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The growth of the television advertising ecosystems in complexity and size has
gradually increased the importance of real-time monitoring and analysis of ad
impression logs. The existing traditional (batch-based) and fixed-point anomaly
detection systems are not suitable in the context of the high-velocity, high-volume
streaming television data. In this paper, the author introduces an in-depth discussion of
the Al-powered anomaly detection algorithms that can be implemented in streams of
big data pipelines to provide the accuracy, integrity, and adherence of TV ad
impressions. Through the use of more sophisticated machine learning and deep learning
algorithms, including autoencoders, LSTMs, and ensemble algorithms that are
integrated into scalable frameworks, e.g., Apache Kafka and Flink, real-time insights
may be obtained at the lowest possible latency. The paper also examines the nature of
anomalies that are often witnessed in the ad impression log, deploying model strategies,
and performance of the system based on measures like precision, recall, latency, and
throughput. The paper is concluded with a discussion of the existing issues, such as data
heterogeneity, concept drift, and explainability, and the forecast of future advances in
federated learning, edge Al, and hybrid detection models. This convergent strategy
illustrates how Al and streaming data systems have a transformative potential in
improving the performance (both operational and financial) of the TV advertising
sector.
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fraudulent insertions, or signal distortions at the
time they take place.

1. Introduction

Advertisement industry has experienced a paradigm
change in the last ten years due to the expansion of
digital platforms, programmatic advertising, and
real-time bidding. Nonetheless, television is a
formidable advertising tool, which is highly
demanding in terms of revenue and has a wide
reach to the audience. As the delivery and
monitoring of television ads continues to grow
more digitised, there has been a critical need to
have real-time analytics that are capable of
processing, interpreting, and responding to
streaming data logs produced once television ads
are impressioned. These real-time ad exposures as
logs are not only large but also time sensitive in
that they require an effective system to help
identify anomalies like missed impressions,

The use of Artificial Intelligence (Al), specifically,
machine learning (ML) and deep learning (DL)
models, has enabled automatic detection of
anomalies in mass data settings. Together with
streaming big data systems like Apache Kafka,
Apache Flink, and Spark Streaming, Al makes it
possible to create pipelines that allow the detection
of anomalies with a high degree of scalability and
efficiency in real-time. The combination of Al and
streaming big data is redesigning the capabilities of
detecting anomalies in TV ad impression logs,
which are highly accurate, scalable, and with
actionable insights [1][2][3].

Anomaly detection in this case is critical.
Abnormalities in logs of ad impressions may
signify  technical errors, fraudulence, or
inefficiency. An example of this is that the presence
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of differences between planned and actually aired
impressions can result in the loss of money or
failure to respect the agreement of the advertisers.
Therefore, it is essential to implement a system that
would be able to identify such anomalies in real
time to keep TV advertising campaigns intact and
profitable [4][5].There are special challenges
associated with real-time anomaly detection.
Conventional anomaly detectors tend to make use
of fixed data sets and batch computation, which are
not adapted to the pace and quantity of streaming
information in actual TV broadcasting setups. Live
television broadcasts are dynamic, so issues like
delays on broadcasts, signal drops, or even regional
differences in commercial placements require a
low-latency solution based on context. Al-based
models, which were trained on past and simulated
data, are able to learn patterns on the fly and detect
deviations with limited interference on the human
side [6][7]. Moreover, the emergence of stream
processing models has allowed ingestion,
processing, and monitoring of moving logs. These
systems are designed to deal with high throughput,
fault-tolerant tolerant and scaling processes, which
are needed to support real-time applications such as
TV ad monitoring. Anomaly detection in the field
of streaming architecture and Al models is severely
demanding; therefore, both integrations are
necessary [8][9].The analysis of the architecture of
big data pipeline streaming, the use of Al in real-
time analytics, and the purpose of the particular
approach to the detection of anomalies in TV ad
impressions records follow. A review of the
technological background will be followed by a
discussion of the Al-based models to detect
anomalies, a discussion of the deployment
strategies, and a conclusion of the analysis with a
critical view of the performance, challenges, and
future perspectives.

