Copyright © IJCESEN

International Journal of Computational and Experimental

CESE

Science and ENgineering B e
(IJCESEN) -
Vol. 11-No.4 (2025) pp. 8501-8509 i
http://www.ijcesen.com -

ISSN: 2149-9144
Research Article

Real-Time Predictive Maintenance with ML-Enhanced 10T Sensor Data

Processing

Sanchee Kaushik*

Boston University, Boston USA

* Corresponding Author Email: sancheekaushik@gmail.com - ORCID: 0000-0002-5007-7850

Article Info:

DOI: 10.22399/ijcesen.4255
Received : 01 March 2025
Accepted : 30 March 2025

Keywords

Predictive Maintenance;
Real-Time Analytics;
10T Sensors;

Machine Learning;
Edge Computing;
Federated Learning

Abstract:

Introduction of machine learning (ML) and Internet of Things (IoT) sensor data has
transformed the concept of predictive maintenance (PdM) allowing the industries to
shift to real-time and intelligent decision-making systems rather than reactive ones.This
review examines the modern real time PdM landscape, highlighting the relevant ML
approaches, architectures, deployment models, and applications. The work is a
synthesis of the results of the last ten years, comparing such algorithms as Long Short-
Term Memory (LSTM), Convolutional Neural Network (CNN), and Echo State
Networks and evaluates them in the conditions of the real world when it is necessary to
consider the time of work. The concept of a hybrid edge-cloud architecture has been put
forward to meet the requirement of low-latency inference, scalability, and data privacy.
The review ends with the named challenges including model interpretability, unlabeled
data, and cybersecurity and provides the directions promising to be successful in the
future, including federated learning, explainable Al, and adaptive transfer learning. The
presented insights can be a guide to researchers, practitioners, and policy-makers who
want to create resilient and intelligent maintenance infrastructures during the Industry

4.0 era.

1. Introduction

The combination of artificial intelligence (Al),
Internet of Things (loT), and high-order analytics in
the age of Industry 4.0 is transforming the industrial
systems with the application of predictive
maintenance (PdM). Machine learning (ML)
algorithms on streaming data provided by loT
sensors to predict the state of a machine can be
discussed as a revolutionary approach to asset
management, because it allows the systems to
predict the failure of equipment before it happens,
and to dramatically decrease unexpected downtime.
This paradigm shift not only improves the
efficiency of the operations and lowers the costs but
also improves the safety of the system and the
longevity of the equipment in sectors like
manufacturing,  energy, transportation, and
infrastructure among others [1]. The topicality of
the subject of the current study and industry cannot
be overestimated. A report by McKinsey and
Company suggests that through predictive
maintenance, the maintenance costs will be reduced
by 10-40, the downtime will reduce by half, and the

