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Abstract:

Meeting strict timing specifications in full-chip integration is becoming increasingly
challenging with the growing adoption of adaptive system-on-chip (SoC) architectures.
SoCs that incorporate programmable logic, Dynamic Voltage and Frequency Scaling
(DVFS), and heterogeneous compute instances will require more advanced analysis
methods as they are operating within the picosecond range. Such SoCs featuring
programmable logic as well as Dynamic Voltage and Frequency Scaling (DVFS), and
heterogeneous compute instances will need more powerful methods to analyze than the
picoseconds range. This paper explores the extended timing closure techniques
explicitly applied to full-chip implementations of adaptive SoCs, including Multi-Mode
Multi-Corner (MMMOC) analysis, hierarchical abstraction, and machine learning-aided
path optimization. The issues of the Incremental Design Verification (IDV), Clock
Domain Crossings (CDCs), and Advanced Formal Signoff (AFS) are given special
concerns. Real-time design feedback is integrated with the capability of Al-based
timing anomaly detection. It also highlights the application of physical-aware timing
ECOs (Engineering Change Orders) and accumulated P&R flows as an example of
improved closure efficacy. By using comprehensive case studies and empirical
measurements, it shows that the provisional tools and techniques facilitate significant
improvement of timing convergence, accuracy, performance predictability, and
preparation of post-silicon validation. The findings are indicative of scalable and
adaptive timing techniques that are increasingly gaining relevance to future SoC design,
where timing design closure will have to assimilate both the static and dynamic system
responses.

1. Introduction

With the continued

to meet unless robust timing closure is achieved in
modern SoCs. The paper addresses and reports on a

miniaturization  of collection of high-end timing closure methods

semiconductor processes into sub-40nm process
nodes, SoC design integration and performance are
hit with a major problem: How can timing closure
be achieved across an increasingly complex,
variable, and dynamically configurable SoC
architecture? Adaptive SoCs possess a large
amount of programmable logic blocks, embedded
processors, and configurable accelerators, and have
the ability to support Dynamic Voltage and
Frequency Scaling (DVFS), which is temporally
unpredictable. This complexity makes it very
necessary to have another type of timing closure
techniques that not only rely on the usual static
analysis, but also cope with the very nature of these
platforms' dynamics [1, 2].

Functional behavior and performance goals, power
budgets, and manufacturability targets are difficult

optimized to perform well in the case of adaptive
SoC architecture. These methods are the Multi-
Mode Multi-Corner (MMMC) analysis, hierarchical
timing schemes, Al-enhanced path identification
and associated optimization, and clock domain
crossing management. The exploration extends to
physically sensitive Engineering Change Orders
(ECOs) and sophisticated signoff capability, which
incorporates a feedback loop and anomaly detection
[3, 4]. The major aim of this paper is to narrow the
gap that exists between theoretical concepts of
timing closure and its applicability to adaptive SoC
designs. It attempts to solve the timing variability
presented by heterogeneous workloads, and by
runtime reconfiguration and voltage-frequency
scaling. Consequently, the scope of the work
extends to foundations and timing analysis,
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contemporary  closure techniques, and the
application of Al in the design of physical design
flows, concluding with case studies and future
directions in the field.

2. Overview of Adaptive SoC Architectures

Understanding the nuances of adaptive SoC
architectures is essential to appreciating the
challenges in timing closure. These architectures
represent an evolution from fixed-function SoCs to
dynamic, reconfigurable platforms that integrate
general-purpose cores, domain-specific
accelerators, FPGAs, and Al engines. The growing
demand for application-specific flexibility in
domains such as Al inference, edge computing, and
autonomous systems has accelerated the adoption
of adaptive designs [5, 6].