2. Streaming Big Data Architecture for TV
Ad Impression Logs

Before analyzing the processes involved in
achieving real-time anomaly detection, it is
important to look at the infrastructure on which the
logs of the TV ad impressions are processed. These
are set-top boxes, satellite feeds, and ad insertion
equipment generated logs that are continuously sent
to centralised systems to be analysed, as illustrated
by Figure 1. Data volume, variety, and velocity
imply the need to have a streaming big data
architecture that will cope with these attributes.

The basic streaming big data workflow of
monitoring TV ad impressions includes ingestion
layers, stream processing engines, long-term stores,
and integration points of machine learning models.
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Apache Kafka or Pulsar, DMs that are often used as
ingestion layers, serve as the point of entry for log
data. These frameworks are durable, offer high-
throughput and partitioned message delivery, and
can process and scale simultaneously [10][11].
After being ingested, it is processed on stream
processing engines such as Apache Flink or Apache
Spark streaming. The frameworks provide
windowed aggregations, support complex event
processing, and external data sources/sink
integration. They can conduct stateful computations
in real time that are essential in identifying
anomalies like deviations in the numbers of
impressions, inconsistencies in timestamps, and
missing records [12][13].Both raw and processed
data are stored in persistent storage, which can be
any of the following: significant time series,
distributed file system, or time-series database,
such as Apache HBase, Cassandra, or InfluxDB
persistence, and both raw and processed data are
later used to perform further analytics, historical
comparisons, and model training. The models
themselves are deployed either as a microservice or
integrated into the stream processors so that they
can score in real-time and raise alerts based on the
incoming data [14][15]. The process of interfacing
between these components is supported by
orchestration tools and metadata management
systems, which assure compatibility between the
schemas, monitoring of latency, and recovery of
faults. Another visualization tool with the pipeline
is Grafana or Kibana, which can make real-time
operational insights, dashboards, and anomaly
reports.Streaming architecture is important because
it can handle ad impression logs in real-time, with a
minimum time response, resulting in the timely
identification of anomalies and their remedy. The
architecture is particularly important in situations in
which the advertisers are charged on a per-
impression basis, and when any difference to the
campaign metrics is observed, it should be
immediately reported so that reputational or
financial losses can be unavoidable [16][17]. In
addition, in this architecture, load-based scaling is
achieved, enabling it to scale to peak broadcasting
periods or special live events, which normally
experience heavier ad loads and hence create more
logs. Consequently, a streaming pipeline is not only
the cornerstone of real-time analytics but a
condition to operational excellence in contemporary
TV advertising systems.

3. Al and Machine Learning for Real-Time
Anomaly Detection

Since the basic architecture of streaming data has
been established, there is an wurgent need to
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investigate the ways of embedding Al techniques
into the pipeline to facilitate anomaly detection.
This is not only difficult in terms of identifying
patterns that are not as per expectations but also
with low latency, high accuracy, and with the
lowest false positives. The use of Al models
introduces these opportunities through the learning
of previous data, following the new trends, and
constantly enhancing their accuracy in the
detection. The commonly used machine learning
models in this case are supervised, semi-supervised,
and unsupervised learning models. Trained
supervised models like the Random Forests and
Gradient Boosting are used on labeled datasets
comprising normal and anomalous ad impression
activities. These models are trained in order to
differentiate the two categories based on factors
like time lapses, geographical locations, device
numbers, and recurrence of impressions [18][19].
Nevertheless, in most real-life contexts, labeled
anomalies are either rare or not available, and thus,
it is more feasible to use unsupervised and semi-
supervised methods. Isolation Forests, One-Class
SVMs, and autoencoders are the most commonly
used techniques. Autoencoders, especially deep
learning ones, are effective in learning dense
representations of normal behaviour and have
demonstrated the ability to identify subtle
behavioural anomalies in real-time streaming logs
[20][21]. Furthermore, sequential dependencies in
impression logs can be modeled with the help of the
integration of temporal models, including Long
Short-Term  Memory (LSTM) networks and
Temporal Convolutional Networks (TCNs). These
models are skillful in identifying time-dependent
anomalies, including an unexpected increase or
decrease in the number of impressions within
certain broadcasting periods. They can be
particularly helpful in detecting the anomalies with
the broadcasting schedules, blackouts, or the
mismatch of regional feeds [22][23].