machine life will increase by 20-40 percent [2].
Such advantages are particularly essential in the
areas where the reliability of the system and uptime
cannot be overestimated, e.g. renewable energy,
aerospace and smart manufacturing. To illustrate,
predictive maintenance in real-time is utilized in
wind energy to maximize the performance of
turbines, identify anomalies in the blades, and
preempt any problem related to gearbox failures
that will result in major operational and financial
losses [3]. More than that, the burst of loT
technologies has significantly decreased the amount
and speed of data that is produced in industrial
facilities. Such sensor-rich data streams cannot be
passively filtered, analyzed, and interpreted, but
demand intelligent actionable insights. It is no
longer possible to use traditional rule-based and
statistical maintenance methods to cope with this
level of complexity and volume. Deep learning and
ensemble techniques are the best models of ML
models because they have more enhanced features
of pattern identification, detection of anomalies,
and prediction of failures thus are very crucial in
real-time predictive maintenance system [4].
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Although this is promising, there are a number of
issues that still exist in the adoption of real-time
predictive maintenance using ML. To begin with,
the 10T devices and protocols are heterogeneous,
which  brings about problems of data
interoperability and standardization. Second, real-
time processing requires an intensive computational
resource and effective data pipeline designs capable
of ingest, clean and process data with a high degree
of minimal latency [5]. Third, semi-supervised or
unsupervised models are necessary because labeled
failure information is not available in most
industrial ~ applications, which restricts the
application of supervised learning methods.
Moreover, the problem of model generalizability
between various systems and working requirements
is quite an uphill task [6]. The other significant
research gap is the inclusion of explainable Al
(XAl) in predictive maintenance systems. The
industrial decision makers tend to be reluctant to
use black-box models without knowing the
reasoning of the predictions. Thus, interpretability
and transparency are becoming new essentials of
real-time ML systems wused in safety-critical
systems [7].Furthermore, the issue of cybersecurity
related to connected lIoT ecosystems casts doubt on
data integrity and vulnerability of its systems and,
as a result, requires investigations of secure and
privacy-preserving  learning  formations  [8].
Theoretical Proposals Theoretical Model and Block
Diagrams of Real-Time Predictive Maintenance.
An effective real-time predictive maintenance
system is developed based on a multi-layered and
end to end architecture that incorporates an loT-
based sensor data acquisition process, real-time
data processing, machine learning-based analytics,
and decision-making processes. The section
provides a block diagram representation of the
system architecture, and then a suggested
theoretical model, both intended to assist real-time
intelligent monitoring of industrial assets.

2.Proposed Theoretical Model and Block
Diagrams for Real-Time Predictive Maintenance

The development of an effective real-time
predictive maintenance (PdM) system requires a
multi-layered, end-to-end  architecture  that
integrates loT-based sensor data acquisition, real-
time data processing, machine learning-based
analytics, and decision-making mechanisms. This
section outlines a block diagram representation of
the system architecture, followed by a proposed
theoretical model, both designed to support real-
time intelligent monitoring of industrial assets.

2.1 Real-Time Predictive Maintenance System
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The Real-Time Predictive Maintenance System is a
system that combines 0T sensors, data streaming
and machine learning to track the health of the
equipment and real-time forecast failures. It
analyses sensor data in several stages or layers,
such as collection and pre-processing up to model-
based decision-making, in order to allow proactive,
efficient maintenance activities.

Description of Components:

e Sensor Layer: This layer consists of 10T
enabled sensors (e.g. accelerators, vibration
sensors, temperature probes) attached to
industrial machines. These record time-
series information of machine health [19].
Data Ingestion Layer: It uses streaming
platforms (e.g., Apache Kafka, MQTT,
AWS loT Core) to convey data as it
happens in real time at the edge devices to
the cloud or edge servers [20].
Pre-processing Layer: The raw sensor data
is cleaned, normalized and transformed.
Such techniques are Fast fourier Transform
(FFT), short time fourier transform (STFT)
and Principal Component analysis (PCA) to
reduce the dimension [21].

ML Model Engine: Runs a range of ML
models (e.g., Random Forest, SVM, RNN,
CNN, Autoencoders, etc.) to complete
classification (or regression) or anomaly
detection tasks. This is based on the context
of application and nature of the data [22].
Decision Layer: Processes model output in
order to produce actionable information,
e.g. failure prediction, maintenance
scheduling, or anomaly alerts. It can
incorporate Explainable Al (XAl) systems
such as SHAP or LIME to make it more
interpretable [23].

2.2 Proposed Theoretical Model: Hybrid Edge-
Cloud Al Model for PdM

To resolve the problem of latency and data privacy,
we suggest the Hybrid Edge-Cloud Al Model of
real-time predictive maintenance (Figure 2). This
model allocates the computational resources
between edge and cloud with selection of speed and
scale.

Key Advantages of the Hybrid Model:

e Low latency: On-site fault detection will
mean that there will be minimal delay in

detecting faults [24].
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e Privacy-preserving: Data does not have to
be sent to the cloud but model updates are
shared (through federated learning) [25].
Scalable: Can support more and more
machines and be at different locations
without having a dependency that is
centralized [26].

