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Abstract:  
 

The growth of the television advertising ecosystems in complexity and size has 

gradually increased the importance of real-time monitoring and analysis of ad 

impression logs. The existing traditional (batch-based) and fixed-point anomaly 

detection systems are not suitable in the context of the high-velocity, high-volume 

streaming television data. In this paper, the author introduces an in-depth discussion of 

the AI-powered anomaly detection algorithms that can be implemented in streams of 

big data pipelines to provide the accuracy, integrity, and adherence of TV ad 

impressions. Through the use of more sophisticated machine learning and deep learning 

algorithms, including autoencoders, LSTMs, and ensemble algorithms that are 

integrated into scalable frameworks, e.g., Apache Kafka and Flink, real-time insights 

may be obtained at the lowest possible latency. The paper also examines the nature of 

anomalies that are often witnessed in the ad impression log, deploying model strategies, 

and performance of the system based on measures like precision, recall, latency, and 

throughput. The paper is concluded with a discussion of the existing issues, such as data 

heterogeneity, concept drift, and explainability, and the forecast of future advances in 

federated learning, edge AI, and hybrid detection models. This convergent strategy 

illustrates how AI and streaming data systems have a transformative potential in 

improving the performance (both operational and financial) of the TV advertising 

sector. 

 

1. Introduction 
 

Advertisement industry has experienced a paradigm 

change in the last ten years due to the expansion of 

digital platforms, programmatic advertising, and 

real-time bidding. Nonetheless, television is a 

formidable advertising tool, which is highly 

demanding in terms of revenue and has a wide 

reach to the audience. As the delivery and 

monitoring of television ads continues to grow 

more digitised, there has been a critical need to 

have real-time analytics that are capable of 

processing, interpreting, and responding to 

streaming data logs produced once television ads 

are impressioned. These real-time ad exposures as 

logs are not only large but also time sensitive in 

that they require an effective system to help 

identify anomalies like missed impressions, 

fraudulent insertions, or signal distortions at the 

time they take place. 

The use of Artificial Intelligence (AI), specifically, 

machine learning (ML) and deep learning (DL) 

models, has enabled automatic detection of 

anomalies in mass data settings. Together with 

streaming big data systems like Apache Kafka, 

Apache Flink, and Spark Streaming, AI makes it 

possible to create pipelines that allow the detection 

of anomalies with a high degree of scalability and 

efficiency in real-time. The combination of AI and 

streaming big data is redesigning the capabilities of 

detecting anomalies in TV ad impression logs, 

which are highly accurate, scalable, and with 

actionable insights [1][2][3]. 

Anomaly detection in this case is critical. 

Abnormalities in logs of ad impressions may 

signify technical errors, fraudulence, or 

inefficiency. An example of this is that the presence 
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of differences between planned and actually aired 

impressions can result in the loss of money or 

failure to respect the agreement of the advertisers. 

Therefore, it is essential to implement a system that 

would be able to identify such anomalies in real 

time to keep TV advertising campaigns intact and 

profitable [4][5].There are special challenges 

associated with real-time anomaly detection. 

Conventional anomaly detectors tend to make use 

of fixed data sets and batch computation, which are 

not adapted to the pace and quantity of streaming 

information in actual TV broadcasting setups. Live 

television broadcasts are dynamic, so issues like 

delays on broadcasts, signal drops, or even regional 

differences in commercial placements require a 

low-latency solution based on context. AI-based 

models, which were trained on past and simulated 

data, are able to learn patterns on the fly and detect 

deviations with limited interference on the human 

side [6][7]. Moreover, the emergence of stream 

processing models has allowed ingestion, 

processing, and monitoring of moving logs. These 

systems are designed to deal with high throughput, 

fault-tolerant tolerant and scaling processes, which 

are needed to support real-time applications such as 

TV ad monitoring. Anomaly detection in the field 

of streaming architecture and AI models is severely 

demanding; therefore, both integrations are 

necessary [8][9].The analysis of the architecture of 

big data pipeline streaming, the use of AI in real-

time analytics, and the purpose of the particular 

approach to the detection of anomalies in TV ad 

impressions records follow. A review of the 

technological background will be followed by a 

discussion of the AI-based models to detect 

anomalies, a discussion of the deployment 

strategies, and a conclusion of the analysis with a 

critical view of the performance, challenges, and 

future perspectives. 

