

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and Engineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8868-8884
https://www.ijcesen.com

ISSN: 2149-9144

 Research Article

A mobility-aware service migration technique in fog computing environments

Saravjit Chahal1*, Anita Singhrova2

1Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology,

Murthal, India

* Corresponding Author Email: saravjitchahal.schcse@dcrustm.org - ORCID: 0000-0002-5247-6650

 2Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology,

Murthal, India

Email: anitasinghrova.cse@dcrustm.org - ORCID: 0000-0002-5247-7770

Article Info:

DOI: 10.22399/ijcesen.4319

Received: 10 April 2025

Revised: 28 April 2025

Accepted: 01 May 2025

Keywords

Fog computing

Migration

Mobility

Internet of Things

Real-time application

Abstract:

Fog computing allows the utilization of resources near the Internet of Things (IoT)

devices to serve various latency-sensitive applications. However, the mobility of users of

IoT devices necessitates the migration of applications to maintain service continuity and

quality of service (QoS). This study proposes a new migration technique that minimizes

delay, network usage and energy consumption in the Fog network, providing a real-time

user experience. An objective function-based decision-making approach is used to

migrate the applications efficiently, guaranteeing service continuity and QoS. The

proposed technique chose an appropriate fog node with sufficient resources by evaluating

parameters like connection duration between the fog nodes and the users, resource

availability, and application execution time at the fog nodes. The results indicate that the

proposed approach has a remarkable improvement of up to 20% in average delay, 16%

in network usage and 7% in energy consumption compared to the conventional approach.

The number of migrations is also lowered by 18%, which is necessary to efficiently utilize

limited fog node resources as each migration event consumes additional resources. The

benefits of the proposed approach for the users are low latencies, low network usage,

improved energy efficiency and better user experience.

1. Introduction

A well-connected modern world is approaching

where the Internet will be accessible to everything

and everyone. According to a research report on

Statista, there will be over 29 billion Internet of

Things (IoT) connected devices by 2030 [1]. The

sudden increase in IoT devices and internet traffic

could lead to unforeseen disruptions if data

processing isn't prioritized near the users. To address

this, Fog computing has emerged as a solution to

handle data processing closer to IoT devices. Due to

their requirement to be compact, light, and battery-

operated, these devices often have constrained

hardware capabilities. Hence, they don't always

make sense to host resource-intensive services

directly. By positioning computing resources and

services near the data source, fog computing extends

and supplements the cloud, making it well-suited for

supporting the IoT. Fog computing can involve any

devices with computing power, including switches,

routers, RoadSide Units (RSUs), smartphones,

laptops, tablets and stationary equipment [2] [3].

However, fog computing is not restricted to IoT; it

can also facilitate content delivery and support

various other applications.Failing to finish the tasks

for an emergency system application on time would

lead to monetary losses. It could jeopardize human

safety in scenarios like autonomous vehicles,

emergency fire response, and emergency vehicle

management. This cutting-edge computing

paradigm encompasses all computing resources of

the proximate network. It allows smart city, smart

health and other IoT-driven Systems to execute the

required applications close to the data source [4].

Fog proximity is the key enabler of many benefits

that are not attainable when depending on cloud-

based solutions. However, while Cloud is

centralized in geographically remote data centers,

Fog is deployed in proximity to IoT devices in a

distributed way. Proximity in the topological

distance is assumed, which is Which is determined

https://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:saravjitchahal.schcse@dcrustm.org
mailto:anitasinghrova.cse@dcrustm.org

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8869

by counting the number of hops between the end user

and the host [5]. The first and foremost of these

benefits is a short communication distance that

provides low latency between the host and the user.

Other benefits of the close proximity of the Fog for

the users are low bandwidth consumption, low

latencies, better security and privacy, and

uninterrupted services that remain available even

when network connectivity to the Cloud is unreliable

or completely unavailable [6]–[8].In the event of

device mobility, maintaining low latency can be

achieved by migrating the fog application across fog

nodes along the device path. For a number of fog-

based use cases, such as Virtual Reality and

Augmented Reality applications performing video

analytics, mobility support is crucial.Migration of

applications across fog nodes is a significant and

challenging task, resulting in additional overheads.

When IoT users move around in fog environments,

migration mechanisms determine when, how, and

where applications can migrate.Containers, a

lightweight virtualization technology, may be

preferred over virtual machines to host the

applications to guarantee minimal network overhead

[9]. The data and applications pertaining to users are

encapsulated in the containers [10]. The new

developments in fog computing confirm that

containers perform superior to conventional virtual

machines [11].The following factors affect service

migration operations: the IoT device's position,

direction and speed, and finding an appropriate node

to transfer the application. Based on these

parameters, the Fog environment's performance

metrics, such as network delay, bandwidth

consumption, etc., can also vary significantly [12].

The migration process comprises moving data and

the associated application content encapsulated in

the containers. The methods that keep migrating the

applications along the path of users result in many

undesirable migrations. Every migration request

invites an overhead in the fog environment with

limited fog resources. Thus, the migration is

performed when it is impossible to prolong the

execution further. The application may remain on

the same Fog node if there are no feasible options to

migrate the application.In light of the above, a

migration technique is proposed to fulfill the needs

of real-time mobile IoT applications. In summary,

the contributions of this study are as follows:

1. A mobility-aware application migration

algorithm is proposed to decide where to

migrate applications along with the

migration point.

2. The effectiveness of the proposed algorithm

is validated through extensive simulations

utilizing mobility traces. A comparison with

an existing well-established algorithm

reveals that the proposed method

significantly improves delay, network usage

and energy consumption.

The rest of the paper is structured as follows. Section

2 presents the relevant existing work of migration

management techniques in fog computing. Section 3

describes the proposed system model and problem

formulation, followed by the proposed algorithm in

section 4. Section 5 discusses simulation results of

the proposed approach and compares it with

traditional techniques. Finally, section 6 summarizes

the article and outlines potential future research

directions.

2. Related Work

This section discusses some conceptual and

fundamental work in related areas.The authors of

[13] proposed a hierarchical Fog computing

architecture. The data generated by the end devices

was forwarded to the fog nodes and not the Cloud.

The end devices or the users demanding the services

might be mobile in nature. One of the essential

characteristics of the fog system was having mobility

support. Preserving continuity in providing service

at different locations was a tough job. The study in

[14] proposed a model for migrating virtual

machines aimed at Mobile Cloud Computing

environments. Their technique was built on the

cloudlet load and user mobility parameters. A

genetic algorithm was used to find a suitable server

and reduce the frequency of migrations.The authors

emphasized the necessity of mobility-aware

scheduling and put forward a solution based on the

edge ward placement method for Fog computing

environments in paper [15]. They highlighted the

important indicators to take into account in the Fog

environment supporting user mobility.

Table 1. Study of various papers discussed

Reference Main Idea
Parameters

considered
Achievement Weakness

[14]

Load balancing for

heterogeneous mobile cloud

computing using Genetic

algorithm-based solution

number of migrations,

task execution time

number of migrations

reduced, Avg. task execution

time reduced

VMs consolidation

not considered

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8870

[15]

Resource management using

various scheduling strategies in

fog computing

Latency, execution cost,

network usage

Latency reduced

User mobility not

considered

[16]

Resource management in Fog

and Edge computing

environments through various

placement policies

Latency, cost, network

usage

Latency reduced, network

congestion reduced, energy

consumption improved

Cost decreased

User mobility and

container migration

not supported

[17]

ILP based resource allocation

in fog environment

Latency, QoS Latency reduced, QoS

improved

Network usage and

energy consumption

not considered

[18]

Task scheduling in fog nano

data centres utilizing container

virtualization technology

Energy consumption,

SLA violations,

response time,

makespan

Energy consumption

reduced, SLA violations

reduced

 Latency not

considered

[19]

Resource allocation for mobile

micro-clouds based on

polynomial cost functions

Cost Minimized average cost Heterogeneous

resources in cloud

not considered

[20]

Route optimization in mobile

fog computing

Latency, handover

performance, data

communication, system

cost

Latency reduced,

handover performance

improved, system cost

reduced

Energy consumption

and network usage

not considered

[21]

Resource allocation in Mobile

Edge Computing environments.

migration time,

downtime

overall migration time

reduced, downtime reduced

Performance under

large-scale

networked MEC

systems not

considered

[22]

Resource optimization in

heterogeneous fog computing

environments using linear

programming

Latency, application

placement time, service

delivery latency

Latency improved Real-world

implementation not

considered

[23]

Application deployment in fog

computing using linear

optimization and Fuzzy logic

Cost, Packet loss rate,

network usage, quality

of service

Latency and resource

consumption reduced,

network usage reduced,

service quality improved

Performance in real

Fog environment not

considered

[24]

Service placement in fog

computing

Latency, hop count,

network usage

Improvement in network

usage and latency

Degradation of

service for less

requested

applications

observed.

