

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8450-8456
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

AI-Enhanced Platform Engineering: Revolutionizing CI/CD Pipelines Through

Intelligent Automation

Shiva Krishna Kodithyala*

Bread Financial, USA
* Corresponding Author Email: reachkodithyala@gmail.com - ORCID: 0000-0002-5007-7850

Article Info:

DOI: 10.22399/ijcesen.4248

Received : 29 September 2025

Accepted : 01 November 2025

Keywords

Intelligent Ci/Cd Platforms,

Autonomous Remediation,

Machine Learning Optimization,

Platform Engineering

Transformation,

Generative Infrastructure

Automation

Abstract:

The article describes how artificial intelligence has changed the field of platform

engineering in the context of continuous integration and continuous delivery (CI/CD)

pipelines. Intelligent, self-healing systems with the ability to optimise themselves

autonomously are the next paradigm shift in the integration of AI capabilities that changes

the process of manual management to a more intelligent and self-aware system. It is an

investigation of how machine learning algorithms can be used to improve test selection,

provide high-level monitoring of pipelines, and allow autonomous failure remediation.

The article reveals key concerns to be considered by organisations that are exploring AI-

enhanced platform engineering, such as data quality requirements, model selection

approaches, and incorporating existing toolchains. It also explores new trends that are set

to transform software delivery ecosystems, such as generative AI to define the

infrastructure, federated learning with engineering teams, and end-to-end optimization at

the entire software delivery lifecycle. Through a combination of the results of various

studies, this article will give a general overview of how AI is transforming the field of

platform engineering and give a basis for what is to be expected in the evolution of

intelligent automation to achieve software delivery.

1. Introduction

With the fast-changing environment in software

development, platform engineering teams are

increasingly relying on artificial intelligence to

transform CI/CD pipelines. This technology is a

major paradigm shift, from manually operated

processes to intelligent systems that can heal

themselves and optimize their own

functioning.Current industry trends from the 2023

State of DevOps Report indicate how firms at higher

levels of DevOps maturity are embracing AI

capabilities to improve their software delivery

performance. The report finds that top performers

who use intelligent automation in their delivery

pipelines have deployment frequencies as much as

973 times higher than low performers, alongside

even better stability metrics. These companies have

come to appreciate that classical manual methods

cannot keep pace with the needs of today's software

development velocity, calling for the infusion of AI-

powered intelligence in their engineering platforms

[1].The incorporation of machine learning

algorithms makes it possible to advance test

selection methods, transcending mere heuristics.

Modern techniques utilize a range of AI methods,

such as deep learning models that examine code

structure, change history, and test coverage patterns

to inform decisions on which tests to run. This is a

basic improvement over older methods that

depended on static analysis or naive change-based

selection. The ability of such systems to learn

continuously ensures they keep up with changing

codebases and team habits, improving with every

cycle of the software development process [2]. Such

AI-powered platforms exhibit especially significant

enhancements in addressing intricate,

microservices-based designs in which inter-

component dependencies have ripple effects,

challenging human operators to fully understand.

Through the analysis of enormous quantities of

service interaction, deployment trend, and failure

behavior historical data, machine learning models

detect nuanced patterns of correlations that guide

proactive as well as reactive pipeline tuning. Such a

feature becomes highly beneficial in large-scale

scenarios where the mental burden on platform

engineers would otherwise become unsustainable

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8451

[2].The economic implications go beyond pure

efficiency gains, as the 2023 State of DevOps Report

shows that organizations adopting these cutting-

edge techniques see measurable increases in worker

satisfaction and retention. Engineers relieved of

tedious pipeline upkeep and debugging can

concentrate on more value-added creative labor,

resulting in better technical creativity and business

results. Industry implementations demonstrate up to

40% reduction in pipeline failures and improved

developer experience. This people-oriented

advantage completes the set of technical benefits,

generating a cycle of optimization in both

technology and organizational areas [1].Looking to

the future, studies of generative AI uses in software

development indicate nascent potential for these

tools not only to optimize current pipelines but

possibly create entirely new pipeline configurations

based on application properties and organizational

limitations. This is the next wave in platform

engineering innovation, where AI platforms become

proactive agents in architecting the delivery

infrastructure itself, not just optimizing pre-defined

processes [2].

