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Abstract:  
 

Fog computing allows the utilization of resources near the Internet of Things (IoT) 

devices to serve various latency-sensitive applications. However, the mobility of users of 

IoT devices necessitates the migration of applications to maintain service continuity and 

quality of service (QoS). This study proposes a new migration technique that minimizes 

delay, network usage and energy consumption in the Fog network, providing a real-time 

user experience. An objective function-based decision-making approach is used to 

migrate the applications efficiently, guaranteeing service continuity and QoS. The 

proposed technique chose an appropriate fog node with sufficient resources by evaluating 

parameters like connection duration between the fog nodes and the users, resource 

availability, and application execution time at the fog nodes. The results indicate that the 

proposed approach has a remarkable improvement of up to 20% in average delay, 16% 

in network usage and 7% in energy consumption compared to the conventional approach. 

The number of migrations is also lowered by 18%, which is necessary to efficiently utilize 

limited fog node resources as each migration event consumes additional resources. The 

benefits of the proposed approach for the users are low latencies, low network usage, 

improved energy efficiency and better user experience. 

 

1. Introduction 
 

A well-connected modern world is approaching 

where the Internet will be accessible to everything 

and everyone. According to a research report on 

Statista, there will be over 29 billion Internet of 

Things (IoT) connected devices by 2030 [1]. The 

sudden increase in IoT devices and internet traffic 

could lead to unforeseen disruptions if data 

processing isn't prioritized near the users. To address 

this, Fog computing has emerged as a solution to 

handle data processing closer to IoT devices. Due to 

their requirement to be compact, light, and battery-

operated, these devices often have constrained 

hardware capabilities. Hence, they don't always 

make sense to host resource-intensive services 

directly. By positioning computing resources and 

services near the data source, fog computing extends 

and supplements the cloud, making it well-suited for 

supporting the IoT. Fog computing can involve any 

devices with computing power, including switches, 

routers, RoadSide Units (RSUs), smartphones, 

laptops, tablets and stationary equipment [2] [3]. 

However, fog computing is not restricted to IoT; it 

can also facilitate content delivery and support 

various other applications.Failing to finish the tasks 

for an emergency system application on time would 

lead to monetary losses. It could jeopardize human 

safety in scenarios like autonomous vehicles, 

emergency fire response, and emergency vehicle 

management. This cutting-edge computing 

paradigm encompasses all computing resources of 

the proximate network. It allows smart city, smart 

health and other IoT-driven Systems to execute the 

required applications close to the data source [4]. 

Fog proximity is the key enabler of many benefits 

that are not attainable when depending on cloud-

based solutions. However, while Cloud is 

centralized in geographically remote data centers, 

Fog is deployed in proximity to IoT devices in a 

distributed way. Proximity in the topological 

distance is assumed, which is Which is determined 
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by counting the number of hops between the end user 

and the host [5]. The first and foremost of these 

benefits is a short communication distance that 

provides low latency between the host and the user. 

Other benefits of the close proximity of the Fog for 

the users are low bandwidth consumption, low 

latencies, better security and privacy, and 

uninterrupted services that remain available even 

when network connectivity to the Cloud is unreliable 

or completely unavailable [6]–[8].In the event of 

device mobility, maintaining low latency can be 

achieved by migrating the fog application across fog 

nodes along the device path. For a number of fog-

based use cases, such as Virtual Reality and 

Augmented Reality applications performing video 

analytics, mobility support is crucial.Migration of 

applications across fog nodes is a significant and 

challenging task, resulting in additional overheads. 

When IoT users move around in fog environments, 

migration mechanisms determine when, how, and 

where applications can migrate.Containers, a 

lightweight virtualization technology, may be 

preferred over virtual machines to host the 

applications to guarantee minimal network overhead 

[9]. The data and applications pertaining to users are 

encapsulated in the containers [10]. The new 

developments in fog computing confirm that 

containers perform superior to conventional virtual 

machines [11].The following factors affect service 

migration operations: the IoT device's position, 

direction and speed, and finding an appropriate node 

to transfer the application. Based on these 

parameters, the Fog environment's performance 

metrics, such as network delay, bandwidth 

consumption, etc., can also vary significantly [12]. 

The migration process comprises moving data and 

the associated application content encapsulated in 

the containers. The methods that keep migrating the 

applications along the path of users result in many 

undesirable migrations. Every migration request 

invites an overhead in the fog environment with 

limited fog resources. Thus, the migration is 

performed when it is impossible to prolong the 

execution further. The application may remain on 

the same Fog node if there are no feasible options to 

migrate the application.In light of the above, a 

migration technique is proposed to fulfill the needs 

of real-time mobile IoT applications. In summary, 

the contributions of this study are as follows: 

1. A mobility-aware application migration 

algorithm is proposed to decide where to 

migrate applications along with the 

migration point. 

2. The effectiveness of the proposed algorithm 

is validated through extensive simulations 

utilizing mobility traces. A comparison with 

an existing well-established algorithm 

reveals that the proposed method 

significantly improves delay, network usage 

and energy consumption. 

The rest of the paper is structured as follows. Section 

2 presents the relevant existing work of migration 

management techniques in fog computing. Section 3 

describes the proposed system model and problem 

formulation, followed by the proposed algorithm in 

section 4. Section 5 discusses simulation results of 

the proposed approach and compares it with 

traditional techniques. Finally, section 6 summarizes 

the article and outlines potential future research 

directions. 

2. Related Work 
 

This section discusses some conceptual and 

fundamental work in related areas.The authors of 

[13] proposed a hierarchical Fog computing 

architecture. The data generated by the end devices 

was forwarded to the fog nodes and not the Cloud. 

The end devices or the users demanding the services 

might be mobile in nature. One of the essential 

characteristics of the fog system was having mobility 

support. Preserving continuity in providing service 

at different locations was a tough job. The study in 

[14] proposed a model for migrating virtual 

machines aimed at Mobile Cloud Computing 

environments. Their technique was built on the 

cloudlet load and user mobility parameters. A 

genetic algorithm was used to find a suitable server 

and reduce the frequency of migrations.The authors 

emphasized the necessity of mobility-aware 

scheduling and put forward a solution based on the 

edge ward placement method for Fog computing 

environments in paper [15]. They highlighted the 

important indicators to take into account in the Fog 

environment supporting user mobility.  

