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Abstract:  
 

COVID-19 has affected hundreds of millions of individuals, seriously harming the global 

population’s health, welfare, and economy. Furthermore, health facilities are severely 

overburdened due to the record number of COVID-19 cases, which makes prompt and 

accurate diagnosis difficult. Automatically identifying infected individuals and promptly 

placing them under special care is a critical step in reducing the burden of such issues. 

Convolutional Neural Networks (CNN) and other machine learning techniques can be 

utilized to address this demand.  Many existing Deep learning models, albeit producing 

the intended outcomes, were developed using millions of parameters, making them 

unsuitable for use on devices with constrained resources. Motivated by this fact, a novel 

lightweight deep learning model based on Efficient Channel Attention (ECA) module 

and SqueezeNet architecture, is developed in this work to identify COVID-19 patients 

from chest X-ray and CT images in the initial phases of the disease. After the proposed 

lightweight model was tested on different datasets with two, three and four classes, the 

results show its better performance over existing models. The outcomes shown that, in 

comparison to the current heavyweight models, our models reduced the cost and memory 

requirements for computing resources dramatically, while still achieving comparable 

performance. These results support the notion that proposed model can help diagnose 

Covid-19 in patients by being easily implemented on low-resource and low-processing 

devices. 

 

1. Introduction 
 

COVID-19 infection is caused by SARS-CoV-2. 

COVID-19 virus causes holes in lungs that resemble 

honeycombs [1]. The Covid-19 pandemic response 

on a worldwide scale has brought attention to the 

connection between public health and lung health, 

underscoring the need for further research and 

collaboration in the realm of lung infections. Total 

53,883 cases are reported by WHO (data as of 7 days 

to July 28, 2024, 

https://data.who.int/dashboards/covid19/cases). 

Several Covid-19 fatalities had severe chest 

congestion, which led to a significant drop in oxygen 

levels and an increased risk of major heart attacks 

[2]. Moreover, inflammation in the lungs’ tiny air 

sacs is a feature of pneumonia, another form of lung 

illness. Numerous infections, such as bacteria, 

viruses, or fungus, may be the cause [3]. It is 

interesting to note that Covid-19 and pneumonia 

share comparable indications and symptoms [4]. It 

becomes essential to correctly identify diseases 

because of this strong relationship and the fact that 

various diseases require different treatment [5]. This 

guarantees that several treatment techniques, 

tailored to the lung disease, can be used. This study 

attempts to determine the classes as pneumonia, 

Covid-19, lung opacity, and healthy as a result.  

Reverse transcription polymerase chain reaction is 

currently the standard method for Covid-19 

screening [6]. Nevertheless, this test kit takes a while 

to complete (results usually show up in a few hours 

or days). In addition, it is not generally accessible, 

especially in underdeveloped nations, and only 

possesses a 63.0% sensitivity rate [7,8]. To detect 

individuals with Covid-19 and save many lives, 

various diagnostic techniques must be taken into 

consideration. Thankfully, it has been discovered 
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that imaging techniques for chest radiography are 

useful in this regard. This is because abnormalities 

in chest radiography images, which aid in 

distinguishing between healthy and infected 

subjects, may be identified. Covid-19 mostly affects 

the lungs [9]. 

In clinical practice, Chest X-rays (CXR), and 

computed tomography (CT) are currently the two 

imaging modalities used to assess and diagnose 

Covid-19 [10,11]. CXRs are utilized in medical 

facilities more frequently than CT scans because of 

their low radiation dose, affordability, convenience 

of use, and general accessibility. Despite using 

CXRs frequently in Covid-19 diagnosis, many 

Artificial intelligence (AI)-based diagnosis systems 

are developing to combat the Covid-19 using CT 

scans in its early stage [12]. To distinguish Covid-19 

instances from others, many CXR images must be 

manually analysed, which take time and effort 

[13,14]. Moreover, it might be difficult, even for 

experienced radiologists, to interpret CXRs images 

for Covid-19 diagnosis. On CXRs, Covid-19 

frequently seems vague and might mimic the 

symptoms of other lung ailments or be misdiagnosed 

as other lung diseases [15]. Computer aided 

diagnostic technologies are needed to help 

radiologists diagnose Covid-19 from CXRs. 

Particularly in its subfield of machine learning (ML) 

[16] and deep learning (DL) [17,18], AI has 

demonstrated greater success in computer vision 

tasks. These advances have been applied in a range 

of disciplines recently to support medical 

professionals in early diagnosis of diseases like brain 

tumour detection, stress [19,20], anxiety [21], sleep 

disorders [22,23], diabetes retinopathy, and lung 

disease prediction [4]. Because of their 

effectiveness, these CXR image-based models can 

identify COVID-19 cases. Covid-19 diagnosis from 

CXRs remains challenging, but to improve early 

diagnosis and lower the annual mortality rate, highly 

reliable and effective automated diagnostic 

procedures for Covid-19 identification must be 

developed [24]. Yasar et al., 2024 [67] proposed 

twenty-four layered CNN model for binary 

classification of Covid-19 with CT images. Their 

proposed approach was achieved 95.77% accuracy. 

Hassan et al., 2024 [68] proposed the DCNN model 

based on transfer learning. They analysed 

InceptionV3, VGG-16, VGG-19, and Resnet50 as 

feature extractor in proposed DCNN model. Their 

proposed approach got an 99.07% accuracy with 

ResNet50 as feature extractor and ADAM optimizer. 

Zhang et al., 2024 [69] proposed the CNN model 

with attention mechanism called Cn2a-capsnet. 

They performed the experiment on CXR images, and 

got an accuracy of 98.54% and 96.71% accuracy in 

binary and multiclass classification respectively. 

In numerous applications, including computer 

vision, robotic control, and speech recognition, deep 

neural networks (DNNs) [25] have demonstrated 

remarkable success. DNNs extract features from 

datasets and achieve remarkable performances in a 

variety of applications because large datasets and 

potent graphical processing units (GPUs) are readily 

available [26]. Moreover, recent work has 

investigated efficient DNN architecture synthesis. 