 

2. Streaming Big Data Architecture for TV 

Ad Impression Logs 

Before analyzing the processes involved in 

achieving real-time anomaly detection, it is 

important to look at the infrastructure on which the 

logs of the TV ad impressions are processed. These 

are set-top boxes, satellite feeds, and ad insertion 

equipment generated logs that are continuously sent 

to centralised systems to be analysed, as illustrated 

by Figure 1. Data volume, variety, and velocity 

imply the need to have a streaming big data 

architecture that will cope with these attributes. 

The basic streaming big data workflow of 

monitoring TV ad impressions includes ingestion 

layers, stream processing engines, long-term stores, 

and integration points of machine learning models. 

Apache Kafka or Pulsar, DMs that are often used as 

ingestion layers, serve as the point of entry for log 

data. These frameworks are durable, offer high-

throughput and partitioned message delivery, and 

can process and scale simultaneously [10][11]. 

After being ingested, it is processed on stream 

processing engines such as Apache Flink or Apache 

Spark streaming. The frameworks provide 

windowed aggregations, support complex event 

processing, and external data sources/sink 

integration. They can conduct stateful computations 

in real time that are essential in identifying 

anomalies like deviations in the numbers of 

impressions, inconsistencies in timestamps, and 

missing records [12][13].Both raw and processed 

data are stored in persistent storage, which can be 

any of the following: significant time series, 

distributed file system, or time-series database, 

such as Apache HBase, Cassandra, or InfluxDB 

persistence, and both raw and processed data are 

later used to perform further analytics, historical 

comparisons, and model training. The models 

themselves are deployed either as a microservice or 

integrated into the stream processors so that they 

can score in real-time and raise alerts based on the 

incoming data [14][15]. The process of interfacing 

between these components is supported by 

orchestration tools and metadata management 

systems, which assure compatibility between the 

schemas, monitoring of latency, and recovery of 

faults. Another visualization tool with the pipeline 

is Grafana or Kibana, which can make real-time 

operational insights, dashboards, and anomaly 

reports.Streaming architecture is important because 

it can handle ad impression logs in real-time, with a 

minimum time response, resulting in the timely 

identification of anomalies and their remedy. The 

architecture is particularly important in situations in 

which the advertisers are charged on a per-

impression basis, and when any difference to the 

campaign metrics is observed, it should be 

immediately reported so that reputational or 

financial losses can be unavoidable [16][17]. In 

addition, in this architecture, load-based scaling is 

achieved, enabling it to scale to peak broadcasting 

periods or special live events, which normally 

experience heavier ad loads and hence create more 

logs. Consequently, a streaming pipeline is not only 

the cornerstone of real-time analytics but a 

condition to operational excellence in contemporary 

TV advertising systems. 

 

3. AI and Machine Learning for Real-Time 

Anomaly Detection 

Since the basic architecture of streaming data has 

been established, there is an urgent need to 
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investigate the ways of embedding AI techniques 

into the pipeline to facilitate anomaly detection. 

This is not only difficult in terms of identifying 

patterns that are not as per expectations but also 

with low latency, high accuracy, and with the 

lowest false positives. The use of AI models 

introduces these opportunities through the learning 

of previous data, following the new trends, and 

constantly enhancing their accuracy in the 

detection. The commonly used machine learning 

models in this case are supervised, semi-supervised, 

and unsupervised learning models. Trained 

supervised models like the Random Forests and 

Gradient Boosting are used on labeled datasets 

comprising normal and anomalous ad impression 

activities. These models are trained in order to 

differentiate the two categories based on factors 

like time lapses, geographical locations, device 

numbers, and recurrence of impressions [18][19]. 