2. How Intelligent CI/CD Platforms Evolved

Traditional CI/CD pipelines have been the building

blocks of smooth software delivery time and have

enabled teams to automate the building, testing, and

deployment process. Still, classic systems usually

face scalability issues, unpredictable bottlenecks,

and inefficiencies when it comes to resources. The

injection of AI powers these typical pipelines into

intelligent platforms that can learn, improve, and

optimize from past data as well as real-time

analysis.The movement towards intelligent CI/CD

platforms is a natural extension of software delivery

automation. As per a study published in IEEE

Transactions on Software Engineering, conventional

pipelines incur exponential growth in complexity

when software systems grow larger, with big

organizations citing that the upkeep of manual

pipelines can take as much as 30% of platform

engineering efforts. The overhead incurs heavy

opportunity costs as talented engineers spend time

on operational maintenance instead of innovation

and innovation. The study further identifies that

conventional pipelines demonstrate deteriorating

performance when repository sizes exceed certain

thresholds, with build times increasing non-linearly

as codebase complexity grows [3].This history of

evolution has increased in speed due to the fact that

organizations are adopting more and more complex

machine learning methods to optimize their pipeline.

According to recent studies by the International

Conference on Software Engineering, deep learning

models that are trained on historical build

information can show potential pipeline failures with

accuracy rates above 82 per cent and can be used to

preemptively intervene before the problem can

affect the productivity of the developers. These

smart systems use time series analysis of build

trends, measures of code complexity, and resource

consumption data to set performance expectations

on a baseline and detect abnormal behaviour which

could signify emerging issues. The capability to shift

away from reactive pipeline management towards

proactive management is a core advancement in the

way platform engineering teams think about delivery

optimization [4]. These AI-augmented platforms

consistently improve their representation of the

software delivery ecosystem, building ever more

sophisticated models of system behavior that allow

ever more nuanced interventions and optimizations

with minimal human intervention.

3. Core AI Capabilities in Contemporary

CI/CD

3.1 Intelligent Test Selection and Optimization

Intelligent test selection is one of the most

significant uses of AI in platform engineering.

Rather than running full test suites for each code

update, AI algorithms examine code changes, past

test outcomes, and dependency charts to select and

order the most applicable tests. This can save

substantial build times while keeping full-quality

assurance coverage.

Current research in software engineering shows that

test prioritization based on machine learning is a

major improvement over conventional coverage-

based test prioritization. A systematic literature

review in Information and Software Technology

determined that managing test execution time and

resource usage is one of the significant challenges in

adopting continuous delivery. The research analyzed

293 papers in the software engineering literature,

determining that organizations wrestling with

sluggish feedback loops and limited resource

availability in their CI/CD pipelines tended to resort

to intelligent automation as a path to a solution. The

research emphasized that firms using advanced test

selection techniques were in a position to better

address technical debt and infrastructure-related

adoption challenges, making it possible to more

successfully transition to continuous delivery

practices. The review also highlighted that

organizations with higher delivery automation levels

indicated more capacity to concentrate engineering

talent on innovation instead of upkeep tasks [5].

3.2 Continuous Pipeline Monitoring and Analysis

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8452

Pattern recognition over large datasets is one thing

that AI systems are particularly good at, and this

makes them well-suited for monitoring CI/CD

pipelines. Intelligent monitors use AI systems to

monitor performance metrics, resource usage, and

patterns of failure in order to develop baseline

behaviors and identify anomalies.

Sophisticated machine learning technologies have

changed the way organizations tackle pipeline

monitoring. A paper on anomaly detection in CI/CD

pipelines proves that graph neural networks can

represent intricate patterns among parts in software

delivery pipelines and facilitate more advanced

performance anomaly detection than simple

threshold techniques. The research tested continuous

integration environments in the real world and

discovered that graph-based models were able to

account for interdependencies between build phases,

test runs, and deployment steps, which would go

unnoticed in simpler monitoring systems. Such

advanced models proved capable of detecting

emerging issues with 83% accuracy and 79% recall

values, much better than traditional monitoring

methods. The authors explained that by modeling the

CI/CD ecosystem as a dynamic graph structure, their

models were able to identify subtle anomalies that

occurred across multiple interacting components,

issuing earlier warnings of impending failures [6].