These architectural designs exhibit high 

computational efficiency in addition to high 

prediction accuracy [27,28]. Thus, researchers 

decided to use DNNs as AI Covid-19 diagnosis 

methods. This strategy has the advantages of 

efficiency and universal accessibility. AI is currently 

being used in the fight against Covid-19 in several 

ways [29]. Previous research has demonstrated that 

DL’s enormous data handling capacity makes it one 

of the most promising technologies [30,31]. CNNs, 

which have demonstrated exceptional performance 

in speech, pattern, and image recognition, are the 

most well-known Deep learning technique. From the 

extracted relevant and usable features of the input 

images, they employ an end-to-end strategy to 

produce predictions. Due to its automatic feature 

extraction from the input image, CNN techniques 

outperform the conventional approach and are 

therefore increasingly popular among researchers for 

image classification. The results of previous study 

indicate that radiologists can work less when DL 

algorithms are used to identify Covid-19 on CXRs 

[24].  

Early diagnosis is essential for the successful 

treatment for Covid-19 [32]. The assessment of 

CXRs is the most used diagnostic technique. 

Nonetheless, it is contingent upon the medical 

professional’s interpreting skills and is typically not 

endorsed by other medical professionals. A fast, 

precise, and generalizable model is required to 

identify the condition. Current researchers choose to 

employ DL models (CNN), which automatically 

extract informative and relevant aspects of the input 

data to perform considerably better than traditional 

approaches that  struggle with the relevant feature 

extraction from input images. While conventional 

NNs have demonstrated exceptional outcomes in 

Covid-19 identification and classification, they are 

not equipped to manage global information in 

intricate feature extraction. Enhancing the 

performance of the identification model can be 

achieved by integrating the global features of the 

data and expanding the receptive field of the neural 

network’s feature extraction layer through the 

attention mechanism [33]. Relationships with distant 

pixels are therefore challenging to determine. To 

address this challenge, attention processes have been 

the subject of recent
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Figure 1. Samples from each dataset. First row: Covid-19, Normal, Pneumonia (Left to right: x-ray dataset 1). Second 

row: Covid-19, lung opacity, normal, pneumonia (Left to right: x-ray dataset 2). Third row: pCT, nCT, NiCT (Left to 

right: CT dataset 1).

attempts. Finding and focusing on the information 

that is most instructive within the data is done by 

using attention. Taking note of the shortcomings, 

this paper suggested a novel lightweight model as 

binary and multiclass classifier for lung opacity, 

pneumonia, and Covid-19 identification from CXRs 

and CT images. As has been recently done by 

numerous researchers for performance benefit, the 

proposed model may handle input raw images 

directly without any prior enhancement on the CXR 

and CT images [34,35]. Proposed model for Covid-

19 classification is verified for accuracy and 

efficiency by performance analysis and comparison 

with the existing works. 

The following summarizes the remaining portion of 

this work. Core contributions are described in 

Section 2. The dataset, materials, and proposed 

methodology are discussed in Section 3. The 

simulation environment is described in Section 4. 

Evaluation metrics, performance evaluation, and 

comparative analysis with existing works are 

discussed in Section 5. Discussion, strength and 

potential limitations, and conclusion are covered in 

section 6,7 and 8 respectively.  

 

2. Main Contributions 
 

We present a novel lightweight DL model based on 

the SqueezeNet architecture with the addition of 

attention mechanism in this study, to handle the 

classification into Pneumonia, Covid-19, Lung 

opacity, and normal categories, as well as the binary 

classification of Covid-19 categories. In addition to 

outperforming previous methods, our model makes 

numerous significant advances that highlight its 

importance in the field: 

 

1) Using CXRs and CT images, we offer an 

efficient lightweight DL model to automatically 

detect Pneumonia, Lung Opacity and Covid-19. 

2) Compared to numerous other studies that have 

been published in the literature, this one 

examines a different and larger CXR and CT 

datasets. These studies often focus on 2 and 3 

class classifications and only comprise small 

number of CXR samples.  

3) Our models significantly lower the processing 

power and memory requirements during the 

classification process when compared to the 

recent deep learning models published. They 



Abhishek AGNIHOTRI, Narendra KOHLI / IJCESEN 10-4(2024)592-613 

 

595 
 

also performed better than most of the current 

models in terms of accuracy rate.  

4) After a thorough comparison with existing 

techniques, our proposed model seems to be 

more effective at identifying Pneumonia, Lung 

opacity and Covid-19 cases. This establishes 

our model as a practical and effective tool that 

can be used in clinical settings and helps with 

disease diagnosis. 
 

3. Materials and Methods 

 

3.1. Description of Datasets 
 

In this work, different datasets are used to verify the 

performance of proposed model on CXR and CT 

images. 2,3, and 4 class classification tasks are 

performed on CXR images whereas 2, and 3 class 

classification tasks are performed on CT images. 

Images from each class from each dataset used in 

this study are shown in Fig.1. Description of each 

dataset is given below: 
 

I. X-ray Dataset 1 

 

CXR images from three different datasets [36], [37] 

and [38] were utilized to create this dataset. [36] 

consists of 1345, 10192, 6012, and 3616 images of 

Viral pneumonia, Normal, Lung opacity, and Covid-

19 cases. CXR images of Covid-19 and Pneumonia 

classes from [37] and [38] respectively, are 

considered to enhance these classes in the dataset. 

The resulting dataset consists of total 28012 CXR 

images where 10000 Normal, 5909 Lung Opacity, 

6500 Covid-19, and 5603 Pneumonia cases. 

As indicated in Table 1, images were 

subsequently divided into three distinct sets at 

random: with 80:10:10 ratio for training, validation, 

and testing set. This serves to verify the suggested 

models’ effectiveness in detecting Covid-19. 

Table 1: Split of X-ray Dataset 1. 

