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Abstract:  
 

Introduction of machine learning (ML) and Internet of Things (IoT) sensor data has 

transformed the concept of predictive maintenance (PdM) allowing the industries to 

shift to real-time and intelligent decision-making systems rather than reactive ones.This 

review examines the modern real time PdM landscape, highlighting the relevant ML 

approaches, architectures, deployment models, and applications. The work is a 

synthesis of the results of the last ten years, comparing such algorithms as Long Short-

Term Memory (LSTM), Convolutional Neural Network (CNN), and Echo State 

Networks and evaluates them in the conditions of the real world when it is necessary to 

consider the time of work. The concept of a hybrid edge-cloud architecture has been put 

forward to meet the requirement of low-latency inference, scalability, and data privacy. 

The review ends with the named challenges including model interpretability, unlabeled 

data, and cybersecurity and provides the directions promising to be successful in the 

future, including federated learning, explainable AI, and adaptive transfer learning. The 

presented insights can be a guide to researchers, practitioners, and policy-makers who 

want to create resilient and intelligent maintenance infrastructures during the Industry 

4.0 era. 

 

1. Introduction 
 

The combination of artificial intelligence (AI), 

Internet of Things (IoT), and high-order analytics in 

the age of Industry 4.0 is transforming the industrial 

systems with the application of predictive 

maintenance (PdM). Machine learning (ML) 

algorithms on streaming data provided by IoT 

sensors to predict the state of a machine can be 

discussed as a revolutionary approach to asset 

management, because it allows the systems to 

predict the failure of equipment before it happens, 

and to dramatically decrease unexpected downtime. 

This paradigm shift not only improves the 

efficiency of the operations and lowers the costs but 

also improves the safety of the system and the 

longevity of the equipment in sectors like 

manufacturing, energy, transportation, and 

infrastructure among others [1]. The topicality of 

the subject of the current study and industry cannot 

be overestimated. A report by McKinsey and 

Company suggests that through predictive 

maintenance, the maintenance costs will be reduced 

by 10-40, the downtime will reduce by half, and the 

machine life will increase by 20-40 percent [2]. 

Such advantages are particularly essential in the 

areas where the reliability of the system and uptime 

cannot be overestimated, e.g. renewable energy, 

aerospace and smart manufacturing. To illustrate, 

predictive maintenance in real-time is utilized in 

wind energy to maximize the performance of 

turbines, identify anomalies in the blades, and 

preempt any problem related to gearbox failures 

that will result in major operational and financial 

losses [3]. More than that, the burst of IoT 

technologies has significantly decreased the amount 

and speed of data that is produced in industrial 

facilities. Such sensor-rich data streams cannot be 

passively filtered, analyzed, and interpreted, but 

demand intelligent actionable insights. It is no 

longer possible to use traditional rule-based and 

statistical maintenance methods to cope with this 

level of complexity and volume. Deep learning and 

ensemble techniques are the best models of ML 

models because they have more enhanced features 

of pattern identification, detection of anomalies, 

and prediction of failures thus are very crucial in 

real-time predictive maintenance system [4]. 

http://dergipark.org.tr/en/pub/ijcesen
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Although this is promising, there are a number of 

issues that still exist in the adoption of real-time 

predictive maintenance using ML. To begin with, 

the IoT devices and protocols are heterogeneous, 

which brings about problems of data 

interoperability and standardization. Second, real-

time processing requires an intensive computational 

resource and effective data pipeline designs capable 

of ingest, clean and process data with a high degree 

of minimal latency [5]. Third, semi-supervised or 

unsupervised models are necessary because labeled 

failure information is not available in most 

industrial applications, which restricts the 

application of supervised learning methods. 

Moreover, the problem of model generalizability 

between various systems and working requirements 

is quite an uphill task [6]. The other significant 

research gap is the inclusion of explainable AI 

(XAI) in predictive maintenance systems. The 

industrial decision makers tend to be reluctant to 

use black-box models without knowing the 

reasoning of the predictions. Thus, interpretability 

and transparency are becoming new essentials of 

real-time ML systems used in safety-critical 

systems [7].Furthermore, the issue of cybersecurity 

related to connected IoT ecosystems casts doubt on 

data integrity and vulnerability of its systems and, 

as a result, requires investigations of secure and 

privacy-preserving learning formations [8]. 

Theoretical Proposals Theoretical Model and Block 

Diagrams of Real-Time Predictive Maintenance. 

An effective real-time predictive maintenance 

system is developed based on a multi-layered and 

end to end architecture that incorporates an IoT-

based sensor data acquisition process, real-time 

data processing, machine learning-based analytics, 

and decision-making processes. The section 

provides a block diagram representation of the 

system architecture, and then a suggested 

theoretical model, both intended to assist real-time 

intelligent monitoring of industrial assets. 