[25]

Resource utilization using

Analytic Hierarchy process

(AHP)

received signal strength,

user velocity, data rate,

signalling cost

ping pong rate reduced,

throughput improved,

packet delay reduced,

signalling cost reduced

Real-world

implementation not

considered

[26]

Mixed Integer Linear

Programming (MILP) task

allocation for vehicular Fog

computing

Latency, quality loss

and Fog capacity

Latency reduced

Not feasible for

large-scale

deployment of Fog

nodes and users

[27]

Load balancing in vehicular

Fog computing environment

utilizing the Simulated

Annealing Algorithm (SAA)

Resource utilization Resource utilization

improved

Load balancing not

achieved under

limited computing

resources

[28]

Resource management in

Fog/Edge computing

Latency, execution

time, received signal

strength

response time, SLO

violations

Low latency achieved,

SLO violations minimized

Context of multiple

competing IoT

applications not

considered

[29]

Task offloading in Fog

environment

using Gini Coefficient and GA

Migration cost and

energy cost, sojourn

time,

Reduced migration time and

enhanced revenue for user

equipment

Migration cost

remains high

[30]

Resource allocation in Fog

computing using heuristic

search

Latency, resource

availability, throughput,

energy consumption,

jitter

Latency improved, energy

consumption decreased

Collaboration

between edge and fog

devices across

different regions was

not taken into

account

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8871

[31]

GA based resource allocation

in Fog computing

Loop delay, network

delay, execution cost,

network usage,

execution cost

Latency improved, network

usage reduced, execution

cost reduced

Mobility prediction

technique was not

used

[32]

Task offloading using machine

learning in fog environment

Network usage,

migration time, number

of migrations, number

of handoffs

Latency reduced, energy

consumption reduced,

network usage decreased

Inefficient for large-

scale systems

[33]

Resource allocation in mobile

edge computing leveraging

Reinforcement learning and

Markov decision process

(MDP)

Migration delay,

computation delay,

communication delay,

migration cost

Latency improved, migration

cost reduced

Load balancing

among microservices

is not considered

[34]

Resource optimization for E-

healthcare applications using

Markov decision process

(MDP)

Resource usage cost,

migration cost,

reconfiguration cost

Total cost reduced, achieved

maximum expected reward

Not suitable for

large-scale

networked MEC

systems.

[35]

Resource allocation in fog

computing

Latency, processing

time, SLA violations

Latency minimized,

processing time reduced,

SLA violations reduced

Failure of fog nodes

not studied

[36]

Application deployment in

Edge and Fog Computing

Environments using weighted

cost model

Response time, energy

consumption, total

Migration cost, number

of interrupted tasks

Average execution cost

reduced, cumulative

migration cost reduced

Energy consumption

of servers and

monetary cost not

considered.

[37]

IoT Service Placement in Fog

Computing based on Open-

source Development Model

Algorithm (ODMA)

metaheuristic

Latency, energy

consumption, service

cost, Fog resource

utilization

Latency reduced, resource

usage improved, service

acceptance rate improved

Reliability and safety

of interactions not

considered

[38]

Service Placement for

utilization of fog resources

using evolutionary algorithm

based on the cuckoo search

Latency, response time,

energy consumption,

SLA violation,

communication cost,

computation cost, Fog

utilization

Latency reduced, energy

consumption decreased, fog

utilization improved

Reliability and fault

tolerance not

considered

[39]

Service deployment in fog-

cloud environments based on

genetic optimization

Network utilization,

latency, energy

efficiency, execution

cost

improvement in latency,

network utilization reduced,

energy efficiency enhanced,

cost reduced

Dynamic

requirements of IoT

applications not

considered

User mobility patterns and application priority levels

were accounted for in making effective scheduling

decisions. Though, user mobility was not considered

in the existing scheduling approaches. The authors

focused on placing IoT applications while taking

into account their target location [16]. The

possibility of clustering was not taken into account

in the proposal. The application modules were

therefore sent to the next hierarchical tier for

potential migration and placement whenever the

existing server was unable to serve the application

modules.The study in [17] extended the iFogSim

simulator to add mobility support. The authors

designed migration strategies for mobile users. The

container virtualization technology improved

performance compared to conventional virtual

machines [18]. The study in [19] offered a technique

for deploying a single service instance for each IoT

user on a distant server when several IoT users were

present in the system. To identify optimal and nearly

optimal solutions, they introduced offline and online

approximation techniques for the Cloud.The study in

[20] proposed mobility-supported Fog computing

architecture. The Software-defined networks-based

architecture was proposed to decouple mobility

control and data forwarding. A framework was

designed to facilitate mobility in Mobile Edge

Computing environments (MEC) [21]. The authors

provided the service without interruption and

migrated services across MECs. Their approach was

aimed at lowering downtime and overall migration

time. Many researchers devised techniques for the

initial placement of services in heterogeneous

contexts. Some of these methods were designed to

lessen the delay in service delivery [22] and increase

users' quality of experience [23]. The placement

solutions were either centralized or decentralized

[24].The study in [25] proposed a handover strategy

in wireless communication technologies for mobile

users. The authors presented a multi-criteria

handover strategy for mobile users based on various

parameters to avoid unnecessary handovers and

improve the utilization of resources. The proposed

strategy significantly brought improvements in

various QoS parameters. The authors of [26] and

[27] studied vehicular Fog computing environments.

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8872

The study in [26] aimed to optimize vehicular Fog

computing-based task allocation. Various

constraints like quality loss, latency, and Fog

capacity were considered for modeling optimization

of the task allocation problem. However, the

technique was not viable for scenarios involving a

vast number of fog nodes and users in the system. In

contrast, a fog-enabled mobility-based migration

framework was proposed for smart cities in [27]. The

load balancing was achieved among fog nodes

according to a resource pricing-based incentive

strategy. Limited resource capacity confined the

extent of load balance attained.The placement

strategies for IoT applications with many

interconnected modules that take into account

historical mobility data were suggested in [28]. The

authors presented a cloud-centric method termed

URMILA, whereby the placement of all IoT

applications was decided by a centralized controller

to meet their latency needs. Also, there was no

migration mechanism to transfer the applications to

new servers if the user had moved outside the range

of its existing server, which resulted in a

considerable cost to the user. The authors of [29]

proposed a mobility-aware strategy for offloading

and computational resource allocation that

significantly reduced migration times. The main goal

of the work was to lessen the number of migrations

while maximizing offloading benefits for IoT

users.The new advances in the Internet of

Everything (IoE) demanded real-time execution of

service requests [30]. The fog nodes closer to the end

user enabled real-time response, fulfilling the

requirements of real-time applications. An

autonomic hybrid framework was proposed to

perform container migration [31] while satisfying

the QoS requirements of the user. A mathematical

model was developed to predetermine the target

node for migrating the user module. However, more

precise techniques, such as mobility prediction

modes, were not utilized to anticipate the user's

future location. The authors of [32] focused on IoT

scenarios and proposed a learning-based fog node

selection scheme demanding extremely low latency.