Table 1. Study of various papers discussed 

Reference Main Idea 
Parameters 

considered 
Achievement Weakness 

[14] 

Load balancing for 

heterogeneous mobile cloud 

computing using Genetic 

algorithm-based solution 

number of migrations, 

task execution time 

number of migrations 

reduced, Avg. task execution 

time reduced 

VMs consolidation 

not considered  
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[15] 

Resource management using 

various scheduling strategies in 

fog computing 

Latency, execution cost, 

network usage 

Latency reduced 

 

User mobility not 

considered 

[16] 

Resource management in Fog 

and Edge computing 

environments through various 

placement policies 

Latency, cost, network 

usage 

Latency reduced, network 

congestion reduced, energy 

consumption improved 

Cost decreased 

User mobility and 

container migration 

not supported 

[17] 

ILP based resource allocation 

in fog environment 

Latency, QoS Latency reduced, QoS 

improved 

Network usage and 

energy consumption 

not considered 

[18] 

Task scheduling in fog nano 

data centres utilizing container 

virtualization technology 

Energy consumption, 

SLA violations, 

response time, 

makespan 

Energy consumption 

reduced, SLA violations 

reduced 

 Latency not 

considered 

[19] 

Resource allocation for mobile 

micro-clouds based on 

polynomial cost functions  

Cost Minimized average cost Heterogeneous 

resources in cloud 

not considered 

[20] 

Route optimization in mobile 

fog computing 

Latency, handover 

performance, data 

communication, system 

cost 

Latency reduced, 

handover performance 

improved, system cost 

reduced 

Energy consumption 

and network usage 

not considered 

[21] 

Resource allocation in Mobile 

Edge Computing environments. 

migration time, 

downtime 

overall migration time 

reduced, downtime reduced 

 

Performance under 

large-scale 

networked MEC 

systems not 

considered 

[22] 

Resource optimization in 

heterogeneous fog computing 

environments using linear 

programming 

Latency, application 

placement time, service 

delivery latency 

Latency improved Real-world 

implementation not 

considered 

[23] 

Application deployment in fog 

computing using linear 

optimization and Fuzzy logic 

Cost, Packet loss rate, 

network usage, quality 

of service 

Latency and resource 

consumption reduced,   

network usage reduced, 

service quality improved 

Performance in real 

Fog environment not 

considered 

[24]  

Service placement in fog 

computing  

Latency, hop count, 

network usage 

Improvement in network 

usage and latency 

Degradation of 

service for less 

requested 

applications 

observed. 

[25]  

 

Resource utilization using 

Analytic Hierarchy process 

(AHP) 

received signal strength, 

user velocity, data rate, 

signalling cost 

ping pong rate reduced, 

throughput improved, 

packet delay reduced, 

signalling cost reduced 

Real-world 

implementation not 

considered  

[26] 

Mixed Integer Linear 

Programming (MILP) task 

allocation for vehicular Fog 

computing 

Latency, quality loss 

and Fog capacity 

Latency reduced 

 

Not feasible for 

large-scale 

deployment of Fog 

nodes and users 

[27] 

Load balancing in vehicular 

Fog computing environment 

utilizing the Simulated 

Annealing Algorithm (SAA) 

Resource utilization Resource utilization 

improved 

Load balancing not 

achieved under 

limited computing 

resources 

[28] 

Resource management in 

Fog/Edge computing 

Latency, execution 

time, received signal 

strength 

response time, SLO 

violations 

Low latency achieved, 

SLO violations minimized 

 

Context of multiple 

competing IoT 

applications not 

considered 

 

[29] 

Task offloading in Fog 

environment 

using Gini Coefficient and GA 

Migration cost and 

energy cost, sojourn 

time, 

Reduced migration time and 

enhanced revenue for user 

equipment 

Migration cost 

remains high 

[30] 

Resource allocation in Fog 

computing using heuristic 

search 

Latency, resource 

availability, throughput, 

energy consumption, 

jitter 

Latency improved, energy 

consumption decreased 

Collaboration 

between edge and fog 

devices across 

different regions was 

not taken into 

account 
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[31] 

GA based resource allocation 

in Fog computing 

Loop delay, network 

delay, execution cost, 

network usage, 

execution cost 

Latency improved, network 

usage reduced, execution 

cost reduced 

Mobility prediction 

technique was not 

used 

[32] 

Task offloading using machine 

learning in fog environment 

Network usage, 

migration time, number 

of migrations, number 

of handoffs 

Latency reduced, energy 

consumption reduced, 

network usage decreased 

Inefficient for large-

scale systems 

[33] 

Resource allocation in mobile 

edge computing leveraging 

Reinforcement learning and 

Markov decision process 

(MDP) 

Migration delay, 

computation delay, 

communication delay, 

migration cost 

Latency improved, migration 

cost reduced 

Load balancing 

among microservices 

is not considered 

[34] 

Resource optimization for E-

healthcare applications using 

Markov decision process 

(MDP)  

Resource usage cost, 

migration cost, 

reconfiguration cost 

Total cost reduced, achieved 

maximum expected reward 

Not suitable for 

large-scale 

networked MEC 

systems. 

[35] 

Resource allocation in fog 

computing 

 

Latency, processing 

time, SLA violations 

Latency minimized, 

processing time reduced,  

SLA violations reduced 

Failure of fog nodes 

not studied 

[36] 

Application deployment in 

Edge and Fog Computing 

Environments using weighted 

cost model 

Response time, energy 

consumption, total  

Migration cost, number 

of interrupted tasks 

Average execution cost 

reduced, cumulative 

migration cost reduced 

Energy consumption 

of servers and 

monetary cost not 

considered. 