2.Proposed Theoretical Model and Block 

Diagrams for Real-Time Predictive Maintenance 

The development of an effective real-time 

predictive maintenance (PdM) system requires a 

multi-layered, end-to-end architecture that 

integrates IoT-based sensor data acquisition, real-

time data processing, machine learning-based 

analytics, and decision-making mechanisms. This 

section outlines a block diagram representation of 

the system architecture, followed by a proposed 

theoretical model, both designed to support real-

time intelligent monitoring of industrial assets. 

2.1 Real-Time Predictive Maintenance System 

The Real-Time Predictive Maintenance System is a 

system that combines IoT sensors, data streaming 

and machine learning to track the health of the 

equipment and real-time forecast failures. It 

analyses sensor data in several stages or layers, 

such as collection and pre-processing up to model-

based decision-making, in order to allow proactive, 

efficient maintenance activities. 

Description of Components: 

● Sensor Layer: This layer consists of IoT 

enabled sensors (e.g. accelerators, vibration 

sensors, temperature probes) attached to 

industrial machines. These record time-

series information of machine health [19]. 

● Data Ingestion Layer: It uses streaming 

platforms (e.g., Apache Kafka, MQTT, 

AWS IoT Core) to convey data as it 

happens in real time at the edge devices to 

the cloud or edge servers [20].  

● Pre-processing Layer: The raw sensor data 

is cleaned, normalized and transformed. 

Such techniques are Fast fourier Transform 

(FFT), short time fourier transform (STFT) 

and Principal Component analysis (PCA) to 

reduce the dimension [21]. 

● ML Model Engine: Runs a range of ML 

models (e.g., Random Forest, SVM, RNN, 

CNN, Autoencoders, etc.) to complete 

classification (or regression) or anomaly 

detection tasks. This is based on the context 

of application and nature of the data [22].  

● Decision Layer: Processes model output in 

order to produce actionable information, 

e.g. failure prediction, maintenance 

scheduling, or anomaly alerts. It can 

incorporate Explainable AI (XAI) systems 

such as SHAP or LIME to make it more 

interpretable [23]. 

2.2  Proposed Theoretical Model: Hybrid Edge-

Cloud AI Model for PdM 

To resolve the problem of latency and data privacy, 

we suggest the Hybrid Edge-Cloud AI Model of 

real-time predictive maintenance (Figure 2). This 

model allocates the computational resources 

between edge and cloud with selection of speed and 

scale. 

Key Advantages of the Hybrid Model: 

● Low latency: On-site fault detection will 

mean that there will be minimal delay in 

detecting faults [24]. 
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● Privacy-preserving: Data does not have to 

be sent to the cloud but model updates are 

shared (through federated learning) [25].  

● Scalable: Can support more and more 

machines and be at different locations 

without having a dependency that is 

centralized [26]. 

● Flexible: This enables the dynamic change 

of the local and global model policy 

according to the operational conditions. 

Discussion and Benefits 

The need to adopt this modular architecture and 

theoretical framework addresses numerous present-

day issues in predictive maintenance such as:  

● The speed and diversity of data: IoT 

sensors have high and noisy and 

heterogeneous data rates. Our layered 

architecture does good processing and 

normalization of these inputs to be used 

right in the model [21]. Real-time decision-

making Edge computing offers real-time 

response features, which are needed in 

high-risk sectors such as aviation and 

energy [19], [24].  

● Model training and evolution: With the 

cloud environment, the training of large 

models based on historic data is supported 

and on the edge nodes, the trained models 

are deployed to make inferences [25].  

● Interpretable experiences: It is also 

possible to interpret model outputs with the 

help of Explainable AI techniques built at 

the decision-level, which makes human-in-

the-loop systems more realistic [23]. 

● Cyber threats resilience: Federated 

learning is also decentralized, which 

minimizes attack surfaces due to the 

limitation of raw data transfer across 

networks [26].  

This model can provide a resistant and scalable 

predictive maintenance solution by integrating IoT 

infrastructure, algorithm-based machine learning, 

edge-cloud synergy, and explainable AI. The given 

architecture not only tries to overcome the 

drawbacks of the traditional systems but it offers a 

flexible and future ready framework that can be 

scaled across the domains. 

3. Experimental Results 

In order to measure performance and effectiveness 

of machine learning-based predictive maintenance 

systems using the data of IoT sensors, researchers 

carried out a great number of experiments in 

different fields such as manufacturing, wind 

energy, and railway systems. These experimental 

researches assist in determining the accuracy, 

latency, robustness of the model, and the ability to 

make real-time decisions of the various PdM 

frameworks. This section provides synthesized 

findings of major researches, as well as comparing 

tables and performance diagrams. 

