Copyright © IJCESEN

International Journal of Computational and Experimental

MCESEN

Science and ENgineering B (e
(IJCESEN) -
Vol. 11-No.4 (2025) pp. 8982-8992 —
http://www.ijcesen.com -

IéSN: 2149-9144
Research Article

Optimized Database Sharding Techniques for High-Performance MySQL

Applications

Rishabh Agarwal*

Harrisburg University of Science and Technology, Pennsylvania-USA
* Corresponding Author Email: rishabh.agarwal1124@gmail.com- ORCID: 0000-0002-5777-7850

Article Info:

DOI: 10.22399/ijcesen.4340
Received : 05 February 2025
Revised : 25 March 2025
Accepted : 30 March 2025

Keywords

Database Sharding;
MySQL Optimization;
Distributed Systems;
Query Routing;
Scalability

Abstract:

With the ever-growing data-intensive applications, the classical monolithic MySQL
databases are usually unable to satisfy the requirements of the high-throughput, low-
latency, and real-time applications. The technique of horizontally dividing data in more
than one database is called database sharding, though it has proven to be a strong tool to
overcome these problems. The paper provides an extensive overview of optimized
forms of database sharding that are specific to MySQL applications. It discusses the
basic Sharding concepts, comparisons of various models, and advanced optimization
techniques, i.e., consistent hashing, query-aware routing, dynamically re-sharding, and
caching. The paper also introduces patterns of deployment of architecture that can be
adapted to the cloud-native environment and provides comprehensive results of
performance benchmarking that can be used to measure the benefits and drawbacks of
diverse approaches. The paper will offer a roadmap to help the architects and engineers
create scalable, reliable, and high-performance MySQL infrastructures by combining
the existing best practices with scholarly work. The results highlight that sharding used
and tuned properly can be of major benefit to a database in terms of performance,
operational efficiency, and scalability of the system.

1. Introduction

The unremitting increase in the volume of data and
the emerging need to process larger volumes of
data in real-time have prompted the switch to a
distributed system to handle massive databases.
Database sharding is one of the most efficient
architectural strategies that can be used to scale a
database system, especially when using MySQL to
power the system. Sharding is the horizontal
division of data into two or more database
instances, and thus, it improves performance,
minimizes query response times, and thereby leads
to effective use of resources. Sharding of the
databases is no longer a hypothetical design pattern
in the current cloud-native and microservices-based
application patterns, but an operational requirement
it is to maintain the scalability and responsiveness
of the systems [1][2].

As one of the most widely used relational database
management systems in the world, MySQL has
various deployment configurations that allow it to
be used with sharding implementation.
Nonetheless, MySQL is not a sharded database as

such; multiple methods and third-party applications
have been developed to provide optimized
sharding. These are manual, hash-based, range-
based, directory, and proxy sharding, hash-based
routing, and proxy solutions such as Vitess and
ProxySQL [3][4]. The choice of the right sharding
method depends on many factors, and this depends
on the distribution of data, the nature of the
application workload, the complexity of some
queries, and fault tolerance. The advantages of
sharding MySQL databases in efficiency and
performance are noticeable in large-scale
applications (e.g., e-commerce applications, social
networks, content delivery networks, and IoT
systems, etc.) where a single database can easily
turn into a bottleneck. Without sharding strategies
that are optimized, such systems are susceptible to
database contention, replication lag, and disk 1/0
saturation. Moreover, ineffective sharding may
bring about hotspots of data, uneven load
distribution, and complicated application logic,
which undermine the anticipated scalability benefits
[5][6].- The paper will seek to offer an in-depth
discussion of database sharding techniques that are

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

optimized to suit high-performance MySQL
applications. It shall start by expounding on the
principles of database sharding and why it is a
requirement in the current database architecture. It
will then proceed to discuss some of the sharding
models as well as their strengths and weaknesses in
MySQL settings. The following strategies of
advanced optimization (such as dynamic re-
sharding, consistent hashing, and query-aware
routing) will be studied, as well as real-life
deployment cases and performance metrics. The
following section examines the conceptual
foundations and evolution of database sharding. It
also introduces the challenges associated with
implementing sharded MySQL databases and
highlights the importance of selecting an
appropriate sharding strategy. This background
knowledge is crucial in placing the techniques of
optimization that will be addressed in the
subsequent articles. Influenced by the demand to
maintain high-throughput transactional processing,
particularly in areas like finance, healthcare, and e-
commerce, it is important to learn and implement
advanced database sharding techniques in order to
develop resilient and scalable database
infrastructures [7-10].

2. Conceptual Foundations of Database
Sharding

Since sharding has been proven as relevant and
crucial in the context of high-performance database
environments, we must now know the conceptual
background of sharding. Sharding is essentially a
horizontal partitioning method (or technique) in
which every shard or partition stores a portion of
the entire dataset and functions as a separate
database. Contrary to vertical partitioning, where
the tables are partitioned based on the columns, the
horizontal partitioning of tables is based on the
rows, so that each shard can be queried separately
or simultaneously based on how the application was
designed and the query nature [11][12].Sharding
dates back to the era of early distributed database
systems, in which scaling out as opposed to scaling
up became the new architectural philosophy. The
conventional monolithic database design grew less
and less capable of satisfying the requirements of
scalability, resilience, and performance as the web-
scale systems appeared, especially in the late 2000s.
Sharding solved this issue since data storage and
processing were decentralized, and thus, the load is
spread over many servers. This decentralization not
only increases the system throughput but also
isolates faults since failure in one shard does not
normally impact the rest [13][14]. With MySQL,
common forms of sharding are external to the

8983

database engine. As MySQL does not support
sharding, the applications or developers have to
apply application logic or external tools and
middleware to handle the sharding scheme. This
adds a level of complexity, and yet it provides
flexibility when it comes to the partitioning and
handling of data. As an example, developers are
able to shard by user 1D, geographical location, or
even the application domains. All strategies imply
the efficiency of the queries, data consistency, and
overhead of the operations [15][16].