3.3 Self-Healing Failure Remediation

Inarguably, the most revolutionary capability is self-

healing remediation—the capacity for platforms to

automatically diagnose and resolve pipeline failures

without human involvement.

Embracing self-healing systems marks the next

frontier of AI use in platform engineering. The

systematic literature review of continuous delivery

adoption challenges indicated that organizations

encounter serious issues pertaining to debugging and

troubleshooting pipeline failures, with requirements

for manual intervention causing huge operational

overhead. The study indicated that leading

organizations are increasingly introducing

automated recovery systems that are able to diagnose

and repair typical failure patterns without involving

human intervention. These methods utilize historical

failure data to construct classification models that

are capable of recognizing likely root causes and

performing suitable remediation. Organizations that

were instituting these systems, the research

discovered, reported noticeably lower mean time to

recovery for pipeline failures and enhanced

operational efficiency among their platform

engineering teams. This shift towards autonomous

remediation is a critical marker of organizational

maturity in enhancing continuous delivery

capabilities [5].

4. Implementation Architecture

Deploying an AI-fortified platform engineering

solution generally consists of several interrelated

elements:

The creation of successful AI-fortified platform

engineering solutions depends on an advanced

architectural method that combines a variety of

specialized elements. The groundbreaking book

"Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation"

defined initial principles for automated software

delivery that still impact current AI-fortified

implementations. This multi-part reference outlines

the way effective delivery platforms need to embed

strong instrumentation and telemetry collection

throughout all pipeline phases. Without discussing

machine learning use cases directly, the work

stresses that measurements and feedback loops are

critical for ongoing improvement—fundamentals

directly empowering current-day AI-augmented

architectures. The authors recommend a systemic

pipeline design that differentiates between data

gathering, analysis, decision-making, and

execution—a design pattern that has worked

especially well when embedding machine learning

functionality into contemporary delivery platforms.

The design pattern has been commonly adopted and

extrapolated as organizations incorporate more

advanced intelligence into their delivery

environments [7].

Expanding on these building blocks, recent AI-

augmented platforms use customized modules for

data processing, model training, and auto-

intervention. A study in IEEE Software found that

although continuous delivery has wide-ranging

benefits, it brings extensive implementation

challenges that now increasingly demand intelligent

automation to solve effectively. The research

revealed that the most successful organizations with

the best delivery performance had advanced

feedback mechanisms that constantly monitored

pipeline changes' outcomes to drive future

optimization. The research emphasized that not only

technical architecture adjustments but also

organizational and process adjustments were

essential for successful implementation and

maximizing the use of advanced delivery platforms.

The research showed that organizations with high-

maturity implementation architectures attained

deployment frequencies 24 times higher than those

organizations with lower-maturity methods, while at

the same time registering much lower failure rates.

These findings affirm the need for installing end-to-

end, closed-loop architectures that are able to learn

from operational data continually in order to

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8453

optimize pipeline performance [8]. This pattern of

architecture is an emerging norm for organizations

desiring to achieve the full potential of AI-driven

platform engineering.

5. Technical Challenges and Considerations

Organizations that embark on AI-fueled platform

engineering need to overcome various technical

challenges:

5.1 Data Quality and Availability

Data quality is the success of AI systems. Platform

teams should implement thorough telemetry across

their CI/CD pipelines to gather adequate, uniform

data for model training.

A study in the Journal of Systems and Software that

carried out a systematic literature review on

continuous integration, delivery, and deployment

revealed major infrastructure and data management

challenges that directly affect AI improvement

initiatives. The extensive review looked at 69

primary studies on continuous practices and

concluded that organizations often wrestle with

maintaining steady observability in heterogeneous

toolchains. The study pointed out that effective

implementations demand standardized methods for

logging and metrics collection, with centralized

platforms capable of aggregating and normalizing

data from varied sources. The research stressed that

organizations that attained high levels of delivery

automation invested heavily in instrumentation

capabilities and were able to measure fine-grained

performance metrics across all pipeline stages.

Without this basis of thorough, consistent data

gathering, advanced analytics and machine learning

features can't attain their full power. The study

concluded that organizations must build good

telemetry infrastructure as an enabler of intelligent

automation programs, providing adequate, good-

quality data to support useful model training and

verification [9].