[37] 

IoT Service Placement in Fog 

Computing based on Open-

source Development Model 

Algorithm (ODMA) 

metaheuristic 

Latency, energy 

consumption, service 

cost, Fog resource 

utilization 

Latency reduced, resource 

usage improved, service 

acceptance rate improved 

Reliability and safety 

of interactions not 

considered 

[38] 

Service Placement for 

utilization of fog resources 

using evolutionary algorithm 

based on the cuckoo search 

 

Latency, response time, 

energy consumption, 

SLA violation,  

communication cost, 

computation cost, Fog 

utilization 

Latency reduced, energy 

consumption decreased, fog 

utilization improved 

Reliability and fault 

tolerance not 

considered 

[39] 

Service deployment in fog-

cloud environments based on 

genetic optimization 

Network utilization, 

latency, energy 

efficiency, execution 

cost 

improvement in latency, 

network utilization reduced, 

energy efficiency enhanced, 

cost reduced 

Dynamic 

requirements of IoT 

applications not 

considered 

User mobility patterns and application priority levels 

were accounted for in making effective scheduling 

decisions. Though, user mobility was not considered 

in the existing scheduling approaches. The authors 

focused on placing IoT applications while taking 

into account their target location [16]. The 

possibility of clustering was not taken into account 

in the proposal. The application modules were 

therefore sent to the next hierarchical tier for 

potential migration and placement whenever the 

existing server was unable to serve the application 

modules.The study in [17] extended the iFogSim 

simulator to add mobility support. The authors 

designed migration strategies for mobile users. The 

container virtualization technology improved 

performance compared to conventional virtual 

machines [18]. The study in [19] offered a technique 

for deploying a single service instance for each IoT 

user on a distant server when several IoT users were 

present in the system. To identify optimal and nearly 

optimal solutions, they introduced offline and online 

approximation techniques for the Cloud.The study in 

[20] proposed mobility-supported Fog computing 

architecture. The Software-defined networks-based 

architecture was proposed to decouple mobility 

control and data forwarding. A framework was 

designed to facilitate mobility in Mobile Edge 

Computing environments (MEC) [21]. The authors 

provided the service without interruption and 

migrated services across MECs. Their approach was 

aimed at lowering downtime and overall migration 

time. Many researchers devised techniques for the 

initial placement of services in heterogeneous 

contexts. Some of these methods were designed to 

lessen the delay in service delivery [22] and increase 

users' quality of experience [23]. The placement 

solutions were either centralized or decentralized 

[24].The study in [25] proposed a handover strategy 

in wireless communication technologies for mobile 

users. The authors presented a multi-criteria 

handover strategy for mobile users based on various 

parameters to avoid unnecessary handovers and 

improve the utilization of resources. The proposed 

strategy significantly brought improvements in 

various QoS parameters. The authors of [26] and 

[27] studied vehicular Fog computing environments. 
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The study in [26] aimed to optimize vehicular Fog 

computing-based task allocation. Various 

constraints like quality loss, latency, and Fog 

capacity were considered for modeling optimization 

of the task allocation problem. However, the 

technique was not viable for scenarios involving a 

vast number of fog nodes and users in the system. In 

contrast, a fog-enabled mobility-based migration 

framework was proposed for smart cities in [27]. The 

load balancing was achieved among fog nodes 

according to a resource pricing-based incentive 

strategy. Limited resource capacity confined the 

extent of load balance attained.The placement 

strategies for IoT applications with many 

interconnected modules that take into account 

historical mobility data were suggested in [28]. The 

authors presented a cloud-centric method termed 

URMILA, whereby the placement of all IoT 

applications was decided by a centralized controller 

to meet their latency needs. Also, there was no 

migration mechanism to transfer the applications to 

new servers if the user had moved outside the range 

of its existing server, which resulted in a 

considerable cost to the user. The authors of [29] 

proposed a mobility-aware strategy for offloading 

and computational resource allocation that 

significantly reduced migration times. The main goal 

of the work was to lessen the number of migrations 

while maximizing offloading benefits for IoT 

users.The new advances in the Internet of 

Everything (IoE) demanded real-time execution of 

service requests [30]. The fog nodes closer to the end 

user enabled real-time response, fulfilling the 

requirements of real-time applications. An 

autonomic hybrid framework was proposed to 

perform container migration [31] while satisfying 

the QoS requirements of the user. A mathematical 

model was developed to predetermine the target 

node for migrating the user module. However, more 

precise techniques, such as mobility prediction 

modes, were not utilized to anticipate the user's 

future location. The authors of [32] focused on IoT 

scenarios and proposed a learning-based fog node 

selection scheme demanding extremely low latency. 

They introduced a mapping function to offload the 

task to a suitable fog node. The proposed system 

predicted the location of IoT devices using machine 

learning-based methods.The authors of [33] 

introduced edge-centric application deployment and 

mobility management techniques when there were 

many IoT users in the system. The authors' primary 

objective was to minimize service delay. The work 

in [34] analyzed that migration incurred 

communication and computation overheads. Thus, 

the decision on migration depended on multiple 

factors, including user mobility, and the availability 

of resources in heterogeneous edge clouds.The work 

in [35] proposed a resource allocation technique 

based on multiple criteria to choose a suitable 

resource for the execution of a real-time task in fog 

environments. The work considered dynamic user 

behavior after application submission but did not 

study the failure of fog devices. The study in [36] 

proposed a weighted cost model for reducing device 

energy consumption and response time. The authors 

also proposed a clustering method that allowed for 

the cooperative execution of tasks and provided 

improved services for the applications. A migration 

management technique that reduced the migration 

cost of IoT applications was also presented. The 

recent studies in [37] and [38] aimed to optimize 

service placement policy for efficient resource 

utilization and improved QoS. The authors of [37] 

proposed an autonomous method for service 

placement based on a conceptual framework 

presented in the same study. While the authors of 

[38] have prioritized the requests for optimal service 

placement to enhance the performance concerning 

various metrics, considering the heterogeneity of 

resources and QoS deadlines of applications. The 

authors of [39] have focused on reducing the 

network usage and application delay by proposing a 

genetic optimization-based module placement 

algorithm. They have introduced a penalty-based 

method to reduce the delay. In the proposed 

algorithm, authors considered different factors, 

including communication delay between modules 

and their hierarchy level in the network. The 

discussion above makes it clear that the authors have 

strived to reduce the delay experienced by the users, 

energy consumption, and network usage in the Fog 

environments. The authors have put effort into 

reaching these goals, even though they have 

considered only fog nodes resources characteristics 

and worked towards assigning the nearest fog node 

for the migration of applications. Each migration 

event consumes additional Fog resources; thus, the 

migration count should be lowered. The authors 

have not worked significantly in this direction. 