The determination of the sharding key can be
considered one of the most basic problems in
creating a sharding architecture. The sharding key
dictates how information is shared by the shards
and is important in balancing the load, and is also
used to route queries efficiently. The inappropriate
selection of the sharding key may cause hotspots,
i.e., some shards will be overused, whereas others
will be underutilized, and this will nullify the
performance gains of sharding. This risk is
addressed by advanced optimization methods,
including consistent hashing and adaptive
partitioning [17][18]. Additionally, there are no
trade-offs in the absence of database sharding.
Although it provides horizontal scalability and
enhanced fault tolerance, it also poses some
complexities in cross-shard queries, referential
integrity, backup and recovery, and transactional
consistency. In most instances, the distributed
transactions among the shards are not attempted at
all, or handled via complicated two-phase commit
protocols, which may bring about latency and lower
system throughput. This is the reason why sharding
implementations need to be optimized and designed
cautiously, particularly in applications where
MySQL performance is critical [19][20].

These background concepts make us understand
why optimized sharding strategies that are unique
to MySQL characteristics and constraints are
required. Introducing a variety of models and
techniques used in sharding MySQL databases, the
next section will provide a comparative analysis,
which will be used as the foundation of more
complicated optimizations later in this paper. Upon
further discussion of the initial concepts of database
sharding, the second section of the present paper
discusses the practical implementations and
MySQL.-specific models in greater detail. This part
continues the conceptual clarification of sharding
and is where the strategies are applied to the real-
world MySQL scenarios.

3. MySQL-Specific Sharding Techniques

The absence of an in-built sharding in MySQL
requires external solutions to drive the process of

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

data partitioning between two or more database
servers. This paves the way to the different possible
implementation strategies, each possessing its
distinct merits and demerits. Application
architecture, anticipated data growth, read/write
traffic distribution, and fault tolerance are some of
the factors that usually affect the choice of a
sharding technigue in MySQL.

Manual or application-level sharding is one of the
most common ones, in which the logic to select a
shard is held in the application, which dictates
which shard to ask based on the sharding key. The
method is the most flexible and controllable
because the developers can formulate their own
sharding methods depending on business logic.
Nonetheless, it also implies that cross-shard query
logic, failover management, and connection pooling
functionality traditionally abstracted by the
database engine itself should be supported by the
application as well [21][22]. More structured,
deterministic range-based sharding, in which the
data is divided into ranges that overlap each other,
with respect to a particular column (e.g., user ID or
time) used to partition the data. It is an intuitive
model that can be used to easily perform queries
when the distribution of data is relatively
homogenous. It has, however, the issue of skewed
distribution of data or hot spots when some ranges
have a lot more records as compared to others. This
may cause an inequality in the loading of shards
and eventually decline the performance of the
system [23][24].

This imbalance can be resolved by using hash-
based sharding. In this model, the sharding key
value is transmitted using a hash function, and the
resulting value is the shard where the data is going
to be stored. Sharing by Hashing offers a more even
distribution of data, therefore eliminating any hot
spots and enhancing load balancing. It, however,
complicates range queries, where data is not stored
in a sequential order across shards, and can be
gueried many times, needs to be queried, and data
combined at the application layer [25][26]. Another
more sophisticated approach is directory-based
sharding, whereby a central configuration database
service or service contains a mapping of keys to
shards. The application has access to this directory
to identify the right shard to be used by each
operation. This introduces a degree of indirection
such that the dynamic reassigning of data between
shards can be done without changing application
logic. Nevertheless, the directory service is also a
potential failure point as well as a performance
bottleneck when it is not managed and replicated
correctly [27].

Control Proxy-based sharding has become popular
in recent years because it removes the complexity

8984

of sharding from the application. Applications such
as Vitess and ProxySQL are placed between the
application server and the MySQL servers and
intercept the queries and redirect them to the
appropriate shard depending on the configured
rules. Queries can also be rewritten with these
tools; load balancing and failover are also
supported, which makes managing a sharded
structure easier. Specifically, Vitess has become a
popular choice in cloud-native setups since it can
be integrated with Kubernetes and is able to scale
horizontally [28][29]. The other aspect of the
sharding strategies is whether there is a
homogeneous data schema across shards or it is not.
In a homogeneous sharding design, all shards have
a common schema, making it easier to write
application logic and enabling them to have the
same query patterns. By contrast, heterogeneous
sharding applies another schema in another shard,
which can be required in case of a multi-tenant
system or application with heterogeneous data
needs. Heterogeneous sharding is also complicated
to query plan, data migration, and provide
consistency between schema variants [30]. In
MySQL, sharding should also be implemented with

due attention to the data consistency and
transactional guarantees. Although eventual
consistency may be acceptable in some