Nevertheless, in most real-life contexts, labeled 

anomalies are either rare or not available, and thus, 

it is more feasible to use unsupervised and semi-

supervised methods. Isolation Forests, One-Class 

SVMs, and autoencoders are the most commonly 

used techniques. Autoencoders, especially deep 

learning ones, are effective in learning dense 

representations of normal behaviour and have 

demonstrated the ability to identify subtle 

behavioural anomalies in real-time streaming logs 

[20][21]. Furthermore, sequential dependencies in 

impression logs can be modeled with the help of the 

integration of temporal models, including Long 

Short-Term Memory (LSTM) networks and 

Temporal Convolutional Networks (TCNs). These 

models are skillful in identifying time-dependent 

anomalies, including an unexpected increase or 

decrease in the number of impressions within 

certain broadcasting periods. They can be 

particularly helpful in detecting the anomalies with 

the broadcasting schedules, blackouts, or the 

mismatch of regional feeds [22][23]. 

Feature engineering is important in improving the 

performance of models. Some of the important 

characteristics that are derived from streaming logs 

are frequency of impressions per time unit, time 

interval between advertisements, cumulative 

impressions, and entropy measurements of signal 

variation. Such characteristics are normalised and 

inputted into AI models to keep on learning and 

scoring. Predictions made by the model are sent 

back into the processing pipeline, and anomalies 

are raised or automated mitigation measures are 

taken [24][25]. The detection of concept drift and 

online learning are used to ensure the model's 

robustness. Since television programming and user 

behaviour continue to change, models do not need 

to be retrained every time to suit the emerging 

trends. Algorithms based on online learning that 

update their parameters as new information comes 

are also being used in the field. 

Additionally, the ensemble learning methods, 

where many models are integrated in order to 

enhance the ability of prediction, are implemented 

to minimize the variance and bias. These ensembles 

can be (a) of different types of models, or (b) of 

several instances, which have been trained on 

different windows of data, which improves the 

generalization capabilities of the system to 

changing broadcasting conditions. 

AI is incorporated into streaming pipelines by 

serving platforms such as TensorFlow Serving, 

MLflow, or a custom RESTful API. These 

platforms enable modeling to be scaled, and they 

incorporate the support of versioning, logging, and 

A/B testing. Performance of the models is 

continually monitored to ensure that the model is 

retrained and adjusted accordingly to avoid the 

degradation of the models with time. Therefore, the 

anomaly detection in TV ad impression logs 

through AI is powered by a synergistic approach to 

machine learning, temporal modeling, and real-time 

scoring to identify anomalies fast and accurately. In 

the following section, we explore the way these 

models are implemented in the production setting 

and how they are used to provide resilience, 

accuracy, and low latency. 

In addition to the theoretical focus on the 

architecture of AI models and the algorithms 

applied when performing anomaly detection with 

reference to TV ad impression logs, one should also 

focus on the properties of different machine 

learning methods considered in the context of 

streaming data. The 4 tables below are a summary 

and comparison of some popular models used in 

real-time anomaly detection systems, their 

advantages, drawbacks, and areas of application. 

These comparative insights assist engineers and 

data scientists in selecting the appropriate algorithm 

depending on the anomaly characteristics, resource 

constraints, and the real-time processing 

requirements of the ad impression environment. 

 

4. Deployment Strategies and Operational 

Considerations 

It is not just the creation of AI models in real-time 

to detect anomalies. How well the models become a 

part of the wider ecosystem of data streaming and 

operational intelligence, represented in Figure 2, is 

equally important with reference to the deployment 

strategy. The deployment here should be made in 

such a way that it sets high standards regarding the 

latency, throughput, scalability, and fault tolerance. 

Models that perform well during offline or in test-
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time may not be able to perform with the load and 

variability of real-world streaming data. Therefore, 

precise coordination is needed to make sure that the 

deployment is smooth, stable, and runs efficiently. 