These methods keep migrating the applications, 

resulting in many undesirable migrations inviting 

overheads in the Fog environment. Fog nodes have 

limited processing capability; therefore, efficient 

utilization of available resources is essential to 

enhance user experience.Moreover, the rise in the 

number of IoT devices is exponential and will 

require abundant resources. It is evident that no one 

has considered the Fog environments' distinctive 

characteristics, such as execution time, mobility 

direction, and contact duration of IoT users with Fog 

nodes altogether. In this research, in addition to the 

above factors, resource requirements and execution 

time have been considered in the proposed strategy 

to address the migration issue in the Fog 
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environments. An effective approach for migrating 

the applications without producing overhead in the 

network has been proposed. This is achieved 

primarily by reducing the number of migrations in 

the system. 

3. System Model and Problem Formulation 
 

A three-tier hierarchically organized architecture 

consisting of Cloud, Fog, and IoT devices are 

considered, as shown in the mobility scenario 

depicted in Figure 1. The topmost layer comprises of 

Cloud and is used for processing and storing the 

data. The fog layer is located near the user and is 

assumed to have several fog nodes. This layer 

provides services to mobile users and is responsible 

for executing the applications. The fog nodes use a 

lightweight container virtualization technology to 

deploy application modules. The Fog scenario is 

considered to deliver services in real-time for users 

whose location is dynamic.  

 
Figure 1. Mobility scenario: service migration in Fog environment 

A set of fog nodes F = {f1, f2, f3, ……, fm} is 

considered where fog nodes are interconnected via 

wired or wireless links. It is assumed that fog nodes 

have heterogeneous resources from a hardware 

architecture point of view; thus, computational 

power is not similar. Fog nodes handle tasks like 

managing user requests, resource allocation, and 

application migration. It is also responsible for 

deciding on migrations and migrating the live 

applications among the fog nodes. The data that 

cannot be handled at the fog layer and the data 

needed for future examination may be sent to the 

Cloud.The computational capacity of a fog node, 𝑓𝑖 

is given in units of million instructions per second 

(MIPS) because this is how MobFogSim [5] 

represents the execution capacity. Fog nodes are 

defined based on their resource capacities. These 

resources are computational capacity, memory, and 

bandwidth. 𝐶𝑖
𝑐𝑎𝑝

 is the computational capacity of a 

fog node, 𝑓𝑖. 𝑀𝑖
𝑐𝑎𝑝

 is the memory capacity, and 𝐵𝑖
𝑐𝑎𝑝

 

is the amount of available bandwidth on the same fog 

node, 𝑓𝑖. The key notations employed in the system 

are listed in Table 2. The users of IoT devices are 

deemed to have mobility, and these have mobility 

timelines or direction and speed. User applications 

are executed on suitable fog nodes. Ideally, this may 

occur at the fog node connected to the user. When 

mobile users 

Table 2. Table of key notations 

Notations Description 

F Set of Fog nodes in the system 

M Number of fog nodes in the system 

𝑓𝑖  The ith fog node in the system 

A Set of application modules in the system 

N Number of application modules in the 

system 

𝑎𝑗  The jth application module in the system  

𝐶𝑖
𝑐𝑎𝑝

 The computing capacity of the fog node, 𝑓𝑖  

𝑀𝑖
𝑐𝑎𝑝

 Memory capacity of fog node, 𝑓𝑖  

𝐵𝑖
𝑐𝑎𝑝

 The available bandwidth on the fog node, 

𝑓𝑖  

𝑃𝑖 Amount of computing required by 

application module, 𝑎𝑗  

𝑅𝑖 Amount of memory required by 

application module, 𝑎𝑗  

𝑇𝑖 Amount of bandwidth required by 

application module, 𝑎𝑗  

𝑥𝑖𝑗  A binary variable to determine whether 

𝑎𝑗is assigned to 𝑓𝑖  
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change their location, the data and the application 

need to be migrated promptly to maintain service 

continuity and a certain Quality of Service (QoS) in 

the network. The goal of the migration decision is to 

choose an appropriate destination fog node amongst 

multiple available fog nodes for receiving the 

application modules of each application to lower the 

response time of application modules. Consider a set 

of IoT applications, A = {a1, a2, a3, …., an) in a 

dedicated geographical region such that each user is 

connected to a suitable fog node. Different fog nodes 

serving users deploy the application modules as 

containers. Each application is assigned to an 

appropriate fog node having sufficient resource. This 

research addresses the issue: How can latency 

requirements be met considering the mobile user 

needs for real-time applications considering the 

migration of applications to a suitable fog node? It 

needs to have some decision-making for the efficient 

application migration to optimize the overall QoS. In 

this paper, latency is considered the key QoS 

parameter. The question is, for the application 

described above, which fog node would be more 

appropriate?The migration decision-making 

problem is formulated as maximizing the objective 

function shown in Equation 1. The QoS objectives 

are taken into consideration when modeling the 

objective function.Maximize 

∑𝑚
𝑖=1 ∑𝑛

𝑗=1 (𝐶𝑡𝑖
𝑗

 −   𝐸𝑡𝑖
𝑗
) ∗  𝑥𝑖𝑗   (1) 

where 𝐶𝑡𝑖
𝑗
 is the estimated connection duration of 

the user's application module, 𝑎𝑗 with the candidate 

destination fog node, 𝑓𝑖 and 𝐸𝑡𝑖
𝑗
 is the estimated 

execution time of the application module, 𝑎𝑗 on the 

candidate destination fog node 𝑓𝑖. m and n are the 

number of fog nodes and application modules in the 

system, respectively, and, 𝑥𝑖𝑗 is a binary decision 

variable used to determine whether 𝑎𝑗 is assigned to 

𝑓𝑖 or not. 

Subject to the following: 

∑𝑚
𝑖=1 𝑥𝑖𝑗 ×  𝑃𝑖 ≤  𝐶𝑖

𝑐𝑎𝑝
  ∀𝑗 ∈  {1, … , 𝑛}   (2) 

where 𝑥𝑖𝑗 is a binary decision variable, 𝑃𝑖 is the 

amount of computing required by the application 

module, 𝑎𝑗, and 𝐶𝑖
𝑐𝑎𝑝

 is the computing capacity of 

the fog node, 𝑓𝑖. 