Unlike  conventional SoCs, where timing
constraints are pre-determined and mostly fixed,
adaptive SoCs are dynamically controlled. DVFS
schemes adjust operating voltages and clock
frequencies are dynamically changed in an attempt
to achieve the best power-performance trade-offs at
rRuntime. In addition to that, adaptive systems also
tend to have multiple clock domains, programmable
logic fabrics, and even chiplet-based designs that
all add to timing unpredictability. Such a high level
of configurability and parallelism results in an
exponential growth of timing scenarios. Therefore,
numerous mode-corner combinations, clock domain
crossings, and logic reconfigurations must be
considered during timing analysis by a designer.
Adaptive SoCs also complicate traditional
verification flows because they have more path
permutations in terms of timing and greater
physical design interconnects [7]. The environment
of adaptive SoCs consequently creates new
requirements to timing closure approaches-
requirements that extend over worst-case static
analysis and require dynamic, hierarchical, and
machine-intelligent methodologies to characterize
the true behavior of the computing system.

3. Timing Closure Fundamentals

To fully understand the developments proposed in
this paper, it is essential to first establish the
foundational principles upon which timing closure
is based. To make sense of the developments
suggested in the present paper, it is important to
ground it in the underlying principles on which
timing closure is based. On a fundamental level,
timing closure ensures that all signal paths within a
work design meet hold-time and setup-time
demands all through the surrounding conditions of
operationing. Static Timing Analysis STA is the
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older methodology of analyzing the timing paths,
assessing the delay of combinational logic in
between flip-flops without requiring simulation [8,
9].

Since adaptive SoCs require more than one
operating point, MMMC analysis has become a
requirement. MMMC does not assume a single
operating voltage or temperature or a single process
corner, and shows a more realistic perspective of
the timing behaviour. It produces timing reports in
various modes (functional, scan, test) and corners
(slow, fast, typical), and thus can help a designer to
understand violations that may only arise in a
specific situation. Sign-off criteria in modern flows
include slack analysis, timing uncertainty, clock
skew management, and derating techniques that
model on-chip variability. Slack-based metrics such
as WNS are essential for assessing design maturity;
however, their interpretation should account for
hierarchical effects, multi-mode and multi-corner
conditions, as well as dynamic variations in modern
adaptive systems. Metrics such as Worst Negative
Slack (WNS), Total Negative Slack (TNS), and the
number of timing violations per mode-corner
combination provide key indicators for design
readiness. However, these metrics must be
interpreted with awareness of design hierarchy and
dynamic conditions prevalent in  adaptive
architectures [10, 11]. These fundamentals serve as
the building blocks for more advanced strategies.
As the subsequent section explores, hierarchical
and incremental closure methodologies are built
upon the limitations of flat STA in large-scale
adaptive SoCs.

4. Advanced Timing Closure Techniques

More conventional timing closure methods (such as
flat STA throughout a whole SoC) are now highly
inefficient and, in some cases, impossible to
perform on adaptive SoCs because of their sheer
size and configurability. Hierarchical timing
closure methodologies are one required answer.
Hierarchical methods simplify the complexity of
the analysis by modeling timing properties of IP
blocks in abstract and inter-module interface
constraints and propagation/timing budgeting [12,
13, 14]. Synchronization allows an effective path
convergence through slack target allocation to
modules or partitions in a synchronization budget
allocation. These goals are successively improved
on the basis of timing reports, allowing
geographically distributed design groups to work in
parallel. The interdependency between data-paths
and physical proximity needs to be considered as
partitioning strategies to reduce the inter-partition
violations and timing loops [14].
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Incremental timing closure enables the top-to-
bottom approaches, supplementing the hierarchical
approaches, which means that localized changes are
not mandatory, but a reanalysis is conducted only
over the entire chip. These methodologies are
especially beneficial to streamline later Engineering
Change Orders (ECOs), where little engineering
changes have to be confirmed in a short time.
Parameters such as incremental static timing
analysis (iSTA), dynamic path pruning, and
localized P&R tuning can be used to speedily work
through design iterations and reduce time-to-signoff
[15]. Together, these advanced techniques form a
critical arsenal for navigating the complex timing
closure landscape of adaptive SoCs. They set the
stage for even more intelligent optimization
strategies, as explored in the next section focused
on machine learning and Al integration.