applications, some may have strong consistency
requirements, especially in financial or healthcare
systems. Here, it is required to introduce distributed
transactions between the shards, which is typically
based on two-phase commit protocols. This,
however, comes with overhead and latency that
may cancel out the performance advantages of
sharding. Thus, optimization is usually a trade-off

between performance and consistency. An
important factor that must be taken into
consideration in MySQL sharding implementations
is schema design. In many cases, the

denormalization can be used to minimize the use of
joins between tables that can be on different shards.
Also, indexing strategies need to be scaled to
sharded environments in order to circumvent
performance penalties. Such secondary indexes as
global secondary indexes can even be inefficient or
even impossible in a sharded system unless
dedicated attention is made, or they are
complemented with caching layers. As can be seen,
the different sharding methods covered herein
depict the range of alternatives that the programmer
has when using MySQL. In some situations, each
method has its own benefits and difficulties over
the others. These difficulties can be overcome and
the advantages of sharding maximised only with the
help of sophisticated optimization techniques.
These strategies do not just apply the fundamental

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

logic of sharding but extend to dynamic
redistribution of data, query routing, and predictive
load balancing. The following section will discuss
these high-tech methods and their application to
MySQL environments to maximize their
performance.

Coupled with the qualitative examination of the
strategy of sharding in MySQL, it is worthwhile to
take a comparative review of their fundamental
features, the complexity of implementation, and the
common applications. The following table compiles
these aspects to make it easier to select the most
suitable strategy depending on the requirements of
the system.

This comparative framework emphasizes the ways
in which each of the models can be applied to
various requirements of operations and architecture,
which confirms the necessity of the context-driven
application of MySQL sharding. The following
section on optimization strategies will build on
these models by examining how they can be
maximized in their of efficiency and resilience by
dynamically adopting techniques.

4. Advanced Optimization Strategies

Expanding on the MySQL-specific sharing models
already mentioned, this section discusses the more
advanced optimization techniques that can be used
to improve the performance, scalability, and fault
tolerance in a sharded environment. These plans
play a crucial role, particularly in a large-scale
system where workloads are not predictable, data is
huge, and they need real-time responsiveness.
Consistent hashing is one of the best optimization
methods, and it strives to reduce the data movement
in the case of re-sharding operations. The weakness
of traditional hash-based sharding is that adding or
removing a shard requires redistributing a
significant part of the data. Consistent hashing does
this by hashing both keys to shards and shards to a
circular hash space, such that a small number of
data need to be relocated when the shard structure
is altered. It is a technique that enhances the
elasticity of the system and is especially useful in a
cloud-native system where nodes are often scaled in
and out [1][5].

The other important optimization is dynamic re-
sharding, which allows the system to be adjusted to
the evolving patterns of data distribution and
gueries. Rather than using a fixed partitioning
policy, dynamic re-sharding uses shard utility
indicators like disk space and query volume, as well
as CPU usage, to anticipate and process when and
how to redistribute data. Trying to keep the balance
and performance, automated re-sharding
frameworks rely on predictive algorithms and re-

8985

shard the hot shards and merge the underutilized
ones. Such tools as Vitess may facilitate non-
downtime online re-sharding, which is feasible in
production systems [3][19]. Another performance
optimization is query-aware routing to direct the
queries to the appropriate shard(s) with the least
overhead. In contrast to the traditional routing that
uses only the sharding key, query-aware routing
reads the SQL query to identify which shards are
being used in it and optimizes routing based on this
information. This is particularly very handy in
scenarios of multi-shard joins or aggregation
queries, where running the query on the
unnecessary shards would cause unnecessary load
and latency. SQL proxy layers or a custom
middleware are used to implement query-aware
routing [12][17]. Most high-performance systems
use caching strategies to minimize query latency
that supplement sharding. The system is able to
compute and offload the read requests to the
underlying shards by caching commonly accessed
data at the proxy level or at the application level,
thereby lowering 1/0O and decreasing response
times. In sharded systems, invalidation of cache is
complicated, with any changes made to a single
shard being propagated to the cache. The
mechanisms, such as write-through caching,
distributed cache invalidation protocol, are used to
ensure consistency [6][14]. Another optimization
issue in sharded databases is global secondary
indexing. Monolithic database in a monolithic
database, secondary indexes allow quick searches
on non-primary keys. In sharded environments,
maintaining such indexes across multiple shards
can introduce significant overhead. To address this,
each shard can maintain local indexes, supported by
a central index directory that identifies the location
of all shards. Alternatively, query patterns may be
optimized to avoid non-primary key searches or be
enabled by the use of denormalization and pre-
aggregated views [20][25]. Parallel query execution
is an essential optimization in sharded
environments. Since data is distributed across
multiple shards, queries can be processed
simultaneously, and their results are consolidated at
the application or middleware level. The model is
much better in terms of query throughput and
responsiveness, especially with workloads that are
analytical in nature. Nevertheless, it does need
advanced-coordination schemes to deal with result
merging, pagination, and ranking of results across
multiple sources of data [8][15]. To ensure a high
availability and reduce the effects of shard failures,
a large number of systems have replication and
failover policies in every shard. The system is able
to restore itself within a short time in case of a
hardware failure or the failure of a software through

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

replicating every shard into a standby and using an
automatic failover system. Replication can be
applied either with asynchronous replication, as the

one provided by MySQL, or with semi-
synchronous replication with much stronger
consistency. Such arrangements are also

supplemented with monitoring services that identify
abnormalities and invoke failover without human
intervention [22][24].

