Copyright © IJCESEN

International Journal of Computational and Experimental

MCESEN

Science and Engineering B (e
(IJCESEN) -
Vol. 11-No.4 (2025) pp. 8868-8884 —
https://www.ijcesen.com -

|§SN: 2149-9144

Research Article

A mobility-aware service migration technique in fog computing environments

Saravjit Chahal®", Anita Singhrova?®

1Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology,

Murthal, India

* Corresponding Author Email: saravjitchahal.schcse@dcrustm.org - ORCID: 0000-0002-5247-6650

2Department of Computer Science and Engineering, Deenbandhu Chhotu Ram University of Science and Technology,

Murthal, India

Email: anitasinghrova.cse@dcrustm.org - ORCID: 0000-0002-5247-7770

Article Info:

DOI: 10.22399/ijcesen.4319
Received: 10 April 2025
Revised: 28 April 2025
Accepted: 01 May 2025

Keywords

Fog computing
Migration

Mobility

Internet of Things
Real-time application

Abstract:

Fog computing allows the utilization of resources near the Internet of Things (loT)
devices to serve various latency-sensitive applications. However, the mobility of users of
10T devices necessitates the migration of applications to maintain service continuity and
quality of service (QoS). This study proposes a hew migration technique that minimizes
delay, network usage and energy consumption in the Fog network, providing a real-time
user experience. An objective function-based decision-making approach is used to
migrate the applications efficiently, guaranteeing service continuity and QoS. The
proposed technique chose an appropriate fog node with sufficient resources by evaluating
parameters like connection duration between the fog nodes and the users, resource
availability, and application execution time at the fog nodes. The results indicate that the
proposed approach has a remarkable improvement of up to 20% in average delay, 16%
in network usage and 7% in energy consumption compared to the conventional approach.
The number of migrations is also lowered by 18%, which is necessary to efficiently utilize
limited fog node resources as each migration event consumes additional resources. The
benefits of the proposed approach for the users are low latencies, low network usage,
improved energy efficiency and better user experience.

1. Introduction

routers, RoadSide Units (RSUs), smartphones,

A well-connected modern world is approaching
where the Internet will be accessible to everything
and everyone. According to a research report on
Statista, there will be over 29 billion Internet of
Things (IoT) connected devices by 2030 [1]. The
sudden increase in 10T devices and internet traffic
could lead to unforeseen disruptions if data
processing isn't prioritized near the users. To address
this, Fog computing has emerged as a solution to
handle data processing closer to 10T devices. Due to
their requirement to be compact, light, and battery-
operated, these devices often have constrained
hardware capabilities. Hence, they don't always
make sense to host resource-intensive services
directly. By positioning computing resources and
services near the data source, fog computing extends
and supplements the cloud, making it well-suited for
supporting the 10T. Fog computing can involve any
devices with computing power, including switches,

laptops, tablets and stationary equipment [2] [3].
However, fog computing is not restricted to 10T; it
can also facilitate content delivery and support
various other applications.Failing to finish the tasks
for an emergency system application on time would
lead to monetary losses. It could jeopardize human
safety in scenarios like autonomous vehicles,
emergency fire response, and emergency vehicle
management. This cutting-edge computing
paradigm encompasses all computing resources of
the proximate network. It allows smart city, smart
health and other loT-driven Systems to execute the
required applications close to the data source [4].
Fog proximity is the key enabler of many benefits
that are not attainable when depending on cloud-
based solutions. However, while Cloud is
centralized in geographically remote data centers,
Fog is deployed in proximity to loT devices in a
distributed way. Proximity in the topological
distance is assumed, which is Which is determined

https://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:saravjitchahal.schcse@dcrustm.org
mailto:anitasinghrova.cse@dcrustm.org

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

by counting the number of hops between the end user
and the host [5]. The first and foremost of these
benefits is a short communication distance that
provides low latency between the host and the user.
Other benefits of the close proximity of the Fog for
the users are low bandwidth consumption, low
latencies, better security and privacy, and
uninterrupted services that remain available even
when network connectivity to the Cloud is unreliable
or completely unavailable [6]-[8].In the event of
device mobility, maintaining low latency can be
achieved by migrating the fog application across fog
nodes along the device path. For a number of fog-
based use cases, such as Virtual Reality and
Augmented Reality applications performing video
analytics, mobility support is crucial.Migration of
applications across fog nodes is a significant and
challenging task, resulting in additional overheads.
When 10T users move around in fog environments,
migration mechanisms determine when, how, and
where applications can migrate.Containers, a
lightweight virtualization technology, may be
preferred over virtual machines to host the
applications to guarantee minimal network overhead
[9]. The data and applications pertaining to users are
encapsulated in the containers [10]. The new
developments in fog computing confirm that
containers perform superior to conventional virtual
machines [11].The following factors affect service
migration operations: the loT device's position,
direction and speed, and finding an appropriate node
to transfer the application. Based on these
parameters, the Fog environment's performance
metrics, such as network delay, bandwidth
consumption, etc., can also vary significantly [12].
The migration process comprises moving data and
the associated application content encapsulated in
the containers. The methods that keep migrating the
applications along the path of users result in many
undesirable migrations. Every migration request
invites an overhead in the fog environment with
limited fog resources. Thus, the migration is
performed when it is impossible to prolong the
execution further. The application may remain on
the same Fog node if there are no feasible options to
migrate the application.In light of the above, a
migration technique is proposed to fulfill the needs
of real-time mobile 10T applications. In summary,
the contributions of this study are as follows:

1. A mobility-aware application migration
algorithm is proposed to decide where to
migrate applications along with the
migration point.

2. The effectiveness of the proposed algorithm
is validated through extensive simulations
utilizing mobility traces. A comparison with
an existing well-established algorithm
reveals that the proposed method
significantly improves delay, network usage
and energy consumption.

The rest of the paper is structured as follows. Section
2 presents the relevant existing work of migration
management techniques in fog computing. Section 3
describes the proposed system model and problem
formulation, followed by the proposed algorithm in
section 4. Section 5 discusses simulation results of
the proposed approach and compares it with
traditional techniques. Finally, section 6 summarizes
the article and outlines potential future research
directions.

2. Related Work

This section discusses some conceptual and
fundamental work in related areas.The authors of
[13] proposed a hierarchical Fog computing
architecture. The data generated by the end devices
was forwarded to the fog nodes and not the Cloud.
The end devices or the users demanding the services
might be mobile in nature. One of the essential
characteristics of the fog system was having mobility
support. Preserving continuity in providing service
at different locations was a tough job. The study in
[14] proposed a model for migrating virtual
machines aimed at Mobile Cloud Computing
environments. Their technique was built on the
cloudlet load and user mobility parameters. A
genetic algorithm was used to find a suitable server
and reduce the frequency of migrations.The authors
emphasized the necessity of mobility-aware
scheduling and put forward a solution based on the
edge ward placement method for Fog computing
environments in paper [15]. They highlighted the
important indicators to take into account in the Fog
environment supporting user mobility.