∑𝑚
𝑖=1 𝑥𝑖𝑗 ×  𝑇𝑖 ≤  𝐵𝑖

𝑐𝑎𝑝
  ∀𝑗 ∈  {1, … , 𝑛}  (3) 

where  𝑥𝑖𝑗  is a binary decision variable, 𝑇𝑖 is the 

amount of bandwidth required by the application 

module, 𝑎𝑗 and 𝐵𝑖
𝑐𝑎𝑝

 is the bandwidth available on 

the fog node, 𝑓𝑖. 

∑𝑚
𝑖=1 𝑥𝑖𝑗 ×  𝑅𝑖 ≤  𝑀𝑖

𝑐𝑎𝑝
  ∀𝑗 ∈  {1, … , 𝑛}   (4) 

where 𝑥𝑖𝑗 a binary decision variable, 𝑅𝑖 is the 

amount of memory required by the application 

module, 𝑎𝑗 is and 𝑀𝑖
𝑐𝑎𝑝

 is the memory capacity of 

the fog node, 𝑓𝑖. 

∑𝑚
𝑖=1 𝑥𝑖𝑗 = 1    ∀𝑗 ∈  {1, … , 𝑛}  (5) 

where 𝑥𝑖𝑗 is a binary decision variable.Equation 2 

ensures that the computing requirement of a set of 

application modules allocated to the fog node, 𝑓𝑖 

should not surpass the computing capacity of the fog 

node. The constraint in equation 3 specifies that the 

bandwidth needed to execute a set of application 

modules assigned to the fog node, 𝑓𝑖 could not 

surpass the available bandwidth of the fog node. 

Equation 4 indicates that the sum of the memory 

requirement of a set of application modules on the 

fog node, 𝑓𝑖 is not more than the fog node's memory 

capacity. Finally, 𝑥𝑖𝑗 is a binary decision variable 

equal to 1 if the application module, 𝑎𝑗  is allocated 

to 𝑓𝑖, and 0 otherwise. It ensures that an application 

is not assigned to multiple fog nodes. 

4. Proposed Migration Management 

Algorithm 
 

Providing support for applications demanding 

mobility is crucial for Fog environments. The users' 

mobility makes it necessary to move application 

modules from one fog node to another. Migration of 

applications reduces the delay, consequently 

ensuring that the applications' delay requirements 

are satisfied. However, application migration 

imposes unnecessary resource consumption; the 

migration count should be reduced. In migration, 

triggering the migration event and selecting the 

appropriate fog node is critical. Unnecessary 

activating of migration and wrong selection will lead 

to network overhead. The network delay between the 

fog node and the user is used to calculate the network 

overhead. 

 

Algorithm 1: Migration Management Algorithm 

Input: Mobility data of the user 
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Output: Destination fog node  

1. if Delay > Dt then // Dt denotes delay threshold 

2.        Populate FNList[] with fog nodes present along the user's current direction 

3.        Find the distance, Dij, between the current location of the user and each  

                element of FNList[] 

4.        Update FNList[] with fog nodes having Dij < coverage radius 

5.        for all FNList[] do 

6.           Find connection time, Ct 

7.           Find execution time, Et 

8.           Pt = Ct - Et 

9.        end for 
10.        Sort FNList[] by Pt in descending order 

11.        for all FNList[] do 

12.           if Rreq < Rcap – Ralloc then // fog node has sufficient resources available 

13.                Select the fog node as the destination fog node 

14.                break 

15.            else 
16.                continue // for the rest of the fog nodes 

17.            end if 

18.         end for 
19.         Compute migration point, Mp based on user speed,    // Algorithm 2 

        application size, and network bandwidth  

20.         if user at migration point Mp then  

21.             Start migration process  

22.             Allocate resources at the destination fog node  

23.             Deallocate resources from the source fog node 

24.         else  
25.             No migration 

26.         end if 

27. end if 

 

 

Algorithm 2: Compute Migration Point 

Input: user speed, dump size, bandwidth between fog nodes 

Output: Migration point  

1. Calculate migration time (Tm) by dividing dump size by bandwidth between fog nodes. 

2. Calculate distance required to complete migration (Dm) by multiplying migration time and user speed. 

3. Calculate migration point (Mp) by subtracting Dm from coverage radius. 

4. Calculate distance (Du) between user's current position and its access point. 

5. if Du >= Mp then // user approaches migration point 

6.       Start migration 

7. else 
8.       No migration 

9. end if 

 

Since each migration event in the proposed work is 

triggered only when the network latency exceeds a 

predefined threshold, the likelihood of such 

overheads is relatively low. This event takes place 

when the IoT user moves far away from its serving 

node. The source fog node runs the destination node 

selection algorithm amongst the candidate fog 

nodes. By maximizing the function, the approach 

determines the optimal mapping of the application 

modules and the target fog node. This approach 

guarantees service continuity and QoS.The proposed 

algorithm takes user mobility data as its input. 

Whenever the source fog node (FN) finds that the 

user is moving towards the coverage boundary of its 

currently connected FN and is expected to leave, the 

migration decision process is initiated. It populates 

the FNList[] containing the list of FNs along the 

user's current direction. The distance between the 

user and the list of populated FNs is calculated. 

Accordingly, the FNList[] is updated to keep the FNs 

currently covering the IoT device. The connection 

time, Ct, and execution time, Et; for all the FNs in 

the list are calculated. A variable, Pt, is defined to 

store the difference value of Ct and Et. The 

algorithm aims to find a suitable fog node with a 

maximum Pt value. The proposal sorts the candidate 

FNs by Pt in descending order to check the resource 

availability. Thus, the set of FNs is sequentially 

checked for the availability of required resources, 

and if the resources are available, the destination 

node is chosen. The migration point, Mp, is computed 

based on the mobility information of the user 

containing user speed, application size, and network 

bandwidth. The computation of Mp is explained in 
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algorithm 2. As soon as the user reaches the 

migration point, the source fog node initiates the 

migration process, and the resource allocation and 

deallocate process is started. It is essential to note 

that selecting the destination FN with this policy 

reduces the number of possible migrations in the 

system, improving the service continuity and quality 

of service. Algorithm 2 summarizes the computation 

of the migration point. Dynamic migration point 

considers the user's speed, dump size being 

migrated, and the bandwidth between fog nodes. The 

dynamic migration point, Mp, also considers the 

coverage radius of the connected access point. The 

process is initiated if the user has approached the 

computed migration point. 