Class 

Label 

Training Validation Testing Total 

Covid-19 5200 650 650 6500 

Normal 8000 1000 1000 10,000 

Pneumonia 4400 601 602 5603 

Lung 

opacity 

4809 550 550 5909 

Total 22409 2801 2802 28012 

II. X-ray Dataset 2 

Instead of attempting data augmentation and image 

processing techniques explicitly, we have selected 

pre-processed version of the [36] dataset, which is 

proposed by Roy, S. et. al., 2022 [39] in their work 

and is publicly available. Authors utilizes advanced 

image processing and data augmentation techniques 

to create this dataset. There is total 7674 Lung 

opacity, 5365 Viral Pneumonia, 8745 Covid-19, and 

8214 Normal images in the dataset. As shown in 

Table 2, the images were subsequently divided into 

three distinct sets at random: with 70:15:15 ratio for 

training, validation, and testing. 

Table 2: Split of X-ray dataset 2. 

Class Trainin

g 

Validatio

n 

Testin

g 

Total 

Covid 6121 1312 1312 8745 

Normal 5749 1232 1233 8214 

Viral 

Pneumoni

a 

3755 805 805 5365 

Lung 

opacity 

5371 1151 1152 7674 

Total 20,996 4500 4502 29,99

8 

 

III. CT Dataset 1  

Ning, W. et. al., 2020 [40] proposed this dataset. 

This dataset consists of data collected from two 

hospitals: Liyuan hospital and Union Hospital, 

China. This three-class dataset consists of 9979 

Negative, 4001 Positive, 5705 Non informative CT 

images. Non informative CT images are those 

images in which no judgement can be made by lung 

parenchyma. As shown in Table 3, the dataset split 

was performed with 60:20:20 ratio for training, 

validation, and testing set. 

Table 3: Split of CT dataset 1. 

Class Training Validation Testing Total 

Negative 

CT (nCT) 

5987 1996 1996 9979 

Positive CT 

(pCT) 

2400 800 801 4001 

Non 

informative 

CT (NiCT) 

3423 1141 1141 5705 

Total 11,810 3940 3938 19685 

 

IV. CT Dataset 2 

 

Islam, M. N. et. al., 2021 [41] proposed this dataset which 

is publicly available. 3840 non-Covid19 and 2242 Covid-

19 images are present in this dataset. As shown in table 4, 



Abhishek AGNIHOTRI, Narendra KOHLI / IJCESEN 10-4(2024)592-613 

 

596 
 

the dataset split was performed with ratio of 60:20:20 for 

training, validation, and testing set.  

Table 4: Split of CT dataset 2. 

Class Training Validation  Testing Total 

Covid 1345 448 449 2242 

Normal 2304 768 768 3840 

Total 3649 1216 1217 6082 

 

3.2. ECA Mechanism 

Squeeze-and-excitation (SE) attention [42,43,44] 

can be optimized using fewer parameters with the 

use of the ECA model, which improves model 

performance. Additionally, attention mechanism 

ECA is a plug-and-play module [45]. Input feature 

map is first subjected to global average pooling in 

various channel dimensions by the ECA module, 

after which it is split into 1-D feature vector. 

Subsequently, a 1-D convolution kernel convolves 

the newly created feature vector, and the sigmoid 

activation function determines the new weight value. 

By multiplying by the initial input features, the new 

features are computed. This computation technique 

has the advantage of efficiently avoiding the channel 

dimension reduction issue and facilitating cross-

channel feature information interaction [46], leading 

to an effective feature extraction procedure. The 

ECA module’s structure is depicted in Fig 2. 

 

 

Figure 2.  Structure of ECA module.

Same learning parameters are used by the ECA 

module on all channels to achieve cross-channel 

interaction during parameter learning [47]. Eq. (1) 

represents the expression for the process: 

                   𝑤𝑖 = 𝜎(∑ 𝑤𝑗𝑦𝑖
𝑗
), 𝑦𝑖

𝑗
𝜖𝛺𝑖

𝑘
𝑘

𝑗=1
                  

(1) 

It should be noted that 1-D convolution with size k 

convolution kernel makes this parameter sharing 

method simple to implement. Eq. (2) represents the 

expression for the 1-D convolution process: 

                      𝑤 = 𝜎(𝐶1𝐷𝑘(𝑦))   (2) 

Where sigmoid activation function is σ(.) and C1D(.) 

is a 1-D convolution. There is just k parameters used 

in the ECA module when utilizing this strategy. 

To maximize the impact of feature extraction 

through cross-channel information interaction, it is 

crucial to choose appropriate interaction coverage, 

or the size of 1-D convolution kernel [48]. CNN 

design frequently has disparate numbers of channels 

in output features of different locations. 

Computational complexity and resources are 

significant if the ideal cross-channel interaction 

coverage appropriate for various channel numbers is 

achieved by hand-adjusting the convolution kernel’s 

size. An adaptive convolution kernel size estimation 

technique that works with various channel 

dimensions was presented by Wang et al., 2020 [46]. 

A 1-D convolution kernel size k that is adaptable 

given the number of channels C. C and k are mapped 

as in Eq. (3): 

                             𝐶 = 𝜙(𝑘)   (3) 

One popular and basic mapping connection is 

mapping of a linear connection, as in Eq. (8). But, 

due to its oversimplification, linear mapping will 

frequently be constrained and unable to satisfy the 

true requirements. The channel dimension C in CNN 

parameters are typically a power of 2. To produce a 

nonlinear mapping function, as indicated by Eq. (5), 

the original linear function Eq. (4) is enhanced. 

𝜙(𝑘) = 𝛾 × 𝑘 − 𝑏                  (4) 
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𝐶 = 𝜙(𝑘) = 2(𝛾×𝑘−𝑏)                 (5) 

The size of the 1-D convolution kernel k is 

determined by the number of channels C, as shown 

in Eq. (6): 

𝑘 =  Ψ(C) =  |
log2(𝐶)

𝛾
+

𝑏

𝛾
|

𝑜𝑑𝑑
                 (6) 

If b is set to 1 and 𝛾 is set to 2, and |t| is odd integer 

that is closest to t. Eq. (10) mapping connection 

suggests that higher-dimensional channels require 

convolution kernels of larger size to accommodate 

cross-channel interactions. In contrast, a smaller 

convolution kernel is determined by low-

dimensional channel to complete a restricted set of 

interactions. 