Table 1. Study of various papers discussed

Parameters

Main Idea considered

Reference

Achievement Weakness

Load balancing for
heterogeneous mobile cloud
computing using Genetic
algorithm-based solution

[14]

number of migrations,
task execution time

VMs consolidation
not considered

number of migrations
reduced, Avg. task execution
time reduced

8869

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

Resource management using

Latency, execution cost,

Latency reduced

User mobility not

[15] various scheduling strategies in | network usage considered
fog computing
Resource management in Fog Latency, cost, network Latency reduced, network User mobility and
[16] and Edge computing usage congestion reduced, energy container migration
environments through various consumption improved not supported
placement policies Cost decreased
ILP based resource allocation Latency, QoS Latency reduced, QoS Network usage and
[17] in fog environment improved energy consumption
not considered
Task scheduling in fog nano Energy consumption, Energy consumption Latency not
[18] data centres utilizing container | SLA violations, reduced, SLA violations considered
virtualization technology response time, reduced
makespan
Resource allocation for mobile | Cost Minimized average cost Heterogeneous
[19] micro-clouds based on resources in cloud
polynomial cost functions not considered
Route optimization in mobile Latency, handover Latency reduced, Energy consumption
120] fog computing performance, data handover performance and network usage
communication, system | improved, system cost not considered
cost reduced
Resource allocation in Mobile migration time, overall migration time Performance under
Edge Computing environments. | downtime reduced, downtime reduced large-scale
[21] networked MEC
systems not
considered
Resource optimization in Latency, application Latency improved Real-world
heterogeneous fog computing placement time, service implementation not
[22] environments using linear delivery latency considered
programming
Application deployment in fog | Cost, Packet loss rate, Latency and resource Performance in real
[23] computing using linear network usage, quality consumption reduced, Fog environment not
optimization and Fuzzy logic of service network usage reduced, considered
service quality improved
Service placement in fog Latency, hop count, Improvement in network Degradation of
computing network usage usage and latency service for less
[24] requested
applications
observed.
Resource utilization using received signal strength, | ping pong rate reduced, Real-world
[25] Analytic Hierarchy process user velocity, data rate, | throughput improved, implementation not
(AHP) signalling cost packet delay reduced, considered
signalling cost reduced
Mixed Integer Linear Latency, quality loss Latency reduced Not feasible for
[26] Programming (MILP) task and Fog capacity large-scale
allocation for vehicular Fog deployment of Fog
computing nodes and users
Load balancing in vehicular Resource utilization Resource utilization Load balancing not
[27] Fog computing environment improved achieved under
utilizing the Simulated limited computing
Annealing Algorithm (SAA) resources
Resource management in Latency, execution Low latency achieved, Context of multiple
Fog/Edge computing time, received signal SLO violations minimized competing loT
[28] strength applications not
response time, SLO considered
violations
Task offloading in Fog Migration cost and Reduced migration time and | Migration cost
[29] environment energy cost, sojourn enhanced revenue for user remains high
using Gini Coefficient and GA | time, equipment
Resource allocation in Fog Latency, resource Latency improved, energy Collaboration
computing using heuristic availability, throughput, | consumption decreased between edge and fog
[30] search energy consumption, devices across

jitter

different regions was
not taken into
account

8870

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

GA based resource allocation Loop delay, network Latency improved, network Mobility prediction
[31] in Fog computing delay, execution cost, usage reduced, execution technique was not
network usage, cost reduced used
execution cost
Task offloading using machine | Network usage, Latency reduced, energy Inefficient for large-
[32] learning in fog environment migration time, number | consumption reduced, scale systems
of migrations, number network usage decreased
of handoffs
Resource allocation in mobile Migration delay, Latency improved, migration | Load balancing
edge computing leveraging computation delay, cost reduced among microservices
[33] Reinforcement learning and communication delay, is not considered
Markov decision process migration cost
(MDP)
Resource optimization for E- Resource usage cost, Total cost reduced, achieved | Not suitable for
[34] healthcare applications using migration cost, maximum expected reward large-scale
Markov decision process reconfiguration cost networked MEC
(MDP) systems.
Resource allocation in fog Latency, processing Latency minimized, Failure of fog nodes
[35] computing time, SLA violations processing time reduced, not studied
SLA violations reduced
Application deployment in Response time, energy Average execution cost Energy consumption
[36] Edge and Fog Computing consumption, total reduced, cumulative of servers and
Environments using weighted Migration cost, number | migration cost reduced monetary cost not
cost model of interrupted tasks considered.
loT Service Placement in Fog Latency, energy Latency reduced, resource Reliability and safety
Computing based on Open- consumption, service usage improved, service of interactions not
[37] source Development Model cost, Fog resource acceptance rate improved considered
Algorithm (ODMA) utilization
metaheuristic
Service Placement for Latency, response time, | Latency reduced, energy Reliability and fault
utilization of fog resources energy consumption, consumption decreased, fog tolerance not
[38] using evolutionary algorithm SLA violation, utilization improved considered
based on the cuckoo search communication cost,
computation cost, Fog
utilization
Service deployment in fog- Network utilization, improvement in latency, Dynamic
[39] cloud environments based on latency, energy network utilization reduced, requirements of 10T
genetic optimization efficiency, execution energy efficiency enhanced, applications not
cost cost reduced considered

User mobility patterns and application priority levels
were accounted for in making effective scheduling
decisions. Though, user mobility was not considered
in the existing scheduling approaches. The authors
focused on placing 10T applications while taking
into account their target location [16]. The
possibility of clustering was not taken into account
in the proposal. The application modules were
therefore sent to the next hierarchical tier for
potential migration and placement whenever the
existing server was unable to serve the application
modules.The study in [17] extended the iFogSim
simulator to add mobility support. The authors
designed migration strategies for mobile users. The
container virtualization technology improved
performance compared to conventional virtual
machines [18]. The study in [19] offered a technique
for deploying a single service instance for each l1oT
user on a distant server when several 10T users were
present in the system. To identify optimal and nearly
optimal solutions, they introduced offline and online
approximation techniques for the Cloud. The study in
[20] proposed mobility-supported Fog computing

8871

architecture. The Software-defined networks-based
architecture was proposed to decouple mobility
control and data forwarding. A framework was
designed to facilitate mobility in Mobile Edge
Computing environments (MEC) [21]. The authors
provided the service without interruption and
migrated services across MECs. Their approach was
aimed at lowering downtime and overall migration
time. Many researchers devised techniques for the
initial placement of services in heterogeneous
contexts. Some of these methods were designed to
lessen the delay in service delivery [22] and increase
users' quality of experience [23]. The placement
solutions were either centralized or decentralized
[24].The study in [25] proposed a handover strategy
in wireless communication technologies for mobile
users. The authors presented a multi-criteria
handover strategy for mobile users based on various
parameters to avoid unnecessary handovers and
improve the utilization of resources. The proposed
strategy significantly brought improvements in
various QoS parameters. The authors of [26] and
[27] studied vehicular Fog computing environments.