They introduced a mapping function to offload the

task to a suitable fog node. The proposed system

predicted the location of IoT devices using machine

learning-based methods.The authors of [33]

introduced edge-centric application deployment and

mobility management techniques when there were

many IoT users in the system. The authors' primary

objective was to minimize service delay. The work

in [34] analyzed that migration incurred

communication and computation overheads. Thus,

the decision on migration depended on multiple

factors, including user mobility, and the availability

of resources in heterogeneous edge clouds.The work

in [35] proposed a resource allocation technique

based on multiple criteria to choose a suitable

resource for the execution of a real-time task in fog

environments. The work considered dynamic user

behavior after application submission but did not

study the failure of fog devices. The study in [36]

proposed a weighted cost model for reducing device

energy consumption and response time. The authors

also proposed a clustering method that allowed for

the cooperative execution of tasks and provided

improved services for the applications. A migration

management technique that reduced the migration

cost of IoT applications was also presented. The

recent studies in [37] and [38] aimed to optimize

service placement policy for efficient resource

utilization and improved QoS. The authors of [37]

proposed an autonomous method for service

placement based on a conceptual framework

presented in the same study. While the authors of

[38] have prioritized the requests for optimal service

placement to enhance the performance concerning

various metrics, considering the heterogeneity of

resources and QoS deadlines of applications. The

authors of [39] have focused on reducing the

network usage and application delay by proposing a

genetic optimization-based module placement

algorithm. They have introduced a penalty-based

method to reduce the delay. In the proposed

algorithm, authors considered different factors,

including communication delay between modules

and their hierarchy level in the network. The

discussion above makes it clear that the authors have

strived to reduce the delay experienced by the users,

energy consumption, and network usage in the Fog

environments. The authors have put effort into

reaching these goals, even though they have

considered only fog nodes resources characteristics

and worked towards assigning the nearest fog node

for the migration of applications. Each migration

event consumes additional Fog resources; thus, the

migration count should be lowered. The authors

have not worked significantly in this direction.

These methods keep migrating the applications,

resulting in many undesirable migrations inviting

overheads in the Fog environment. Fog nodes have

limited processing capability; therefore, efficient

utilization of available resources is essential to

enhance user experience.Moreover, the rise in the

number of IoT devices is exponential and will

require abundant resources. It is evident that no one

has considered the Fog environments' distinctive

characteristics, such as execution time, mobility

direction, and contact duration of IoT users with Fog

nodes altogether. In this research, in addition to the

above factors, resource requirements and execution

time have been considered in the proposed strategy

to address the migration issue in the Fog

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8873

environments. An effective approach for migrating

the applications without producing overhead in the

network has been proposed. This is achieved

primarily by reducing the number of migrations in

the system.

3. System Model and Problem Formulation

A three-tier hierarchically organized architecture

consisting of Cloud, Fog, and IoT devices are

considered, as shown in the mobility scenario

depicted in Figure 1. The topmost layer comprises of

Cloud and is used for processing and storing the

data. The fog layer is located near the user and is

assumed to have several fog nodes. This layer

provides services to mobile users and is responsible

for executing the applications. The fog nodes use a

lightweight container virtualization technology to

deploy application modules. The Fog scenario is

considered to deliver services in real-time for users

whose location is dynamic.

Figure 1. Mobility scenario: service migration in Fog environment

A set of fog nodes F = {f1, f2, f3, ……, fm} is

considered where fog nodes are interconnected via

wired or wireless links. It is assumed that fog nodes

have heterogeneous resources from a hardware

architecture point of view; thus, computational

power is not similar. Fog nodes handle tasks like

managing user requests, resource allocation, and

application migration. It is also responsible for

deciding on migrations and migrating the live

applications among the fog nodes. The data that

cannot be handled at the fog layer and the data

needed for future examination may be sent to the

Cloud.The computational capacity of a fog node, 𝑓𝑖

is given in units of million instructions per second

(MIPS) because this is how MobFogSim [5]

represents the execution capacity. Fog nodes are

defined based on their resource capacities. These

resources are computational capacity, memory, and

bandwidth. 𝐶𝑖
𝑐𝑎𝑝

 is the computational capacity of a

fog node, 𝑓𝑖. 𝑀𝑖
𝑐𝑎𝑝

 is the memory capacity, and 𝐵𝑖
𝑐𝑎𝑝

is the amount of available bandwidth on the same fog

node, 𝑓𝑖. The key notations employed in the system

are listed in Table 2. The users of IoT devices are

deemed to have mobility, and these have mobility

timelines or direction and speed. User applications

are executed on suitable fog nodes. Ideally, this may

occur at the fog node connected to the user. When

mobile users

Table 2. Table of key notations

Notations Description

F Set of Fog nodes in the system

M Number of fog nodes in the system

𝑓𝑖 The ith fog node in the system

A Set of application modules in the system

N Number of application modules in the

system

𝑎𝑗 The jth application module in the system

𝐶𝑖
𝑐𝑎𝑝

 The computing capacity of the fog node, 𝑓𝑖

𝑀𝑖
𝑐𝑎𝑝

 Memory capacity of fog node, 𝑓𝑖

𝐵𝑖
𝑐𝑎𝑝

 The available bandwidth on the fog node,

𝑓𝑖

𝑃𝑖 Amount of computing required by

application module, 𝑎𝑗

𝑅𝑖 Amount of memory required by

application module, 𝑎𝑗

𝑇𝑖 Amount of bandwidth required by

application module, 𝑎𝑗

𝑥𝑖𝑗 A binary variable to determine whether

𝑎𝑗is assigned to 𝑓𝑖

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8874

change their location, the data and the application

need to be migrated promptly to maintain service

continuity and a certain Quality of Service (QoS) in

the network. The goal of the migration decision is to

choose an appropriate destination fog node amongst

multiple available fog nodes for receiving the

application modules of each application to lower the

response time of application modules. Consider a set

of IoT applications, A = {a1, a2, a3, …., an) in a

dedicated geographical region such that each user is

connected to a suitable fog node. Different fog nodes

serving users deploy the application modules as

containers. Each application is assigned to an

appropriate fog node having sufficient resource. This

research addresses the issue: How can latency

requirements be met considering the mobile user

needs for real-time applications considering the

migration of applications to a suitable fog node? It

needs to have some decision-making for the efficient

application migration to optimize the overall QoS. In

this paper, latency is considered the key QoS

parameter. The question is, for the application

described above, which fog node would be more

appropriate?The migration decision-making

problem is formulated as maximizing the objective

function shown in Equation 1. The QoS objectives

are taken into consideration when modeling the

objective function.Maximize

∑𝑚
𝑖=1 ∑𝑛

𝑗=1 (𝐶𝑡𝑖
𝑗

 − 𝐸𝑡𝑖
𝑗
) ∗ 𝑥𝑖𝑗 (1)

where 𝐶𝑡𝑖
𝑗
 is the estimated connection duration of

the user's application module, 𝑎𝑗 with the candidate

destination fog node, 𝑓𝑖 and 𝐸𝑡𝑖
𝑗
 is the estimated

execution time of the application module, 𝑎𝑗 on the

candidate destination fog node 𝑓𝑖. m and n are the

number of fog nodes and application modules in the

system, respectively, and, 𝑥𝑖𝑗 is a binary decision

variable used to determine whether 𝑎𝑗 is assigned to

𝑓𝑖 or not.

Subject to the following:

∑𝑚
𝑖=1 𝑥𝑖𝑗 × 𝑃𝑖 ≤ 𝐶𝑖

𝑐𝑎𝑝
 ∀𝑗 ∈ {1, … , 𝑛} (2)

where 𝑥𝑖𝑗 is a binary decision variable, 𝑃𝑖 is the

amount of computing required by the application

module, 𝑎𝑗, and 𝐶𝑖
𝑐𝑎𝑝

 is the computing capacity of

the fog node, 𝑓𝑖.

∑𝑚
𝑖=1 𝑥𝑖𝑗 × 𝑇𝑖 ≤ 𝐵𝑖

𝑐𝑎𝑝
 ∀𝑗 ∈ {1, … , 𝑛} (3)

where 𝑥𝑖𝑗 is a binary decision variable, 𝑇𝑖 is the

amount of bandwidth required by the application

module, 𝑎𝑗 and 𝐵𝑖
𝑐𝑎𝑝

 is the bandwidth available on

the fog node, 𝑓𝑖.