5. Simulation Results and Discussion 
 

The simulation results are discussed here to assess 

the effectiveness of the proposed algorithm. The 

simulation assumes that processing will occur in fog 

devices and, if necessary, on the Cloud. All real-time 

processing will be done in fog environments using 

fog resources. Fog nodes have heterogeneous 

computing resources.MobFogSim toolkit, an 

extension of iFogSim, has been used to simulate the 

proposed algorithm. It is useful for modeling real-

world mobile applications. Distinct features of 

MobFogSim facilitate different aspects of user 

mobility and container migration. Resource 

management policies are implemented using this 

simulator. It contains a specific resource 

management module that manages all resource 

allocation facets in fog and cloud environments. The 

input for users' mobility in the simulation is taken 

from the MobFogSim mobility dataset collected 

from the Luxembourg traffic [40]. 

5.1 Simulation Setup and Parameters 

 

The algorithm is simulated over a 10 km x 10 km 

square region in which the coverage range of Fog 

nodes is assumed to be 1000 meters. The system 

consists of a cloud layer, a layer of fog nodes and a 

layer of IoT devices. The simulation parameters are 

outlined in Table 3. The system has a dense 

deployment of fog nodes. Fog nodes' processing 

power is randomly chosen from [1500-6000] MIPS.  

Table 3. Simulation parameters 

Parameter Value 

Map Scenario 

Scenario map size/ Area 10 km x 10 km 

Access point coverage 

(radius) 
1000 m 

Number of fog devices 196 

Density of fog devices per 

access point 
1:1 

Fog Device Characteristics 

Speed (MIPS) 1500 – 6000 

RAM 8000 MB 

Bandwidth 100 MBPS 

Busy Power (MJ) 107.339 

Idle Power (MJ) 83.433 

IoT Device Characteristics 

Speed (MIPS) 500 

RAM 1000 MB 

Bandwidth 100 MBPS 

Busy Power (MJ) 87.53 

Idle Power (MJ) 82.44 

 

The user's application size is taken as 128 MB. 

Several evaluation scenarios are carried out during 

the simulation. Initially, 100 IoT users' applications 

are submitted to the fog infrastructure in the 

evaluation scenario. Afterward, the number of users' 

applications increased progressively, reaching 400. 

Delay, downtime, migration time, network usage, 

number of migrations, and energy consumption are 

measured for this evaluation scenario. The round-

trip time (RTT) and the throughput values among the 

fog nodes are based on real-life use cases. The 

migration is carried out using two distinct 

configurations of throughput and RTT values 

between fog nodes [11]. Each configuration 

indicates a particular network condition that may 

take place in reality. The throughput values and the 

associated RTT values within a fog environment are 

mentioned in Table 4. Configuration A corresponds 

to good network conditions based on fixed 

computers that are part of the local area network. In 

comparison, the other configuration represents poor 

network conditions that may exist between a 

smartphone connected to the Internet via 4G and a 

computer connected to the network via Ethernet. The 

simulations are run with these two network 

configurations. 

Table 4. Network configurations among fog nodes 

Configuration Throughput (Mbps) RTT (ms) 

A 11.34 122.95 

B 72.41 6.94 

 

5.2 QoS Parameters 

 

In the simulation, the following QoS parameters are 

used to assess the effectiveness of the algorithms: 

5.2.1 Average Delay 

Delay is the time the system needs to respond to a 

user's request after it has been sent. The delay 

depends on four basic parameters: transmission 

delay, execution delay, propagation delay, and 

queuing delay. The delay between the application, 𝑎𝑖 

running at the user's device and the fog device, 𝑓𝑗 is 

calculated as follows: 
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𝐷𝑡𝑜𝑡
𝑖𝑗

=  𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+  𝐷𝑒𝑥𝑒
𝑖𝑗

+ 𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

+  𝐷𝑞𝑢𝑒
𝑖𝑗

  (6) 

where 𝐷𝑡𝑜𝑡
𝑖𝑗

 represents the total delay, 𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 is the 

transmission delay, 𝐷𝑒𝑥𝑒
𝑖𝑗

    is the execution delay, 

𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

 is the propagation delay, and, 𝐷𝑞𝑢𝑒
𝑖𝑗

 is the 

queuing delay between the fog node, 𝑓𝑗  and the user 

application 𝑎𝑖. 

The transmission delay can be expressed as follows: 

𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

=  𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+  𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

   (7) 

where 𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 represents the time taken to transmit 

the task generated by the application, 𝑎𝑖 to the fog 

node 𝑓𝑗, and 𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

  refers to the time needed to 

send the output of executed task to the user from the 

fog node. In the equation above, 𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

  is referred 

to as the task size (𝑇𝑖) divided by the transmission 

rate of the communication link, 𝑅𝑖𝑗 and it is 

expressed as: 

𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

=   𝑇𝑖/𝑅𝑖𝑗    (8) 

where 𝑅𝑖𝑗 is calculated according to Shannon's 

capacity formula [41]. Given the channel bandwidth 

β and 𝛿𝑆𝐼𝑁𝑅 as signal-to-noise-plus-interference ratio 

as follows: 

𝑅𝑖𝑗 =  𝛽 × (1 +  𝛿𝑆𝐼𝑁𝑅)    (9) 

On completion of the task processing at the Fog, the 

time consumed in sending back the result is 

calculated as: 

𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

=  𝑇𝑖
′/𝑅𝑖𝑗     (10) 

where 𝑇𝑖
′ is the result's size incurred from the fog 

node computation. 

The time required for executing the user request is 

called the execution delay. Execution delay for the 

task k at the fog node is calculated as: 

𝐷𝑒𝑥𝑒
𝑖𝑗

=  𝐼𝑚/𝐶𝑗
𝑚𝑎𝑥    (11) 

where 𝐼𝑚 indicates the task's number of instructions 

in terms of MI, and 𝐶𝑗
𝑚𝑎𝑥 represents the computing 

power of the fog node 𝑓𝑗. 

Propagation delay is the time required to transfer a 

data packet via the medium from one point to 

another. Propagation delay for a task running on a 

fog node is determined as follows: 

𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

=  2 × 𝐷𝑢𝑓/𝑃𝑠   (12) 

where 𝐷𝑢𝑓 represents the user's distance from the 

connected fog node, and 𝑃𝑠 is the propagation speed 

of the network. Queuing delay, being negligible, 

may be ignored. 