Model deployment is usually implemented in two 

major models: edge deployment and centralized 

deployment. In edge deployment, the logic of 

anomaly detection is brought nearer to the source of 

data, like broadcast centers or set-top boxes, in 

which the latency of the anomaly detection can be 

reduced in the shortest possible time. It is especially 

useful when it is required to take immediate action 

concerning localized faults or anomalies (e.g., 

regional feed problems). Conversely, centrally 

deployed systems are found in cloud or data center 

architectures, which make use of increased 

computation and aggregation of a unified data set to 

increase model accuracy across geographies and 

channels [26][27]. 

A successful deployment plan usually uses the 

technologies of containerization, like Docker, and 

orchestration tools like Kubernetes. Such tools 

support the elastic scaling of anomaly detection 

services according to the data rates. They are also 

used to isolate model versions and control 

deployment pipelines in a continuous 

integration/continuous deployment (CI/CD) system 

so that the updates to models can be tested and 

verified, and deployed without interruption 

[28][29]. Serving platforms are used to provide 

real-time inference because deployed models can 

interact with streaming engines. As an example, an 

AI model deployed inside Apache Flink or via a 

gRPC API constantly consumes processed 

impression features, processes them, and provides a 

prediction score. When the score exceeds some 

predetermined anomaly threshold, the system sends 

out an alert or initiates automated recovery 

processes, including rerouting feeds or asking for 

retransmission of unsuccessful ad impressions [30]. 

Monitoring of models is also an operational 

consideration, which involves performance 

monitoring, anomaly verification, and feedback 

loops. Models can affect precision, recall, false 

positives, and latency values in real time because it 

is possible to monitor them using tracking systems, 

since they can become more inaccurate with time 

because of the concept drift or change of the 

broadcasting schedules. Visualisations of these 

metrics in the form of dashboards enable the 

operations teams to identify model failures at an 

early stage and initiate retraining workflows 

accordingly [31][32]. Explainable AI (XAI) 

methods are incorporated to ensure the models are 

coherent and explainable to the stakeholders in the 

business and compliance teams. They are SHAP 

(Shapley Additive Explanations) values or LIME 

(Local Interpretable Model-agnostic Explanations), 

which attempt to explain why a particular 

impression log was considered anomalous. These 

insights prove to be invaluable both in debugging 

as well as regulatory reporting and contract dispute 

resolution in cases where the anomalies of 

impression can have an impact on billing [33]. 

Another critical factor of deployment is security. 

Since the ad impressions logs can include user, 

broadcaster, and even advertiser metadata, the 

systems should meet the data protection laws. This 

requires encryption protocols, role-based access 

controls, and a secure API gateway. Furthermore, 

making sure that the models of anomaly detection 

are not susceptible to adversarial manipulation, 

including poisoned training data or inference-time 

attack, is a new field of study and a key component 

of sound deployment policy [34]. Finally, hybrid 

deployment models are becoming increasingly 

popular where components of the anomaly 

detection pipeline are deployed on-premise to 

comply and ensure lower latency, whereas other 

elements are deployed on a cloud infrastructure to 

scale and achieve centralised intelligence. This will 

offer a moderate balance between control, 

performance, and cost-effectiveness. With the 

continuing development of real-time TV ad 

impression monitoring, these deployment strategies 

will be maturing with more of an automation 

orientation, resilience, and collaboration with other 

systems. The following section also covers the 

nature of anomalies that are present in impression 

logs and what particular challenges they pose to the 

detection systems. 