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

The study in [26] aimed to optimize vehicular Fog
computing-based task allocation. Various
constraints like quality loss, latency, and Fog
capacity were considered for modeling optimization
of the task allocation problem. However, the
technique was not viable for scenarios involving a
vast number of fog nodes and users in the system. In
contrast, a fog-enabled mobility-based migration
framework was proposed for smart cities in [27]. The
load balancing was achieved among fog nodes
according to a resource pricing-based incentive
strategy. Limited resource capacity confined the
extent of load balance attained.The placement
strategies for loT applications with many
interconnected modules that take into account
historical mobility data were suggested in [28]. The
authors presented a cloud-centric method termed
URMILA, whereby the placement of all loT
applications was decided by a centralized controller
to meet their latency needs. Also, there was no
migration mechanism to transfer the applications to
new servers if the user had moved outside the range
of its existing server, which resulted in a
considerable cost to the user. The authors of [29]
proposed a mobility-aware strategy for offloading
and computational resource allocation that
significantly reduced migration times. The main goal
of the work was to lessen the number of migrations
while maximizing offloading benefits for loT
users.The new advances in the Internet of
Everything (IoE) demanded real-time execution of
service requests [30]. The fog nodes closer to the end
user enabled real-time response, fulfilling the
requirements of real-time applications. An
autonomic hybrid framework was proposed to
perform container migration [31] while satisfying
the QoS requirements of the user. A mathematical
model was developed to predetermine the target
node for migrating the user module. However, more
precise techniques, such as mobility prediction
modes, were not utilized to anticipate the user's
future location. The authors of [32] focused on loT
scenarios and proposed a learning-based fog node
selection scheme demanding extremely low latency.
They introduced a mapping function to offload the
task to a suitable fog node. The proposed system
predicted the location of 10T devices using machine
learning-based methods.The authors of [33]
introduced edge-centric application deployment and
mobility management techniques when there were
many loT users in the system. The authors' primary
objective was to minimize service delay. The work
in [34] analyzed that migration incurred
communication and computation overheads. Thus,
the decision on migration depended on multiple
factors, including user mobility, and the availability
of resources in heterogeneous edge clouds.The work

8872

in [35] proposed a resource allocation technique
based on multiple criteria to choose a suitable
resource for the execution of a real-time task in fog
environments. The work considered dynamic user
behavior after application submission but did not
study the failure of fog devices. The study in [36]
proposed a weighted cost model for reducing device
energy consumption and response time. The authors
also proposed a clustering method that allowed for
the cooperative execution of tasks and provided
improved services for the applications. A migration
management technique that reduced the migration
cost of loT applications was also presented. The
recent studies in [37] and [38] aimed to optimize
service placement policy for efficient resource
utilization and improved QoS. The authors of [37]
proposed an autonomous method for service
placement based on a conceptual framework
presented in the same study. While the authors of
[38] have prioritized the requests for optimal service
placement to enhance the performance concerning
various metrics, considering the heterogeneity of
resources and QoS deadlines of applications. The
authors of [39] have focused on reducing the
network usage and application delay by proposing a
genetic optimization-based module placement
algorithm. They have introduced a penalty-based
method to reduce the delay. In the proposed
algorithm, authors considered different factors,
including communication delay between modules
and their hierarchy level in the network. The
discussion above makes it clear that the authors have
strived to reduce the delay experienced by the users,
energy consumption, and network usage in the Fog
environments. The authors have put effort into
reaching these goals, even though they have
considered only fog nodes resources characteristics
and worked towards assigning the nearest fog node
for the migration of applications. Each migration
event consumes additional Fog resources; thus, the
migration count should be lowered. The authors
have not worked significantly in this direction.
These methods keep migrating the applications,
resulting in many undesirable migrations inviting
overheads in the Fog environment. Fog nodes have
limited processing capability; therefore, efficient
utilization of available resources is essential to
enhance user experience.Moreover, the rise in the
number of 10T devices is exponential and will
require abundant resources. It is evident that no one
has considered the Fog environments' distinctive
characteristics, such as execution time, mobility
direction, and contact duration of 10T users with Fog
nodes altogether. In this research, in addition to the
above factors, resource requirements and execution
time have been considered in the proposed strategy
to address the migration issue in the Fog

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

environments. An effective approach for migrating
the applications without producing overhead in the
network has been proposed. This is achieved
primarily by reducing the number of migrations in
the system.

3. System Model and Problem Formulation

A three-tier hierarchically organized architecture
consisting of Cloud, Fog, and loT devices are

Fog

Mobile
User

considered, as shown in the mobility scenario
depicted in Figure 1. The topmost layer comprises of
Cloud and is used for processing and storing the
data. The fog layer is located near the user and is
assumed to have several fog nodes. This layer
provides services to mobile users and is responsible
for executing the applications. The fog nodes use a
lightweight container virtualization technology to
deploy application modules. The Fog scenario is
considered to deliver services in real-time for users
whose location is dynamic.

Figure 1. Mobility scenario: service migration in Fog environment

A set of fog nodes F = {f;, fp, f5
considered where fog nodes are interconnected via
wired or wireless links. It is assumed that fog nodes
have heterogeneous resources from a hardware
architecture point of view; thus, computational
power is not similar. Fog nodes handle tasks like
managing user requests, resource allocation, and
application migration. It is also responsible for
deciding on migrations and migrating the live
applications among the fog nodes. The data that
cannot be handled at the fog layer and the data
needed for future examination may be sent to the
Cloud.The computational capacity of a fog node, f;
is given in units of million instructions per second
(MIPS) because this is how MobFogSim [5]
represents the execution capacity. Fog nodes are
defined based on their resource capacities. These
resources are computational capacity, memory, and
bandwidth. ¢;“? is the computational capacity of a

fog node, f;. M; " is the memory capacity, and B; “"
is the amount of available bandwidth on the same fog
node, f;. The key notations employed in the system
are listed in Table 2. The users of 10T devices are

deemed to have mobility, and these have mobility

8873

timelines or direction and speed. User applications
are executed on suitable fog nodes. Ideally, this may
occur at the fog node connected to the user. When
mobile users

Table 2. Table of key notations

Notations | Description
F Set of Fog nodes in the system
M Number of fog nodes in the system
f; The i*" fog node in the system
A Set of application modules in the system
N Number of application modules in the
system
a; The jt" application module in the system
cr The computing capacity of the fog node, f;
M Memory capacity of fog node, f;
B The available bandwidth on the fog node,
fi
P; Amount of computing required by
application module, a;
R; Amount of memory required by
application module, a;
T; Amount of bandwidth required by
application module, a;
Xij A binary variable to determine whether
a;is assigned to f;

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

change their location, the data and the application
need to be migrated promptly to maintain service
continuity and a certain Quality of Service (QoS) in
the network. The goal of the migration decision is to
choose an appropriate destination fog node amongst
multiple available fog nodes for receiving the
application modules of each application to lower the
response time of application modules. Consider a set
of loT applications, A = {ai, az, as,, an) in a
dedicated geographical region such that each user is
connected to a suitable fog node. Different fog nodes
serving users deploy the application modules as
containers. Each application is assigned to an
appropriate fog node having sufficient resource. This
research addresses the issue: How can latency
requirements be met considering the mobile user
needs for real-time applications considering the
migration of applications to a suitable fog node? It
needs to have some decision-making for the efficient
application migration to optimize the overall QoS. In
this paper, latency is considered the key QoS
parameter. The question is, for the application
described above, which fog node would be more
appropriate?The migration decision-making
problem is formulated as maximizing the objective
function shown in Equation 1. The QoS objectives
are taken into consideration when modeling the
objective function.Maximize

m
i=1

o (cd = Et))* xy @)
where Ct{ is the estimated connection duration of

the user's application module, a; with the candidate

destination fog node, f; and Et{ is the estimated
execution time of the application module, a; on the
candidate destination fog node f;. m and n are the
number of fog nodes and application modules in the
system, respectively, and, x;; is a binary decision
variable used to determine whether q; is assigned to
fi or not.