3.3. Proposed System 

With fifty times less parameters than Alexnet, 

SqueezeNet is a CNN that performs better 

[35,42,43]. There are fifteen layers in SqueezeNet: 2 

convolution layers, 3 max pooling layers, 8 fire 

modules, 1 global average pooling layer, and 1 

output layer SoftMax. Fig. 3 shows the design of the 

proposed lightweight model for Covid-19 

classification. This model performs binary and 

multiclass classification tasks. Except for 

classification layer, the hidden layers for feature 

extraction are same for 2,3, and 4 class classification 

tasks. The aim of our work is to maintain state-of-

the-art performance at a lower computational and 

memory cost. This is helpful in scenarios where the 

model must be installed on devices with limited 

resources, like embedded systems or mobile phones. 

Lightweight models are also easier to use in practical 

applications because they are quicker to train and 

predict. 

CNN does not require human intervention to identify 

the distinctive elements of the image; instead, it can 

quantify the image’s features layer by layer. 

Enhancing the model’s performance and refining the 

neural network’s structure take on additional 

dimensions with the addition of an attention module. 

Enhancing the network model’s performance with 

low computational cost for Covid-19 classification 

is the aim of this study. Inspired from the 

SqueezeNet architecture, our proposed model 

consists of 2 Convolutional layer, 1 ECA module, 1 

BatchNormalization, 6 Fire modules, 5 Maxpooling 

layers, 1 GlobalAveragePooling and 1 classification 

layer. BatchNormalization is used in our proposed 

model to normalize the output of the ECA module. 

Maxpooling layer is applied after each fire module 

except the last to reduce the dimensionality of the 

fire module’s output. ECA is applied to the 1st 

convolution layer in fire module then the output of 

ECA is forwarded to the convolution layer of 1×1 

and convolution layer of 3×3. Then the output of 

these two-convolution layer is concatenated. 

Squeeze and expand size of each modified fire 

module in the proposed model is shown in Table 6. 

The layer wise description of the proposed model is 

illustrated in Table 5. It can be seen from the Table 

that our proposed model has approx. 571k number of 

parameters whereas original SqueezeNet model [35] 

has 1,248,424 number of parameters. The size of our 

proposed model is 2.18 MB whereas original 

SqueezeNet model has size of 4.8 MB.

  
Table 5. Layer-wise architecture of proposed model (for binary classification). 

Type of layers  Output Shape Param# 

Input layer - (128,128,1) 0 

Conv2d - (64,64,64) 9,472 

ECA layer - (64,64,64) 3 

BatchNormalization - (64,64,64) 256 

Fire 1 Conv2d (64,64,16) 1,040 

 ECA layer (64,64,16) 3 

 Conv2d (64,64,64) 1,088 

 Conv2d (64,64,64) 9,280 

 Concatenate (64,64,128) 0 

MaxPooling2d - (32,32,128) 0 

Fire 2 Conv2d (32,32,16) 2,064 

 ECA layer (32,32,16) 3 

 Conv2d (32,32,64) 1,088 

 Conv2d (32,32,64) 9,280 

 Concatenate (32,32,128) 0 

MaxPool2d - (16,16,128) 0 
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Fire 3 Conv2d (16,16,32) 4,128 

 ECA layer (16,16,32) 3 

 Conv2d (16,16,128) 4,224 

 Conv2d (16,16,128) 36,992 

 Concatenate (16,16,256) 0 

MaxPool2d - (8,8,256) 0 

Fire 4 Conv2d (8,8,48) 12,336 

 ECA layer (8,8,48) 3 

 Conv2d (8,8,192) 9,408 

 Conv2d (8,8,192) 83,136 

 Concatenate (8,8,384) 0 

MaxPool2d - (4,4,384) 0 

Fire 5 Conv2d (4,4,64) 24,640 

 ECA layer (4,4,64) 3 

 Conv2d (4,4,256) 16,640 

 Conv2d (4,4,256) 147,712 

 Concatenate (4,4,512) 0 

Maxpool2d  (2,2,512) 0 

Fire 6 Conv2d (2,2,64) 32,832 

 ECA layer (2,2,64) 3 

 Conv2d (2,2,256) 16,640 

 Conv2d (2,2,256) 147,712 

 Concatenate (2,2,512) 0 

Conv2d  (2,2,2) 1026 

GobalAveragePool2d  (2) 0 

Activation  (2) 0 

 

 

 

 

Figure 3. (a) Proposed Fire module (b) Proposed model based on SqueezeNet architecture. 
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Table 6.  Modified Fire (MFire) modules. 

Module (MFire) Squeeze size Expand size 

MFire 2 16 64 

MFire 3 16 64 

MFire 4 32 128 

MFire 5 48 192 

MFire 6 64 256 

MFire 7 64 256 

 

To handle unstable gradients, expedite model 

learning, and solve overfitting issue, batch 

normalization is employed for many reasons. We 

have used batch Normalization in our proposed 

network to normalize the output of the attention 

layer. 

                      𝑦∗ =
𝑥−𝐸[𝑦]

𝑠𝑞𝑟𝑡(𝑣𝑎𝑟(𝑦))
   (7) 

The new value is indicated by y* in the Eq. (7), the 

variance of y with a batch is indicated by var(y), and 

the mean value of y with a batch is indicated by E(y). 

To reduce dimensionality and downscale the images, 

the max-pooling layer also known as sub-sampling 

is employed. This lowers overall expenses and 

processing effort. A max pooling operation is 

applied to a convolutional layer’s output, selecting 

the highest value from a range of contiguous input 

values. 

4. Experimental Setup 

Our suggested approach is comparatively 

straightforward, requiring minimal preparation and 

capable of handling collection of imaging dataset 

without any advanced image preprocessing and 

enhancement techniques. Unlike many other 

approaches, ours does not require any specific 

manipulation of the dataset, nor does it involve the 

generation of any dynamic or static features. For 

experimental purpose, we employed TensorFlow 

with keras library, Scikit-Learn, and Python 3.5 on 

Google Colab. 

Attention mechanism helps the neural network to 

attain the region of interest resulting better model 

performance and generalizability. ECA mechanism 

is used in our proposed model. Each Max-pool 2D 

layer used in the model have kernel size of 3 and 

strides of 2 with padding same. For binary and 

multiclass classification during training, the binary 

and categorical cross entropy losses were applied, 

respectively. Using a specific optimization approach 

to lower the prediction error, the model can be made 

to perform better over time by measuring the 

difference between true values and the values 

Table 7. Parameters summary for proposed model. 