Lastly, sharded environments need observability
and monitoring in order to optimize them. The
performance indicators like query latency, shard
utilization, replication lag, and cache hit rates
should be constantly observed to identify any
anomalies and maximize their performance. The
observability platforms like Prometheus, Grafana,
and open telemetry have the potential to be
integrated to ensure the system is performant and
reliable when faced with variable loads through
real-time dashboards and alerting mechanisms
[10][18]. These optimization tricks, regular
hashing, ad hoc re-sharding, query-conscious
routing, smart caching, and reliable monitoring are
the pillars of MySQL sharding architecture. These
methods allow systems to scale predictively, adapt
to changing workloads, and offer predictable and
consistent low-latency access to data. Since the
strategies are implemented in the real-life setting,
they can be learnt and can be informative, which
will be discussed in the next section with the help
of case studies and implementation scenarios.

5. Architectural Patterns and Deployment
Topologies for MySQL Sharding

After considering the discussion on high-level
optimization strategies, it is important to know how
the techniques are applied to large system
architectures. The process of optimized sharding in
the MySQL database is not only a domain of
database-level decisions but is also a part of the
infrastructure design, service coordination, and life
cycle management of data. In this section, the
architectural patterns and deployment topologies
that enable scalable and resilient settings of sharded
MySQL are discussed.

The most widely used architectural design of

MySQL sharding is the shard-per-tenant
architecture used in multi-tenant SaaS web
applications. Under this architecture, every

customer or logical tenant gets its own shard. This
segregates workloads, and data governance and
compliance are made easier, particularly for clients
with certain regulatory needs. It also allows one to
scale resources per tenant and eases backup,
recovery, and archiving. Nonetheless, this model
may lead to resource fragmentation when the

8986

pattern of usage of tenants is very dynamic [1][3].
Conversely, the shared-shard model is a model in
which tenants or logical data-partitions are
replicated on shared shards. This model is more
effective when it comes to hardware usage, but
requires complex tenant management and resource
throttling to prevent contention. Sharing shared
environments also has the advantage of the
intelligent routing layers and load-balancing
proxies that are capable of dynamically and
dynamically allocating queries and balancing the
consumption of resources across nodes [7][11].
Cloud-native architectures today are increasingly

using the sharded topology, which is a
microservice-based topology, = where each
microservice is responsible for its shard or

collection of shards, and is often independently
operated. This model encourages bounded context
and loose coupling, which are the two guiding
principles of domain-driven design. The
microservices can use a different MySQL cluster or
instance, and the sharding logic can be based on the
data access patterns of the service. This architecture
fits the container orchestration systems such as
Kubernetes, where services can be scaled
independently using metrics like query throughput
or CPU utilization [5][13].

The other common design trend is the geo-
distributed sharded architecture, which is used in
the interest of globally distributed applications,
which need low-latency access to various regions.
Under this configuration, the shards exist in data
centers that are close to the user base, minimizing
round-trip time as well as enhancing
responsiveness. Geo-sharding is wusually a
combination of range-based partitioning and
region-aware routing logic, which enables user
requests to be served out of the nearest data center.
Such an arrangement, though, has to overcome such
challenges as inter-region replication, adherence to
data sovereignty legislation, and cross-region
failover planning [4][12].

A hybrid sharding model is frequently used in a
high-throughput situation. In this architecture,
several sharding plans are mixed in one application.
An example is by sharding transactional data with a
hash-based sharding scheme and analytical
workload with a range-based sharding scheme to
allow time-series queries. Hybrid models can be
used to optimize across a wide range of workloads,
but demand complicated orchestration and data
handling logic at an application or middleware level
[8][14]. Architectures built on proxies are now an
essential part of sharding in the present day.
ProxySQL, MaxScale, and Vitess also add a layer
between the application and shards of the database,
which allows dynamic routing of queries, load

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

balancing, pooling connections, and caching
queries. These proxies usually support query-aware
routing and the extraction of a sharding key
dynamically with the help of SQL parsers. An
example is that, given a SQL query, Vitess can
automatically send it to the right shard based on the
router rules, based on the primary key or table
routing rule, and also supports operations like
online resharding and traffic switching [10][15].
Operationally, most sharded deployments include
control planes and orchestration layers to handle
lifecycle events like provisioning, scaling, re-
sharding, and backup. These control planes can
interact with APIs that the database infrastructure
and orchestration tools (e.g., Kubernetes operators,
Terraform modules) expose to automate common
operations. They also apply the sharding policies,
track the health metrics, and initiate the recovery
workflow in the event of the shard failure or
replication lag. This automation is of great benefit
in alleviating the operational workload of operating
sharded systems at scale [9][16].