Feature engineering is important in improving the
performance of models. Some of the important
characteristics that are derived from streaming logs
are frequency of impressions per time unit, time
interval  between advertisements, cumulative
impressions, and entropy measurements of signal
variation. Such characteristics are normalised and
inputted into Al models to keep on learning and
scoring. Predictions made by the model are sent
back into the processing pipeline, and anomalies
are raised or automated mitigation measures are
taken [24][25]. The detection of concept drift and
online learning are used to ensure the model's
robustness. Since television programming and user
behaviour continue to change, models do not need
to be retrained every time to suit the emerging
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trends. Algorithms based on online learning that
update their parameters as new information comes
are also being used in the field.

Additionally, the ensemble learning methods,
where many models are integrated in order to
enhance the ability of prediction, are implemented
to minimize the variance and bias. These ensembles
can be (a) of different types of models, or (b) of
several instances, which have been trained on
different windows of data, which improves the
generalization capabilities of the system to
changing broadcasting conditions.

Al is incorporated into streaming pipelines by
serving platforms such as TensorFlow Serving,
MLflow, or a custom RESTful API. These
platforms enable modeling to be scaled, and they
incorporate the support of versioning, logging, and
A/B testing. Performance of the models is
continually monitored to ensure that the model is
retrained and adjusted accordingly to avoid the
degradation of the models with time. Therefore, the
anomaly detection in TV ad impression logs
through Al is powered by a synergistic approach to
machine learning, temporal modeling, and real-time
scoring to identify anomalies fast and accurately. In
the following section, we explore the way these
models are implemented in the production setting
and how they are used to provide resilience,
accuracy, and low latency.

In addition to the theoretical focus on the
architecture of Al models and the algorithms
applied when performing anomaly detection with
reference to TV ad impression logs, one should also
focus on the properties of different machine
learning methods considered in the context of
streaming data. The 4 tables below are a summary
and comparison of some popular models used in
real-time anomaly detection systems, their
advantages, drawbacks, and areas of application.
These comparative insights assist engineers and
data scientists in selecting the appropriate algorithm
depending on the anomaly characteristics, resource
constraints, and the real-time processing
requirements of the ad impression environment.

4. Deployment Strategies and Operational
Considerations

It is not just the creation of Al models in real-time
to detect anomalies. How well the models become a
part of the wider ecosystem of data streaming and
operational intelligence, represented in Figure 2, is
equally important with reference to the deployment
strategy. The deployment here should be made in
such a way that it sets high standards regarding the
latency, throughput, scalability, and fault tolerance.
Models that perform well during offline or in test-
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time may not be able to perform with the load and
variability of real-world streaming data. Therefore,
precise coordination is needed to make sure that the
deployment is smooth, stable, and runs efficiently.
Model deployment is usually implemented in two
major models: edge deployment and centralized
deployment. In edge deployment, the logic of
anomaly detection is brought nearer to the source of
data, like broadcast centers or set-top boxes, in
which the latency of the anomaly detection can be
reduced in the shortest possible time. It is especially
useful when it is required to take immediate action
concerning localized faults or anomalies (e.g.,
regional feed problems). Conversely, centrally
deployed systems are found in cloud or data center
architectures, which make use of increased
computation and aggregation of a unified data set to
increase model accuracy across geographies and
channels [26][27].