Hyperparameters Value 

Input shape (128,128,1) 

Rate (Learning) 0.0001 

Function (Loss) Binary and Categorical 

cross entropy 

Functions (Activation) ReLU, Sigmoid, 

SoftMax 

Functions (Activation) Adam 

Performance metrics Recall, f1-score, 

precision, and accuracy 

 

predicted by the model. Eq. (8) and (9) provide a 

mathematical expression for the losses.  

𝐿𝐵𝐿(𝑝, 𝑞) = −
1

𝑛
∑ 𝑝𝑖 log (𝑞𝑖) + (1 − 𝑝𝑖) log(1 −𝑛

𝑖=1

𝑞𝑖)                       
(8) 

𝐿𝐶𝐶𝐿(𝑝, 𝑞) = −
1

𝑛
∑ ∑ 𝑝𝑖,𝑗 log(𝑞𝑖,𝑗)𝑐

𝑗=1
𝑛
𝑖=1                  

(9) 

Where, number of classes = c, number of samples 

(CXR/CT images) used = n, and pi and qi represent 

the samples’ true and predicted values respectively. 

The binary and categorical cross-entropy losses are 

represented by LBL and LCCL, respectively. 

The training parameter used for training purpose 

were: 32 batch size, 100 epoch, 0.0001 learning rate. 

Activation function is ReLU that is employed, 

except for the output layer, where Sigmoid is used 

for binary and SoftMax activation is used for multi 

class classification. Using Adam optimizer, binary 

and categorical cross-entropy loss for two and 

multiclass classification respectively, the model is 

compiled. Table 7 presents a summary of the 

hyperparameters used to train our proposed model. 

It is shown that the input images with the input shape 

(128,128,1) and the binary and categorical cross 

entropy loss function were utilized in the 

implementation. 

5. Results and Discussion 

Results of applying the proposed model for 2,3, and 

4 classes are computed as well as displayed. 

Following training, validation, and testing, the 

model’s performance for each class is assessed using 

the f1 score, confusion matrix, accuracy, precision, 

and recall. The ratio of the total number of images 

that the model successfully classified to the total 

number of images was used to compute the 

suggested approach’s accuracy (Eq. 10).  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑙𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
      

(10) 

Additionally, f1-score (Eq. 13), recall (Eq. 11), 

precision (Eq. 12) are used to verify the performance 

of proposed model: 

Recall (Sensitivity): The metric used to assess a 

predictive model’s sensitivity is called Recall (Rec). 

It calculates the percentage of positive occurrences 

that are expected to be positive. Typically, it is 

written as follows: where Tp denotes true positive 

and Fn denotes false negative.   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
× 100               (11) 

Precision (Prec): This is an additional performance 

metric included in the research. It is described as 

model’s performance of “True Positive” (Tp) 

findings. It is put as in (Eq. 15): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
× 100              (12) 

Where Fp stands for false positive and Tp for true 

positive. 

F1-score: A statistic called the F1-score (Eq. 16) 

describes the stability between Rec and Prec. It is the 

Prec and Rec harmonic average. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                          (13) 

Table 8. Performance on X-ray dataset 1 for 3 class 

classification. 

Class Recall Precision Accuracy F1-

score 

Covid .9635 .9738 .9686 .9814 

Normal .9818 .9730 .9774 .9795 

Pneumonia .9620 .9635 .9637 .9818 

 

Table 9. Performance on X-ray dataset 1 for 4 class 

classification. 

Class Recall Precision Accuracy F1-

score 

Covid .9347 .9462 .9722 .9404 

Normal .9456 .9380 .9586 .9418 

Lung 

opacity 

.9255 .9286 .9686 .9270 

Pneumonia .9234 .9200 .9693 .9217 

 

 
Figure 4. Training/validation accuracy and loss curves and confusion matrix on test set for X-ray dataset 1 for 3 class 

classification.
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Figure 5. Training/validation accuracy and loss curves and confusion matrix on test set for X-ray dataset 1 for 4 class 

classification.

Table 10. Performance on X-ray dataset 2 for 2 class 

classification. 

Class Recall Precision Accuracy F1-

score 

Covid .9977 .9954 .9965 .9966 

Normal .9951 .9976 .9965 .9964 

 

Table 11. Performance on X-ray dataset 2 for 3 class 

classification. 

Class Recall Precision Accuracy F1-

score 

Covid .9825 .9825 .9863 .9825 

Normal .9814 .9854 .9878 .9834 

Pneumonia .9850 .9789 .9913 .9819 

 

Table 12. Performance on X-ray dataset 2 for 4 class 

classification. 

Class  Recall Precision Accuracy F1-

score 

Covid .9826 .9886 .9916 .9856 

Normal .9967 .9951 .9978 .9959 

Lung 

opacity 

.9836 .9987 .9929 .9861 

Pneumonia .9874 .9727 .9929 .9800 

 

Table 13. Performance on CT dataset 2 for 2 class 

classification. 

Class Recall Precision Accuracy F1-

score 

Covid .9956 .1.00 .9984 .9978 

Normal 1.00 .9974 .9984 .9987 

 

Table 14. Performance on CT dataset 1 for 3 class 

classification. 

Class Recall Precision Accuracy F1-

score 

nCT .9980 .9970 .9975 .9975 

pCT .9864 .9925 .9957 .9894 

NiCT .9938 .9912 .9957 .9925 

 

5.1. Performance on X-ray Datasets 

 

This study uses two X-ray datasets to verify how 

well the proposed model performs on CXR images. 