Subject to the following:

m
i=1

x;X P < G vj e {1,..,n} (2

where x;; is a binary decision variable, P; is the
amount of computing required by the application
module, a;, and ;" is the computing capacity of
the fog node, f;.

m cap
i=1 Xy X T;< B

vji € {1,..,n} (3

Algorithm 1: Migration Management Algorithm

where x;; is a binary decision variable, T; is the
amount of bandwidth required by the application
module, a; and B;*” is the bandwidth available on
the fog node, f;.

m

moxi X R < M vj e {1,..,n} (4

where x;; a binary decision variable, R; is the
amount of memory required by the application
module, a; is and M;“” is the memory capacity of
the fog node, f;.

m
i=1

xij =1 V] € {1,...,Tl} (5)

where x;; is a binary decision variable.Equation 2
ensures that the computing requirement of a set of
application modules allocated to the fog node, f;
should not surpass the computing capacity of the fog
node. The constraint in equation 3 specifies that the
bandwidth needed to execute a set of application
modules assigned to the fog node, f; could not
surpass the available bandwidth of the fog node.
Equation 4 indicates that the sum of the memory
requirement of a set of application modules on the
fog node, f; is not more than the fog node's memory
capacity. Finally, x;; is a binary decision variable
equal to 1 if the application module, a; is allocated
to f;, and O otherwise. It ensures that an application
is not assigned to multiple fog nodes.

4. Proposed Migration Management
Algorithm

Providing support for applications demanding
mobility is crucial for Fog environments. The users'
mobility makes it necessary to move application
modules from one fog node to another. Migration of
applications reduces the delay, consequently
ensuring that the applications' delay requirements
are satisfied. However, application migration
imposes unnecessary resource consumption; the
migration count should be reduced. In migration,
triggering the migration event and selecting the
appropriate fog node is critical. Unnecessary
activating of migration and wrong selection will lead
to network overhead. The network delay between the
fog node and the user is used to calculate the network
overhead.

Input: Mobility data of the user

8874

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

Output: Destination fog node

1. if Delay > Dt then // Dt denotes delay threshold

2. Populate FNList[] with fog nodes present along the user's current direction

3. Find the distance, Dij, between the current location of the user and each
element of FNList[]

4. Update FNList[] with fog nodes having Dij < coverage radius

5. for all FNList[] do

6. Find connection time, Ct

7. Find execution time, Et

8. Pt=Ct- Et

9. end for

10. Sort FNList[] by Pt in descending order

11. for all FNList[] do

12. if Rreq < Reap — Railoc then // fog node has sufficient resources available

13. Select the fog node as the destination fog node

14. break

15. else

16. continue // for the rest of the fog nodes

17. end if

18. end for

19. Compute migration point, Mp based on user speed, // Algorithm 2

application size, and network bandwidth

20. if user at migration point Mp then

21. Start migration process

22. Allocate resources at the destination fog node

23. Deallocate resources from the source fog node

24. else

25. No migration

26. end if

27. endif

Algorithm 2: Compute Migration Point

Input: user speed, dump size, bandwidth between fog nodes

Output: Migration point

Start migration
else
No migration

1
2
3
4,
5.
6
7
8
9. endif

Calculate migration time (Tm) by dividing dump size by bandwidth between fog nodes.

Calculate distance required to complete migration (Dm) by multiplying migration time and user speed.
Calculate migration point (Mp) by subtracting Dm from coverage radius.

Calculate distance (Du) between user's current position and its access point.

if Du >= Mp then // user approaches migration point

Since each migration event in the proposed work is
triggered only when the network latency exceeds a
predefined threshold, the likelihood of such
overheads is relatively low. This event takes place
when the 10T user moves far away from its serving
node. The source fog node runs the destination node
selection algorithm amongst the candidate fog
nodes. By maximizing the function, the approach
determines the optimal mapping of the application
modules and the target fog node. This approach
guarantees service continuity and QoS.The proposed
algorithm takes user mobility data as its input.
Whenever the source fog node (FN) finds that the
user is moving towards the coverage boundary of its
currently connected FN and is expected to leave, the
migration decision process is initiated. It populates
the FNList[] containing the list of FNs along the

8875

user's current direction. The distance between the
user and the list of populated FNs is calculated.
Accordingly, the FNList[] is updated to keep the FNs
currently covering the 10T device. The connection
time, Ct, and execution time, Et; for all the FNs in
the list are calculated. A variable, Pt, is defined to
store the difference value of Ct and Et. The
algorithm aims to find a suitable fog node with a
maximum Pt value. The proposal sorts the candidate
FNs by Pt in descending order to check the resource
availability. Thus, the set of FNs is sequentially
checked for the availability of required resources,
and if the resources are available, the destination
node is chosen. The migration point, My, is computed
based on the mobility information of the user
containing user speed, application size, and network
bandwidth. The computation of M, is explained in

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

algorithm 2. As soon as the user reaches the
migration point, the source fog node initiates the
migration process, and the resource allocation and
deallocate process is started. It is essential to note
that selecting the destination FN with this policy
reduces the number of possible migrations in the
system, improving the service continuity and quality
of service. Algorithm 2 summarizes the computation
of the migration point. Dynamic migration point
considers the user's speed, dump size being
migrated, and the bandwidth between fog nodes. The
dynamic migration point, Mp, also considers the
coverage radius of the connected access point. The
process is initiated if the user has approached the
computed migration point.

5. Simulation Results and Discussion

The simulation results are discussed here to assess
the effectiveness of the proposed algorithm. The
simulation assumes that processing will occur in fog
devices and, if necessary, on the Cloud. All real-time
processing will be done in fog environments using
fog resources. Fog nodes have heterogeneous
computing resources.MobFogSim toolkit, an
extension of iFogSim, has been used to simulate the
proposed algorithm. It is useful for modeling real-
world mobile applications. Distinct features of
MobFogSim facilitate different aspects of user
mobility and container migration. Resource
management policies are implemented using this
simulator. It contains a specific resource
management module that manages all resource
allocation facets in fog and cloud environments. The
input for users' mobility in the simulation is taken
from the MobFogSim mobility dataset collected
from the Luxembourg traffic [40].

5.1 Simulation Setup and Parameters

The algorithm is simulated over a 10 km x 10 km
square region in which the coverage range of Fog
nodes is assumed to be 1000 meters. The system
consists of a cloud layer, a layer of fog nodes and a
layer of loT devices. The simulation parameters are
outlined in Table 3. The system has a dense
deployment of fog nodes. Fog nodes' processing
power is randomly chosen from [1500-6000] MIPS.

Table 3. Simulation parameters

Parameter | Value

Map Scenario

Scenario map size/ Area 10 km x 10 km
Access point coverage 1000 m
(radius)

Number of fog devices 196

Density of fog devices per 11

access point)

8876

Fog Device Characteristics

Speed (MIPS) 1500 — 6000
RAM 8000 MB
Bandwidth 100 MBPS
Busy Power (MJ) 107.339
Idle Power (MJ) 83.433
10T Device Characteristics

Speed (MIPS) 500

RAM 1000 MB
Bandwidth 100 MBPS
Busy Power (MJ) 87.53

Idle Power (MJ) 82.44

The user's application size is taken as 128 MB.
Several evaluation scenarios are carried out during
the simulation. Initially, 100 10T users' applications
are submitted to the fog infrastructure in the
evaluation scenario. Afterward, the number of users'
applications increased progressively, reaching 400.
Delay, downtime, migration time, network usage,
number of migrations, and energy consumption are
measured for this evaluation scenario. The round-
trip time (RTT) and the throughput values among the
fog nodes are based on real-life use cases. The
migration is carried out wusing two distinct
configurations of throughput and RTT values
between fog nodes [11]. Each configuration
indicates a particular network condition that may
take place in reality. The throughput values and the
associated RTT values within a fog environment are
mentioned in Table 4. Configuration A corresponds
to good network conditions based on fixed
computers that are part of the local area network. In
comparison, the other configuration represents poor
network conditions that may exist between a
smartphone connected to the Internet via 4G and a
computer connected to the network via Ethernet. The
simulations are run with these two network
configurations.