A successful deployment plan usually uses the
technologies of containerization, like Docker, and
orchestration tools like Kubernetes. Such tools
support the elastic scaling of anomaly detection
services according to the data rates. They are also
used to isolate model versions and control
deployment  pipelines in a  continuous
integration/continuous deployment (CI/CD) system
so that the updates to models can be tested and
verified, and deployed without interruption
[28][29]. Serving platforms are used to provide
real-time inference because deployed models can
interact with streaming engines. As an example, an
Al model deployed inside Apache Flink or via a
gRPC APl constantly consumes processed
impression features, processes them, and provides a
prediction score. When the score exceeds some
predetermined anomaly threshold, the system sends
out an alert or initiates automated recovery
processes, including rerouting feeds or asking for
retransmission of unsuccessful ad impressions [30].
Monitoring of models is also an operational
consideration,  which  involves  performance
monitoring, anomaly verification, and feedback
loops. Models can affect precision, recall, false
positives, and latency values in real time because it
is possible to monitor them using tracking systems,
since they can become more inaccurate with time
because of the concept drift or change of the
broadcasting schedules. Visualisations of these
metrics in the form of dashboards enable the
operations teams to identify model failures at an
early stage and initiate retraining workflows
accordingly [31][32]. Explainable Al (XAl)
methods are incorporated to ensure the models are
coherent and explainable to the stakeholders in the
business and compliance teams. They are SHAP
(Shapley Additive Explanations) values or LIME
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(Local Interpretable Model-agnostic Explanations),
which attempt to explain why a particular
impression log was considered anomalous. These
insights prove to be invaluable both in debugging
as well as regulatory reporting and contract dispute
resolution in cases where the anomalies of
impression can have an impact on billing [33].
Another critical factor of deployment is security.
Since the ad impressions logs can include user,
broadcaster, and even advertiser metadata, the
systems should meet the data protection laws. This
requires encryption protocols, role-based access
controls, and a secure API gateway. Furthermore,
making sure that the models of anomaly detection
are not susceptible to adversarial manipulation,
including poisoned training data or inference-time
attack, is a new field of study and a key component
of sound deployment policy [34]. Finally, hybrid
deployment models are becoming increasingly
popular where components of the anomaly
detection pipeline are deployed on-premise to
comply and ensure lower latency, whereas other
elements are deployed on a cloud infrastructure to
scale and achieve centralised intelligence. This will
offer a moderate balance between control,
performance, and cost-effectiveness. With the
continuing development of real-time TV ad
impression monitoring, these deployment strategies
will be maturing with more of an automation
orientation, resilience, and collaboration with other
systems. The following section also covers the
nature of anomalies that are present in impression
logs and what particular challenges they pose to the
detection systems.

5. Types of Anomalies in TV Ad Impression
Logs

The phenomenon of anomalies in the logs of
impressions in the field of television advertising is
not universal; it takes different forms, with other
root causes and consequences. The problem of such
anomalies should be understood to create specific
detection tools and develop the corresponding
mitigation measures. The artificial intelligence
systems in real-time should be designed to suit the
patterns, context, and nature of individual
anomalies. The simplest type of anomaly is the
volume-based anomalies, which are the
inconsistencies in the quantity of impressions that
occurred during a specified time period against the
historical or anticipated records. Such anomalies
usually indicate a problem like blackouts in the
broadcast, failure of ad insertions, or loss of signal
in the headend. As an illustration, when an advert to
be run in prime time is booked on a high-rated
program, and is actually recording very low
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impressions when compared to other similar
advertisements, then the system should issue an
alert [35][36]. Temporal anomalies are those in
which impressions are recorded out of the ordinary.
This may be attributed to non-alignment of ad
playouts, early or late transmissions, or imprecision
of clocks between logging systems. An example of
an advertisement that would cause a temporal
anomaly alarm is an ad, at 30 seconds, at 8:00 PM,
which records impressions at 8:03 PM. These need
to be detected through careful synchronization of
timestamps and expected timing distribution
learning models [37].

Geospatial anomalies are the abnormalities of
patterns of impressions in the various regions.
These may be because of problems in the feeds
within the region, transmission problems, or local
network breakdowns. Indicatively, when the
impressions of a traditionally high-activity urban
area plummet to zero, and other areas stand at the
same level, an anomaly at a local scale will have to
be notified. Geo-clustering and regional baselines
are Al models that identify such anomalies
[38][39]. A pattern-based anomaly is another
significant category in which the form or the rate of
impression logs does not conform to anticipated
behavioural  patterns. These are frequent
impressions, uncharacteristically brief or prolonged
pauses between advertisements, and unusual
sequence shifts. As an example, having two
identical impression logs in quick succession may
be a sign of a logging error in the system or
intentional manipulation. LSTM/Markov chain-
based sequence modeling is useful in the detection
of such fine deviations [40][41].