∑𝑚
𝑖=1 𝑥𝑖𝑗 × 𝑅𝑖 ≤ 𝑀𝑖

𝑐𝑎𝑝
 ∀𝑗 ∈ {1, … , 𝑛} (4)

where 𝑥𝑖𝑗 a binary decision variable, 𝑅𝑖 is the

amount of memory required by the application

module, 𝑎𝑗 is and 𝑀𝑖
𝑐𝑎𝑝

 is the memory capacity of

the fog node, 𝑓𝑖.

∑𝑚
𝑖=1 𝑥𝑖𝑗 = 1 ∀𝑗 ∈ {1, … , 𝑛} (5)

where 𝑥𝑖𝑗 is a binary decision variable.Equation 2

ensures that the computing requirement of a set of

application modules allocated to the fog node, 𝑓𝑖

should not surpass the computing capacity of the fog

node. The constraint in equation 3 specifies that the

bandwidth needed to execute a set of application

modules assigned to the fog node, 𝑓𝑖 could not

surpass the available bandwidth of the fog node.

Equation 4 indicates that the sum of the memory

requirement of a set of application modules on the

fog node, 𝑓𝑖 is not more than the fog node's memory

capacity. Finally, 𝑥𝑖𝑗 is a binary decision variable

equal to 1 if the application module, 𝑎𝑗 is allocated

to 𝑓𝑖, and 0 otherwise. It ensures that an application

is not assigned to multiple fog nodes.

4. Proposed Migration Management

Algorithm

Providing support for applications demanding

mobility is crucial for Fog environments. The users'

mobility makes it necessary to move application

modules from one fog node to another. Migration of

applications reduces the delay, consequently

ensuring that the applications' delay requirements

are satisfied. However, application migration

imposes unnecessary resource consumption; the

migration count should be reduced. In migration,

triggering the migration event and selecting the

appropriate fog node is critical. Unnecessary

activating of migration and wrong selection will lead

to network overhead. The network delay between the

fog node and the user is used to calculate the network

overhead.

Algorithm 1: Migration Management Algorithm

Input: Mobility data of the user

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8875

Output: Destination fog node

1. if Delay > Dt then // Dt denotes delay threshold

2. Populate FNList[] with fog nodes present along the user's current direction

3. Find the distance, Dij, between the current location of the user and each

 element of FNList[]

4. Update FNList[] with fog nodes having Dij < coverage radius

5. for all FNList[] do

6. Find connection time, Ct

7. Find execution time, Et

8. Pt = Ct - Et

9. end for
10. Sort FNList[] by Pt in descending order

11. for all FNList[] do

12. if Rreq < Rcap – Ralloc then // fog node has sufficient resources available

13. Select the fog node as the destination fog node

14. break

15. else
16. continue // for the rest of the fog nodes

17. end if

18. end for
19. Compute migration point, Mp based on user speed, // Algorithm 2

 application size, and network bandwidth

20. if user at migration point Mp then

21. Start migration process

22. Allocate resources at the destination fog node

23. Deallocate resources from the source fog node

24. else
25. No migration

26. end if

27. end if

Algorithm 2: Compute Migration Point

Input: user speed, dump size, bandwidth between fog nodes

Output: Migration point

1. Calculate migration time (Tm) by dividing dump size by bandwidth between fog nodes.

2. Calculate distance required to complete migration (Dm) by multiplying migration time and user speed.

3. Calculate migration point (Mp) by subtracting Dm from coverage radius.

4. Calculate distance (Du) between user's current position and its access point.

5. if Du >= Mp then // user approaches migration point

6. Start migration

7. else
8. No migration

9. end if

Since each migration event in the proposed work is

triggered only when the network latency exceeds a

predefined threshold, the likelihood of such

overheads is relatively low. This event takes place

when the IoT user moves far away from its serving

node. The source fog node runs the destination node

selection algorithm amongst the candidate fog

nodes. By maximizing the function, the approach

determines the optimal mapping of the application

modules and the target fog node. This approach

guarantees service continuity and QoS.The proposed

algorithm takes user mobility data as its input.

Whenever the source fog node (FN) finds that the

user is moving towards the coverage boundary of its

currently connected FN and is expected to leave, the

migration decision process is initiated. It populates

the FNList[] containing the list of FNs along the

user's current direction. The distance between the

user and the list of populated FNs is calculated.

Accordingly, the FNList[] is updated to keep the FNs

currently covering the IoT device. The connection

time, Ct, and execution time, Et; for all the FNs in

the list are calculated. A variable, Pt, is defined to

store the difference value of Ct and Et. The

algorithm aims to find a suitable fog node with a

maximum Pt value. The proposal sorts the candidate

FNs by Pt in descending order to check the resource

availability. Thus, the set of FNs is sequentially

checked for the availability of required resources,

and if the resources are available, the destination

node is chosen. The migration point, Mp, is computed

based on the mobility information of the user

containing user speed, application size, and network

bandwidth. The computation of Mp is explained in

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8876

algorithm 2. As soon as the user reaches the

migration point, the source fog node initiates the

migration process, and the resource allocation and

deallocate process is started. It is essential to note

that selecting the destination FN with this policy

reduces the number of possible migrations in the

system, improving the service continuity and quality

of service. Algorithm 2 summarizes the computation

of the migration point. Dynamic migration point

considers the user's speed, dump size being

migrated, and the bandwidth between fog nodes. The

dynamic migration point, Mp, also considers the

coverage radius of the connected access point. The

process is initiated if the user has approached the

computed migration point.

5. Simulation Results and Discussion

The simulation results are discussed here to assess

the effectiveness of the proposed algorithm. The

simulation assumes that processing will occur in fog

devices and, if necessary, on the Cloud. All real-time

processing will be done in fog environments using

fog resources. Fog nodes have heterogeneous

computing resources.MobFogSim toolkit, an

extension of iFogSim, has been used to simulate the

proposed algorithm. It is useful for modeling real-

world mobile applications. Distinct features of

MobFogSim facilitate different aspects of user

mobility and container migration. Resource

management policies are implemented using this

simulator. It contains a specific resource

management module that manages all resource

allocation facets in fog and cloud environments. The

input for users' mobility in the simulation is taken

from the MobFogSim mobility dataset collected

from the Luxembourg traffic [40].

5.1 Simulation Setup and Parameters

The algorithm is simulated over a 10 km x 10 km

square region in which the coverage range of Fog

nodes is assumed to be 1000 meters. The system

consists of a cloud layer, a layer of fog nodes and a

layer of IoT devices. The simulation parameters are

outlined in Table 3. The system has a dense

deployment of fog nodes. Fog nodes' processing

power is randomly chosen from [1500-6000] MIPS.

Table 3. Simulation parameters

Parameter Value

Map Scenario

Scenario map size/ Area 10 km x 10 km

Access point coverage

(radius)
1000 m

Number of fog devices 196

Density of fog devices per

access point
1:1

Fog Device Characteristics

Speed (MIPS) 1500 – 6000

RAM 8000 MB

Bandwidth 100 MBPS

Busy Power (MJ) 107.339

Idle Power (MJ) 83.433

IoT Device Characteristics

Speed (MIPS) 500

RAM 1000 MB

Bandwidth 100 MBPS

Busy Power (MJ) 87.53

Idle Power (MJ) 82.44

The user's application size is taken as 128 MB.

Several evaluation scenarios are carried out during

the simulation. Initially, 100 IoT users' applications

are submitted to the fog infrastructure in the

evaluation scenario. Afterward, the number of users'

applications increased progressively, reaching 400.

Delay, downtime, migration time, network usage,

number of migrations, and energy consumption are

measured for this evaluation scenario. The round-

trip time (RTT) and the throughput values among the

fog nodes are based on real-life use cases. The

migration is carried out using two distinct

configurations of throughput and RTT values

between fog nodes [11]. Each configuration

indicates a particular network condition that may

take place in reality. The throughput values and the

associated RTT values within a fog environment are

mentioned in Table 4. Configuration A corresponds

to good network conditions based on fixed

computers that are part of the local area network. In

comparison, the other configuration represents poor

network conditions that may exist between a

smartphone connected to the Internet via 4G and a

computer connected to the network via Ethernet. The

simulations are run with these two network

configurations.