Table 4. Network configurations among fog nodes

Configuration Throughput (Mbps) RTT (ms)
A 11.34 122.95
B 7241 6.94

5.2 QoS Parameters

In the simulation, the following QoS parameters are
used to assess the effectiveness of the algorithms:

5.2.1 Average Delay

Delay is the time the system needs to respond to a
user's request after it has been sent. The delay
depends on four basic parameters: transmission
delay, execution delay, propagation delay, and
queuing delay. The delay between the application, a;
running at the user's device and the fog device, f; is
calculated as follows:

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

i

Dtlzjat = Dt;]”ans + Dgce + Dprop + D;Jue (6)

where Dtif;t represents the total delay, Dgans is the

transmission delay, D., is the execution delay,

D;,jmp is the propagation delay, and, Dé{w is the

queuing delay between the fog node, f; and the user
application a;.

The transmission delay can be expressed as follows:

ij
+ DWirans

ij _ ij
D trans D Utrans

@
where DUgans represents the time taken to transmit

the task generateo!'by the application, a; to the fog

node f;, and DW,;,,.; refers to the time needed to

send the output of executed task to the user from the

fog node. In the equation above, DUgans is referred
to as the task size (T;) divided by the transmission
rate of the communication link, R;; and it is
expressed as:
DUtiians = Ti/Rif ®)

where R;; is calculated according to Shannon's
capacity formula [41]. Given the channel bandwidth
B and ;g as signal-to-noise-plus-interference ratio

as follows:

Rij= B X1+ bgnr) %)

On completion of the task processing at the Fog, the
time consumed in sending back the result is
calculated as:

DVVtij;zns = Ti,/Rif (10)
where T; is the result's size incurred from the fog
node computation.

The time required for executing the user request is
called the execution delay. Execution delay for the
task k at the fog node is calculated as:

Dee = Im/Cl"™ (11)
where I,,, indicates the task’'s number of instructions
in terms of MI, and C;™** represents the computing

power of the fog node f;.

Propagation delay is the time required to transfer a
data packet via the medium from one point to
another. Propagation delay for a task running on a
fog node is determined as follows:

pi —

prop — 2X Duf/Ps

(12)

8877

where D, ; represents the user's distance from the
connected fog node, and P is the propagation speed
of the network. Queuing delay, being negligible,
may be ignored.

5.2.2 Total Migration Time

Migration time is the time required for transferring a
live running container from one fog node to another.
The total migration time is modeled using different
components: local computations times and transfer
times[11][42]. Local computation time is the result
of premigration and post-migration-related events.
The premigration event comprises the time needed
for selecting the destination fog node, namely,
premigration time (T,,,) and the time consumed in
reserving resources (T,g,) at the chosen destination.
The postmigration component comprises of
commitment stage and activation stage. During these
stages, the migration process is committed
(Teomm)and the migrated container service is
resumed at the destination node (T,s:). The other
component, transfer time, transfers a specific dump
data, D and is network dependent. It combines two
elements, migration transfer time, T,., and migration
latency, T;4¢, between the source and destination fog
nodes. The computation time is machine dependent
and is considered a constant, C,,;,. The equation of

migration time, Ty,;4, is expressed as:

Tmig = Ty + Tige + Cmig (13)

where Cpig = Tym + Trso + Teomm + Trst
The migration transfer time is formulated as follows:

Ty = Ds/Rij (14)
5.2.3 Total Downtime

Downtime is the time interval during which the
application is stopped to perform the migration, and
the user cannot access the service. It includes
transferring the remaining memory dump and states
and resuming the application on the destination fog
node [11][42]. In downtime, a specific amount of
memory dump (Dg) must be transferred, which is the
final copy operation from the source node to the
destination node. It also includes machine-
dependent commitment time (T.ymm) @nd container
restoration time (T.s;).

Ty = Tf + Tige + Cae (15)

where the machine dependent constant part, C;; =
Teomm + Trse and transmission time, T{, = D¢/
R

ij-

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

5.2.4 Total Network Usage
Network usage is the total data sent and received
during the migration process.

NWiot = Dior X Tige (16)
where D;,. is the size of data sent during the
migration of the application modules and Ty, is the
network delay between source and destination fog
nodes. Total network usage is determined by
summing the network consumtion incurred during
each migration event.

5.2.5 Total Energy Consumption

Total energy consumption is the combination of two

components: the energy consumed to transmit the

task to the fog node and the energy consumed to

execute the task. Total energy consumption can be

written as follows:
Etiét = Etiians

+ Ege (17)

ij . .
where Ej. ... 1S the energy consumed during

transmission and Eéfce is the energy consumed

during execution performed by the fog nodes in the

system.
EJ

trans = Ttrans X 4

(18)

where Tyyqns IS transmission time, and A is a

constant related to the wireless interface [43].
EY

exe

= Texe X 1 (19)

where T,,. is the execution time, and u is a
coefficient denoting the energy consumption per
CPU cycle.

5.3 Results

The proposed algorithm is compared with the
algorithm based on the lowest latency-based strategy
[5] to demonstrate its performance. The lowest
latency-based strategy is an application migration
algorithm that efficiently utilizes the various Fog
node resources and chooses the appropriate Fog
node for application migration. The algorithm
selects the Fog node with the lowest end-to-end
latency out of all the Fog nodes available with
sufficient resources. For both algorithms, the
simulation results are anlyzed based on the number
of migrations, delay, downtime, migration time,
network usage, and energy consumption.

5.3.1 Total Number of Migrations

The number of migrations is the migration frequency
that a user of 10T device experiences along its path.
Although necessary, fewer application migrations
should be made because each migration event

8878

consumes additional resources. The source fog
nodes have information about the real-time mobility
of departing devices (e.g., their direction and speed
when within the current fog node's range). So, the
connection and execution time of all the candidate
fog nodes with 10T devices can be estimated for the
migration decision process. As per the proposed
algorithm, the number of possible migrations
decreases by migrating the application modules to
the appropriate node. The existing policies aim to
lower the cost of migration by migrating application
modules to new fog nodes without considering the
current mobility information of devices, connection
duration, and execution time.The analysis of the
required migrations shows that the proposed
approach lowers the number of migrations because
it considers loT devices' current mobility
information, such as speed and direction. A
reduction in the number of migrations results in less
downtime for the user’s application.Figure 2 shows
the number of migrations for configurations A and
B. Under both configurations, the proposed
approach decreases the number of migrations to
almost 18% compared to the existing approach. The
reduction in migrations indicates that the locations
where applications are placed are better suited for
the user.

5.3.2 Average Delay

After the user has moved out of the range of the fog
node currently hosting the user application, a higher
delay may be experienced in the response received
from the source fog node hosting the application. It
is caused due to the increased count of hops between
the user and the application hosted at the source fog
node. Delay is the primary QoS metric evaluated in
the proposed migration approach. In contexts where
high performance is required in real-time, it is the
factor that must be decreased.In the simulation, it is
expected that there won't be any instances in which
there are deficient fog resources to execute the
services; thus, queuing delay is considered zero.
Execution delay is the major component affecting
the end-to-end delay for the user applications.The
proposed approach outperforms the latency-based
approach by choosing the most suitable destination
fog node based on various parameters. A comparison
of the analyzed scenarios is shown in Figure 3. The
average delay is shown for different numbers of
users in the simulation. The results in the figures are
apparent indicators that implementing the proposed
migration strategy would result in higher QoS for the
end users. The proposed algorithm shows a
reduction of up to 20% under poor network
conditions and up to 17% under good network
conditions when used to address the issue of
application migration.