X-ray dataset 1 is the collection of multiple publicly 

available datasets. This dataset is used to perform 

classification tasks for 3 and 4 classes. Table 8 and 9 

represents the class-wise performance for 3 and 4 

classes. One can observe from these tables that 

proposed model performed well with the precision 
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of 97.38% with 96.86% accuracy for Covid-19 class 

in 3 class classification task and 94.62% precision 

score with 97.22% accuracy for Covid-19 class in 4 

class classification tasks. The misclassification rate 

of 0.0286 and 0.0657 for 3 and 4 classes respectively 

on X-ray dataset 1 show its superior performance 

and represents that how effectively the proposed 

model can identify the images correctly. Fig. 4 and 

Fig. 5 represent accuracy and loss curves on 

training/validation set along with the confusion 

matrix for test set for 3 and 4 class classification 

tasks respectively on X-ray dataaset1. 

X-ray dataset 2 is another dataset for performance 

verification of proposed model. It is an augmented 

and pre-processed dataset proposed by Roy, S. et al., 

2022 [39] and is publicly available. The proposed 

model is performing exceptionally well on this 

dataset. The proposed model’s performance on 2,3, 

and 4 class classification tasks is shown class-wise 

in tables 10,11, and 12. 99.54% precision with 

99.65% accuracy for Covid-19 class in 2 class 

scenario, 98.25% precision with 98.63% accuracy 

for Covid-19 class in 3 class scenario, and 98.86% 

precision with 99.16% accuracy for Covid-19 class 

in 4 class scenarios show the exceptional 

performance of proposed model when the advanced 

pre-processing techniques are applied on dataset. 

The performance metrics show that the proposed 

model is performing well when the X-ray dataset is 

augmented and pre-processed. But without the use 

of data augmentation and advanced image 

preprocessing techniques, proposed model proved 

its superior performance over the existing models. 

The comparative study of proposed model with the 

current studies is presented in Tables 15. Roy, S. et 

al., 2022 [39] proposed the X-ray dataset 2 used in 

this study. It can be noticed from the Table 14 that 

their proposed model “ResNet50+SVD-CLAHE 

Boosting +BWCCE” got 94% accuracy for 4 classes 

with 1,019,396 trainable parameters whereas our 

proposed model got 98.76% accuracy for 4 classes 

on same dataset with only approximate 571k 

parameters. For 2 class classification task, total 

16959 CXR images are employed where 8745 

Covid-19 and 8214 Normal images. With large 

amount of CXR images, our proposed model 

performs exceptionally well with 99.64% accuracy 

which is greater than the existing studies reported in 

this paper. Fig. 6, 7 and 8 represent accuracy and loss 

curves on training/validation set and confusion 

matrix for test set for 2,3 and 4 class classification 

tasks on X-ray dataset 2. Fig.9,10 and 11 shows the 

comparison among the F1-score reported by the 

proposed model on Xray dataset 1 and 2 and existing 

works for 2,3 and 4 class classification on CXR 

images. Roy, S. et al., 2022 [39] reported a F1-score 

of 95 on X-ray dataset 2 whereas our proposed 

model got a F1-score of 98.76. Pradeep Dalvi et al., 

2024 [55] proposed the lightweight model with only 

2,00,034 parameters got 98.47% accuracy for 2 class 

classification with total of 13,808 CXR images 

where only 3616 images belong to Covid-19 class. 

Ainapure, B. S. et al., 2024 [56] proposed the 

lightweight model with only 511,650 parameters got 

99% accuracy for 2 class classification with total of 

2940 CXR images where 

 

 
Figure 6. Training/validation accuracy and loss curves and confusion matrix on test set for X-ray dataset 2 for 2 class 

classification.
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Figure 7. Training/validation accuracy and loss curves and confusion matrix on test set for X-ray dataset 2 for 3 class 

classification. 

 

 

Figure 8. Training/validation accuracy and loss curves and confusion matrix on test set for X-ray dataset 2 for 4 class 

classification.
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Figure 9. Training/validation accuracy and loss curves and confusion matrix on test set for CT dataset 2 for 2 class 

classification.

 

 

 

 
Figure 10. Training/validation accuracy and loss curves and confusion matrix on test set for CT dataset 1 for 3 class 

classification.
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Table 15. Comparative analysis of our proposed model with current classification models in terms of parameters and 

accuracy on X-ray datasets. 

References Architecture Dataset Classes Accuracy Parameters 

George, G.S. 

et al.,2023 

[49] 

GrayVIC model 

 

 

 

Covid-19 = 2250, Normal 

= 2250 

2 98.06% 2,684,650 

Covid-19=2250, 

Normal=2250, 

Pneumonia=2250 

3 97.41% 2,684,650 

Jyoti, K et 

al.,2023 [50] 

ResNet50 Covid-19 = 2409, Normal 

= 2866 

2 95.67% 23,591,810 

Malik, D. et 

al.,2022 [51] 

VGG16 Covid-19 = 4630, Normal 

= 1583 

2 93.00% 14,715,714 

Ukwandu, O. 

et al.,2022 

[52] 

MobileNet-V2 Covid-19 = 1200, Normal 

= 1341 

2 99.60% 3,538,984 

Covid-19=1200, 

Normal=1341, 

Pneumonia=1345 

3 94.50% 3,538,984 

Nayak et 

al.,2022 [53] 

LW-CORONet Covid-19 = 2358, Normal 

= 8066 

2 96.25% 680,000 

Covid-19=2358, 

Normal=8066, 

Pneumonia=5575 

3 95.67% 

Hussein, H.I. 

et al., 2023 

[54] 

CNN Covid-19=3616, 

Normal=10192 

2 98.55% 591,903 

Pneumonia=1345, 

Normal=10192, 

Covid-19=3616 

3 592,929 

Pradeep 

Dalvi et al., 

2024 [55] 

Proposed method Covid-19=3616, 

Normal=10192 

2 98.47% 2,00,034 

Ainapure, B. 

S. et al., 

2024 [56] 

Proposed method Covid-19(+) =1364, 

Covid-19(-) =1576 

2 99% 511,650 

Wang, S. et 

al., 2024 [57] 

Dense MobileNetV3 Pneumonia=1345, 

Normal=10192, 

Covid-19=3616 

3 98.71% 5,948,169 

Asif, S. et al 

., 2024 [58] 

LWSE Normal=890, 

Pneumonia=892, 

Covid-19=900 

3 96.40% 4,05,0000 

Normal=1349, 

Pneumonia=1345, 

Covid-19=1361, 

Tuberculosis=1300 

4 97.89% 4,25,0000 

Huang, M. L. 

et al., 2022 

[59] 

Lightweight 

EfficientNetV2 

Covid-19=600, 

Normal=600, 

Pneumonia=600 

3 98.33% 798,539 

Ahamed, K. 