Table 4. Network configurations among fog nodes

Configuration Throughput (Mbps) RTT (ms)

A 11.34 122.95

B 72.41 6.94

5.2 QoS Parameters

In the simulation, the following QoS parameters are

used to assess the effectiveness of the algorithms:

5.2.1 Average Delay

Delay is the time the system needs to respond to a

user's request after it has been sent. The delay

depends on four basic parameters: transmission

delay, execution delay, propagation delay, and

queuing delay. The delay between the application, 𝑎𝑖

running at the user's device and the fog device, 𝑓𝑗 is

calculated as follows:

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8877

𝐷𝑡𝑜𝑡
𝑖𝑗

= 𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+ 𝐷𝑒𝑥𝑒
𝑖𝑗

+ 𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

+ 𝐷𝑞𝑢𝑒
𝑖𝑗

 (6)

where 𝐷𝑡𝑜𝑡
𝑖𝑗

 represents the total delay, 𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 is the

transmission delay, 𝐷𝑒𝑥𝑒
𝑖𝑗

 is the execution delay,

𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

 is the propagation delay, and, 𝐷𝑞𝑢𝑒
𝑖𝑗

 is the

queuing delay between the fog node, 𝑓𝑗 and the user

application 𝑎𝑖.

The transmission delay can be expressed as follows:

𝐷𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

= 𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+ 𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 (7)

where 𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 represents the time taken to transmit

the task generated by the application, 𝑎𝑖 to the fog

node 𝑓𝑗, and 𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 refers to the time needed to

send the output of executed task to the user from the

fog node. In the equation above, 𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 is referred

to as the task size (𝑇𝑖) divided by the transmission

rate of the communication link, 𝑅𝑖𝑗 and it is

expressed as:

𝐷𝑈𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

= 𝑇𝑖/𝑅𝑖𝑗 (8)

where 𝑅𝑖𝑗 is calculated according to Shannon's

capacity formula [41]. Given the channel bandwidth

β and 𝛿𝑆𝐼𝑁𝑅 as signal-to-noise-plus-interference ratio

as follows:

𝑅𝑖𝑗 = 𝛽 × (1 + 𝛿𝑆𝐼𝑁𝑅) (9)

On completion of the task processing at the Fog, the

time consumed in sending back the result is

calculated as:

𝐷𝑊𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

= 𝑇𝑖
′/𝑅𝑖𝑗 (10)

where 𝑇𝑖
′ is the result's size incurred from the fog

node computation.

The time required for executing the user request is

called the execution delay. Execution delay for the

task k at the fog node is calculated as:

𝐷𝑒𝑥𝑒
𝑖𝑗

= 𝐼𝑚/𝐶𝑗
𝑚𝑎𝑥 (11)

where 𝐼𝑚 indicates the task's number of instructions

in terms of MI, and 𝐶𝑗
𝑚𝑎𝑥 represents the computing

power of the fog node 𝑓𝑗.

Propagation delay is the time required to transfer a

data packet via the medium from one point to

another. Propagation delay for a task running on a

fog node is determined as follows:

𝐷𝑝𝑟𝑜𝑝
𝑖𝑗

= 2 × 𝐷𝑢𝑓/𝑃𝑠 (12)

where 𝐷𝑢𝑓 represents the user's distance from the

connected fog node, and 𝑃𝑠 is the propagation speed

of the network. Queuing delay, being negligible,

may be ignored.

5.2.2 Total Migration Time

Migration time is the time required for transferring a

live running container from one fog node to another.

The total migration time is modeled using different

components: local computations times and transfer

times[11][42]. Local computation time is the result

of premigration and post-migration-related events.

The premigration event comprises the time needed

for selecting the destination fog node, namely,

premigration time (𝑇𝑝𝑚) and the time consumed in

reserving resources (𝑇𝑟𝑠𝑣) at the chosen destination.

The postmigration component comprises of

commitment stage and activation stage. During these

stages, the migration process is committed

(𝑇𝑐𝑜𝑚𝑚)and the migrated container service is

resumed at the destination node (𝑇𝑟𝑠𝑡). The other

component, transfer time, transfers a specific dump

data, 𝐷𝑠 and is network dependent. It combines two

elements, migration transfer time, 𝑇𝑡𝑟, and migration

latency, 𝑇𝑙𝑎𝑡, between the source and destination fog

nodes. The computation time is machine dependent

and is considered a constant, 𝐶𝑚𝑖𝑔. The equation of

migration time, 𝑇𝑚𝑖𝑔, is expressed as:

𝑇𝑚𝑖𝑔 = 𝑇𝑡𝑟 + 𝑇𝑙𝑎𝑡 + 𝐶𝑚𝑖𝑔 (13)

where 𝐶𝑚𝑖𝑔 = 𝑇𝑝𝑚 + 𝑇𝑟𝑠𝑣 + 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑟𝑠𝑡

The migration transfer time is formulated as follows:

𝑇𝑡𝑟 = 𝐷𝑠/𝑅𝑖𝑗 (14)

5.2.3 Total Downtime

Downtime is the time interval during which the

application is stopped to perform the migration, and

the user cannot access the service. It includes

transferring the remaining memory dump and states

and resuming the application on the destination fog

node [11][42]. In downtime, a specific amount of

memory dump (𝐷𝑠
′) must be transferred, which is the

final copy operation from the source node to the

destination node. It also includes machine-

dependent commitment time (𝑇𝑐𝑜𝑚𝑚) and container

restoration time (𝑇𝑟𝑠𝑡).

𝑇𝑑𝑡 = 𝑇𝑡𝑟
′ + 𝑇𝑙𝑎𝑡

′ + 𝐶𝑑𝑡 (15)

where the machine dependent constant part, 𝐶𝑑𝑡 =
 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑟𝑠𝑡 and transmission time, 𝑇𝑡𝑟

′ = 𝐷𝑠
′/

𝑅𝑖𝑗.

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8878

5.2.4 Total Network Usage

Network usage is the total data sent and received

during the migration process.

𝑁𝑊𝑡𝑜𝑡 = 𝐷𝑡𝑜𝑡 × 𝑇𝑙𝑎𝑡 (16)

where 𝐷𝑡𝑜𝑡 is the size of data sent during the

migration of the application modules and 𝑇𝑙𝑎𝑡 is the

network delay between source and destination fog

nodes. Total network usage is determined by

summing the network consumtion incurred during

each migration event.

5.2.5 Total Energy Consumption

Total energy consumption is the combination of two

components: the energy consumed to transmit the

task to the fog node and the energy consumed to

execute the task. Total energy consumption can be

written as follows:

𝐸𝑡𝑜𝑡
𝑖𝑗

= 𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

+ 𝐸𝑒𝑥𝑒
𝑖𝑗

 (17)

where 𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

 is the energy consumed during

transmission and 𝐸𝑒𝑥𝑒
𝑖𝑗

 is the energy consumed

during execution performed by the fog nodes in the

system.

𝐸𝑡𝑟𝑎𝑛𝑠
𝑖𝑗

= 𝑇𝑡𝑟𝑎𝑛𝑠 × 𝜆 (18)

where 𝑇𝑡𝑟𝑎𝑛𝑠 is transmission time, and 𝜆 is a

constant related to the wireless interface [43].

𝐸𝑒𝑥𝑒
𝑖𝑗

= 𝑇𝑒𝑥𝑒 × 𝜇 (19)

where 𝑇𝑒𝑥𝑒 is the execution time, and 𝜇 is a

coefficient denoting the energy consumption per

CPU cycle.

5.3 Results

The proposed algorithm is compared with the

algorithm based on the lowest latency-based strategy

[5] to demonstrate its performance. The lowest

latency-based strategy is an application migration

algorithm that efficiently utilizes the various Fog

node resources and chooses the appropriate Fog

node for application migration. The algorithm

selects the Fog node with the lowest end-to-end

latency out of all the Fog nodes available with

sufficient resources. For both algorithms, the

simulation results are anlyzed based on the number

of migrations, delay, downtime, migration time,

network usage, and energy consumption.