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

5.3.3 Total Downtime concerning downtime are given in Figure 4. As the
The time during which service is not available number of users increases, the downtime improves
should be minimized. The proposed approach further. On average, the proposed approach results in
reduces the unnecessary triggering of migration, 13% and 20% less downtime than the existing
which decreases the total downtime during the approach.

simulation. The results calculated by the simulator

W Latency-based Algorithm m Proposed Algorithm M Latency-based Algorithm m Proposed Algorithm

1400 2000
2 2
5 1200 5 1500
E 1000 5
o 80 2 1000
= 600 =
S 400 S
x x 500
i " .
= 0 = 0
=) =)
z 100 200 300 =2 100 200 300

NUMBER OF USERS NUMBER OF USERS
(a) Network Configuration A (b) Network Configuration B

Figure 2. Total number of migrations under different network configurations

W Latency-based Algorithm ® Proposed Algorithm B Latency-based Algorithm B Proposed Algorithm
500 30
w wn
= 400 2 =
< 300 S
b 215
w w
g 200 g 10
& 100 &
2 Z s
0 0
200 300 200 300
NUMBER OF USERS NUMBER OF USERS
(a) Network Configuration A (b) Network Configuration B

Figure 3. Average delay under different network configurations

M Latency-based Algorithm M Proposed Algorithm M Latency-based Algorithm M Proposed Algorithm
25000000 5000000
& 20000000 & 4000000
o vy
S 15000000 S 3000000
g g
s 10000000 s 2000000
o o
o 5000000 - 0O 1000000 -
0 0
100 200 300 100 200 300
NUMBER OF USERS NUMBER OF USERS
(a) Network Configuration A (b) Network Configuration B

Figure 4. Total downtime under different network configurations

8879

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

H Latency-based Algorithm B Proposed Algorithm
160000000
140000000
120000000
100000000
80000000
60000000
40000000
20000000 .
0
200 300

NUMBER OF USERS

MIGRATION TIME (S)

(a) Network Configuration A

B Latency-based Algorithm B Proposed Algorithm

30000000

25000000

20000000

15000000
10000000

5000000 .

0

200 300

NUMBER OF USERS

MIGRATION TiME (S)

(b) Network Configuration B

Figure 5. Total migration time under different network configurations

5.3.4 Total Migration Time

The time needed to transfer the application to the
destination fog node should be minimized. The total
migration time of the proposed technique is
evaluated in comparison to the existing technique.
The total migration time is shown in Figure 5.
Simulation with the proposed approach presents a
migration time of up to 13% shorter under
configuration A. In comparison, under configuration
B, the migration time is reduced by up to 19% than
the existing policy.The proposed approach reduces
the total number of migrations and, thus, lessens the
total migration time compared to the latency-based

M Latency-based Algorithm M Proposed Algorithm

180000
160000
140000
120000
100000

80000

60000

o.III

40000
200 300

20000
NUMBER OF USERS

NETWORK USAGE (MB)

(a) Network Configuration A

method, which has a higher number of total
migrations.

5.3.5 Total Network Usage

Uncontrolled network use may cause congestion,
declining the application's performance. The
network usage during application migration for
different simulating approaches is portrayed in
Figure 6. The proposed algorithm works slightly
better in this situation since it decreases the number
of migrations of application modules and thus
decreases their network usage. As the number of
migrating events decreases, network usage
decreases. The proposed algorithm reduces network
usage by up to 16%.

M Latency-based Algorithm M Proposed Algorithm
250000
200000

150000
100000

50000
100 200 300
NUMBER OF USERS

NETWORK USAGE (MB)

(b) Network Configuration B

Figure 6. Total network usage under different network configurations

19

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

H Latency-based Algorithm B Proposed Algorithm

180000
160000
140000
120000

100000
80000
60000
40000

20000 .
0

200 300 40
NUMBER OF USERS

NETWORK USAGE (MB)

(a) Network Configuration A

H Latency-based Algorithm B Proposed Algorithm

250000

200000

150000

100000

50000 '
., I

100 200 300 40
NUMBER OF USERS

NETWORK USAGE (MB)

(b) Network Configuration B

Figure 6. Total network usage under different network configurations

M Latency-based Algorithm B Proposed Algorithm

120

100

80
60
40
20

0

200 300
NUMBER OF USERS

ENERGY CONSUMPTION (MJ)

(a) Network Configuration A

B Latency-based Algorithm B Proposed Algorithm

100
90
80

70
60
50
40
30
20
10

0

200 300
NUMBER OF USERS

ENERGY CONSUMPTION (MJ)

(b) Network Configuration B

Figure 7. Total energy consumption under different network configurations

5.3.6 Total Energy Consumption

The system’s overall energy consumption rises when
more loT users are added. Another aspect of the
system's energy usage is the frequency of
migration.The lesser the system's migration
frequency, the lesser the energy consumption. If the
fog nodes are battery-operated, the lower energy
consumption may enable a longer node life. The
energy consumption during module migration for
both policies is presented in Figure 7. The proposed
migration approach performs well in handling
energy usage by decreasing the migration frequency.
The suggested algorithm is perceived to consume
less energy by up to 7% compared to the existing
latency-based algorithm.

19

5.3.7 Qualitative Analysis

This section analyzes qualitative parameters inferred
from this study and relevant to migration
management. Different parameters considered are
connectivity, availability, performance, and resource
utilization [44].Connectivity: It is a state during
which a valid connection exists between various
devices in the system to execute applications. 10T
device users move out of the associated access
points' coverage area, breaking the connection
between the user and the fog resource. The
connectivity failure will result in service disruption
affecting the QoS. Maintaining connectivity without
service disruption is essential while migrating to a
suitable destination node. The connectivity
parameter is dependent on the number of migrations
in the system. Each migration event contributes to

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

connectivity. Appropriate selection of the
destination node in the proposed approach reduces
the number of migrations and improves
connectivity.Availability: The availability of fog
service is a way to specify the system'’s capability to
ensure that the requested resources are available with
the expected performance to service user task
requests. Downtime and migration time determine
the availability of the services in the fog
environments. In fog computing, the mobility of the
end user causes service migration which in turn
causes availability issues in the fog environments.
The proposed algorithm reduces the downtime and
migration time parameters and improves
availability. Performance: Lowering application
delay is important to achieving effective application
performance. As the user leaves the coverage area of
its associated fog node, the network delay increases
as more hops are needed to communicate with the
serving fog node. The proposed system has lowered
the average delay perceived by the end
users.Resource Utilization: Resource utilization is a
performance metric that gives feedback on how
efficiently various resources are allocated to the
application modules. Appropriate migration
decisions improve the utilization of resources.
Compared to the existing technique, the proposed
technique makes resource utilization more efficient
by reducing network usage and energy consumption.
It helps in avoiding congestion in the network.
Improvement in energy efficiency may consequently
allow the battery-operated fog nodes to have longer
battery life.