Flexible: This enables the dynamic change
of the local and global model policy
according to the operational conditions.
Discussion and Benefits

The need to adopt this modular architecture and
theoretical framework addresses numerous present-
day issues in predictive maintenance such as:

e The speed and diversity of data: loT
sensors have high and noisy and
heterogeneous data rates. Our layered
architecture does good processing and
normalization of these inputs to be used
right in the model [21]. Real-time decision-
making Edge computing offers real-time
response features, which are needed in
high-risk sectors such as aviation and
energy [19], [24].

Model training and evolution: With the
cloud environment, the training of large
models based on historic data is supported
and on the edge nodes, the trained models
are deployed to make inferences [25].
Interpretable experiences: It is also
possible to interpret model outputs with the
help of Explainable Al techniques built at
the decision-level, which makes human-in-
the-loop systems more realistic [23].

Cyber threats resilience: Federated
learning is also decentralized, which
minimizes attack surfaces due to the
limitation of raw data transfer across
networks [26].

This model can provide a resistant and scalable
predictive maintenance solution by integrating lIoT
infrastructure, algorithm-based machine learning,
edge-cloud synergy, and explainable Al. The given
architecture not only tries to overcome the
drawbacks of the traditional systems but it offers a
flexible and future ready framework that can be
scaled across the domains.

3. Experimental Results

In order to measure performance and effectiveness
of machine learning-based predictive maintenance
systems using the data of loT sensors, researchers
carried out a great number of experiments in
different fields such as manufacturing, wind
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energy, and railway systems. These experimental
researches assist in determining the accuracy,
latency, robustness of the model, and the ability to
make real-time decisions of the various PdM
frameworks. This section provides synthesized
findings of major researches, as well as comparing
tables and performance diagrams.

3.1 Model Performance Comparison

The predictive accuracy of ML models is one of the
major benchmarks in PdM systems. Table 2
presents comparative experimental findings of
recent studies; it mainly concentrates on the
classification accuracy, precision, as well as F1-
score in widely used algorithms.

3.2 Real-Time Processing Latency

Latency is a major factor to put ML models into the
production environment. Findings are presented in
the following graph (Figure 3) indicating the
average end-to-end time (in milliseconds) of
inference with various deployment
architectures. These results demonstrate that edge-
based or hybrid systems outperform centralized
cloud models in terms of latency, making them
more suitable for real-time industrial PdM systems.

3.3 Remaining Useful Life (RUL) Prediction

The RUL prediction task plays a very important
role in maintenance scheduling. Figure 4 shows the
predicted and actual RUL graph by the use of
LSTM and GRU models that are trained on the
NASA C-MAPSS dataset, which is cited in [27].

LSTM exhibited a lower mean absolute error
(MAE = 12.3 cycles) compared to GRU
(MAE = 14.7 cycles), confirming its better
temporal pattern extraction capability [27].

3.4 Maintenance Cost Reduction

Several experimental deployments have assessed
the economic impact of ML-based PdM. Table 3
summarizes findings from real-world
implementations. These results provide strong
evidence that integrating real-time predictive
analytics leads to substantial reductions in
maintenance costs, particularly in environments
with complex machinery and high downtime
penalties.

3.5 Key Findings
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Based on the reviewed results of the experiment:
Deep learning models (e.g., LSTM, CNN, ESN),
when compared to classical models, are always
better at time-series fault detection [27], [28]. The
mode of edge computing minimizes the time spent
on inference which allows quicker alerts and
responsiveness.Federated and hybrid systems offer
scalability and privacy of data in distributed
industrial settings.Predictive maintenance systems
provide practical ROl in the industrial setting due
to the lesser cost and unforeseen down.