5.3.1 Total Number of Migrations

The number of migrations is the migration frequency

that a user of IoT device experiences along its path.

Although necessary, fewer application migrations

should be made because each migration event

consumes additional resources. The source fog

nodes have information about the real-time mobility

of departing devices (e.g., their direction and speed

when within the current fog node's range). So, the

connection and execution time of all the candidate

fog nodes with IoT devices can be estimated for the

migration decision process. As per the proposed

algorithm, the number of possible migrations

decreases by migrating the application modules to

the appropriate node. The existing policies aim to

lower the cost of migration by migrating application

modules to new fog nodes without considering the

current mobility information of devices, connection

duration, and execution time.The analysis of the

required migrations shows that the proposed

approach lowers the number of migrations because

it considers IoT devices' current mobility

information, such as speed and direction. A

reduction in the number of migrations results in less

downtime for the user’s application.Figure 2 shows

the number of migrations for configurations A and

B. Under both configurations, the proposed

approach decreases the number of migrations to

almost 18% compared to the existing approach. The

reduction in migrations indicates that the locations

where applications are placed are better suited for

the user.

5.3.2 Average Delay

After the user has moved out of the range of the fog

node currently hosting the user application, a higher

delay may be experienced in the response received

from the source fog node hosting the application. It

is caused due to the increased count of hops between

the user and the application hosted at the source fog

node. Delay is the primary QoS metric evaluated in

the proposed migration approach. In contexts where

high performance is required in real-time, it is the

factor that must be decreased.In the simulation, it is

expected that there won't be any instances in which

there are deficient fog resources to execute the

services; thus, queuing delay is considered zero.

Execution delay is the major component affecting

the end-to-end delay for the user applications.The

proposed approach outperforms the latency-based

approach by choosing the most suitable destination

fog node based on various parameters. A comparison

of the analyzed scenarios is shown in Figure 3. The

average delay is shown for different numbers of

users in the simulation. The results in the figures are

apparent indicators that implementing the proposed

migration strategy would result in higher QoS for the

end users. The proposed algorithm shows a

reduction of up to 20% under poor network

conditions and up to 17% under good network

conditions when used to address the issue of

application migration.

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8879

5.3.3 Total Downtime

The time during which service is not available

should be minimized. The proposed approach

reduces the unnecessary triggering of migration,

which decreases the total downtime during the

simulation. The results calculated by the simulator

concerning downtime are given in Figure 4. As the

number of users increases, the downtime improves

further. On average, the proposed approach results in

13% and 20% less downtime than the existing

approach.

(a) Network Configuration A (b) Network Configuration B

Figure 2. Total number of migrations under different network configurations

(a) Network Configuration A (b) Network Configuration B

Figure 3. Average delay under different network configurations

(a) Network Configuration A (b) Network Configuration B

Figure 4. Total downtime under different network configurations

0

200

400

600

800

1000

1200

1400

1 0 0 2 0 0 3 0 0 4 0 0N
U

M
B

ER
 O

F
M

İG
R

A
Tİ

O
N

S

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

500

1000

1500

2000

1 0 0 2 0 0 3 0 0 4 0 0N
U

M
B

ER
 O

F
M

İG
R

A
Tİ

O
N

S

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

100

200

300

400

500

1 0 0 2 0 0 3 0 0 4 0 0

A
V

ER
A

G
E

D
EL

A
Y

 (
 M

S)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

5

10

15

20

25

30

1 0 0 2 0 0 3 0 0 4 0 0

A
V

ER
A

G
E

D
EL

A
Y

 (
 M

S)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

5000000

10000000

15000000

20000000

25000000

1 0 0 2 0 0 3 0 0 4 0 0

D
O

W
N

Tİ
M

E
(S

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

1000000

2000000

3000000

4000000

5000000

1 0 0 2 0 0 3 0 0 4 0 0

D
O

W
N

Tİ
M

E
(S

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

19

(a) Network Configuration A (b) Network Configuration B

Figure 5. Total migration time under different network configurations

5.3.4 Total Migration Time

The time needed to transfer the application to the

destination fog node should be minimized. The total

migration time of the proposed technique is

evaluated in comparison to the existing technique.

The total migration time is shown in Figure 5.

Simulation with the proposed approach presents a

migration time of up to 13% shorter under

configuration A. In comparison, under configuration

B, the migration time is reduced by up to 19% than

the existing policy.The proposed approach reduces

the total number of migrations and, thus, lessens the

total migration time compared to the latency-based

method, which has a higher number of total

migrations.

5.3.5 Total Network Usage

Uncontrolled network use may cause congestion,

declining the application's performance. The

network usage during application migration for

different simulating approaches is portrayed in

Figure 6. The proposed algorithm works slightly

better in this situation since it decreases the number

of migrations of application modules and thus

decreases their network usage. As the number of

migrating events decreases, network usage

decreases. The proposed algorithm reduces network

usage by up to 16%.

(a) Network Configuration A (b) Network Configuration B

Figure 6. Total network usage under different network configurations

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

1 0 0 2 0 0 3 0 0 4 0 0

M
İG

R
A

Tİ
O

N
 T

İM
E

(S
)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

5000000

10000000

15000000

20000000

25000000

30000000

1 0 0 2 0 0 3 0 0 4 0 0

M
İG

R
A

Tİ
O

N
 T

İM
E

(S
)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 0 0 2 0 0 3 0 0 4 0 0

N
ET

W
O

R
K

 U
SA

G
E

(M
B

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

50000

100000

150000

200000

250000

1 0 0 2 0 0 3 0 0 4 0 0

N
ET

W
O

R
K

 U
SA

G
E

(M
B

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

19

(a) Network Configuration A (b) Network Configuration B

Figure 6. Total network usage under different network configurations

(a) Network Configuration A (b) Network Configuration B

Figure 7. Total energy consumption under different network configurations

5.3.6 Total Energy Consumption

The system's overall energy consumption rises when

more IoT users are added. Another aspect of the

system's energy usage is the frequency of

migration.The lesser the system's migration

frequency, the lesser the energy consumption. If the

fog nodes are battery-operated, the lower energy

consumption may enable a longer node life. The

energy consumption during module migration for

both policies is presented in Figure 7. The proposed

migration approach performs well in handling

energy usage by decreasing the migration frequency.

The suggested algorithm is perceived to consume

less energy by up to 7% compared to the existing

latency-based algorithm.

5.3.7 Qualitative Analysis

This section analyzes qualitative parameters inferred

from this study and relevant to migration

management. Different parameters considered are

connectivity, availability, performance, and resource

utilization [44].Connectivity: It is a state during

which a valid connection exists between various

devices in the system to execute applications. IoT

device users move out of the associated access

points' coverage area, breaking the connection

between the user and the fog resource. The

connectivity failure will result in service disruption

affecting the QoS. Maintaining connectivity without

service disruption is essential while migrating to a

suitable destination node. The connectivity

parameter is dependent on the number of migrations

in the system. Each migration event contributes to

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 0 0 2 0 0 3 0 0 4 0 0

N
ET

W
O

R
K

 U
SA

G
E

(M
B

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

50000

100000

150000

200000

250000

1 0 0 2 0 0 3 0 0 4 0 0

N
ET

W
O

R
K

 U
SA

G
E

(M
B

)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

20

40

60

80

100

120

1 0 0 2 0 0 3 0 0 4 0 0

EN
ER

G
Y

C
O

N
SU

M
P

Tİ
O

N
 (

M
J)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

0

10

20

30

40

50

60

70

80

90

100

1 0 0 2 0 0 3 0 0 4 0 0

EN
ER

G
Y

C
O

N
SU

M
P

Tİ
O

N
 (

M
J)

NUMBER OF USERS

Latency-based Algorithm Proposed Algorithm

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8882

connectivity. Appropriate selection of the

destination node in the proposed approach reduces

the number of migrations and improves

connectivity.Availability: The availability of fog

service is a way to specify the system's capability to

ensure that the requested resources are available with

the expected performance to service user task

requests. Downtime and migration time determine

the availability of the services in the fog

environments. In fog computing, the mobility of the

end user causes service migration which in turn

causes availability issues in the fog environments.