While fundamental timing metrics form the basis of
timing validation, large-scale adaptive SoCs
necessitate more granular and modular strategies to
manage closure complexity. This requires
leveraging both structured abstraction and localized
optimization. To further highlight the distinctions
between traditional and modern closure approaches,
the following table summarizes their comparative
characteristics.

The increasing reliance on modular and intelligent
flows, as presented in Table 1, confirms the
inadequacy of legacy timing approaches for next-
generation SoCs. These methods lay the
groundwork for more intelligent and predictive
closure techniques, especially those driven by
artificial intelligence and machine learning, which
will be addressed in the next section.

5. Machine Learning and Al in Timing
Closure

With the advent of Al-driven approaches to
Electronic Design Automation (EDA), timing
closure on adaptive SoCs has become a
fundamentally redefined concept, as demonstrated
in the figure below (Figure 1). Traditional methods,
which do not require exhaustive verification as they
are guided by deterministic rules, are inadequate in
the face of the inordinate timing variation inflicted
by multi-mode multi-corner (MMMC)
environments, DVFS, as well as programmable
logic fabrics. Data-driven optimization with
predictive machine learning can be applied across
all these variables, which greatly enhances the
efficiency and resilience of closure [16, 17].

Predictive modeling to identify critical paths is one
of the important Al uses in timing closure. Rather
than repeating the analysis of each timing path to
search exhaustively, models based on historical and
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design-specific attributes can be trained to predict
which paths are likely to be/not be violated by
different conditions. Such models take advantage of
the path length, the distributions of cell types,
fanout, and spatial density of the placement to
achieve high accuracy in predicting timing
hotspots. This narrows the analysis and puts
designers in a position to focus resources on real
areas of concern [18].

Al-based ECO (Engineering Change Order)
optimization works off this predictive model by
proposing minimal logic and placement changes to
correct violations. As an example, reinforcement
learning can be utilized to run iteratively, to
determine the best possible gate-resizing or
insertion of buffers to reduce slack on critical paths.
These techniques even compare more favorably to
manual ECO closure in that by examining each past
design iteration and extrapolating changes which
offer the maximum performance benefits at the
smallest area cost or power cost, one can accurately
determine which changes are worthwhile to apply
to a design in a purely manual (which is to say, an
expert-driven) ECO process [19]. The other useful
application is timing anomaly detection. Non-
obvious timing behaviors are a common problem
with complex SoCs, as hierarchical interactions and
cross-domain effects or physical layout constraints
can cause this to be a non-obvious behavior.
Uncertainty-aware machine-learning models for
timing prediction can quantify confidence and
automatically flag low-confidence paths for
targeted re-analysis, reducing exhaustive reviews
on large designs. In practice, the model predicts
slack across corners and emits a confidence score
(for example, via Bayesian regression, ensembles,
or dropout-based uncertainty); paths whose
predicted error bars straddle the violation threshold
are queued for selective STA reruns. This triage
focuses compute and engineer attention on the few
path families most likely to be misclassified, while
allowing high-confidence, noncritical regions to
pass without repeated analysis. The loop then learns
from the new STA results updating the model,
shrinking uncertainty on similar structures, and
steadily decreasing the volume of full rechecks over
iterations. Integrated into signoff dashboards, this
approach vyields faster convergence, fewer false
alarms, and clearer evidence for ECO decisions
[20]. Al integration thus transforms timing closure
into an adaptive, intelligent process aligned with
the very nature of adaptive SoCs. These
technologies augment traditional signoff flows with
predictive analytics, resulting in shorter design
cycles, better quality of results, and more
deterministic convergence. As timing analysis
grows increasingly dependent on clocking behavior



Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

and synchronization strategies, the next section
addresses how modern SoCs tackle challenges
related to clock domain crossings, voltage scaling,
and power gating mechanisms.