6. Conclusions and Future Work

The exponential growth of loT devices makes it
challenging to maintain QoS in fog computing
environments. The migration is triggered whenever
a user of an loT device begins to move from one
service area to another, and the associated
application needs to be migrated to a suitable fog
node. The MobFogSim tool has been used to
simulate application migration. The simulation tool
takes account of the wireless connectivity, the user's
mobility and the application migration process. The
migration decision has been proposed considering
various parameters, such as connection time between
users and fog nodes and the application execution
time. Each network parameter has been
mathematically modeled, considering the highly
mobile network. Simulations have been done with
two network configurations corresponding to good
and poor network conditions.The comparison
analysis demonstrates that the proposed migration
approach significantly improves various parameters.
Under both network configurations, the proposed

8882

approach decreases the number of migrations to
almost 18%. A decrease of up to 20% in average
delay under poor network conditions and up to 17%
under good network conditions is achieved. The
proposed migration approach produces a downtime
20 % lower than the existing approach under both
conditions. The migration time of up to 19% shorter
is obtained under good network conditions, while,
under poor network conditions, the migration time is
reduced by up to 13% than the existing policy. The
proposed algorithm decreases network usage by up
to 16% and consumes less energy by up to 7%
compared to the existing algorithm. The simulation
results show that the proposed algorithm enhances
different QoS parameters significantly. Further,
qualitative ~ parameters also indicate the
improvement in the experience perceived by the
users. Low latencies, low network usage and
improved energy efficiency benefit the users of the
proposed approach. The proposed technigque also
keeps Fog nodes operational for a longer duration if
these are battery-operated. In contrast to the current
situation, where only 10T devices are considered
mobile, choosing an appropriate node will be more
difficult when fog nodes are also mobile. As part of
future work, this work may be extended to
investigate the mobility of fog nodes and its effect
on the QoS and the performance of the fog
environment.

Author Statements:

Ethical approval: The conducted research is not
related to either human or animal use.

Conflict of interest: The authors declare that
they have no known competing financial interests
or personal relationships that could have
appeared to influence the work reported in this
paper

Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

Author contributions: The authors declare that
they have equal right on this paper.

Funding information: The authors declare that
there is no funding to be acknowledged.

Data availability statement: The data that
support the findings of this study are available on
request from the corresponding author. The data
are not publicly available due to privacy or
ethical restrictions.

References

[1.] Afrin, M., Jin, J., Rahman, A., Gasparri, A., Tian,

Y.-C., & Kulkarni, A. (2021). Robotic edge

[2.]

[3.]

[4.]

[5.]

[6.]

[7.]

[8.]

[9.]

[10.]

[11]

[12]

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

resource allocation for agricultural cyber-physical
system. IEEE Transactions on Network Science
and Engineering.
https://doi.org/10.1109/TNSE.2021.3103602
Alam, M., Ahmed, N., Matam, R., & Barbhuiya, F.
A. (2022). L3Fog: Fog node selection and task
offloading framework for mobile 10T. In
INFOCOM Workshops 2022 — IEEE Conference
on Computer Communications Workshops.
https://doi.org/10.1109/INFOCOMWKSHPS5475
3.2022.9798118

Anawar, M. R., Wang, S., Azam Zia, M., Jadoon,
A. K., Akram, U., & Raza, S. (2018). Fog
computing: An overview of big loT data analytics.
Wireless Communications and Mobile Computing,
2018, Article 7157192,
https://doi.org/10.1155/2018/7157192

Bellavista, P., & Zanni, A. (2017). Feasibility of
fog computing deployment based on Docker
containerization over Raspberry Pi. In ACM
International Conference Proceeding Series.
https://doi.org/10.1145/3007748.3007777

Bi, Y., Han, G,, Lin, C., Deng, Q., Guo, L., & Li,
F. (2018). Mobility support for fog computing: An
SDN approach. IEEE Communications Magazine,
56(5), 53-59.
https://doi.org/10.1109/MCOM.2018.1700908
Bittencourt, L. F., Diaz-Montes, 1. J., Buyya, R.,
Rana, O. F., & Parashar, M. (2017). Mobility-
aware application scheduling in fog computing.
IEEE.

Bonomi, F., Milito, R., Natarajan, P., & Zhu, J.
(2014). Fog computing: A platform for Internet of
Things and analytics. In Studies in Computational
Intelligence (Vol. 546).
https://doi.org/10.1007/978-3-319-05029-4 7
Clark, C., et al. (2005). Live migration of virtual
machines. In Proceedings of the 2nd Conference
on Symposium on Networked Systems Design &
Implementation (NSDI'05) (pp. 273-286).
USENIX Association.

Codeca, L., Frank, R., & Engel, T. (2015).
Luxembourg SUMO Traffic (LuUST) scenario: 24
hours of mobility for vehicular networking
research. In 2015 IEEE Vehicular Networking
Conference (VNC) (pp. 1-8).
https://doi.org/10.1109/VVNC.2015.7385539
Cisco Public. (2015). Fog computing and the
Internet of Things: Extend the cloud to where the
things are.
https://www.cisco.com/c/dam/en_us/solutions/tre
nds/iot/docs/computing-overview.pdf

Deswal, S., & Singhrova, A. (2020). Quality of
service provisioning using multicriteria handover
strategy in overlaid networks. Malaysian Journal
of Computer Science, 33(2), 1-21.
https://doi.org/10.22452/MJCS.VOL33NO1.1
Ghanavati, S., Abawajy, J., & Izadi, D. (2022). An
energy aware task scheduling model using ant-
mating optimization in fog computing
environment. |IEEE Transactions on Services

8883

[13]

[14]

[15.]

[16.]

[17]

[18.]

[19.]

[20.]

[21]

[22]

Computing, 15(4), 2007-2017.
https://doi.org/10.1109/TSC.2020.3028575
Goudarzi, M., Palaniswami, M., & Buyya, R.
(2021). A distributed application placement and
migration management techniques for edge and fog
computing environments. arXiv.
http://arxiv.org/abs/2108.02328

Guerrero, C., Lera, I, & Juiz, C. (2019). A
lightweight decentralized service placement policy
for performance optimization in fog computing.
Journal of Ambient Intelligence and Humanized
Computing, 10(6), 2435-2452.
https://doi.org/10.1007/s12652-018-0914-0
Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya,
R. (2017). iFogSim: A toolkit for modeling and
simulation of resource management techniques in
the Internet of Things, edge and fog computing
environments. Software: Practice and Experience,
47(9), 1275-1296.
https://doi.org/10.1002/spe.2509

Islam, M., Razzaque, A., & Islam, J. (2016). A
genetic algorithm for virtual machine migration in
heterogeneous mobile cloud computing. In
Proceedings of the 2016 International Conference
on Networking Systems and Security (NSysS).
https://doi.org/10.1109/NSysS.2016.7400696
Kaur, K., Dhand, T., Kumar, N., & Zeadally, S.
(2017). Container-as-a-service at the edge: Trade-
off between energy efficiency and service
availability at fog nano data centers. IEEE Wireless
Communications, 24(3).
https://doi.org/10.1109/MWC.2017.1600427
Liao, S., Li, J.,, Wu, J,, Yang, W., & Guan, Z.
(2019). Fog-enabled vehicle as a service for
computing geographical migration in smart cities.
IEEE Access, 7, 2890298.
https://doi.org/10.1109/ACCESS.2018.2890298
Liu, C., Wang, J., Zhou, L., & Rezaeipanah, A.
(2022). Solving the multi-objective problem of 10T
service placement in fog computing using Cuckoo
search algorithm. Neural Processing Letters,
54(3), 1823-1854. https://doi.org/10.1007/s11063-
021-10708-2