The proposed algorithm reduces the downtime and

migration time parameters and improves

availability. Performance: Lowering application

delay is important to achieving effective application

performance. As the user leaves the coverage area of

its associated fog node, the network delay increases

as more hops are needed to communicate with the

serving fog node. The proposed system has lowered

the average delay perceived by the end

users.Resource Utilization: Resource utilization is a

performance metric that gives feedback on how

efficiently various resources are allocated to the

application modules. Appropriate migration

decisions improve the utilization of resources.

Compared to the existing technique, the proposed

technique makes resource utilization more efficient

by reducing network usage and energy consumption.

It helps in avoiding congestion in the network.

Improvement in energy efficiency may consequently

allow the battery-operated fog nodes to have longer

battery life.

6. Conclusions and Future Work

The exponential growth of IoT devices makes it

challenging to maintain QoS in fog computing

environments. The migration is triggered whenever

a user of an IoT device begins to move from one

service area to another, and the associated

application needs to be migrated to a suitable fog

node. The MobFogSim tool has been used to

simulate application migration. The simulation tool

takes account of the wireless connectivity, the user's

mobility and the application migration process. The

migration decision has been proposed considering

various parameters, such as connection time between

users and fog nodes and the application execution

time. Each network parameter has been

mathematically modeled, considering the highly

mobile network. Simulations have been done with

two network configurations corresponding to good

and poor network conditions.The comparison

analysis demonstrates that the proposed migration

approach significantly improves various parameters.

Under both network configurations, the proposed

approach decreases the number of migrations to

almost 18%. A decrease of up to 20% in average

delay under poor network conditions and up to 17%

under good network conditions is achieved. The

proposed migration approach produces a downtime

20 % lower than the existing approach under both

conditions. The migration time of up to 19% shorter

is obtained under good network conditions, while,

under poor network conditions, the migration time is

reduced by up to 13% than the existing policy. The

proposed algorithm decreases network usage by up

to 16% and consumes less energy by up to 7%

compared to the existing algorithm. The simulation

results show that the proposed algorithm enhances

different QoS parameters significantly. Further,

qualitative parameters also indicate the

improvement in the experience perceived by the

users. Low latencies, low network usage and

improved energy efficiency benefit the users of the

proposed approach. The proposed technique also

keeps Fog nodes operational for a longer duration if

these are battery-operated. In contrast to the current

situation, where only IoT devices are considered

mobile, choosing an appropriate node will be more

difficult when fog nodes are also mobile. As part of

future work, this work may be extended to

investigate the mobility of fog nodes and its effect

on the QoS and the performance of the fog

environment.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1.] Afrin, M., Jin, J., Rahman, A., Gasparri, A., Tian,

Y.-C., & Kulkarni, A. (2021). Robotic edge

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8883

resource allocation for agricultural cyber-physical

system. IEEE Transactions on Network Science

and Engineering.

https://doi.org/10.1109/TNSE.2021.3103602

[2.] Alam, M., Ahmed, N., Matam, R., & Barbhuiya, F.

A. (2022). L3Fog: Fog node selection and task

offloading framework for mobile IoT. In

INFOCOM Workshops 2022 – IEEE Conference

on Computer Communications Workshops.

https://doi.org/10.1109/INFOCOMWKSHPS5475

3.2022.9798118

[3.] Anawar, M. R., Wang, S., Azam Zia, M., Jadoon,

A. K., Akram, U., & Raza, S. (2018). Fog

computing: An overview of big IoT data analytics.

Wireless Communications and Mobile Computing,

2018, Article 7157192.

https://doi.org/10.1155/2018/7157192

[4.] Bellavista, P., & Zanni, A. (2017). Feasibility of

fog computing deployment based on Docker

containerization over Raspberry Pi. In ACM

International Conference Proceeding Series.

https://doi.org/10.1145/3007748.3007777

[5.] Bi, Y., Han, G., Lin, C., Deng, Q., Guo, L., & Li,

F. (2018). Mobility support for fog computing: An

SDN approach. IEEE Communications Magazine,

56(5), 53–59.

https://doi.org/10.1109/MCOM.2018.1700908

[6.] Bittencourt, L. F., Diaz-Montes, I. J., Buyya, R.,

Rana, O. F., & Parashar, M. (2017). Mobility-

aware application scheduling in fog computing.

IEEE.

[7.] Bonomi, F., Milito, R., Natarajan, P., & Zhu, J.

(2014). Fog computing: A platform for Internet of

Things and analytics. In Studies in Computational

Intelligence (Vol. 546).

https://doi.org/10.1007/978-3-319-05029-4_7

[8.] Clark, C., et al. (2005). Live migration of virtual

machines. In Proceedings of the 2nd Conference

on Symposium on Networked Systems Design &

Implementation (NSDI’05) (pp. 273–286).

USENIX Association.

[9.] Codeca, L., Frank, R., & Engel, T. (2015).

Luxembourg SUMO Traffic (LuST) scenario: 24

hours of mobility for vehicular networking

research. In 2015 IEEE Vehicular Networking

Conference (VNC) (pp. 1–8).

https://doi.org/10.1109/VNC.2015.7385539

[10.] Cisco Public. (2015). Fog computing and the

Internet of Things: Extend the cloud to where the

things are.

https://www.cisco.com/c/dam/en_us/solutions/tre

nds/iot/docs/computing-overview.pdf

[11.] Deswal, S., & Singhrova, A. (2020). Quality of

service provisioning using multicriteria handover

strategy in overlaid networks. Malaysian Journal

of Computer Science, 33(1), 1–21.

https://doi.org/10.22452/MJCS.VOL33NO1.1

[12.] Ghanavati, S., Abawajy, J., & Izadi, D. (2022). An

energy aware task scheduling model using ant-

mating optimization in fog computing

environment. IEEE Transactions on Services

Computing, 15(4), 2007–2017.

https://doi.org/10.1109/TSC.2020.3028575

[13.] Goudarzi, M., Palaniswami, M., & Buyya, R.

(2021). A distributed application placement and

migration management techniques for edge and fog

computing environments. arXiv.

http://arxiv.org/abs/2108.02328

[14.] Guerrero, C., Lera, I., & Juiz, C. (2019). A

lightweight decentralized service placement policy

for performance optimization in fog computing.

Journal of Ambient Intelligence and Humanized

Computing, 10(6), 2435–2452.

https://doi.org/10.1007/s12652-018-0914-0

[15.] Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya,

R. (2017). iFogSim: A toolkit for modeling and

simulation of resource management techniques in

the Internet of Things, edge and fog computing

environments. Software: Practice and Experience,

47(9), 1275–1296.

https://doi.org/10.1002/spe.2509

[16.] Islam, M., Razzaque, A., & Islam, J. (2016). A

genetic algorithm for virtual machine migration in

heterogeneous mobile cloud computing. In

Proceedings of the 2016 International Conference

on Networking Systems and Security (NSysS).

https://doi.org/10.1109/NSysS.2016.7400696

[17.] Kaur, K., Dhand, T., Kumar, N., & Zeadally, S.

(2017). Container-as-a-service at the edge: Trade-

off between energy efficiency and service

availability at fog nano data centers. IEEE Wireless

Communications, 24(3).

https://doi.org/10.1109/MWC.2017.1600427

[18.] Liao, S., Li, J., Wu, J., Yang, W., & Guan, Z.

(2019). Fog-enabled vehicle as a service for

computing geographical migration in smart cities.

IEEE Access, 7, 2890298.

https://doi.org/10.1109/ACCESS.2018.2890298

[19.] Liu, C., Wang, J., Zhou, L., & Rezaeipanah, A.

(2022). Solving the multi-objective problem of IoT

service placement in fog computing using Cuckoo

search algorithm. Neural Processing Letters,

54(3), 1823–1854. https://doi.org/10.1007/s11063-

021-10708-2

[20.] Lopes, M. M., Higashino, W. A., Capretz, M. A.