Content-based anomalies are anomalies of metadata
of ad impressions. These may be discrepancies
between scheduled and aired creative IDs, a lack of
advertiser information, or campaign identifier
discrepancies. The cause of these anomalies may be
inaccuracies in campaign configuration by humans,
database syncing, or failure to integrate systems of
various ad tech. The integrity of such logs is
checked in real time with models that are trained on
ad metadata structure [42]. Semantic anomalies also
exist, and this is related to the mismatch of
impressions in context. As an illustration, an
alcohol advertisement that is aired during a
children's show, though technically correct in terms
of scheduling and metadata, would be reported as a
semantic anomaly because of regulatory or brand
safety issues. Such context-sensitive anomalies are
increasingly being detected using semantic analysis
models, which are usually founded on Natural
Language Processing (NLP) and program metadata
analysis [43].Lastly, the artificial anomalies are the
ones that are added to train or test the model. These
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are essential in training supervised models,
particularly when the real-world labeled anomalies
are few. Imperative care should be taken in the
sense that these synthetic instances correctly model
actual anomalies, and not to overfit or unrealistic
model behaviour. The process of identifying such
different anomalies involves a complex Al solution
that incorporates statistical baselining, time series
modeling, automatic grouping, and real-time
context analysis. The following section discusses
the method of measuring system performance, the
measures involved, and the way performance of the
system is measured in real-life applications.

6. Evaluation Metrics, Performance
Analysis, and Real-World Effectiveness

As soon as Al-driven anomaly detection models are
implemented into the streaming big data pipelines
to track TV ad impressions, their effectiveness,
accuracy, and reliability of operations need to be
evaluated continuously. An evaluation strategy that
is properly calibrated is not only one that confirms
that the model is effective, but one that is
determined by actual implementation of the system,
that is, variable loads, latency constraints, and a
wide variety of types of anomalies. Precision,
recall, and F1-score are the initial and most popular
metrics of evaluation. Precision is the evaluation of
the ratio of the correctly recognized anomalies to
the total anomalies recognized, whereas recall is the
evaluation of the recognized real anomalies in
comparison to all the existing anomalies. The F1-
score gives a harmonic average between the
precision and recall as an independent measure
when there is a need to trade off between false
positives and false negatives. High precision means
there will be a few false alarms, and this is essential
in preventing unnecessary escalations. High recall
is used to ensure that true threats or anomalies are
not missed [44][45].

The other important measure is latency, which is
especially important in streaming pipelines. As
anomalies should be identified and responded to in
real time, models are required to be able to deliver
inference results on very tight time constraints,
typically a few milliseconds to a couple of seconds,
based on the needs of the system. Streaming
systems such as Flink and Spark streaming are
frequently supplied with latency dashboards and
logs as a part of controlling how long it takes to
process data in and then generate anomaly results
[46]. One of the important performance measures is
also throughput, which is the number of records
processed per second. In TV networks with a
massive scale, the quantity of ad impressions logs
can be millions of impressions per hour. Al models
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and streaming infrastructure should be able to
process such data without back pressure and
latency. The load testing and performance
benchmarking are consistently conducted via
synthetic traffic or historical replay to check peak
conditions as well as gauge the robustness of the
system [47]. Other measures that are critical in the
operational reliability are the false positive rate
(FPR) and false negative rate (FNR). High FPRs
give rise to alert fatigue, in which operators start
ignoring or procrastinating in responding to flagged
anomalies, and may end up as they have missed
genuine problems. On the other hand, high FNRs
are instances of anomalies that go undetected, and
this might incur some financial losses, conflicts
with the advertisers, or even breaking of rules. An
effective anomaly detector system reduces both,
usually by retraining and tuning the threshold
continuously [48]. Model discriminative ability at
varying thresholds is also determined by Receiver
Operating Characteristic (ROC) curves and Area
Under Curve (AUC). These measures are of great
use in the initial stages of model selection and
comparison. Nevertheless, threshold values are
optimized in the production environment with
regard to business-specific risk tolerance instead of
statistical optimality. In practice, a feedback loop
used to check anomalies by operators and feedback
the labeled feedback into the model training
pipeline is often used. This adaptability and
accuracy of models are enhanced over time through
this iterative learning. Active learning is also used,
in which the uncertain predictions are labeled as
such to enable human analysis in order to enhance
the efficiency of the data [49]. Real-time anomaly
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detection in TV ad logs has been shown to improve
in various deployments in industries. Missing
impressions were found in high-profile events such
as sports broadcasting, which resulted in the instant
retransmission of the content, ensuring no
contractual fines. Equally, the detection of the
problem of a time drift in the satellite uplinks also
assisted in avoiding repetitive scheduling problems
between several regional feeds [50][51].