4. Future Directions

The future of real-time predictive maintenance is
full of opportunities, which is motivated by the
technological revolution and increased need of
smarter and sustainable industrial solutions. The
most important aspects of the future research and
development are most likely to be concentrated on:

4.1 Distributed Environment  Federated

Learning

With privacy policies and data ownership getting
more visible, federated learning (FL) is an
attractive solution to train the models on
decentralized devices without transferring raw data.
The next generation PdM systems will further make
use of FL to allow joint model training among
factories, fleets, or geographically sparsely
distributed assets.

4.2 Transfer Learning and Domain Adaptation

There are machines, which operate on different
terms or in different industrial settings, and usually
have different patterns of behavior. Transfer
learning and domain adaptation methods may be
used in generalizing PdM models towards
transferring  knowledge in  well-annotated
environments to new or under-resourced domains.

4.3 Explainable Al (XAl) Integration

Confidence in Al systems is vital in industrial

visualization tools should be investigated in the
future to aid the demystification of the decision-
making process. Such methods as SHAP, LIME or
model-specific explainability techniques will be in
the focus of human-in-the-loop maintenance
systems.

4.4 System-Level Modeling with Graph Neural
Networks (GNNSs)

The nature of industrial systems is deeply
intertwined, and the GNNs are able to model such
connections more easily than traditional algorithms
do.The PdM models of the future may use GNNs to
identify  system-wide anomaly and failure
propagation patterns, instead of individually
studying machines.

4.5 Maintenance Systems that heal themselves

The second phase of automation is the
identification of faults but also taking of automated
corrective actions.Combining PdM and robotic
process automation (RPA) and autonomous
maintenance systems may result in self-mending
manufacturing processes.

4.6 Integrated Maintenance Architectures on
Cybersecurity

The more people are connected the more vulnerable
they are. Future studies should also cover cyber-
physical security of PdM systems, which will
guarantee the integrity of data and resilience of
systems when the communication protocols are
reliable and the threat detection is based on Al.

4.7 Sustainability and Green Al

With the transition of industries to carbon
neutrality, PdM systems should also be aligned
with the environmental objectives. The design of
new Al-driven maintenance systems will require
lightweight and less energy-consuming models that
will focus on sustainability metrics.

adoption. More interpretable Al models and
Table 1: Key Research Studies on ML-Enhanced loT-Based Predictive Maintenance

Refer | Focus Findings

ence

[9] Proposes a cyber-physical framework for [ Emphasized the foundational role of loT sensors

integrating loT with predictive maintenance. and intelligent analytics for condition-based

maintenance. Established a conceptual model for
PdM in smart factories.

[10] Surveys big data-driven approaches in PdM | Identified that scalability and data integration

8504



Sanchee Kaushik / [JCESEN 11-4(2025)8501-8509

across industries.

remain key challenges. Called for real-time

analytics and data fusion models.

[11] Reviews ML approaches for PdM, | Highlighted the shift from traditional models to
emphasizing supervised, unsupervised, and | deep learning. Stressed need for real-time
hybrid methods. deployment and scalable architectures.

[12] Focuses on online condition monitoring using | Found real-time signal processing and noise
ML and IoT sensor data. filtering to be essential. Emphasized importance of

high-frequency sensor integration.

[13] Applies CNNs and LSTM to diagnose | Showed DL methods outperform traditional
machine faults using time-series data. techniques under variable load and noise. Validated

DL's robustness in real-time environments.

[14] Uses recurrent neural networks for wind [ Demonstrated high accuracy in early anomaly
turbine PdM. detection and forecasting in renewable energy

systems.

[15] Introduces an edge-loT hybrid model to | Found that edge computing dramatically improves
reduce latency in real-time PdM. response time and reduces network load. Promoted

local model execution.

[16] Reviews PHM strategies focusing on ML/DL | Identified deep reinforcement learning and
integration with 10T systems. federated learning as future directions. Stressed

real-time application readiness.

[17] Investigates XAl tools in PdM models to | Concluded that SHAP and LIME increase user trust
improve transparency. in ML systems. Recommended combining

explainability with performance.

[18] Explores decentralized ML models for data- | Demonstrated federated learning preserves data

sensitive environments.

privacy while achieving high PdM accuracy. ldeal
for cross-site deployments.