 

5. Types of Anomalies in TV Ad Impression 

Logs 

The phenomenon of anomalies in the logs of 

impressions in the field of television advertising is 

not universal; it takes different forms, with other 

root causes and consequences. The problem of such 

anomalies should be understood to create specific 

detection tools and develop the corresponding 

mitigation measures. The artificial intelligence 

systems in real-time should be designed to suit the 

patterns, context, and nature of individual 

anomalies. The simplest type of anomaly is the 

volume-based anomalies, which are the 

inconsistencies in the quantity of impressions that 

occurred during a specified time period against the 

historical or anticipated records. Such anomalies 

usually indicate a problem like blackouts in the 

broadcast, failure of ad insertions, or loss of signal 

in the headend. As an illustration, when an advert to 

be run in prime time is booked on a high-rated 

program, and is actually recording very low 



Viharika Bhimanapati, Naveen K Chandu / IJCESEN 11-4(2025)9068-9078 

 

9072 

 

impressions when compared to other similar 

advertisements, then the system should issue an 

alert [35][36]. Temporal anomalies are those in 

which impressions are recorded out of the ordinary. 

This may be attributed to non-alignment of ad 

playouts, early or late transmissions, or imprecision 

of clocks between logging systems. An example of 

an advertisement that would cause a temporal 

anomaly alarm is an ad, at 30 seconds, at 8:00 PM, 

which records impressions at 8:03 PM. These need 

to be detected through careful synchronization of 

timestamps and expected timing distribution 

learning models [37]. 

Geospatial anomalies are the abnormalities of 

patterns of impressions in the various regions. 

These may be because of problems in the feeds 

within the region, transmission problems, or local 

network breakdowns. Indicatively, when the 

impressions of a traditionally high-activity urban 

area plummet to zero, and other areas stand at the 

same level, an anomaly at a local scale will have to 

be notified. Geo-clustering and regional baselines 

are AI models that identify such anomalies 

[38][39]. A pattern-based anomaly is another 

significant category in which the form or the rate of 

impression logs does not conform to anticipated 

behavioural patterns. These are frequent 

impressions, uncharacteristically brief or prolonged 

pauses between advertisements, and unusual 

sequence shifts. As an example, having two 

identical impression logs in quick succession may 

be a sign of a logging error in the system or 

intentional manipulation. LSTM/Markov chain-

based sequence modeling is useful in the detection 

of such fine deviations [40][41]. 

Content-based anomalies are anomalies of metadata 

of ad impressions. These may be discrepancies 

between scheduled and aired creative IDs, a lack of 

advertiser information, or campaign identifier 

discrepancies. The cause of these anomalies may be 

inaccuracies in campaign configuration by humans, 

database syncing, or failure to integrate systems of 

various ad tech. The integrity of such logs is 

checked in real time with models that are trained on 

ad metadata structure [42]. Semantic anomalies also 

exist, and this is related to the mismatch of 

impressions in context. As an illustration, an 

alcohol advertisement that is aired during a 

children's show, though technically correct in terms 

of scheduling and metadata, would be reported as a 

semantic anomaly because of regulatory or brand 

safety issues. Such context-sensitive anomalies are 

increasingly being detected using semantic analysis 

models, which are usually founded on Natural 

Language Processing (NLP) and program metadata 

analysis [43].Lastly, the artificial anomalies are the 

ones that are added to train or test the model. These 

are essential in training supervised models, 

particularly when the real-world labeled anomalies 

are few. Imperative care should be taken in the 

sense that these synthetic instances correctly model 

actual anomalies, and not to overfit or unrealistic 

model behaviour. The process of identifying such 

different anomalies involves a complex AI solution 

that incorporates statistical baselining, time series 

modeling, automatic grouping, and real-time 

context analysis. The following section discusses 

the method of measuring system performance, the 

measures involved, and the way performance of the 

system is measured in real-life applications. 