In this regard, high-availability cluster deployments
in container orchestration with Kubernetes have
provided auto-scaling and self-healing systems with
99.99% uptime in the face of constant monitoring.
There are hot-replication of stream processors and
redundant model serving endpoints as strategies of
failover to prevent single points of failure.
Asynchronous communication patterns and batched
scoring of time-windowed data are also optimized
to use the interaction between the Al models and
stream processors. Such strategies balance between
latency and computational efficiency, especially
with varying load conditions. As an example, in the
case of live boxes, like political debates or award
shows, the system changes the batch sizes and
model scoring intervals on the fly to avoid overload
without having impaired sensitivity to anomalies.
Finally, not only the accuracy of the algorithms but
also the design, the level of integration, and the
feedback of the end-to-end pipeline can influence
system performance. The following and final
analytical discussion will focus on the existing
problems of real-time Al-driven anomaly detection
in TV advertising and what is to come in the future,
and new technology that can be developed to build
the new generation of monitoring systems.

(——m.
=3

<

Ad Insertion
Equipment

Persistent Storage

~3-

Machine
Learning Model

Orchestration

|

Streaming Big Data Architecture
for TV Ad Impression Logs

Figure 1: Streaming Big Data Architecture for TV Ad Impression Logs, illustrating the flow from data sources through
stream processing, storage, machine learning, and real-time visualization, with orchestration ensuring system integrity
and scalability.
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Table 1: Comparison of Machine Learning Models for Real-Time Anomaly Detection in TV Ad Logs

Learning

Model Type Style Strengths Limitations Best Use Cases
Random Forest | Supervised High accuracy, handles Eigugﬁectli?/zd:%? t(ijra:zlj Detecting  ad  count
P categorical features well series anomalies with labels

Efficient,

Isolation Forest | Unsupervised

interpretable,
low memory footprint

Volume and  outlier
detection in ad logs

Less effective for high-
dimensional sequences

Autoencoder . Learns complex patterns BIapk-box, requir-es Rare anomaly patterns in
(DL) Unsupervised scalable " | tuning, potential ad metadata
overfitting
One-Class SVM Seml—_ Effective for boundgry— Poor scalability with | Flagging unusual time
supervised based anomaly detection | large data gaps or sequences

LSTM  Neural | Supervised /| Excellent at temporal | High latency, needs Predlctl_ng - tempo_ral

. . ¢ anomalies in impression
Network Seq. sequence modeling extensive training data timing

Deployment Strategies and Operational Considerations
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Figure 2: Diagram illustrating deployment strategies and operational considerations for real-time Al anomaly
detection, including edge and centralized deployments, containerization, inferencing platforms, model monitoring,
explainability tools, and security safeguards.

Table 2: Current Challenges and Emerging Solutions in Al-Driven Anomaly Detection Systems

Challenge

Description

Impact on System

Emerging Solution

Data Heterogeneity

Varying log formats and
inconsistent metadata sources

Increases false positives;
data integration issues

Schema-on-read frameworks;
data normalization tools

Lack of Labelled

Scarcity of real-world anomaly

Reduces model accuracy

Synthetic anomaly generation;

Anomalies data for training semi-supervised learning

. Changes in viewing patterns and | Model degradation over | Online learning;  adaptive
Concept Drift . : . .

broadcasting behaviour time thresholding

High Inference | Slow response times for deep | Missed real-time anomaly | Model  pruning; inference
Latency models in streaming environments | detection windows optimization
Limited Difficulty interpreting complex | Hinders stakeholder trust | Explainable Al frameworks
Explainability model decisions and adoption (e.g., SHAP, LIME)