Vibration, Temp, Acoustic,
Pressure

L

Sensor Layer MQTT, Kafka, etc

- ~

Data Ingestion

Pre-processing

ML Model Engine

Noise Filtering, Feature
Extraction

RNN, CNN, SVM, et

.
Alerts, Maintenance

Scheduling

Decision Layer

Figure 1: Block Diagram of Real-Time Predictive Maintenance System
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Figure 2: Hybrid Edge-Cloud Theoretical Model for PdM

Table 2: Comparison of Machine Learning Algorithms for Predictive Maintenance Tasks

Cross-device Optimization

Dataset ML Model Accuracy (%) Precision F1-Score
NASA Turbofan | LSTM 94.5 0.93 0.92
RUL

CMAPSS Random Forest | 89.7 0.91 0.88
Dataset

Wind  Turbine | Echo State | 92.2 0.90 0.91
Sensor Data Network

Railway  Axle [ CNN 95.8 0.94 0.93
Sensors

loT  Vibration | Federated SVM | 90.3 0.89 0.90
Sensors

Note: All experiments used time-series sensor inputs such as vibration, temperature, and acoustic emissions.

LSTM, Random Forest, Echo State Network, CNN and
Federated SVM

B L.sT™M B Random Forest Echo State Network [l CNN B Federated SVM
100
75
50
25
0
Accuracy (%) Precision F1-Score
ML Model

Graph 1: Comparison of LSTM, Random Forest, Echo State Network, CNN and Federated SVM
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Architecture
Cloud-only Edge-only Hybrid Edge-Cloud
130 ms 25 ms 50 ms
Figure 3: Inference Latency Across Deployment Architectures
Architecture
Cloud-only Edge-only Hybrid Edge-Cloud
130 ms 25 ms 50 ms

Figure 4: RUL Prediction (LSTM vs GRU Models)

Wind Energy Smart Manufacturing  Railway Systems Chemical Plants

Graph 2: Impact of Predictive Maintenance on Maintenance Costs
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Table 3: Impact of Predictive Maintenance on Maintenance Costs

Industry Method Cost Reduction (%)
Wind Energy Echo State Network 18.4
Smart Manufacturing CNN-LSTM 25.7
Railway Systems Edge-Al Model 21.3
Chemical Plants Hybrid Al System 30.0

4. Conclusions

The concept of real-time predictive maintenance
that is driven by ML-enhanced loT systems is a
massive change in the approach used by the
industries to control the health and efficiency of the
equipment they are operating. With constant
analysis of smart sensors and implementation of
advanced machine learning models, it is possible to
anticipate failures prior to their happening, thereby
cutting down unplanned downtime, maximizing the
utilization of assets, and cutting down on costs of
maintenance.  Since  classical  classification
algorithms to deep learning models such as LSTM
and CNN, the predictive maintenance system has
developed significantly over the past decade. It has
been experimentally demonstrated that the DL
methods are much superior to classical models in
time-series prediction tasks, particularly in noisy
and varying operating environments. Moreover, the
emergence of edge computing and hybrid edge-
cloud architecture has radically enhanced the
responsiveness of the system and real-time fault
detection and local analytics can be achieved even
in bandwidth-limited conditions. Nevertheless,
there are also some challenges that remain
unaddressed after this change. Lack of big,
annotated datasets of failure remains a problem in
supervised learning in most industrial fields.
Additionally, the growing depth and obscurity of
deep learning models require explainable Al
practices to instill confidence and respondent trust
among end-users. Lastly, there are cybersecurity
threats related to interconnected loT devices and
decentralized data structures that are a critical issue.
Nevertheless, it is impossible to overlook the
possibility of transforming the maintenance
strategies provided by the continued adoption of Al
and 1oT. As the current development of computing
infrastructure, federated learning, and model
explainability, the path towards clever, scalable,
and secure predictive maintenance systems is
already in motion.
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