U. et al., 

2021 [60] 

Modified & Tuned 

ResNet50V2 

Covid-19=1143, 

Normal=1150, 

Pneumonia=1150 

3 97.24% 49,210,756 

Sanida, T. et 

al., 2022 [61] 

Modified MobileNetv2 Viral pneumonia = 1245,  

Lung opacity = 6012, 

Normal = 10192, 

COVID-19 = 3616  

4 95.80% 2,915,908 
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Roy, S. et al., 

2022, [39] 

ResNet-50+SVD-

CLAHE Boosting 

+BWCCE 

Covid-19=8769, 

Normal=8192, 

Lung opacity=7662, 

pneumonia= 5410 

4 94% 1,019,396 

Asham, M. 

A. et al., 

2024 [62] 

Proposed KD Student 

Model 

Covid-19=1316 

Normal=1341 

Pneumothorax=1348 

Tuberculosis=1300 

4 94.43% 630000 

Proposed 

work 

Proposed CNN 

 

X-ray Dataset 2 

Healthy=8214, 

Covid-19=8745 

2 99.64% 571,015 

X-ray dataset 1 

Healthy=10000,  

Pneumonia=5500, 

Covid-19=6500 

3 97.13% 571,528 

 

X-ray dataset 2  

Healthy=8214, 

Pneumonia=5365, 

Covid-19=8745 

3 98.27% 

X-ray dataset 1 

Normal = 10000, 

Lung Opacity = 6012, 

Viral Pneumonia = 5500,  

Covid-19 = 6500 

4 93.43% 572,041 

 

X-ray Dataset 2 

Normal = 8214, 

Lung Opacity = 7674, 

Viral Pneumonia = 5365, 

Covid-19 = 8745 

4 98.76% 

 

 

 

 
Figure 11. Comparison of F1-score on X-ray dataset: Proposed work vs Recent works (Red: 2 class, Blue: 3 class, 

Green: 4 class). 
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Table 16. Comparative analysis of our proposed model with current classification models in terms of parameters and 

accuracy on CT dataset. 

References Architecture Dataset Classes Accuracy Parameters 

Asif, S. et al., 

2024 [63] 

LitefusionNet Covid-19=1200, 

Normal=1200 

2 99.00% 6,67,0000 

Soleimani-

Fard, S. et al., 

2024 [64] 

Res-MGCA-SE Covid-19=349, 

Normal=397 

2 93.42% 5,50,0000 

Ahamed, K. 

U. et al., 2021 

[60] 

Modified & Tuned 

ResNet50V2 

Covid-19=1000, 

Normal=1000, 

CAP 

images=1000  

3 99.01% 49,210,756 

Huang, M. L. 

et al., 2022 

[59] 

Lightweight 

EfficientNetV2 

Covid-19=600, 

Normal=600, 

Pneumonia=600  

3 97.48% 798,539 

Asif, S. et al., 

2024 [58] 

LWSE Covid-19=1200, 

Normal=1200 

2 98.83% 3,85,0000 

Proposed 

work 

Proposed CNN 

 

CT dataset 1 

Covid-19=2242, 

Normal=3840 

2 99.84% 571,015 

CT dataset 2 

Negative 

CT=9979, 

Positive Ct=4001, 

Non-informative 

CT=5705 

3 99.44% 571,528 

 

 
Figure 12. Comparison of F1-score on CT dataset: Proposed work vs Recent works (Blue: 2 class, Red: 3 class).

only 1364 images belong to Covid-19 class. These 

beforementioned studies have neither incorporated 

larger datasets as ours nor performed the multiclass 

classification. Our proposed model got 99.64% 

accuracy for 2 class classification with total of 16959 

CXR images where 8745 images belong to Covid-19 

class which is also greater than these 

beforementioned studies.  

5.2. Performance on CT Datasets   

Most of the existing studies reported lightweight 

models on CXR images for Covid-19 classification. 

Very few proposed the lightweight model for 

Covid19 classification on CT images or CT and 

CXR images both. Proposed model in this study 

performed the 2 and 3 class classification tasks on 
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CT images. Table 13 and 14 shows the class-wise 

performance on CT dataset for 2 and 3 class 

classification tasks. For 2 class classification, 

precision score of 100% with 99.84% accuracy for 

Covid-19 class represents the remarkable 

performance of the proposed model on CT dataset. 

Whereas 99.25% precision score with 99.57% 

accuracy for covid-19 class represent the superior 

performance of the proposed model for 3 class 

classification tasks. The misclassification score of 

.0056 and .0016 for 2 and 3 class classification tasks 

show that model is performing well in  

Table 17. Comparative analysis of proposed model in terms of accuracy and computational cost with most current 

studies. 

References Accuracy Class Number of 

test images 

Parameters Test time Model size 

Asham, M. A. et al., 

2024 [62] 

94.43% 4 1276 CXR 630000 11.41s 2.66 MB 

Asif, S. et al., 2024 [58] 96.40% 3 670 CXR 4,05,0000 17.39s 16.56 MB 

97.89% 4 1338 CXR 4,25,0000 24.83s 17.36 MB 

98.83% 2 600 CT 3,85,0000 9.18s 15.76 MB 

Soleimani-Fard, S. et al., 

2024 [64] 

93.42% 2 - 5,50,0000 - 600 MB 

Hussein, H.I. et al., 2023 

[54] 

98.55 2 2762 CXR 591,903 8.86s - 

96.83 3 3031 CXR 592,929 10.04 

Proposed CNN 99.64% 2 2544 CXR 571,015 6.12s 2.18 MB 

99.84% 2 1217 CT 12.48s 

99.44% 3 3937 CT 571,528 

 

17.5 

97.13% 3 2235 CXR 7.14 

98.27% 3 3349 CXR 10.58 

98.76% 4 4500 CXR 572,041 

 

15.6s 

93.43% 4 2837 CXR 9.07 

correctly classifying the CT images.  Fig. 9 and 10 

shoes the training and loss curves for training and 

validation data and confusion matrix for test data for 

2 and 3 class classification on CT dataset. The 

comparative analysis of proposed model and 

existing models for Covid-19 classification on CT 

images for 2 and 3 class classification task is shown 

in Table 16. It can also be noticed from these tables 

that the proposed model is performing very well over 

existing models for CT image classification with 

very few parameters comparatively. Table 16 further 

shows that, in comparison to the proposed 2 and 3 

class classification models, the lowest parameter 

models for CT classification reported in the literature 

require 573% and 39% more parameters, 

respectively. 

