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Abstract:  
 

Weather forecasting has a plethora of benefits in different domains. Traditional weather 

forecasting approaches apply science and technology to predict weather conditions in a 

given place and time. With the emergence of artificial intelligence (AI), there are 

increased possibilities for weather forecasting research. Instead of ground-level 

observations, AI approaches learn from historical and current atmospheric data to 

develop predictions. We suggested a framework for autonomous weather forecasting 

based on deep learning. Our framework is a variant of the Convolutional Neural 

Network (CNN) model, which exploits the encoder and decoder to learn 

parameterizations from the given data and forecast weather. The proposed model can 

interpret spatial information associated with geopotential fields and automatically infers 

forecasting know-how with higher accuracy levels. A variable selection process is 

incorporated to determine geopotential height that impacts the weather conditions. We 

proposed an algorithm called Deep Weather Forecasting (DWF) to realize the proposed 

framework. Our empirical study has revealed that the proposed framework evaluates 

different deep learning models and compares their performance.  Our deep learning 

models outperformed many existing regression models. U-Net showed the highest 

performance with the least MAE, 0.2268, compared to all other models. 

 

1. Introduction 
 

There are many fields whose operations are 

determined based on weather conditions. 

Agriculture is one such field that is influenced 

much by weather forecasting. In the same fashion, 

aviation, fishing, and transportation, to mention a 

few, depend on weather conditions. It can be seen 

that different methods deal with weather 

conditions[1-5]. Time-series data analysis-based 

and forecasting methods. With the emergence of 

AI, there has been increased research in deep 

learning techniques suitable for processing large 

volumes of data to arrive at forecasting decisions. 

As reported in deep learning modes are widely used 

for weather forecasting [1,2,3,6]. CNN is the model 

that has been found suitable for dealing with 

weather datasets. From the literature, it is observed 

that there are statistical methods and also deep 

approaches to forecasting weather. Traditional 

regression models or ML models are found in 

[1,4,7-13]. These models perform regression on the 

http://dergipark.org.tr/en/pub/ijcesen
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given data to arrive at a forecast. Regression 

models are ideal for forecasting weather instead of 

classification models. There are many CNN-based 

models found in the literature on weather 

forecasting. Traditional CNN models are widely 

used to solve problems in real-world applications. 

They are mainly used for classification tasks. 

However, there is a need for a framework that 

exploits encoder and decoder architecture with 

CNN variants. We have made the following 

contributions to this paper:  

 We proposed a deep learning-based framework 

for automatic weather forecasting. Our 

framework is a variant of the Convolutional 

Neural Network (CNN) model, which exploits 

the encoder and decoder to learn 

parameterizations from the given data and 

forecast weather.  

 We proposed a Deep Weather Forecasting 

(DWF) algorithm to realize the proposed 

framework.  

 We built an application that takes a dataset from 

and exploits a pipeline of deep learning models 

for automatic weather forecasting and evaluation 

of the proposed framework.  

The rest of the paper is organized as follows: 

Section 2 discusses the findings of the literature. 

Section 3 presents a proposed framework for 

automatic weather forecasting. Section 4 shows the 

results of the experiments. Section 5 concludes our 

work and provides a future score. 

 

2. Related Works 
 

This section reviews the literature on existing deep-

learning models used for weather forecasting. 

Zeelan et al. [1] explored ML and DL techniques 

for rainfall detection. Huaizhi et al. [2] used deep 

learning for forecasting energy consumption 

concerning renewable energy. Kanghui et al. [3] 

investigated different weather forecasting 

approaches using learning-based architectures. 

Zhao et al. [4] proposed a methodology based on a 

point prediction approach with short-term 

predictions using ML techniques. Nath et al. [5] 

combined deep learning models and statistics-based 

methods to arrive at accurate pollution forecasts.  

Thors et al. [6] used satellite images to analyze 

them using deep architectures and predict the 

possibility of cyclones. Abed et al. [7] used SDO 

images for their experiments. Using profound 

learning advancements, they achieved automatic 

forecasting of solar flares. Canar et al. [8] defined a 

model based on deep learning towards statistical 

weather forecasts associated with a city in Quito. Qi 

et al. [9] studied the air quality index and its 

forecasting possibilities. Towards this end, they 

proposed a DL model to forecast air index. Haiwen 

et al. [10] proposed a hybrid method that combines 

a deep neural network and sparse coding approach 

toward forecasting day-ahead weather.  