 

6. Evaluation Metrics, Performance 

Analysis, and Real-World Effectiveness 

As soon as AI-driven anomaly detection models are 

implemented into the streaming big data pipelines 

to track TV ad impressions, their effectiveness, 

accuracy, and reliability of operations need to be 

evaluated continuously. An evaluation strategy that 

is properly calibrated is not only one that confirms 

that the model is effective, but one that is 

determined by actual implementation of the system, 

that is, variable loads, latency constraints, and a 

wide variety of types of anomalies. Precision, 

recall, and F1-score are the initial and most popular 

metrics of evaluation. Precision is the evaluation of 

the ratio of the correctly recognized anomalies to 

the total anomalies recognized, whereas recall is the 

evaluation of the recognized real anomalies in 

comparison to all the existing anomalies. The F1-

score gives a harmonic average between the 

precision and recall as an independent measure 

when there is a need to trade off between false 

positives and false negatives. High precision means 

there will be a few false alarms, and this is essential 

in preventing unnecessary escalations. High recall 

is used to ensure that true threats or anomalies are 

not missed [44][45]. 

The other important measure is latency, which is 

especially important in streaming pipelines. As 

anomalies should be identified and responded to in 

real time, models are required to be able to deliver 

inference results on very tight time constraints, 

typically a few milliseconds to a couple of seconds, 

based on the needs of the system. Streaming 

systems such as Flink and Spark streaming are 

frequently supplied with latency dashboards and 

logs as a part of controlling how long it takes to 

process data in and then generate anomaly results 

[46]. One of the important performance measures is 

also throughput, which is the number of records 

processed per second. In TV networks with a 

massive scale, the quantity of ad impressions logs 

can be millions of impressions per hour. AI models 
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and streaming infrastructure should be able to 

process such data without back pressure and 

latency. The load testing and performance 

benchmarking are consistently conducted via 

synthetic traffic or historical replay to check peak 

conditions as well as gauge the robustness of the 

system [47]. Other measures that are critical in the 

operational reliability are the false positive rate 

(FPR) and false negative rate (FNR). High FPRs 

give rise to alert fatigue, in which operators start 

ignoring or procrastinating in responding to flagged 

anomalies, and may end up as they have missed 

genuine problems. On the other hand, high FNRs 

are instances of anomalies that go undetected, and 

this might incur some financial losses, conflicts 

with the advertisers, or even breaking of rules. An 

effective anomaly detector system reduces both, 

usually by retraining and tuning the threshold 

continuously [48]. Model discriminative ability at 

varying thresholds is also determined by Receiver 

Operating Characteristic (ROC) curves and Area 

Under Curve (AUC). These measures are of great 

use in the initial stages of model selection and 

comparison. Nevertheless, threshold values are 

optimized in the production environment with 

regard to business-specific risk tolerance instead of 

statistical optimality. In practice, a feedback loop 

used to check anomalies by operators and feedback 

the labeled feedback into the model training 

pipeline is often used. This adaptability and 

accuracy of models are enhanced over time through 

this iterative learning. Active learning is also used, 

in which the uncertain predictions are labeled as 

such to enable human analysis in order to enhance 

the efficiency of the data [49]. Real-time anomaly 

detection in TV ad logs has been shown to improve 

in various deployments in industries. Missing 

impressions were found in high-profile events such 

as sports broadcasting, which resulted in the instant 

retransmission of the content, ensuring no 

contractual fines. Equally, the detection of the 

problem of a time drift in the satellite uplinks also 

assisted in avoiding repetitive scheduling problems 

between several regional feeds [50][51]. 

In this regard, high-availability cluster deployments 

in container orchestration with Kubernetes have 

provided auto-scaling and self-healing systems with 

99.99% uptime in the face of constant monitoring. 

There are hot-replication of stream processors and 

redundant model serving endpoints as strategies of 

failover to prevent single points of failure. 

Asynchronous communication patterns and batched 

scoring of time-windowed data are also optimized 

to use the interaction between the AI models and 

stream processors. Such strategies balance between 

latency and computational efficiency, especially 

with varying load conditions. As an example, in the 

case of live boxes, like political debates or award 

shows, the system changes the batch sizes and 

model scoring intervals on the fly to avoid overload 

without having impaired sensitivity to anomalies. 