6. Clocking and Synchronization Techniques

Effective clocking strategies are essential to ensure
data consistency, timing reliability, and power
efficiency in adaptive SoCs, as shown in Figure 2.
These systems typically operate across multiple
asynchronous or mesochronous clock domains,
each potentially governed by its own voltage-
frequency relationship due to DVFS. Consequently,
Clock Domain Crossing (CDC) analysis becomes a
cornerstone in timing closure validation [21, 22].

CDC issues arise when data transfers between
domains with non-coherent clocks. If not properly
managed, this can lead to metastability, setup or
hold violations, and data corruption. Standard
practices include synchronizer insertion, handshake
protocols, and FIFO buffering. However, adaptive
SoCs introduce runtime variability in clock
domains, necessitating dynamic CDC verification
methods [23]. Advanced static and formal CDC
tools are employed to exhaustively analyze all
possible domain interactions under varied timing
constraints. Dynamic Voltage and Frequency
Scaling adds a further layer of complexity. While
DVFS enables runtime optimization of power and
performance, it also causes fluctuations in path
delays and timing margins. Consequently, timing
analysis must address DVFS conditions not only at
the synthesis stage but also throughout runtime
closure iterations. To preserve timing integrity
under varying voltage and frequency levels,
techniques such as per-network DVFS domains,
FIFO-based  resynchronizers at  frequency
boundaries, and PLL-driven actuators are
employed. Timing analysis must therefore consider
DVFS corners not only during synthesis but also
during dynamic closure iterations. Some of the
major methods to meet these problems include
voltage-aware timing signoff and adaptive clock
trees with scaling buffers [24]. A similar power
reduction focus is also applied in adaptive SoCs
with the use of clock gating to reduce dynamic
power. Poorly designed gating logic or faulty
enable conditions may cause glitches or timing
failure to close. Clock-gating logic must be
properly examined by confirmation tools in all the
active modes and power domains [25].
Increasingly, these checks are being enhanced by
the ability of Al models to spot aberrant gating
patterns or to propose gating opportunities on
switching activity profiles. Physical design
correlations in adaptive SoCs, therefore, require a
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multi-dimensional process spanning structural
analysis, dynamic corner evaluation, and formal
verification, which reiterates the requirement of a
tightly integrated closure process as will be
discussed later in the section on physical design
correlations.

7. Physical Design and Timing Correlation

Timing closure cannot be decoupled from physical
design. In fact, many late-stage violations emerge
not from logical constraints, but from spatial
layout-induced effects such as wire delay,
congestion, and placement irregularities. Adaptive
SoCs further complicate this interdependency
through  reconfigurable fabrics and dense
heterogeneous integration, making physical-aware
timing optimization indispensable [26, 27].
Dynamic placement-aware timing optimization is
one of the commonly used steps in physical
synthesis. Timing-driven placement iteratively
searches to flatten critical paths and place
congruent cells near each other, to decrease slack
violations. In the case of adaptive designs, this
optimization is  further  optimized  using
programmable resource awareness, where logic,
which can map to configurable regions, maintains
timing integrity under different configurations.
Fine-grained and time-sensitive routing algorithms
will supplement it by prioritizing time-sensitive
nets and crosstalk-induced delay variation [28]. A
long-time issue in the physical design space is the
trade-off between congestion and timing closure. It
is possible that dense areas can be advantageous to
timing because of shorter net lengths, but at the
threat of routing congestion, thermal hotspots, and
signal integrity degradation. On the other hand,
applying spreading logic has the effect of reducing
routability, although it might increase delay.
Adaptive closure flows to SoC have to trade-offs
between these factors, and many use machine-
learned congestion prediction models to inform
preliminary floor-planning decisions and set timing
budgets [29].