3.1 Model Performance Comparison 

The predictive accuracy of ML models is one of the 

major benchmarks in PdM systems. Table 2 

presents comparative experimental findings of 

recent studies; it mainly concentrates on the 

classification accuracy, precision, as well as F1-

score in widely used algorithms. 

3.2 Real-Time Processing Latency 

Latency is a major factor to put ML models into the 

production environment. Findings are presented in 

the following graph (Figure 3) indicating the 

average end-to-end time (in milliseconds) of 

inference with various deployment 

architectures.These results demonstrate that edge-

based or hybrid systems outperform centralized 

cloud models in terms of latency, making them 

more suitable for real-time industrial PdM systems. 

3.3 Remaining Useful Life (RUL) Prediction 

The RUL prediction task plays a very important 

role in maintenance scheduling. Figure 4 shows the 

predicted and actual RUL graph by the use of 

LSTM and GRU models that are trained on the 

NASA C-MAPSS dataset, which is cited in [27]. 

LSTM exhibited a lower mean absolute error 

(MAE = 12.3 cycles) compared to GRU 

(MAE = 14.7 cycles), confirming its better 

temporal pattern extraction capability [27]. 

3.4 Maintenance Cost Reduction 

Several experimental deployments have assessed 

the economic impact of ML-based PdM. Table 3 

summarizes findings from real-world 

implementations.These results provide strong 

evidence that integrating real-time predictive 

analytics leads to substantial reductions in 

maintenance costs, particularly in environments 

with complex machinery and high downtime 

penalties. 

3.5 Key Findings 
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Based on the reviewed results of the experiment: 

Deep learning models (e.g., LSTM, CNN, ESN), 

when compared to classical models, are always 

better at time-series fault detection [27], [28]. The 

mode of edge computing minimizes the time spent 

on inference which allows quicker alerts and 

responsiveness.Federated and hybrid systems offer 

scalability and privacy of data in distributed 

industrial settings.Predictive maintenance systems 

provide practical ROI in the industrial setting due 

to the lesser cost and unforeseen down. 

4.Future Directions 

The future of real-time predictive maintenance is 

full of opportunities, which is motivated by the 

technological revolution and increased need of 

smarter and sustainable industrial solutions. The 

most important aspects of the future research and 

development are most likely to be concentrated on:  

4.1 Distributed Environment Federated 

Learning 

With privacy policies and data ownership getting 

more visible, federated learning (FL) is an 

attractive solution to train the models on 

decentralized devices without transferring raw data. 

The next generation PdM systems will further make 

use of FL to allow joint model training among 

factories, fleets, or geographically sparsely 

distributed assets.  

4.2 Transfer Learning and Domain Adaptation 

There are machines, which operate on different 

terms or in different industrial settings, and usually 

have different patterns of behavior. Transfer 

learning and domain adaptation methods may be 

used in generalizing PdM models towards 

transferring knowledge in well-annotated 

environments to new or under-resourced domains.  

4.3 Explainable AI (XAI) Integration 

Confidence in AI systems is vital in industrial 

adoption. More interpretable AI models and 

visualization tools should be investigated in the 

future to aid the demystification of the decision-

making process. Such methods as SHAP, LIME or 

model-specific explainability techniques will be in 

the focus of human-in-the-loop maintenance 

systems. 

 4.4 System-Level Modeling with Graph Neural 

Networks (GNNs) 

The nature of industrial systems is deeply 

intertwined, and the GNNs are able to model such 

connections more easily than traditional algorithms 

do.The PdM models of the future may use GNNs to 

identify system-wide anomaly and failure 

propagation patterns, instead of individually 

studying machines.  

4.5 Maintenance Systems that heal themselves 

The second phase of automation is the 

identification of faults but also taking of automated 

corrective actions.Combining PdM and robotic 

process automation (RPA) and autonomous 

maintenance systems may result in self-mending 

manufacturing processes.  

4.6 Integrated Maintenance Architectures on 

Cybersecurity 

The more people are connected the more vulnerable 

they are. Future studies should also cover cyber-

physical security of PdM systems, which will 

guarantee the integrity of data and resilience of 

systems when the communication protocols are 

reliable and the threat detection is based on AI.  

4.7 Sustainability and Green AI  

With the transition of industries to carbon 

neutrality, PdM systems should also be aligned 

with the environmental objectives. The design of 

new AI-driven maintenance systems will require 

lightweight and less energy-consuming models that 

will focus on sustainability metrics.

 
Table 1: Key Research Studies on ML-Enhanced IoT-Based Predictive Maintenance 

Refer

ence 

Focus Findings  

[9] Proposes a cyber-physical framework for 

integrating IoT with predictive maintenance. 

Emphasized the foundational role of IoT sensors 

and intelligent analytics for condition-based 

maintenance. Established a conceptual model for 

PdM in smart factories. 

[10] Surveys big data-driven approaches in PdM Identified that scalability and data integration 
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across industries. remain key challenges. Called for real-time 

analytics and data fusion models. 