M., & Bittencourt, L. F. (2017). MyiFogSim. In

Companion Proceedings of the 10th International

Conference on Utility and Cloud Computing (UCC

’17 Companion) (pp. 47–52).

https://doi.org/10.1145/3147234.3148101

[21.] Machen, A., Wang, S., Leung, K. K., Ko, B. J., &

Salonidis, T. (2018). Live service migration in

mobile edge clouds. IEEE Wireless

Communications, 25(1), 140–147.

https://doi.org/10.1109/MWC.2017.1700011

[22.] Mahmud, R., Pallewatta, S., Goudarzi, M., &

Buyya, R. (2022). iFogSim2: An extended

iFogSim simulator for mobility, clustering, and

microservice management in edge and fog

computing environments. Journal of Systems and

Software, 190, 111351.

https://doi.org/10.1016/j.jss.2022.111351

https://doi.org/10.1109/TNSE.2021.3103602
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798118
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798118
https://doi.org/10.1155/2018/7157192
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1109/MCOM.2018.1700908
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1109/VNC.2015.7385539
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://doi.org/10.22452/MJCS.VOL33NO1.1
https://doi.org/10.1109/TSC.2020.3028575
http://arxiv.org/abs/2108.02328
https://doi.org/10.1007/s12652-018-0914-0
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/NSysS.2016.7400696
https://doi.org/10.1109/MWC.2017.1600427
https://doi.org/10.1109/ACCESS.2018.2890298
https://doi.org/10.1007/s11063-021-10708-2
https://doi.org/10.1007/s11063-021-10708-2
https://doi.org/10.1145/3147234.3148101
https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1016/j.jss.2022.111351

Saravjit Chahal1*, Anita Singhrova / IJCESEN 11-4(2025)8868-8884

8884

[23.] Mahmud, R., Ramamohanarao, K., & Buyya, R.

(2018). Latency-aware application module

management for fog computing environments.

ACM Transactions on Internet Technology, 19(1),

1–21. https://doi.org/10.1145/3186592

[24.] Mahmud, R., Srirama, S. N., Ramamohanarao, K.,

& Buyya, R. (2019). QoE-aware placement of

applications in fog computing environments.

Journal of Parallel and Distributed Computing,

132, 62–71.

https://doi.org/10.1016/j.jpdc.2018.03.004

[25.] Martin, J. P., Kandasamy, A., & Chandrasekaran,

K. (2018). Exploring the support for high

performance applications in the container runtime

environment. Human-centric Computing and

Information Sciences, 8(1).

https://doi.org/10.1186/s13673-017-0124-3

[26.] Mishra, M., Roy, S. K., Mukherjee, A., De, D.,

Ghosh, S. K., & Buyya, R. (2020). An energy-

aware multi-sensor geo-fog paradigm for mission

critical applications. Journal of Ambient

Intelligence and Humanized Computing, 11(8).

https://doi.org/10.1007/s12652-019-01481-1

[27.] Naha, R. K., & Garg, S. (2021). Multi-criteria-

based dynamic user behaviour-aware resource

allocation in fog computing. ACM Transactions on

Internet of Things, 2(1), 1–31.

https://doi.org/10.1145/3423332

[28.] Naha, R. K., et al. (2018). Fog computing: Survey

of trends, architectures, requirements, and research

directions. IEEE Access, 6, 47980–48009.

https://doi.org/10.1109/ACCESS.2018.2866491

[29.] Paul, J., Kandasamy, M. A., & Martin, J. P. (2020).

Mobility aware autonomic approach for migration

of application modules in fog computing

environment. Journal of Ambient Intelligence and

Humanized Computing.

https://doi.org/10.1007/s12652-020-01854-x

[30.] Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G.,

Longo, F., & Puliafito, A. (2019). Container

migration in the fog: A performance evaluation.

Sensors, 19(7), 1488.

https://doi.org/10.3390/s19071488

[31.] Puliafito, C., et al. (2019). MobFogSim:

Simulation of mobility and migration for fog

computing. Simulation Modelling Practice and

Theory, 94, 102062.

https://doi.org/10.1016/j.simpat.2019.102062

[32.] Sarrafzade, N., Entezari-Maleki, R., & Sousa, L.

(2022). A genetic-based approach for service

placement in fog computing. Journal of

Supercomputing, 78(8), 10854–10875.

https://doi.org/10.1007/s11227-021-04254-w

[33.] Satyanarayanan, M. (2017). The emergence of

edge computing. Computer, 50(1).

https://doi.org/10.1109/MC.2017.9

[34.] Shannon, C. E. (1948). A mathematical theory of

communication. Bell System Technical Journal,

27(3), 379–423. https://doi.org/10.1002/j.1538-

7305.1948.tb01338.x

[35.] Shckhar, S., Chhokra, A., Sun, H., Gokhale, A.,

Dubey, A., & Koutsoukos, X. (2019). URMILA: A

performance and mobility-aware fog/edge resource

management middleware. In Proceedings of the

2019 IEEE 22nd International Symposium on

Real-Time Distributed Computing (ISORC).

https://doi.org/10.1109/ISORC.2019.00033

[36.] Shi, W., & Dustdar, S. (2016). The promise of edge

computing. Computer, 49(5).

https://doi.org/10.1109/MC.2016.145

[37.] Statista. Vailshery, L. S. (2021). Number of IoT

connected devices worldwide 2019–2021, with

forecasts to 2030.

https://www.statista.com/statistics/1183457/iot-

connected-devices-worldwide/

[38.] Wang, D., Liu, Z., Wang, X., & Lan, Y. (2019).

Mobility-aware task offloading and migration

schemes in fog computing networks. IEEE Access,

7, 43356–43368.

https://doi.org/10.1109/ACCESS.2019.2908263

[39.] Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer,

M., & Leung, K. K. (2017). Dynamic service

placement for mobile micro-clouds with predicted

future costs. IEEE Transactions on Parallel and

Distributed Systems, 28(4).

https://doi.org/10.1109/TPDS.2016.2604814

[40.] Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A.,

& Shen, X. (2021). Delay-aware microservice

coordination in mobile edge computing: A

reinforcement learning approach. IEEE

Transactions on Mobile Computing, 20(3).

https://doi.org/10.1109/TMC.2019.2957804

[41.] Yi, S., Li, C., & Li, Q. (2015). A survey of fog

computing: Concepts, applications, and issues. In

MOBIDATA 2015: Workshop on Mobile Big Data.

https://doi.org/10.1145/2757384.2757397

[42.] Zhao, D., Zou, Q., & Boshkani Zadeh, M. (2022).

A QoS-aware IoT service placement mechanism in

fog computing based on open-source development

model. Journal of Grid Computing, 20(2).

https://doi.org/10.1007/s10723-022-09604-3

[43.] Zhao, X., Liu, J., Ji, B., & Wang, L. (2021). Service

migration policy optimization considering user

mobility for e-healthcare applications. Journal of

Healthcare Engineering, 2021, Article 9922876.

https://doi.org/10.1155/2021/9922876

[44.] Zhu, C., Pastor, G., Xiao, Y., Li, Y., & Ylä-Jääski,

A. (2018). Fog following me: Latency and quality

balanced task allocation in vehicular fog

computing. In 2018 IEEE SECON.

https://doi.org/10.1109/SAHCN.2018.8397129

https://doi.org/10.1145/3186592
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1186/s13673-017-0124-3
https://doi.org/10.1007/s12652-019-01481-1
https://doi.org/10.1145/3423332
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1007/s12652-020-01854-x
https://doi.org/10.3390/s19071488
https://doi.org/10.1016/j.simpat.2019.102062
https://doi.org/10.1007/s11227-021-04254-w
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ISORC.2019.00033
https://doi.org/10.1109/MC.2016.145
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1109/ACCESS.2019.2908263
https://doi.org/10.1109/TMC.2019.2957804
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1007/s10723-022-09604-3
https://doi.org/10.1155/2021/9922876
https://doi.org/10.1109/SAHCN.2018.8397129