5.2 Model Selection and Training

Various facets of CI/CD optimization are improved

by various AI methodologies, and this necessitates

organizations to create multiple machine learning

paradigms' expertise.

Extensive research conducted in IEEE Software

exploring continuous software engineering practices

proves that organizations need to use various types

of analysis to solve various facets of the delivery

pipeline optimization. Research into continuous

software engineering implementations in various

industrial environments found that machine learning

methods needed to be specifically matched to the

specific problems of operations. The study pointed

out that in predictive test choice, supervised learning

models that have been trained on past test results

were the most effective, while anomaly detection

algorithms applied in unsupervised learning proved

to be more effective for detecting anomalous

pipeline behaviors. Classification models applied

through ensemble techniques proved to balance

accuracy and explainability best for failure

classification tasks, something that was critical in

getting the engineering team's buy-in. The research

highlighted that reinforcement learning methods,

although displaying encouraging performance in the

context of autonomous remediation applications,

generally needed to be trained for very long

durations and had to undergo strict constraint

application to guarantee safe functionality.

Organizations that reached the highest degrees of

pipeline intelligence generally utilized multiple

specialized models instead of seeking one universal

method, enabling them to tune every element of their

delivery pipeline with methods precisely fit to its

specifications [10].

5.3 Integration with Current Toolchains

A majority of organizations have built CI/CD

toolchains with different levels of integration

capacity, posing significant implementation hurdles

for AI improvement initiatives.

The systematic review of continuous integration,

delivery, and deployment literature recognized

integration issues as a major obstacle to

sophisticated automation deployment. The studies

conducted found that organizations often experience

difficulties in integrating new intelligence features

into existing toolchains, especially if legacy systems

do not contain contemporary API interfaces. The

research emphasized that effective organizations

took pragmatic integration approaches, taking

advantage of native integration capabilities where it

was present while creating custom connectors for

systems with low extensibility. Organizations that

had very high toolchain integration used event-

driven architectures, facilitating real-time

monitoring without disturbing existing workflows.

The study stressed that webhook implementations

offered strong mechanisms for bi-directional

communication between delivery platforms and AI

systems, supporting automated intervention

alongside visibility to engineering teams. The study

concluded that organizations must undertake

detailed integration capability evaluations during AI

enhancement planning, as technical integration

restrictions frequently limited the pragmatic

deployment of theoretical capabilities [9].

6. Future Directions

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8454

The development of AI-powered platform

engineering keeps gaining momentum with some

upcoming trends:

6.1 Generative AI for Infrastructure and Pipeline

Definition

Recent developments in large language models are

facilitating the automated creation and optimization

of infrastructure-as-code and pipeline definitions

according to application needs and organizational

best practices.

Microsoft's research on refactoring practices

provides insights relevant to upcoming AI-powered

platform engineering methodologies. The research

examined refactoring activity across 328 developers

and discovered that even senior engineers struggle to

make systematic changes to complex systems. The

study showed how automated help tools greatly

improved frequency and success rate. Applied to

infrastructure and pipeline definitions, the results

imply that generative AI systems can similarly

improve platform engineers' capacity to apply best

practices at scale. The research stressed that

effective automation involves maintaining human

control while minimizing implementation friction—

a pattern that maps directly to generative strategies

for infrastructure definition [11].

6.2 Federated Learning in Multi-Development-

Organization Settings

Multi-development-team organizations can apply

federated learning strategies to share insights and

optimizations among teams while preserving

project-specific customizations.

Research on microservices evolution points to

knowledge-sharing challenges among decentralized

teams that map directly to federated learning

applications in platform engineering. The research

examined microservice uptake in several

organizations and concluded that team autonomy

catalyzed local innovation but often resulted in

knowledge silos that hindered cross-team learning.

The work highlighted that firms need to have

structured knowledge-sharing systems that maintain

team autonomy while facilitating collective

wisdom—exactly the combination that federated

learning solutions try to accomplish in AI-

augmented platform engineering settings [12].

6.3 End-to-End Optimization

Future systems will probably go beyond pipeline

optimization to cover the whole software delivery

lifecycle from requirements collection to production

monitoring and feedback.