Finally, not only the accuracy of the algorithms but 

also the design, the level of integration, and the 

feedback of the end-to-end pipeline can influence 

system performance. The following and final 

analytical discussion will focus on the existing 

problems of real-time AI-driven anomaly detection 

in TV advertising and what is to come in the future, 

and new technology that can be developed to build 

the new generation of monitoring systems. 
 

 
Figure 1: Streaming Big Data Architecture for TV Ad Impression Logs, illustrating the flow from data sources through 

stream processing, storage, machine learning, and real-time visualization, with orchestration ensuring system integrity 

and scalability. 
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Table 1: Comparison of Machine Learning Models for Real-Time Anomaly Detection in TV Ad Logs 

Model Type 
Learning 

Style 
Strengths Limitations Best Use Cases 

Random Forest Supervised 
High accuracy, handles 

categorical features well 

Requires labelled data; 

less effective for time-

series 

Detecting ad count 

anomalies with labels 

Isolation Forest Unsupervised 
Efficient, interpretable, 

low memory footprint 

Less effective for high-

dimensional sequences 

Volume and outlier 

detection in ad logs 

Autoencoder 

(DL) 
Unsupervised 

Learns complex patterns, 

scalable 

Black-box, requires 

tuning, potential 

overfitting 

Rare anomaly patterns in 

ad metadata 

One-Class SVM 
Semi-

supervised 

Effective for boundary-

based anomaly detection 

Poor scalability with 

large data 

Flagging unusual time 

gaps or sequences 

LSTM Neural 

Network 

Supervised / 

Seq. 

Excellent at temporal 

sequence modeling 

High latency, needs 

extensive training data 

Predicting temporal 

anomalies in impression 

timing 

 

 
Figure 2: Diagram illustrating deployment strategies and operational considerations for real-time AI anomaly 

detection, including edge and centralized deployments, containerization, inferencing platforms, model monitoring, 

explainability tools, and security safeguards. 

 

Table 2: Current Challenges and Emerging Solutions in AI-Driven Anomaly Detection Systems 

Challenge Description Impact on System Emerging Solution 

Data Heterogeneity 
Varying log formats and 

inconsistent metadata sources 

Increases false positives; 

data integration issues 

Schema-on-read frameworks; 

data normalization tools 

Lack of Labelled 

Anomalies 

Scarcity of real-world anomaly 

data for training 
Reduces model accuracy 

Synthetic anomaly generation; 

semi-supervised learning 

Concept Drift 
Changes in viewing patterns and 

broadcasting behaviour 

Model degradation over 

time 

Online learning; adaptive 

thresholding 

High Inference 

Latency 

Slow response times for deep 

models in streaming environments 

Missed real-time anomaly 

detection windows 

Model pruning; inference 

optimization 

Limited 

Explainability 

Difficulty interpreting complex 

model decisions 

Hinders stakeholder trust 

and adoption 

Explainable AI frameworks 

(e.g., SHAP, LIME)  

 

7. Challenges and Future Directions 

Although the introduction of AI-based anomaly 

detection systems in the streaming big data 

pipelines has revolutionized the operation of TV ad 

impressions monitoring, there are various issues 

that are still impeding the best functionality and 

extensive use. The problem with these limitations 

should be addressed to make the most out of these 

technologies in an industry where money and 

thoughts count. One of the major issues is that of 

data quality and heterogeneity. The TV ad 

impression logs come in a variety of devices, 

vendors, and broadcasting regions, and have 
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differing data schema, logging format, and 