Lopes, M. M., Higashino, W. A., Capretz, M. A.
M., & Bittencourt, L. F. (2017). MyiFogSim. In
Companion Proceedings of the 10th International
Conference on Utility and Cloud Computing (UCC
17 Companion) (pp. 47-52).
https://doi.org/10.1145/3147234.3148101
Machen, A., Wang, S., Leung, K. K., Ko, B. J., &
Salonidis, T. (2018). Live service migration in
mobile edge clouds. IEEE Wireless
Communications, 25(1), 140-147.
https://doi.org/10.1109/MWC.2017.1700011
Mahmud, R., Pallewatta, S., Goudarzi, M., &
Buyya, R. (2022). iFogSim2: An extended
iFogSim simulator for mobility, clustering, and
microservice management in edge and fog
computing environments. Journal of Systems and
Software, 190, 111351.
https://doi.org/10.1016/j.jss.2022.111351

https://doi.org/10.1109/TNSE.2021.3103602
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798118
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798118
https://doi.org/10.1155/2018/7157192
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1109/MCOM.2018.1700908
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1109/VNC.2015.7385539
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://doi.org/10.22452/MJCS.VOL33NO1.1
https://doi.org/10.1109/TSC.2020.3028575
http://arxiv.org/abs/2108.02328
https://doi.org/10.1007/s12652-018-0914-0
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/NSysS.2016.7400696
https://doi.org/10.1109/MWC.2017.1600427
https://doi.org/10.1109/ACCESS.2018.2890298
https://doi.org/10.1007/s11063-021-10708-2
https://doi.org/10.1007/s11063-021-10708-2
https://doi.org/10.1145/3147234.3148101
https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1016/j.jss.2022.111351

[23]

[24.]

[25]

[26.]

[27.]

[28.]

[29.]

[30.]

[31.]

[32.]

[33]

[34.]

[35.]

Saravjit Chahall* Anita Singhrova / IJCESEN 11-4(2025)8868-8884

Mahmud, R., Ramamohanarao, K., & Buyya, R.
(2018). Latency-aware application module
management for fog computing environments.
ACM Transactions on Internet Technology, 19(1),
1-21. https://doi.org/10.1145/3186592

Mahmud, R., Srirama, S. N., Ramamohanarao, K.,
& Buyya, R. (2019). QoE-aware placement of
applications in fog computing environments.
Journal of Parallel and Distributed Computing,
132, 62-71.
https://doi.org/10.1016/j.jpdc.2018.03.004
Martin, J. P., Kandasamy, A., & Chandrasekaran,
K. (2018). Exploring the support for high
performance applications in the container runtime
environment. Human-centric Computing and
Information Sciences, 8(1).
https://doi.org/10.1186/s13673-017-0124-3
Mishra, M., Roy, S. K., Mukherjee, A., De, D,
Ghosh, S. K., & Buyya, R. (2020). An energy-
aware multi-sensor geo-fog paradigm for mission
critical applications. Journal of Ambient
Intelligence and Humanized Computing, 11(8).
https://doi.org/10.1007/s12652-019-01481-1
Naha, R. K., & Garg, S. (2021). Multi-criteria-
based dynamic user behaviour-aware resource
allocation in fog computing. ACM Transactions on
Internet of Things, 2(1), 1-31.
https://doi.org/10.1145/3423332

Naha, R. K., et al. (2018). Fog computing: Survey
of trends, architectures, requirements, and research
directions. IEEE Access, 6, 47980-48009.
https://doi.org/10.1109/ACCESS.2018.2866491
Paul, J., Kandasamy, M. A., & Martin, J. P. (2020).
Mobility aware autonomic approach for migration
of application modules in fog computing
environment. Journal of Ambient Intelligence and
Humanized Computing.
https://doi.org/10.1007/s12652-020-01854-x
Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G.,
Longo, F., & Puliafito, A. (2019). Container
migration in the fog: A performance evaluation.

Sensors, 19(7), 1488.
https://doi.org/10.3390/519071488
Puliafito, C., et al. (2019). MobFogSim:

Simulation of mobility and migration for fog
computing. Simulation Modelling Practice and
Theory, 94, 102062.
https://doi.org/10.1016/j.simpat.2019.102062
Sarrafzade, N., Entezari-Maleki, R., & Sousa, L.
(2022). A genetic-based approach for service
placement in fog computing. Journal of
Supercomputing, 78(8), 10854-10875.
https://doi.org/10.1007/s11227-021-04254-w
Satyanarayanan, M. (2017). The emergence of
edge computing. Computer, 50(1).
https://doi.org/10.1109/MC.2017.9

Shannon, C. E. (1948). A mathematical theory of
communication. Bell System Technical Journal,
27(3), 379-423. https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

Shckhar, S., Chhokra, A., Sun, H., Gokhale, A.,
Dubey, A., & Koutsoukos, X. (2019). URMILA: A

8884

[36.]

[37]

[38.]

[39.]

[40.]

[41.]

[42.]

[43]

[44]

performance and mobility-aware fog/edge resource
management middleware. In Proceedings of the
2019 IEEE 22nd International Symposium on
Real-Time Distributed Computing (ISORC).
https://doi.org/10.1109/ISORC.2019.00033

Shi, W., & Dustdar, S. (2016). The promise of edge
computing. Computer, 49(5).
https://doi.org/10.1109/MC.2016.145

Statista. Vailshery, L. S. (2021). Number of loT
connected devices worldwide 2019-2021, with
forecasts to 2030.
https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/

Wang, D., Liu, Z., Wang, X., & Lan, Y. (2019).
Mobility-aware task offloading and migration
schemes in fog computing networks. IEEE Access,
7, 43356-43368.
https://doi.org/10.1109/ACCESS.2019.2908263
Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer,
M., & Leung, K. K. (2017). Dynamic service
placement for mobile micro-clouds with predicted
future costs. IEEE Transactions on Parallel and
Distributed Systems, 28(4).
https://doi.org/10.1109/TPDS.2016.2604814
Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A.,
& Shen, X. (2021). Delay-aware microservice
coordination in mobile edge computing: A
reinforcement learning approach. IEEE
Transactions on Mobile Computing, 20(3).
https://doi.org/10.1109/TMC.2019.2957804

Yi, S., Li, C., & Li, Q. (2015). A survey of fog
computing: Concepts, applications, and issues. In
MOBIDATA 2015: Workshop on Mobile Big Data.
https://doi.org/10.1145/2757384.2757397

Zhao, D., Zou, Q., & Boshkani Zadeh, M. (2022).
A QoS-aware loT service placement mechanism in
fog computing based on open-source development
model. Journal of Grid Computing, 20(2).
https://doi.org/10.1007/s10723-022-09604-3
Zhao, X., Liu, J., Ji, B., & Wang, L. (2021). Service
migration policy optimization considering user
mobility for e-healthcare applications. Journal of
Healthcare Engineering, 2021, Article 9922876.
https://doi.org/10.1155/2021/9922876

Zhu, C., Pastor, G., Xiao, Y., Li, Y., & Ylad-J4iski,
A. (2018). Fog following me: Latency and quality
balanced task allocation in vehicular fog
computing. In 2018 IEEE SECON.
https://doi.org/10.1109/SAHCN.2018.8397129

https://doi.org/10.1145/3186592
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1186/s13673-017-0124-3
https://doi.org/10.1007/s12652-019-01481-1
https://doi.org/10.1145/3423332
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1007/s12652-020-01854-x
https://doi.org/10.3390/s19071488
https://doi.org/10.1016/j.simpat.2019.102062
https://doi.org/10.1007/s11227-021-04254-w
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ISORC.2019.00033
https://doi.org/10.1109/MC.2016.145
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1109/ACCESS.2019.2908263
https://doi.org/10.1109/TMC.2019.2957804
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1007/s10723-022-09604-3
https://doi.org/10.1155/2021/9922876
https://doi.org/10.1109/SAHCN.2018.8397129