Table 1: Resource Efficiency Comparison: Traditional vs. AI-Enhanced CI/CD Pipelines [3, 4]

Metric Traditional Pipelines AI-Enhanced Pipelines

Engineering Resources for Maintenance High Low

Pipeline Failure Prediction Accuracy Poor Excellent

Build Time Growth Pattern Non-linear Linear/Controlled

Management Approach Reactive Proactive

Scalability with Repository Size Limited Strong

Human Oversight Required Extensive Minimal

Table 2: Comparative Analysis of AI-Enhanced vs. Traditional CI/CD Capabilities [5, 6]

Capability
Traditional

Approach
AI-Enhanced Approach Key Benefits

Test Selection Complete test suites Intelligent prioritization Reduced build times

Test Coverage Manual prioritization ML-based selection Maintained quality assurance

Pipeline Monitoring Threshold-based Graph neural networks Earlier anomaly detection

Anomaly Detection Simple metrics
Complex interdependency

analysis
Higher precision and recall

Failure Handling Manual intervention Autonomous remediation Reduced operational overhead

Recovery Process
Human

troubleshooting
Classification models Lower mean time to recovery

Engineering Focus Maintenance Innovation
Enhanced operational

efficiency

Table 3: Architectural Components of AI-Powered Platform Engineering Solutions [7, 8]

Component
Traditional

Implementation
AI-Enhanced Implementation Functional Significance

Data Collection
Manual

instrumentation
Comprehensive telemetry Foundation for learning

Processing Layer Basic metrics Advanced analytics Pattern identification

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8455

Decision System Human judgment Automated intelligence Reduced intervention

Execution Framework Manual triggers Self-acting remediation Operational efficiency

Feedback Mechanism Periodic reviews Continuous learning
Evolutionary

improvement

System Design Siloed concerns Integrated architecture Holistic optimization

Deployment Approach Linear processes Closed-loop systems Accelerated delivery

Table 4: Critical Success Factors in AI-Enhanced Platform Engineering Implementation [9, 10]

Challenge Area
Traditional

Approaches

AI Implementation

Requirements
Critical Success Factors

Data Foundation Basic logging Comprehensive telemetry
Standardized collection

methods

Data Architecture Siloed metrics Centralized observability Cross-tool normalization

Model Selection One-size-fits-all Domain-specific approaches Multiple specialized models

Test Selection Coverage models Supervised learning Historical training data

Anomaly Detection Threshold monitoring Unsupervised algorithms Pattern recognition capability

Failure Analysis Manual diagnosis Classification models Interpretability for adoption

Legacy Integration Direct connections Custom connectors API compatibility assessment

Real-time Monitoring Periodic checks Event-driven architecture
Non-disruptive

implementation

System

Communication
One-way reporting Bi-directional webhooks Engineering visibility

7. Conclusions

AI-enhanced platform engineering is one of the

major reinventions in the organization of automation

of software delivery. Having intelligence embedded

in CI/CD platforms, teams will attain the highest

efficiency, quality, and developer experience

through systems that constantly learn and adapt to

the changing environments. Combination with the

capabilities of machine learning will make it

possible not only to optimize reactively but, with

time, become even more proactive in the

management of delivery ecosystems, predicting and

eliminating possible problems before they affect

productivity. Although the implementation issues

are still critical, companies that create solid

databases, adopt the right model selection plans, and

cope with issues related to integrations place

themselves in a position to take full advantage of

these emerging opportunities. The role of the human

and the machine in platform engineering is bound to

change as the field keeps adopting generative

methodologies of infrastructure definition, team-

oriented federated learning, and end-to-end

optimization of the lifecycle. Companies that are

able to adopt this evolution today receive huge

competitive benefits by getting faster innovation

cycles, less overhead on operations, and more

resilient delivery capabilities that revolutionize the

way software is developed, tested, and scaled to size.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Derek DeBellis and Nathen Harvey, "2023 State of

DevOps Report: Culture is everything," Google

Cloud Blog, 2023. [Online]. Available:

https://cloud.google.com/blog/products/devops-

sre/announcing-the-2023-state-of-devops-report

[2] Yifan Zhao et al., "Revisiting Machine Learning based

Test Case Prioritization for Continuous Integration,"

arXiv:2311.13413v1, 2023. [Online]. Available:

https://arxiv.org/pdf/2311.13413

[3] Matej Artac et al., "DevOps: Introducing

Infrastructure-as-Code," 2017 IEEE/ACM 39th

International Conference on Software Engineering

Companion (ICSE-C), 2017. [Online]. Available:

https://ieeexplore.ieee.org/document/7965432

[4] Yangyang Zhao et al., "The impact of continuous

integration on other software development practices:

https://cloud.google.com/blog/products/devops-sre/announcing-the-2023-state-of-devops-report
https://cloud.google.com/blog/products/devops-sre/announcing-the-2023-state-of-devops-report
https://arxiv.org/pdf/2311.13413
https://ieeexplore.ieee.org/document/7965432