reliability levels. It is non-trivial to normalize and 

harmonize such data in real time, and it may take, 

however, considerable pre-processing and metadata 

reconciliation. Unstable data raises the risk of 

creating a false positive and complicates the 

process of training AI models to adopt consistent 

patterns [52]. The other problem that exists is the 

unlabeled anomaly data. Anomalies in the real 

world are not labeled, and annotating by hand is 

very expensive and time-intensive. This impacts the 

supervised learning methods, requiring the 

implementation of unsupervised models that are not 

necessarily accurate or interpretable. This can be 

solved by synthetic data generation, although 

synthetic anomalies do not necessarily always 

reflect the complexity of real-world problems, 

particularly in edge cases [53]. Another major 

challenge is concept drift, or the shifting nature of 

what is considered normal behavior in ad 

impression logs as time goes on. The distribution 

shifts in the data can be caused by seasonal 

programming changes, by regional preferences in 

the ad, or by fluctuations in the regulatory 

requirements. In the absence of systems to monitor 

and adjust to these changes, like online learning or 

an adaptive thresholds model, accuracy may 

deteriorate quickly [54]. Scalability is also of 

concern. Although the streaming systems are 

theoretically very scalable, bottlenecks can be 

created when resource-consuming deep learning 

models are implemented in the high-throughput 

systems. Inference latency, memory footprint, and 

model compression methods are critically important 

to optimize, particularly when it is necessary to 

deploy at a resource-constrained deployment target 

like an edge device or a regional broadcast centre 

[55]. Model explainability is yet another area of 

concern. Although more complicated models, such 

as LSTMs or autoencoders, are useful when it 

comes to temporal and latent anomalies, they tend 

to be black boxes. This restricts their use in 

situations where accountability and interpretability 

are important, like in court proceedings on a 

contract involving impression counts or an audit by 

government bodies. Methods such as SHAP or 

integrated gradient are under development and 

research, but in the streaming anomaly detection 

scenario [56]. 

In the near future, the sphere will develop in a 

number of promising ways. The federated learning 

models can enable several broadcasters or networks 

to concurrently train the anomaly detection systems 

without having to share the raw data, maintaining 

privacy and compliance, and enhancing the 

robustness of the models. Equally, transfer learning 

methods have the potential to allow pre-trained 

models on one broadcast network to be adapted to 

another with minimal labeled data [57]. The 

involvement of emerging graph-based anomaly 

detection mechanisms is also likely to be used, 

especially in detecting the relational anomalies 

across channels, advertisers, and regional 

groupings. Such methods have been used to model 

complicated associations between various objects in 

ad ecosystems and identify anomalies that are not 

apparent in a flat, tabular log data. In addition, 

hybrid AI systems, which are a combination of 

rule-based logic and machine learning, are 

becoming popular. These systems are more 

interpretable and at the same time flexible and 

adaptable. As a case in point, business regulations 

can be used to regulate base levels, whereas AI 

algorithms can be used to highlight less obvious 

and more context-dependent anomalies. Serverless 

computing and edge AI are facilitating more 

distributed applications in terms of infrastructure 

and at lower costs. These technologies enable the 

ad monitoring systems to scale elastically during 

peak times and scale down to minimal operations 

overheads during low-peak periods. This will 

enable these edge systems to become feasible with 

the emergence of 5G and ultra-low-latency 

networks, where it is possible to employ real-time 

anomaly detection directly at the sources of data. 

Lastly, ethical and regulatory compliance are being 

given more consideration. With more and more 

financial transactions and advertiser relations being 

based on AI decisions, it will be essential to make 

sure that detection models are not prejudiced, 

biased, or hidden. It may only take regulatory 

frameworks a short time to make AI-driven 

impression tracking systems auditable, which will 

further demand strict documentation, logging, and 

validation pipelines. To sum up, the real-time 

anomaly detection of TV ad impressions logs is a 

growing field with enormous potential. The future 

generation of systems will provide unprecedented 

accuracy, speed, and transparency by solving the 

present-day issues and utilizing the developing 

technologies to transform the way the television 

advertising business operates. 

This is essential to plan the future improvement and 

address the current drawbacks of the real-time 

anomaly detection system, and outline the main 

issues of deployments today and the potential 

technological improvements. A systematic 

description of these challenges, their implications, 

as well as future strategies that are currently being 

explored, is provided in the table 2. 

Managing these issues with a mixture of 

architectural and algorithm development is crucial 

to the continued development and reliability of 
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anomaly detection systems in television 

advertisement analytics. 
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