The sharded MySQL storage topologies differ
greatly with respect to the workload requirements.
Shared-nothing architecture is a common type, in
which every shard runs in its own isolated hardware
or containers that have an independent CPU,
memory, and storage. This model does not have
contention, and it enhances fault isolation. As an
alternative, shared-disk architectures are less
prevalent, but may be needed within an
environment that needs fast failover and shared
caching, but they add complexity to lock
management and concurrency control [18][21]. In
other advanced designs, the middleware abstraction
layers and data federation layers are utilized to
make the application think in terms of a single
schema, although the data might be sharded. These
layers hide the complexity of multi-shard joins and
aggregations, as well as the transactions, so that all
a developer does is write a query without the
knowledge of how the data is distributed.
Nonetheless, they have the disadvantage of higher
latency and lower clarity of query execution,
making optimization work more difficult [17][22].
Security and compliance issues are also important
factors in the design of architecture. Sharded
environments should also ensure that the access
controls are always applied to all shards, as well as
that audit logs, security, standardized encryption,
and authentication are also known to be applied
consistently. There are also multi-region
deployments, where in specific jurisdictions, there
will be data privacy that will have to meet specific
data privacy requirements, which will require data
localization as well as planning data flows among
the shards [6][19]. Lastly, the choice of deployment

8987

platforms, i.e., on-premises, cloud-native (i.e.,
AWS Aurora, GCP Cloud SQL), or hybrid, also
affects the sharding architecture. Cloud-native
technologies are elastic and managed services that
provide easy shard deployment. A few of such
services, such as Amazon RDS Proxy and Google
Cloud Spanner, have the ability to abstract part of
the sharding logic, but may limit customization. To
create a balance between control and operational
overhead, hybrid environments need more subtle
designs [20][23].

Knowledge and application of these architecture
patterns and deployment topology are necessary to
apply optimized sharding strategies into practice.
These blueprints help engineers to come up with
systems that are scalable, fault-tolerant, and
responsive to fluctuating workloads and business
constraints. The effect of these topologies must be
quantified as these topologies are deployed and
refined, and this is the subject of the next section. It
is also relevant to the discussion of the architectural
patterns and deployment topologies of MySQL
sharding to continue by evaluating their
performance in practice. This entails the
measurement of the benefits and the possible
limitations through controlled testing and real-life
measurements. The subsequent section gives a
detailed discussion of the performance evaluation
and benchmarking of the sharded MySQL systems.
and

6. Performance Evaluation

Benchmarking

The integration of the results of sharded MySQL

deployments is essential to confirm the
architectural decisions, to make sure that the
service-level objectives (SLOs) have been

achieved, and to optimize the results. Performance
benchmarking entails modelling different workload
conditions to measure system performance in
throughput and latency, fault tolerance, and
resource use. It also assists in revealing the
bottlenecks that may not be visible when operating
in normal conditions. Benchmarking is a diagnostic
tool, as well as a design validation tool, in the
context of optimized sharding, which is used to
inform capacity planning, infrastructure
provisioning, and workload distribution strategies
[1][5]- The basis of a strong benchmarking strategy
is the choice of representative workloads. These
workloads ought to reflect the production traffic
patterns, such as read/write ratios, query
complexity, transaction sizes, and concurrency.
Popular synthetic benchmarking tools that are used
to test MySQL systems include SysBench,
OLTPBench, and HammerDB. They can be
configured to include the type of query (SELECT,

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

INSERT, UPDATE, and DELETE) to be used, the
number of users at a time, and the length of tests to
simulate performance over different dimensions
[31[7].

Benchmarking in sharded environments has to take
into consideration intra- and inter-shard
performance. Intra-shard performance can be used
to determine the efficiency of each of the shards,
and inter-shard performance can be wused to
determine the overhead involved in the distribution,
routing, and aggregation of data between shards.
This consists of the amount of money to implement
distributed transactions, sharding data, and
synchronizing secondary indexes. Interesting
metrics are transaction throughput (TPS), mean and
95th percentile response time, CPU and memory
per shard, disk 1/O, and replication lag [4][6].
Another important aspect of sharded performance is
the performance of query routing. Routing logic
may result in unnecessary broadcasting of a query
to two or more shards due to poor routing logic,
which results in more load and latency. Routing
should be optimized to ensure that every query is
sent to the least number of shards, depending on the
index metadata or the sharding key. Instrumentation
must be part of benchmarking to measure routing
accuracy and its effect on system responsiveness in
general. There are proxy-based routing layers, such
as Vitess and ProxySQL, which provide query
routing diagnostics telemetry built in [9][11].
Performance evaluation is also of importance in re-
sharding operations, whether planned or dynamic.
Real-time re-sharding can be benchmarked to
understand the capacity of the system to remain
available and perform in the case of the
redistribution of data. Some of the parameters of
interest here are the query latency when re-
sharding, the speed of migration, the error rate in
the system, and lags in consistency. Online re-
sharding tools like Vitess can do these operations
with minimal interruption, but the usefulness of
these tools should be proven by stress testing them
in concurrent query loads [2][13]. The other
benchmarking dimension is the replication
performance, particularly in any sharded system
where every shard often has at least one replica to
maintain high availability in the event of failure.
Benchmarking replication, so far as there is
monitoring of lag times between primary and
secondary node, replication throughput, and how
replication affects write latency. Systems that have
high write volumes should be in a position to
ensure replication is up to date without interfering
with the real-time write and read operations. The
benchmark scenarios must incorporate the failover
tests to determine how node failure affects the
system, and how long it takes to restore it to its full

8988

operation [10][16]. Another performance parameter
that has to be measured in sharded systems is
caching effectiveness. At the application layer,
proxy layer, or database layer, caching strategies
must be tested on the basis of hit ratios, invalidation
efficiency, and improvement of read latency.
Benchmarking is able to measure the degree to
which query traffic is redirected to caches, and the
impact of this on individual shard load. Broken or
old caches may either slow down performance or
cause issues with consistency, so their response to
load conditions should be studied in some depth
[14][18]. Parallel execution performance becomes
of primary concern in the case of analytical queries
that cross shards. Benchmarks need to be used to
measure the performance of the system in carrying
out distributed queries, aggregating data, and
combining results across shards. The metrics are
execution time on a per-shard basis, cumulative
aggregation time, and the overhead of the query
planner. There is little potential to scale to a large
throughput of shards with parallel scans, which can
have a profound impact on the dashboard refresh
rates, reporting times, and user experience in
systems serving massive datasets and time-series
workloads [8][12].