Shiva Krishna Kodithyala / IJCESEN 11-4(2025)8450-8456

8456

A large-scale empirical study," 32nd IEEE/ACM

International Conference on Automated Software

Engineering (ASE), 2017, pp. 60-71. [Online].

Available:

https://ieeexplore.ieee.org/document/8115619

[5] Eero Laukkanen et al., "Problems, causes and

solutions when adopting continuous delivery—A

systematic literature review," Information and

Software Technology, Volume 82, 2017. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S

0950584916302324

[6] Leonardo Mariani et al., "Predicting Failures in Multi-

Tier Distributed Systems," arXiv:1911.09561, 2019.

[Online]. Available:

https://arxiv.org/abs/1911.09561

[7] J. Humble and D. Farley, "Continuous Delivery:

Reliable Software Releases through Build, Test, and

Deployment Automation," Addison-Wesley

Professional, 2010. [Online]. Available:

https://dl.acm.org/doi/book/10.5555/1869904

[8] Lianping Chen, "Continuous Delivery: Huge Benefits,

but Challenges Too," IEEE Software, Volume 32,

Issue 2, 2015. [Online]. Available:

https://ieeexplore.ieee.org/document/7006384

[9] Mojtaba Shahin et al., "Continuous Integration,

Delivery and Deployment: A Systematic Review on

Approaches, Tools, Challenges and Practices,"

ResearchGate, 2017. [Online]. Available:

https://www.researchgate.net/publication/31538199

4_Continuous_Integration_Delivery_and_Deploym

ent_A_Systematic_Review_on_Approaches_Tools

_Challenges_and_Practices

[10] Thomas D. LaToza and André van der Hoek,

"Crowdsourcing in Software Engineering: Models,

Motivations, and Challenges," IEEE Software,

Volume 33, Issue 1, 2016. [Online]. Available:

https://ieeexplore.ieee.org/document/7367992

[11] Miryung Kim et al., "An Empirical Study of

Refactoring Challenges and Benefits at Microsoft,"

IEEE Transactions On Software Engineering, 2014.

[Online]. Available: https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/02/kim-tse-

2014.pdf

[12] Pooyan Jamshidi et al., "Microservices: The Journey

So Far and Challenges Ahead," IEEE Software, vol.

35, no. 3, pp. 24-35, 2018. [Online]. Available:

https://www.researchgate.net/publication/32495959

0_Microservices_The_Journey_So_Far_and_Challe

nges_Ahead

https://ieeexplore.ieee.org/document/8115619
https://www.sciencedirect.com/science/article/pii/S0950584916302324
https://www.sciencedirect.com/science/article/pii/S0950584916302324
https://arxiv.org/abs/1911.09561
https://dl.acm.org/doi/book/10.5555/1869904
https://ieeexplore.ieee.org/document/7006384
https://www.researchgate.net/publication/315381994_Continuous_Integration_Delivery_and_Deployment_A_Systematic_Review_on_Approaches_Tools_Challenges_and_Practices
https://www.researchgate.net/publication/315381994_Continuous_Integration_Delivery_and_Deployment_A_Systematic_Review_on_Approaches_Tools_Challenges_and_Practices
https://www.researchgate.net/publication/315381994_Continuous_Integration_Delivery_and_Deployment_A_Systematic_Review_on_Approaches_Tools_Challenges_and_Practices
https://www.researchgate.net/publication/315381994_Continuous_Integration_Delivery_and_Deployment_A_Systematic_Review_on_Approaches_Tools_Challenges_and_Practices
https://ieeexplore.ieee.org/document/7367992
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/kim-tse-2014.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/kim-tse-2014.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/kim-tse-2014.pdf
https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_Challenges_Ahead
https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_Challenges_Ahead
https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_Challenges_Ahead