Pang et al. [11] explored a data-driven approach 

using Bayesian DL to know whether there are 

irregularities in a given geographical region. Wang 

et al. [12] considered two aspects such as wind 

power and wind speed forecasting using DL 

techniques. Ahmad et al. [13] used sky videos to 

experiment with solar irradiance forecasting using 

deep architectures. Kanishk and Sudip [14] used 

videos about floods and proposed a DL model to 

detect the severity of flood levels. Using their 

approach, Zhang et al. [15] investigated deep 

learning models for real-time wind field forecasts 

and bias correction. Other significant contributions 

include short-term forecast models [16], IoT-based 

models [17], forecasting solar radio flux [18], 

CNN+LSTM [19], and Forecast for Grids [20]. The 

existing methods showed different means of 

predicting the weather. However, there is a need for 

a framework that exploits encoder and decoder 

architecture with CNN variants. Similar works has 

been done and reported [21-25]. 

 

3. Materials and Methods 
 

The dataset used in this paper is collected from 

[26]. It is the benchmark dataset used for global 

climate analysis. Because the data contains many 

attributes, we used output variables such as total 

precipitation and geopotential height. Figure 1 

shows the details of the study area.  

As presented in Figure 1, a subset of available data 

is chosen for empirical study. Our experiments used 

a simple reference model and three CNN-based 

encoder decoder architectures. These deep-learning 

models are used for experiments per the pipeline in 

Figure 2. It has two essential parts, such as variable 

selection and training. The provided dataset has 

80% training and 20% test sets. This data is used 

for training and prediction, respectively. The 

variable selection process is used to find fields that 

contribute to accurate weather prediction. The 

chosen variables are then given to train deep 

learning models like VGG-16, U-Net, and Segnet. 

Each of these models is based on the encoder and 

decoder architecture. The deep learning models are 

configured to perform regression and are used for 

weather forecasting. The three models are trained 

with the 80% training set. The number of epochs 

used for experiments is 50. The optimizer's learning 

rate is set to 0.01 and configured using Stochastic 

Gradient Descent (SGD). Mean Square Error 

(MAE) is the loss function used to assess 
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performance. The models are implemented using 

Keras and TensorFlow.  

As presented in Figure 3, the VGG-16 model is 

provided with an encoder and decoder architecture. 

It is configured to perform regression of the test 

data and provide weather prediction results. This 

kind of architecture is widely used with CNN 

variants. As found in the literature, the model is 

suitable for forecasting. This kind of architecture is 

configured for each deep-learning model. In the 

process, a correlation function is computed as in 

Eq. 1.  

𝐶2(𝑞, 𝑡1, 𝑡2) =
〈𝐼(𝑞,𝑡1)𝐼(𝑞,𝑡2)〉

〈𝐼(𝑞,𝑡1)〉〈𝐼(𝑞,𝑡2)〉
                            (1) 

It has many time and vector components. The 

encoder's idea is to reduce the input size by 

transforming it into a lighter representation. When 

there is a reconstruction process in decoding, there 

is a provision for finding future possibilities or 

forecasting. The dynamics of Eq. 1 can be 

approximated as in Eq. 2.  

𝐶1(𝑞, 𝛿𝑡) = 𝐶∞ + 𝛽|𝑓(𝑞, 𝛿𝑡)|2                     (2) 

The correlation process can be further 

approximated as in Eq. 3.  

𝐶1(𝑞, 𝑡) = 𝐶∞ + 𝛽𝑒−2(Γ𝑡)
𝛼
                           (3) 

The model training with 80% of the training data 

helps the deep learning models learn from the data.  

 
Algorithm:  Deep Weather Forecasting (DWF) 

Input:  
Global climate analysis dataset D 

deep learning models pipeline M (U-Net, Segnet, VGG-

16) 

 

Output:  
Forecasting results R, performance statistics P 

 

1. Begin 

Data Preparation for Training and 

Validation 

2. (T1, T2)DataSplit(D) 

3. FVariableSelection(D) 

Training  

4. For each model m in the pipeline M 

5.    EEncoding(m,T1) 

6.    DDecoding(E) 

7.    Save model m 

8. End For 

Forecasting 

9. For each model m in the pipeline M 

10.    RForecast(m, T2) 

11.    PEvaluate(m,R) 

12.    Display R 

13.    Display P 

14. End for 

15. End  

Algorithm 1:  Deep Weather Forecasting (DWF) 

They also perform specific regression processes 

with deep learning using encoder and decoder 

architecture. The proposed models provide better 

results than traditional regression models. As 

presented in Algorithm 1, it takes Global climate 

analysis dataset D and deep learning models 

pipeline M (U-Net, Segnet, VGG-16) as input. It 

provides output in Forecasting Results R and 

performance statistics P. The algorithm splits the 

given dataset D into a training set, T1, and a test 

set, T2. Then, iterative processes train all the 

models in the pipeline and forecast with all the 

trained models, resulting in forecasting details and 

performance statistics.  