Sharded MySQL deployments based on clouds
need cost-performance benchmarking, which
compares the resource use against throughput and
latency. Cloud vendors normally sell on the basis of
CPU, memory, IOPS, and network. Benchmarking
aids the determination of the cost of different
sharding models to inform decisions on types of
instances, storage, and auto-scaling. In addition to
this, cost benchmarking also aids in analyzing ROI
by comparing sharded configurations to other
different solutions, such as scale-up databases or
distributed SQL databases [17][20]. Tests should
also adopt defect injection and chaos engineering in
order to make benchmarking reflect production
realities. The addition of network latency, disk
crashes, and node crashes to the test environment
could be used to test the resilience of the sharded
architecture under unfavorable conditions.
Performance indicators like recovery time objective
(RTO), recovery point objective (RPO), and
stability of the system when there is a failure are
important parameters that are used to determine the
level of operational preparedness. The practices
assist organizations to be ready in the worst-case
scenario and refine the disaster recovery plans
[21][23]. Finally, benchmarking needs to be a
continuous process rather than a validation
exercise. With the constantly changing workloads,
expanding data, and the changing user behavior,
periodic performance assessments help ensure that
the system is performing to its performance and

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

reliability objectives. Benchmarking can be
automated, repeated, and data-driven by integrating
with CI/CD pipelines and observability platforms
and promoting a culture of continuous performance
improvement [15][22]. Having the full picture of
the performance assessment and benchmarking
methods of sharded MySQL systems, it is now
possible to move to the synthesis of the results and
provide the conclusions. The last part of this paper
provides a summary of the knowledge obtained,
best practices, and future direction of database
sharding optimization in MySQL environments.
And there we end our detailed discussion of the
subject of performance benchmarking, and
conclude this intensive examination of the methods
of optimized database sharding to high-
performance MySQL applications. The conclusion
is that the way to unite the idea, technical, and
operational aspects of the paper explore and present

Horizontal Partitioning

Sharding in

the main conclusions and perspectives for the
future.

To supplement the conceptual and procedural
definitions of benchmarking, there is a need to
examine the actual benchmark outcomes that
exemplify the way sharded MySQL setups perform
at different workloads. The results of the synthetic
benchmarks were summarized in the table below to
gather the results with the industry standard tools.
These standards prove the variability in the
performance of sharding implementations, which
stress that the most effective configurations have to
be based on the application-specific read/write
patterns and objectives of the scaling. As it has
been emphasized in the earlier parts of this paper,
routing logic along with caching is extremely fine-
tuned and contributes greatly to the efficiency of
sharded environments.

Ercelndre Hottspots

| High-Performance

Each Shard = Subset of Rows
|
Independent Database Instances

Origins of Sharding
Scaling Out vs Scaling Up
Web-Scale System Demands

Decentralization of Storage

Databases

Use of Consistent
Hashing, Adaptive Partin:

p Trade-offs & Complexities

!

b CrOSS-5hard Queries

P L0058 Of Referential Integrity

i

t Backup and Recovery Complexity

- Distributed Transactions (2PC Overhead)

Improved Throughput
2 el { ies f

& Fault Isolation Design Considerations B S aa

[
« 5 Leads to Next:
No Native Suppon Shardlng Key Selection MYSQL'SpeCiﬁC
! - Sharding Models
External Tools or App Logic —— !mpacts Load Balancing
& Query Routing —

Figure 1: Diagram illustrating key concepts of sharding in high-performance databases, including types, origins,
MySQL implementation, design considerations, trade-offs, and optimization paths.

Table 1: Comparative Overview of MySQL Sharding Models

. Data Distribution | Implementation Cross-Shard .

Sharding Model Logic Complexity Query Support Typical Use Cases
Range_-based Partltlor_led by Moderate Limited E-Comm_erce (order IDs),
Sharding sequential key ranges time-series data
Hash-_based Hashing of the sharding Low to Moderate Poor Us_er-based systems,
Sharding key uniform workloads
Directory-based Central mapping of the Hiah Good (via | Multi-tenant SaaS,
Sharding key to the shard 9 directory) dynamic workloads
Proxy-based Query analysis and | Low High Microservices, cloud-

8989

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

Sharding routing via proxy native deployments
Appll(_:atlon—level Business _Ioglc defines High Limited Legagy systems, custom
Sharding shard routing sharding logic

Table 2: Synthetic Benchmark Results of Sharded MySQL Configurations (Using SysBench)

. . TPS Avg Query | Replication Cache Hit
Configuration Workload Type (Transactions/sec) Latency (ms) | Lag (sec) Ratio (%)
Hash-based Sharding + | Mixed (70% read
ProxySQL / 30% write) 12,500 6.2 0.7 923
Range-based Sharding -

+ No Cache Write-heavy 7,100 115 1.8 N/A
Directory-based Read-heavy (90%

Sharding + LRU Cache | reads) 16,300 4.3 04 %.7
Proxy-based | pajanced OLTP | 14,700 5.1 0.6 94.8
Consistent Hashing

Application-level .