7. Challenges and Future Directions

Although the introduction of Al-based anomaly
detection systems in the streaming big data
pipelines has revolutionized the operation of TV ad
impressions monitoring, there are various issues
that are still impeding the best functionality and

extensive use. The problem with these limitations
should be addressed to make the most out of these
technologies in an industry where money and
thoughts count. One of the major issues is that of
data quality and heterogeneity. The TV ad
impression logs come in a variety of devices,
vendors, and broadcasting regions, and have
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differing data schema, logging format, and
reliability levels. It is non-trivial to normalize and
harmonize such data in real time, and it may take,
however, considerable pre-processing and metadata
reconciliation. Unstable data raises the risk of
creating a false positive and complicates the
process of training Al models to adopt consistent
patterns [52]. The other problem that exists is the
unlabeled anomaly data. Anomalies in the real
world are not labeled, and annotating by hand is
very expensive and time-intensive. This impacts the
supervised learning methods, requiring the
implementation of unsupervised models that are not
necessarily accurate or interpretable. This can be
solved by synthetic data generation, although
synthetic anomalies do not necessarily always
reflect the complexity of real-world problems,
particularly in edge cases [53]. Another major
challenge is concept drift, or the shifting nature of
what is considered normal behavior in ad
impression logs as time goes on. The distribution
shifts in the data can be caused by seasonal
programming changes, by regional preferences in
the ad, or by fluctuations in the regulatory
requirements. In the absence of systems to monitor
and adjust to these changes, like online learning or
an adaptive thresholds model, accuracy may
deteriorate quickly [54]. Scalability is also of
concern. Although the streaming systems are
theoretically very scalable, bottlenecks can be
created when resource-consuming deep learning
models are implemented in the high-throughput
systems. Inference latency, memory footprint, and
model compression methods are critically important
to optimize, particularly when it is necessary to
deploy at a resource-constrained deployment target
like an edge device or a regional broadcast centre
[55]. Model explainability is yet another area of
concern. Although more complicated models, such
as LSTMs or autoencoders, are useful when it
comes to temporal and latent anomalies, they tend
to be black boxes. This restricts their use in
situations where accountability and interpretability
are important, like in court proceedings on a
contract involving impression counts or an audit by
government bodies. Methods such as SHAP or
integrated gradient are under development and
research, but in the streaming anomaly detection
scenario [56].

In the near future, the sphere will develop in a
number of promising ways. The federated learning
models can enable several broadcasters or networks
to concurrently train the anomaly detection systems
without having to share the raw data, maintaining
privacy and compliance, and enhancing the
robustness of the models. Equally, transfer learning
methods have the potential to allow pre-trained
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models on one broadcast network to be adapted to
another with minimal labeled data [57]. The
involvement of emerging graph-based anomaly
detection mechanisms is also likely to be used,
especially in detecting the relational anomalies
across  channels, advertisers, and regional
groupings. Such methods have been used to model
complicated associations between various objects in
ad ecosystems and identify anomalies that are not
apparent in a flat, tabular log data. In addition,
hybrid Al systems, which are a combination of
rule-based logic and machine learning, are
becoming popular. These systems are more
interpretable and at the same time flexible and
adaptable. As a case in point, business regulations
can be used to regulate base levels, whereas Al
algorithms can be used to highlight less obvious
and more context-dependent anomalies. Serverless
computing and edge Al are facilitating more
distributed applications in terms of infrastructure
and at lower costs. These technologies enable the
ad monitoring systems to scale elastically during
peak times and scale down to minimal operations
overheads during low-peak periods. This will
enable these edge systems to become feasible with
the emergence of 5G and ultra-low-latency
networks, where it is possible to employ real-time
anomaly detection directly at the sources of data.
Lastly, ethical and regulatory compliance are being
given more consideration. With more and more
financial transactions and advertiser relations being
based on Al decisions, it will be essential to make
sure that detection models are not prejudiced,
biased, or hidden. It may only take regulatory
frameworks a short time to make Al-driven
impression tracking systems auditable, which will
further demand strict documentation, logging, and
validation pipelines. To sum up, the real-time
anomaly detection of TV ad impressions logs is a
growing field with enormous potential. The future
generation of systems will provide unprecedented
accuracy, speed, and transparency by solving the
present-day issues and utilizing the developing
technologies to transform the way the television
advertising business operates.

This is essential to plan the future improvement and
address the current drawbacks of the real-time
anomaly detection system, and outline the main
issues of deployments today and the potential
technological ~ improvements. A systematic
description of these challenges, their implications,
as well as future strategies that are currently being
explored, is provided in the table 2.

Managing these issues with a mixture of
architectural and algorithm development is crucial
to the continued development and reliability of
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detection systems in television

advertisement analytics.
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