[11] Reviews ML approaches for PdM, 

emphasizing supervised, unsupervised, and 

hybrid methods. 

Highlighted the shift from traditional models to 

deep learning. Stressed need for real-time 

deployment and scalable architectures. 

[12] Focuses on online condition monitoring using 

ML and IoT sensor data. 

Found real-time signal processing and noise 

filtering to be essential. Emphasized importance of 

high-frequency sensor integration. 

[13] Applies CNNs and LSTM to diagnose 

machine faults using time-series data. 

Showed DL methods outperform traditional 

techniques under variable load and noise. Validated 

DL's robustness in real-time environments. 

[14] Uses recurrent neural networks for wind 

turbine PdM. 

Demonstrated high accuracy in early anomaly 

detection and forecasting in renewable energy 

systems. 

[15] Introduces an edge-IoT hybrid model to 

reduce latency in real-time PdM. 

Found that edge computing dramatically improves 

response time and reduces network load. Promoted 

local model execution. 

[16] Reviews PHM strategies focusing on ML/DL 

integration with IoT systems. 

Identified deep reinforcement learning and 

federated learning as future directions. Stressed 

real-time application readiness. 

[17] Investigates XAI tools in PdM models to 

improve transparency. 

Concluded that SHAP and LIME increase user trust 

in ML systems. Recommended combining 

explainability with performance. 

[18] Explores decentralized ML models for data-

sensitive environments. 

Demonstrated federated learning preserves data 

privacy while achieving high PdM accuracy. Ideal 

for cross-site deployments. 

 

 

Figure 1: Block Diagram of Real-Time Predictive Maintenance System 
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Figure 2: Hybrid Edge-Cloud Theoretical Model for PdM 

Table 2: Comparison of Machine Learning Algorithms for Predictive Maintenance Tasks 

Dataset ML Model Accuracy (%) Precision F1-Score 

NASA Turbofan 

RUL 

LSTM 94.5 0.93 0.92 

CMAPSS 

Dataset 

Random Forest 89.7 0.91 0.88 

Wind Turbine 

Sensor Data 

Echo State 

Network 

92.2 0.90 0.91 

Railway Axle 

Sensors 

CNN 95.8 0.94 0.93 

IoT Vibration 

Sensors 

Federated SVM 90.3 0.89 0.90 

Note: All experiments used time-series sensor inputs such as vibration, temperature, and acoustic emissions. 

 
Graph 1: Comparison of LSTM, Random Forest, Echo State Network, CNN and Federated SVM 
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Figure 3: Inference Latency Across Deployment Architectures 

 
Figure 4: RUL Prediction (LSTM vs GRU Models) 

 

 
Graph 2: Impact of Predictive Maintenance on Maintenance Costs 
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Table 3: Impact of Predictive Maintenance on Maintenance Costs 

Industry Method Cost Reduction (%) 

Wind Energy Echo State Network 18.4 

Smart Manufacturing CNN-LSTM 25.7 

Railway Systems Edge-AI Model 21.3 

Chemical Plants Hybrid AI System 30.0 

 

 

4. Conclusions 

 
The concept of real-time predictive maintenance 

that is driven by ML-enhanced IoT systems is a 

massive change in the approach used by the 

industries to control the health and efficiency of the 

equipment they are operating. With constant 

analysis of smart sensors and implementation of 

advanced machine learning models, it is possible to 

anticipate failures prior to their happening, thereby 

cutting down unplanned downtime, maximizing the 

utilization of assets, and cutting down on costs of 

maintenance. Since classical classification 

algorithms to deep learning models such as LSTM 

and CNN, the predictive maintenance system has 

developed significantly over the past decade. It has 

been experimentally demonstrated that the DL 

methods are much superior to classical models in 

time-series prediction tasks, particularly in noisy 

and varying operating environments. Moreover, the 

emergence of edge computing and hybrid edge-

cloud architecture has radically enhanced the 

responsiveness of the system and real-time fault 

detection and local analytics can be achieved even 

in bandwidth-limited conditions. Nevertheless, 

there are also some challenges that remain 

unaddressed after this change. Lack of big, 

annotated datasets of failure remains a problem in 

supervised learning in most industrial fields. 

Additionally, the growing depth and obscurity of 

deep learning models require explainable AI 

practices to instill confidence and respondent trust 

among end-users. Lastly, there are cybersecurity 

threats related to interconnected IoT devices and 

decentralized data structures that are a critical issue. 

Nevertheless, it is impossible to overlook the 

possibility of transforming the maintenance 

strategies provided by the continued adoption of AI 

and IoT. As the current development of computing 

infrastructure, federated learning, and model 

explainability, the path towards clever, scalable, 

and secure predictive maintenance systems is 

already in motion. 
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