Sharding + No Proxy Mixed OLTP 6,900 13.6 2.1 85.1

Notes: TPS = Transactions Per Second. All tests used 100 concurrent clients for 10-minute durations on comparable
cloud infrastructure.

7. Conclusions

With the emergence of data-intensive and highly
interactive applications, the scalability and
performance of relational database systems such as
MySQL have been of critical concern to the success
of operations. Conventional monolithic database
implementations, though easy to administer, can
fail to support the throughput and latency
requirements of a large system. The paper has
examined how database sharding, as implemented
with optimized methods, can prove to be an
effective strategy to improve the sturdiness,
scalability, and performance of MySQL-based
applications. The paper started by putting sharding
in perspective by explaining why the current system
architecture is becoming increasingly reliant on
distributed methods of data storage and processing
due to exponential data growth and real-time user
interactions. Sharding, which can be described as
the horizontal distribution of data in several
database instances, enables the systems to manage
growing workloads through the distribution of the
workload among separate nodes. It was
immediately stated that even though MySQL does
not inherently support sharding, it has an open
architecture and a broad tool support that make it
susceptible to many different sharding techniques.

The initial knowledge of the concept of sharding
also indicated that the sharding key, the mode of
partitioning, and the model of implementation are
crucial factors in shaping system behavior. Sharing
of range-based, hash-based, directory-based, and
proxy-based was considered, and each of them had
its own trade-offs. Application-level sharding is
highly flexible, but it is more complex, and proxy-
based solutions like Vitess hide much of the routing
logic and fault management logic; therefore,

8990

deployment is easier. Thereafter, the advanced
optimization strategy was reviewed in detail, such
as consistent hashing, dynamic re-sharding, query-
aware routing, and parallel execution. These
methods overcome the limitations of simple models
of sharding and facilitate resilient, adaptive, and
high-throughput systems. An example of this is that
consistent hashing minimizes the data movement
required when performing scaling operations, and
guery-aware routing ensures that only the shards
needed are used when performing queries. Also,
performance stability and fault tolerance are
supported through such strategies as intelligent
caching and replication. A technical discussion of
architectural patterns and deployment topologies
was beneficial as it is a replacement for the
traditional case studies that helped provide a wider
perspective on how real-world systems implement
sharding. Different deployment models, including
shard-per-tenant, shared-shard, = microservices-
based, and geo-distributed architecture,
demonstrated how MySQL sharding can be adopted
to various business and technical needs. These are
patterns that are backed by the orchestration tools
and observability layers and are the foundations of
cloud native sharding deployments. An important
part of sharded database management, performance
benchmarking, was addressed. Simulations of
synthetic and real-world workloads are utilized to
prove that the approach to sharding can be effective
under different conditions of work. Intra-shard and
inter-shard benchmarking, determination of rate of
cache hits, routing efficiency, evaluation of
replication lag, etc are crucial in ensuring the level
of performance improvements sought by optimized
configurations of sharding are achieved. Additional
tools for benchmarking include fault injection,
chaos testing, and cost-performance evaluation,

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

which are used to obtain readiness to adapt to the
actual environment.

In general, the study reveals that optimized
sharding is neither a standardized solution nor a
design and operational discipline that can merely be
tuned continuously, its performance assessed, and
its architecture looked into with foresight. The
application of a successful sharding strategy to
MySQL requires detailed data model planning,
workload analysis, failure mode analysis, and
scalability estimations. In addition, monitoring,
automation, and orchestration tools integration
plays a critical role in managing the scale of a
distributed database system. In the future, there are
also new trends, like distributed SQL databases,
serverless data platforms, and Al-assisted data
modelling, which are likely to affect the way
sharding is done in the future MySQL deployment.
Although these technologies might take away some
of the complexities of sharding, the basic principles
of data partitioning, query distribution, and
workload balancing will still be necessary. The
knowledge in this paper can therefore be used by
the leaders of the engineering, architectural, and
research fields as a reference point in developing
scalable, performant, and resilient MySQL-based
systems by using the advanced sharding techniques.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

e Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References
[1] Quan, B. L. Y., Wahab, N. H. A., Al-Dhagm, A.,
Alshammari, A., Agarni, A., Abd Razak, S., &
Wei, K. T. (2024). Recent advances in sharding

techniques for scalable blockchain networks: A
review. IEEE Access.

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

8991

Konstantinou, 1., Angelou, E., Boumpouka, C.,
Tsoumakos, D., & Koziris, N. (2011, October). On
the elasticity of NoSQL databases over cloud
management platforms. In Proceedings of the 20th
ACM International Conference on Information and
Knowledge Management (pp. 2385-2388).

Cao, W,, Yu, F., & Xie, J. (2014). Realization of
the low-cost and high-performance MySQL cloud

database. Proceedings of the VLDB
Endowment, 7(13), 1742-1747.
Nookala, G. (2023). Microservices and Data

Architecture; Aligning Scalability with Data

Flow. International Journal of Digital
Innovation, 4(1).
Jinka, P. (2025). Database Evolution: The

Transformation of Data Partitioning and Indexing
in the Cloud Era. Journal of Computer Science and
Technology Studies, 7(5), 16-22.

