [4][5]

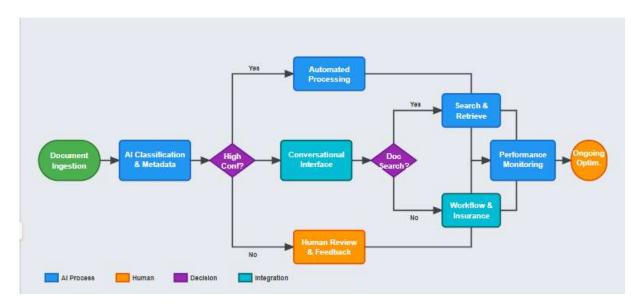



Figure 2. Augmented intelligence workflow with human-in-the-loop integration [1][2][5][7]

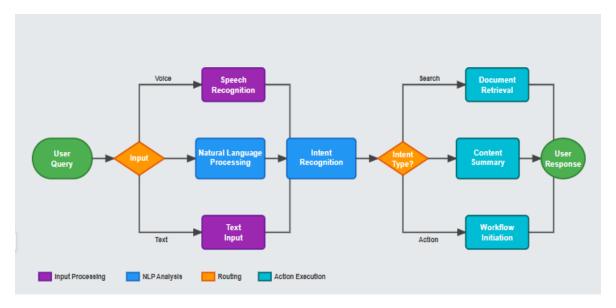



Figure 3. Conversational interface processing and intent-based routing workflow [1][7]

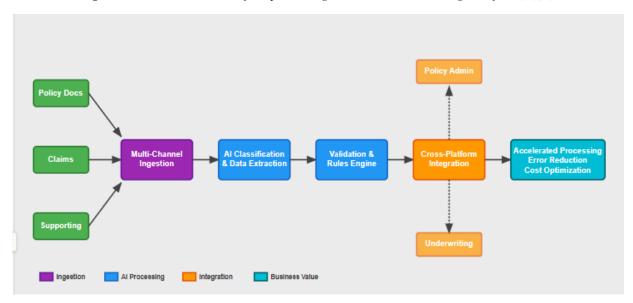



Figure 4. Insurance operations integration and business value realization [2][6]

#### 4. Conclusions

Augmented intelligence architectures transform enterprise content management by integrating artificial intelligence capabilities with sustained human oversight throughout critical operational substantial processes. **Organizations** achieve efficiency gains through automated document classification, intelligent metadata generation, and language retrieval interfaces preserving accuracy and compliance through strategic human involvement at decision points carrying significant consequences. Insurance sector implementations demonstrate measurable value through accelerated policy processing, enhanced handling workflows, and claims seamless integration across enterprise platforms. Human oversight models define distinct separations

between automated computational processes and determinations demanding professional expertise, incorporating feedback channels that facilitate ongoing enhancement through identification and correction of algorithmic inaccuracies. Voicetext-based conversational enabled and minimize barriers in document location and process activation, enabling personnel to engage with through organizational systems everyday communication methods rather than specialized technical proficiencies. Usability considerations prove essential for adoption success, requiring interface designs accommodating diverse user capabilities and organizational change management supporting workforce adaptation to augmented operational models. Productivity metrics demonstrate tangible benefits, including reduced processing times and decreased error rates, while user satisfaction measurements confirm improved workplace experiences. Future advancement requires ongoing refinement of collaboration frameworks defining optimal human-machine task allocation, continued enhancement of conversational interface naturalness and accuracy, and expanded integration connecting content management capabilities with broader enterprise application ecosystems supporting comprehensive business process automation.

#### **Author Statements:**

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

### References

- [1] Alexandros Bousdekis et al., "Augmented intelligence with voice assistance and automated machine learning in Industry 5.0," National Library of Medicine, Mar. 2025. <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC1191381">https://pmc.ncbi.nlm.nih.gov/articles/PMC1191381</a>
- [2] Tingting Jiang et al., "Human-AI interaction research agenda: A user-centered perspective," ScienceDirect, Dec. 2024. <a href="https://www.sciencedirect.com/science/article/pii/S">https://www.sciencedirect.com/science/article/pii/S</a> 2543925124000147
- [3] Matthew N. O. Sadiku et al., "Augmented Intelligence," International Journal Of Scientific Advances, ResearchGate, Jan. 2021. <a href="https://www.researchgate.net/publication/35497952">https://www.researchgate.net/publication/35497952</a>
  <a href="https://www.researchgate.net/publication/35497952">https://www.researchgate.net/pub
- [4] Ravi Kiran Kandepu and Alaxander Harry, "THE RISE OF AI IN CONTENT MANAGEMENT: REIMAGINING INTELLIGENT WORKFLOWS," ResearchGate, Sep. 2023. https://www.researchgate.net/publication/37420006
  1\_THE\_RISE\_OF\_AI\_IN\_CONTENT\_MANAGE\_MENT\_REIMAGINING\_INTELLIGENT\_WORK\_FLOWS

- [5] Pullaiah Babu Alla, "Human-in-the-Loop Intelligent Automation: Enhancing Workflow Adaptability through Active Learning and AI-Driven Feedback Loops," IJCNIS, Aug. 2025. <a href="https://www.ijcnis.org/index.php/ijcnis/article/view/8491">https://www.ijcnis.org/index.php/ijcnis/article/view/8491</a>
- [6] Akhilesh Gadde, "AI-enhanced knowledge management systems in enterprises: Transforming organizational intelligence," WJARR, May 2025. <a href="https://journalwjarr.com/sites/default/files/fulltext">https://journalwjarr.com/sites/default/files/fulltext</a> <a href="pdf/WJARR-2025-1913.pdf">pdf/WJARR-2025-1913.pdf</a>
- [7] Sai Kiran Reddy Malikireddy and Snigdha Tadanki,
  "AI-Powered Conversational Interfaces for
  CRM/ERP Systems," WJAETS, Jan. 2022.
  <a href="https://wjaets.com/sites/default/files/WJAETS-2022-0003.pdf">https://wjaets.com/sites/default/files/WJAETS-2022-0003.pdf</a>
- [8] Mangolika Bhattacharya et al., "Human-in-Loop: A Review of Smart Manufacturing Deployments," MDPI, Jan. 2023. <a href="https://www.mdpi.com/2079-8954/11/1/35">https://www.mdpi.com/2079-8954/11/1/35</a>