4. Experimental Results 
 

Experiments are made with the proposed 

framework. Concerning variable selection, some 

geographical height levels are determined for better 

quality in the training data. A simple encoder and 

decoder model is trained 175 times. Different deep-

learning models are used for performance 

evaluation. MAE is the metric used for 

performance evaluation.  

2. Material and Methods 

 
As presented in Figure 4, lower levels of the 

atmosphere provide better estimates than their 

higher-level counterparts. Lower levels showed 

fewer MAE values, reflecting higher prediction 

performance. As presented in Figure 5, deep 

learning models with encoders and decoders are 

used for empirical study. All of them are executed 

with 50 epochs. The simple model has 745000 

parameters and took 0.7 hours to train. The VGG-

16 model has 1646749 parameters and needs 3.9 

hours. The Segnet model has 29458957 parameters 

and took 7.5 hours. The U-net model has 7858445 

parameters and took 2 hours to train. The results 

show that the number of parameters influences the 

time taken. As presented in Figure 6, the 

performance of all deep learning models is 

provided against different epochs. As the number of 

epochs increases, the MAE gradually decreases for 

all the models. Model loss is the metric used for 

error rate. A low loss value indicates better 

performance. Therefore, the U-Net model is 

outperforming all deep models. As presented in 

Figure 7, the MAE value is used to compare 

different prediction models. The simple model 

showed 0.2975, VGG-16 0.2528, Segnet 0.2511, 

and U-Net 0.2268. The U-Net model achieves the 
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lease MAE value, reflecting the highest performance. 

 

Figure 1. Illustrates the study area with longitude (-50, 40) and latitude (75, 15) 

 

Figure 2. Outline of the proposed experimental pipeline 

 

Figure 3. VGG-16 model with encoder and decoder for weather forecasting 

80% Train 
80% Train 

20% 

Validation 20% 

Validation 

Network         Levels 

VGG – 16   

Segnet 

U- net 

Network        Levels 

Simple            1000 

Simple            900 

Simple         300,200,100 

Simple         300,200,100 

Simple         300,200,100 

      a, b, c 
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As presented in Figure 8, the MAE value is also 

used to compare different prediction models. Like 

the linear regression model, ML models showed 

0.4054 MAE, Lasso 0.4035, and RF 0.3953. Deep 

learning models such as the Simple model showed 

0.2975, VGG-16 0.2528, Segment 0.2511, and U-

Net 0.2268. The U-Net model achieves the lease 

MAE value, reflecting the highest performance.  

 

Figure 4. Shows matrix reflecting MAE values due to 

training with geopotential level 

 

Figure 5. The deep learning models and their training 

time dynamics 

 

Figure 6. Performance of deep learning models in terms 

of MAE 

 

Figure 7. Performance comparison of all deep models 

 

Figure 8. Performance comparison among ML and deep 

learning models 

4. Conclusions 

 
This paper proposes a deep learning-based 

framework for automatic weather forecasting. Our 

framework is a variant of the Convolutional Neural 

Network (CNN) model, which exploits the encoder 

and decoder to learn parameterizations from the 

given data and forecast weather. The proposed 

model can interpret spatial information associated 

with geopotential fields and automatically infers 

forecasting know-how with higher accuracy levels. 

A variable selection process is incorporated to 

determine geopotential height that impacts the 

weather conditions. We proposed an algorithm 

called Deep Weather Forecasting (DWF) to realize 

the proposed framework. Our empirical study has 

revealed that the proposed framework evaluates 

different deep learning models and compares their 

performance. Our deep learning models 

outperformed many existing regression models. U-
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Net showed the highest performance with the least 

MAE, 0.2268, compared to all other models. In the 

future, we intend to improve our framework by 

proposing a hybrid model that uses linear and non-

linear prediction models. 
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