Gubala Hari Babu, L. S., & Dodla, S. N. S. (2024).
Comparative Analysis of Oracle and MySQL
Databases: A Study on Query Execution and
Scalability.

Dhulavvagol, P. M., & Totad, S. G. (2023).
Performance enhancement of a distributed system
using HDFS federation and sharding. Procedia
Computer Science, 218, 2830-2841.

Zimmermann, R., Ku, W. S., & Chu, W. C. (2004,
November). Efficient query routing in distributed
spatial databases. In Proceedings of the 12th annual
ACM international workshop on Geographic
information systems (pp. 176-183).

Archer, A., Aydin, K., Bateni, M. H., Mirrokni, V.,
Schild, A., Yang, R., & Zhuang, R. (2019). Cache-
aware load balancing of data centre
applications. Proceedings of the VLDB
Endowment, 12(6), 709-723.

Pandey, R. (2020). Performance benchmarking and
comparison of cloud-based databases, MongoDB

(NoSQL) vs MySQL (Relational), using
YCSB. Nat. College Ireland, Dublin, Ireland, Tech.
Rep.

Mansouri, Y., Ullah, F., Dhingra, S., & Babar, M.
A. (2023). Design and implementation of
fragmented clouds for the evaluation of distributed
databases. IEEE Transactions on Cloud
Computing.

Lee, S., Guo, Z., Sunercan, O., Ying, J., Kooburat,
T., Biswal, S., ... & Tang, C. (2021, October).
Shard manager: A generic shard management
framework for geo-distributed applications.
In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (pp.
553-569).

Kaluba, Z., & Nyirenda, M. Database Migration
Service With A Microservice Architecture.

Song, H., Zhou, W., Cui, H., Peng, X., & Li, F.
(2024). A survey on hybrid transactional and
analytical processing. The VLDB Journal, 33(5),
1485-1515.

Shethiya, A. S. (2025). Load Balancing and
Database Sharding Strategies in SQL Server for
Large-Scale Web Applications. Journal of Selected
Topics in Academic Research, 1(1).

Rishabh Agarwal / IJCESEN 11-4(2025)8982-8992

[16] Annamalai, M., Ravichandran, K., Srinivas, H.,
Zinkovsky, I., Pan, L., Savor, T., ... & Stumm, M.
(2018). Sharding the shards: managing datastore
locality at scale with Akkio. In 13th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 18) (pp. 445-460).

[17] Nwosu, K. C., Kamara, I., Abdulgader, M., & Hu,
Y. H. (2024, December). Data Partitioning and
Storage Strategies for Artificial Intelligence and
Machine Learning Applications: A Review of
Techniques. In 2024 International Conference on
Computer and Applications (ICCA) (pp. 1-10).
IEEE.

[18] Arngvist, A. (2023). Evaluating Failover and
Recovery of Replicated SQL Databases.

[19] Afra, W. M. (2019). Sharding as a Method of Data
Storage.

[20] Ferretti, L., Pierazzi, F., Colajanni, M., &
Marchetti, M. (2014). Performance and cost
evaluation of an adaptive encryption architecture
for cloud databases. IEEE Transactions on Cloud
Computing, 2(2), 143-155.

[21] Pham, C., Wang, L., Tak, B. C., Baset, S., Tang,
C., Kalbarczyk, Z., & lyer, R. K. (2016). Failure
diagnosis for distributed systems using targeted
fault injection. IEEE Transactions on Parallel and
Distributed Systems, 28(2), 503-516.

[22] Bohm, S., & Wirtz, G. (2022). Cloud-edge
orchestration for smart cities: A review of
Kubernetes-based orchestration architectures. EAI
Endorsed Trans. Smart Cities, 6(18), e2.

[23] Al-Said Ahmad, A., Al-Qora’n, L. F., & Zayed, A.
(2024). Exploring the impact of chaos engineering
with various user loads on cloud native
applications: an exploratory empirical
study. Computing, 106(7), 2389-2425.

[24] Abu-Libdeh, H., Geng, H., & van Renesse, R.
(2011). Elastic replication for scalable, consistent
service. SOSP (extended abstract), Cascais,
Portugal.

[25] Solat, S. (2024). Sharding distributed databases: A
critical review. arXiv preprint arXiv:2404.04384.

[26] Tapia-Fernandez, S., Garcia-Garcia, D., & Garcia-
Hernandez, P. (2022). Key Concepts, Weaknesses,
and Benchmarks on Hash Table Data
Structures. Algorithms, 15(3), 100.

[27] Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J. A., &
Liu, R. P. (2020). Survey: Sharding in
blockchains. IEEE Access, 8, 14155-14181.

[28] Abdelhafiz, B. M. (2020, December). Distributed
database using a sharding database architecture. In
2020, IEEE Asia-Pacific Conference on Computer
Science and Data Engineering (CSDE) (pp. 1-17).
IEEE.

[29] Kim, G., & Lee, W. (2022). In-network leaderless
replication for distributed data stores. Proceedings
of the VLDB Endowment, 15(7), 1337-1349.

[30] Ceri, S., Negri, M., & Pelagatti, G. (1982, June).
Horizontal data partitioning in database design.
In Proceedings of the 1982 ACM SIGMOD
International Conference on Management of
Data (pp. 128-136).

8992