5.2.2 Total Migration Time 

Migration time is the time required for transferring a 

live running container from one fog node to another. 

The total migration time is modeled using different 

components: local computations times and transfer 

times[11][42]. Local computation time is the result 

of premigration and post-migration-related events. 

The premigration event comprises the time needed 

for selecting the destination fog node, namely, 

premigration time (𝑇𝑝𝑚) and the time consumed in 

reserving resources (𝑇𝑟𝑠𝑣) at the chosen destination. 

The postmigration component comprises of 

commitment stage and activation stage. During these 

stages, the migration process is committed 

(𝑇𝑐𝑜𝑚𝑚)and the migrated container service is 

resumed at the destination node (𝑇𝑟𝑠𝑡). The other 

component, transfer time, transfers a specific dump 

data, 𝐷𝑠 and is network dependent. It combines two 

elements, migration transfer time, 𝑇𝑡𝑟, and migration 

latency, 𝑇𝑙𝑎𝑡, between the source and destination fog 

nodes. The computation time is machine dependent 

and is considered a constant, 𝐶𝑚𝑖𝑔. The equation of 

migration time, 𝑇𝑚𝑖𝑔, is expressed as: 

𝑇𝑚𝑖𝑔 =  𝑇𝑡𝑟 +  𝑇𝑙𝑎𝑡 +  𝐶𝑚𝑖𝑔   (13) 

where  𝐶𝑚𝑖𝑔 =  𝑇𝑝𝑚 +  𝑇𝑟𝑠𝑣 +  𝑇𝑐𝑜𝑚𝑚 +  𝑇𝑟𝑠𝑡   

The migration transfer time is formulated as follows: 

𝑇𝑡𝑟 =   𝐷𝑠/𝑅𝑖𝑗    (14) 

5.2.3 Total Downtime 

Downtime is the time interval during which the 

application is stopped to perform the migration, and 

the user cannot access the service. It includes 

transferring the remaining memory dump and states 

and resuming the application on the destination fog 

node [11][42]. In downtime, a specific amount of 

memory dump (𝐷𝑠
′) must be transferred, which is the 

final copy operation from the source node to the 

destination node. It also includes machine-

dependent commitment time (𝑇𝑐𝑜𝑚𝑚) and container 

restoration time (𝑇𝑟𝑠𝑡). 

𝑇𝑑𝑡 =  𝑇𝑡𝑟
′ +  𝑇𝑙𝑎𝑡

′ +  𝐶𝑑𝑡    (15) 

where the machine dependent constant part,  𝐶𝑑𝑡 =
 𝑇𝑐𝑜𝑚𝑚 +  𝑇𝑟𝑠𝑡 and transmission time, 𝑇𝑡𝑟

′ =  𝐷𝑠
′/

𝑅𝑖𝑗.  
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5.2.4 Total Network Usage 

Network usage is the total data sent and received 

during the migration process.  

𝑁𝑊𝑡𝑜𝑡 =  𝐷𝑡𝑜𝑡 × 𝑇𝑙𝑎𝑡   (16) 

where 𝐷𝑡𝑜𝑡 is the size of data sent during the 

migration of the application modules and 𝑇𝑙𝑎𝑡 is the 

network delay between source and destination fog 

nodes. Total network usage is determined by 

summing the network consumtion incurred during 

each migration event.  

5.2.5 Total Energy Consumption 

Total energy consumption is the combination of two 

components: the energy consumed to transmit the 

task to the fog node and the energy consumed to 

execute the task. Total energy consumption can be 

written as follows: 

𝐸𝑡𝑜𝑡
𝑖𝑗

=  𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+  𝐸𝑒𝑥𝑒
𝑖𝑗

   (17) 

where 𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 is the energy consumed during 

transmission and 𝐸𝑒𝑥𝑒
𝑖𝑗

 is the energy consumed 

during execution performed by the fog nodes in the 

system. 

𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

=  𝑇𝑡𝑟𝑎𝑛𝑠 × 𝜆   (18) 

where 𝑇𝑡𝑟𝑎𝑛𝑠 is transmission time, and 𝜆 is a 

constant related to the wireless interface [43]. 

𝐸𝑒𝑥𝑒
𝑖𝑗

=  𝑇𝑒𝑥𝑒 × 𝜇   (19) 

where 𝑇𝑒𝑥𝑒 is the execution time, and 𝜇 is a 

coefficient denoting the energy consumption per 

CPU cycle. 

5.3 Results 

 

The proposed algorithm is compared with the 

algorithm based on the lowest latency-based strategy 

[5] to demonstrate its performance. The lowest 

latency-based strategy is an application migration 

algorithm that efficiently utilizes the various Fog 

node resources and chooses the appropriate Fog 

node for application migration. The algorithm 

selects the Fog node with the lowest end-to-end 

latency out of all the Fog nodes available with 

sufficient resources. For both algorithms, the 

simulation results are anlyzed based on the number 

of migrations, delay, downtime, migration time, 

network usage, and energy consumption.  

5.3.1 Total Number of Migrations 

The number of migrations is the migration frequency 

that a user of IoT device experiences along its path. 

Although necessary, fewer application migrations 

should be made because each migration event 

consumes additional resources. The source fog 

nodes have information about the real-time mobility 

of departing devices (e.g., their direction and speed 

when within the current fog node's range). So, the 

connection and execution time of all the candidate 

fog nodes with IoT devices can be estimated for the 

migration decision process. As per the proposed 

algorithm, the number of possible migrations 

decreases by migrating the application modules to 

the appropriate node. The existing policies aim to 

lower the cost of migration by migrating application 

modules to new fog nodes without considering the 

current mobility information of devices, connection 

duration, and execution time.The analysis of the 

required migrations shows that the proposed 

approach lowers the number of migrations because 

it considers IoT devices' current mobility 

information, such as speed and direction. A 

reduction in the number of migrations results in less 

downtime for the user’s application.Figure 2 shows 

the number of migrations for configurations A and 

B. Under both configurations, the proposed 

approach decreases the number of migrations to 

almost 18% compared to the existing approach. The 

reduction in migrations indicates that the locations 

where applications are placed are better suited for 

the user. 