5.3. Analysis of Run time complexity and 

computational load 

An estimation of computational complexity of the 

suggested models has been made in proportion to 

their important function in deep learning models. A 

direct correlation exists between the increase in 

network-level growth and the exponential expansion 

of computational complexity [65].  

Utilizing the trainable parameters from the model’s 

design is typically the first step in determining the 

computational complexity [66]. Thus, the 

computational complexity in this work was 

ascertained using the trainable parameters present in 

the architecture of the proposed model. An 

approximate total of 570k trainable parameters are 

needed for the models. 

Additionally, A low computational load is 

maintained by the proposed model’s 2.18 MB size, 

which is in perfect alignment with our core goal of 

developing a lightweight model appropriate for 

deployment on edge devices with constrained 

resources. Our model is a strong contender for 

deployment on devices with limited computational 

resources because of its remarkable accuracy as well 

as its efficiency regarding parameters and prediction 

time. The comparative analysis in terms of accuracy 

and computational cost is shown in Table 17. 
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6. Discussions 

Most of the current studies reported in this work 

performed the classification task either on CXR or 

CT images. The proportion of the studies performed 

on the CXR images are much higher than CT 

images. The two most used imaging modalities for 

identifying pneumonia and Covid-19 are CT and 

CXR. It can be noticed from the table 15 that only 

[49,52,53,54] performed the 2 and 3 classification 

tasks. 3 and 4 class classification tasks on CXR 

images and 2 class classification tasks on CT images 

are performed by [58]. No study in the literature 

proposed the lightweight model for binary and 

multiclass class classification tasks on CXR and CT 

images both. So, in this study, performance of the 

proposed model is verified on both imaging 

modalities i.e. CXR and CT for binary as well as 

multiclass classification tasks. 

The performance of the proposed model is verified 

on non-pre-processed and pre-processed datasets. 

Despite performing preprocessing on the CXR 

images, we have used the already pre-processed 

dataset [39]. Performance of proposed model on pre-

processed dataset (X-ray dataset 2) is exceptionally 

remarkable with 98.76% overall accuracy for 4 class 

classification tasks. Our proposed model also 

performed well on non-pre-processed dataset (X-ray 

dataset 1) with 97.13% overall accuracy for 3 classes 

and 93.43% overall accuracy on 4 class 

classification tasks. Fig. 11 and 12 show the 

comparative analysis of F1-scores of proposed 

models on X-ray and CT dataset with existing 

studies. Results show that though the proposed 

model with only 570k parameters is performing well 

compared to existing studies on the non-pre-

processed dataset, it is exceptionally performing on 

the pre-processed X-ray dataset and surpassing all 

the existing studies. The performance on the CT 

datasets is also remarkable specially when there are 

no image preprocessing techniques are applied on 

the CT images. Table 16 shows the comparative 

analysis of the proposed model performance on CT 

dataset with the recent studies. 99.84% and 99.44% 

overall accuracy for 2 and 3 class classification on 

CT images show the superiority of proposed our 

model over the existing lightweight models. 

 

7. Strengths and Limitations 

With its shorter testing time and higher 

computational efficiency, the proposed model 

reduces implementation time and requirements, 

making it more practical option for deployment in 

resource-constrained environments. Even though the 

proposed model produced some intriguing results, it 

still has several shortcomings that will be addressed 

in later research. Two X-ray datasets are utilized in 

this work. X-ray dataset 1 is applied to the model 

without performing any image processing on it and 

X-ray dataset 2 is already pre-processed dataset. 

Whereas, no image processing techniques are 

applied on CT datasets. We may investigate 

applying image enhancement techniques to the input 

images, which could improve their quality, to 

improve our existing method, especially for 

multiclass classification. Further research might be 

done to determine whether applying these methods 

could enhance the proposed model’s performance.  

We also understand that our proposed model 

is susceptible to adversarial attacks, which is 

important to investigate given the safety-sensitive 

nature of medical image identification. Adversarial 

attacks can cause subtle changes to input images to 

trick the model into making false predictions. It is 

crucial to comprehend and counteract these attacks 

to guarantee the proposed model’s resilience and 

dependability in practical situations. We intend to 

investigate the problems and remedies associated 

with adversarial attacks in the field of medical image 

identification. 

8. Conclusions 

To effectively combat Covid-19 and making its 

symptoms easily identifiable, researchers are 

concentrating their efforts on employing DL models 

in this regard. However, these models are too 

expansive to be implemented in locations with 

limited resources due to their large number of 

parameters and high processing demands. To 

overcome these problems, we suggest the incredibly 

effective and lightweight model, to enhance the 

detection performance of several viral diseases of the 

chest, including Covid-19. Our proposed model also 

requires less computing power and has fewer 

parameters, making it more affordable. 

Consequently, it is more practical to diagnose 

individuals with infectious disorders of the chest 

quickly. Our proposed approach has the potential to 

improve the prompt and accurate identification of 

lung disorders, solving important issues in the field 

of medical imaging, by demonstrating improved 

performance and effective resource utilization.  

Future research endeavours should be directed 

toward: (i) to investigate our proposed model’s 

scalability over bigger and more varied datasets, 

confirming the scalability of its performance even 

further. (ii) various methods, including federated 

learning and generative adversarial networks, will 

also be investigated. (iii) examine whether adding 

more sophisticated architectural components could 

improve the model’s ability to diagnose a wider 

variety of lung conditions, and (iv) to explore the 
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preprocessing techniques to investigate the 

performance.
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