5.3.2 Average Delay 

After the user has moved out of the range of the fog 

node currently hosting the user application, a higher 

delay may be experienced in the response received 

from the source fog node hosting the application. It 

is caused due to the increased count of hops between 

the user and the application hosted at the source fog 

node. Delay is the primary QoS metric evaluated in 

the proposed migration approach. In contexts where 

high performance is required in real-time, it is the 

factor that must be decreased.In the simulation, it is 

expected that there won't be any instances in which 

there are deficient fog resources to execute the 

services; thus, queuing delay is considered zero. 

Execution delay is the major component affecting 

the end-to-end delay for the user applications.The 

proposed approach outperforms the latency-based 

approach by choosing the most suitable destination 

fog node based on various parameters. A comparison 

of the analyzed scenarios is shown in Figure 3. The 

average delay is shown for different numbers of 

users in the simulation. The results in the figures are 

apparent indicators that implementing the proposed 

migration strategy would result in higher QoS for the 

end users. The proposed algorithm shows a 

reduction of up to 20% under poor network 

conditions and up to 17% under good network 

conditions when used to address the issue of 

application migration. 
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5.3.3 Total Downtime 

The time during which service is not available 

should be minimized. The proposed approach 

reduces the unnecessary triggering of migration, 

which decreases the total downtime during the 

simulation. The results calculated by the simulator 

concerning downtime are given in Figure 4. As the 

number of users increases, the downtime improves 

further. On average, the proposed approach results in 

13% and 20% less downtime than the existing 

approach.   

 

(a) Network Configuration A    (b) Network Configuration B 

Figure 2. Total number of migrations under different network configurations 

 
(a) Network Configuration A    (b) Network Configuration B 

Figure 3. Average delay under different network configurations 

 
(a) Network Configuration A    (b) Network Configuration B 

Figure 4. Total downtime under different network configurations 
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(a) Network Configuration A    (b) Network Configuration B 

Figure 5. Total migration time under different network configurations 

5.3.4 Total Migration Time 

The time needed to transfer the application to the 

destination fog node should be minimized. The total 

migration time of the proposed technique is 

evaluated in comparison to the existing technique. 

The total migration time is shown in Figure 5. 

Simulation with the proposed approach presents a 

migration time of up to 13% shorter under 

configuration A. In comparison, under configuration 

B, the migration time is reduced by up to 19% than 

the existing policy.The proposed approach reduces 

the total number of migrations and, thus, lessens the 

total migration time compared to the latency-based 

method, which has a higher number of total 

migrations.  

5.3.5 Total Network Usage 

Uncontrolled network use may cause congestion, 

declining the application's performance. The 

network usage during application migration for 

different simulating approaches is portrayed in 

Figure 6. The proposed algorithm works slightly 

better in this situation since it decreases the number 

of migrations of application modules and thus 

decreases their network usage. As the number of 

migrating events decreases, network usage 

decreases. The proposed algorithm reduces network 

usage by up to 16%. 

 

(a) Network Configuration A    (b) Network Configuration B 

Figure 6. Total network usage under different network configurations 
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(a) Network Configuration A    (b) Network Configuration B 

Figure 6. Total network usage under different network configurations 

 

(a) Network Configuration A    (b) Network Configuration B 

Figure 7. Total energy consumption under different network configurations 
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connectivity. Appropriate selection of the 

destination node in the proposed approach reduces 

the number of migrations and improves 

connectivity.Availability: The availability of fog 

service is a way to specify the system's capability to 

ensure that the requested resources are available with 

the expected performance to service user task 

requests. Downtime and migration time determine 

the availability of the services in the fog 

environments. In fog computing, the mobility of the 

end user causes service migration which in turn 

causes availability issues in the fog environments. 

The proposed algorithm reduces the downtime and 

migration time parameters and improves 

availability. Performance: Lowering application 

delay is important to achieving effective application 

performance. As the user leaves the coverage area of 

its associated fog node, the network delay increases 

as more hops are needed to communicate with the 

serving fog node. The proposed system has lowered 

the average delay perceived by the end 

users.Resource Utilization: Resource utilization is a 

performance metric that gives feedback on how 

efficiently various resources are allocated to the 

application modules. Appropriate migration 

decisions improve the utilization of resources. 

Compared to the existing technique, the proposed 

technique makes resource utilization more efficient 

by reducing network usage and energy consumption. 

It helps in avoiding congestion in the network. 

Improvement in energy efficiency may consequently 

allow the battery-operated fog nodes to have longer 

battery life. 

6. Conclusions and Future Work 
 

The exponential growth of IoT devices makes it 

challenging to maintain QoS in fog computing 

environments. The migration is triggered whenever 

a user of an IoT device begins to move from one 

service area to another, and the associated 

application needs to be migrated to a suitable fog 

node. The MobFogSim tool has been used to 

simulate application migration. The simulation tool 

takes account of the wireless connectivity, the user's 

mobility and the application migration process. The 

migration decision has been proposed considering 

various parameters, such as connection time between 

users and fog nodes and the application execution 

time. Each network parameter has been 

mathematically modeled, considering the highly 

mobile network. Simulations have been done with 

two network configurations corresponding to good 

and poor network conditions.The comparison 

analysis demonstrates that the proposed migration 

approach significantly improves various parameters. 

Under both network configurations, the proposed 

approach decreases the number of migrations to 

almost 18%. A decrease of up to 20% in average 

delay under poor network conditions and up to 17% 

under good network conditions is achieved. The 

proposed migration approach produces a downtime 

20 % lower than the existing approach under both 

conditions. The migration time of up to 19% shorter 

is obtained under good network conditions, while, 

under poor network conditions, the migration time is 

reduced by up to 13% than the existing policy. The 

proposed algorithm decreases network usage by up 

to 16% and consumes less energy by up to 7% 

compared to the existing algorithm. The simulation 

results show that the proposed algorithm enhances 

different QoS parameters significantly. Further, 

qualitative parameters also indicate the 

improvement in the experience perceived by the 

users. Low latencies, low network usage and 

improved energy efficiency benefit the users of the 

proposed approach. The proposed technique also 

keeps Fog nodes operational for a longer duration if 

these are battery-operated. In contrast to the current 

situation, where only IoT devices are considered 

mobile, choosing an appropriate node will be more 

difficult when fog nodes are also mobile. As part of 

future work, this work may be extended to 

investigate the mobility of fog nodes and its effect 

on the QoS and the performance of the fog 

environment.  
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