ECOs are highly significant in closure periods in
physical-aware deployment. The physical-aware
changes take into account real placement, routing,
and parasitic elements to make realistic suggestions
on possible changes. Localized buffering, gate
reordering, or re-routing means support by tools
that rely on extracted RC tracking dissimilarities.
To ensure that the new violations are not introduced
or affect the adjacent logic, such ECOs are
validated step-by-step [30]. The physical-design-
informed timing strategies significantly enhance the
closure process, making it more robust and layout-
accurate. These techniques must be embedded
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within integrated tool flows that can seamlessly
propagate constraints and feedback across the
design hierarchy, which will be explored next.
Continuing from the previous discussion, the article
highlights how tool flows and methodology
integration form the connective framework that
enables all previously discussed timing closure
strategies, logical, physical, and Al-driven, to
operate cohesively in adaptive SoC environments.

8. Tool Flows and Methodology Integration

An effective timing closure methodology, when
used in support of adaptive SoCs, will be as good as
the tools and methodology on which it is based.
The system-level nature of adaptive architectures
requires flows capable of supporting hierarchical
timing models, design iterations, and synthesis,
placement, and signoff integration. The timing
closure process is no longer linear, but an iterative,
information-rich verification loop among functional
modeling, physical design, and verification tools [1,
2, 31]. The new industry signoff tooling is capable
of Multi-Mode Multi-Corner (MMMC) STA
environments that can be expanded to include
thousands of scenarios. The tools are mandatory in
adaptive SoCs where the logic blocks may be
configured on the fly, and a timing analysis must be
performed under different corner cases. Key
capabilities are support of incremental analysis,
hierarchical modeling, voltage-aware delay
modeling, and in-design fix suggestion using
physical data [3, 32, 33].

In addition to signoff, automated flow integration
becomes more and more a necessity. Flows are
automated and used to coordinate timing-motivated
synthesis, timing-driven clock tree synthesis,
physical placement, routing, and hardware ECO
application in closely synchronized steps. Timing
reports feedback is employed to automatically
make design parameter adjustments, local
optimization runs, or machine-learning-based fixes.
These looped approaches eliminate the manual
iteration in it and enable parallel design activities,
which can lead to a shorter closure. Hybrid timing
closure flows further optimize results by blending
traditional STA with formal verification and
machine learning analytics. For example, formal
methods may confirm logical correctness across all
configurations, while STA tools verify temporal
validity —under  worst-case  process-voltage-
temperature (PVT) conditions. In parallel, Al
engines highlight suspicious timing paths or
recommend constraint refinements. This hybrid
approach enhances timing coverage and bridges
gaps between rule-based and data-driven validation
[5]. Cross-tool integration also ensures consistent

9092

modeling across abstraction levels. Timing
constraints defined in RTL must propagate
accurately to gate-level netlists and physical
designs. Tools support this through unified timing
constraint languages, static rule checkers, and
signoff correlation engines that trace constraint
violations across stages. For adaptive SoCs with
multiple design teams and third-party IPs, such
integration is critical to maintain coherence and
timing predictability [34, 35]. Having explored the
architecture, strategies, and tools, it is now essential
to illustrate how these methodologies function in
practice. The next section presents case studies and
experimental outcomes that validate the advanced
timing closure techniques discussed.

9. Case Studies on Timing Closure
Techniques in Adaptive SoC Integration

Achieving robust timing closure in the context of
full-chip integration for adaptive SoCs necessitates
a holistic approach that spans architectural
planning, floorplanning, physical synthesis, and
high-level synthesis (HLS) optimization. Given the
inherent complexity introduced by multiple timing
domains, reconfigurable fabrics, and data-
dependent control logic, traditional flat design
flows fall short in delivering predictable
performance metrics. Recent research has
increasingly focused on innovative methodologies
that emphasize timing-aware partitioning, high-
level floorplan directives, and network-on-chip
(NoC) integration strategies to address the
intricacies of modern SoC architectures. Guo et al.
[36] introduce RapidStream 2.0, a timing-driven,
split-compilation framework engineered to expedite
FPGA implementation for large-scale latency-
insensitive accelerator designs while enhancing
timing reliability. The methodology capitalizes on
the inherent task-pipeline architecture of TAPA
dataflow designs, which comprise computational
kernels interconnected through FIFO channels. At
each FIFO boundary, the authors insert pipeline
registers positioned within constrained areas
designated as anchor regions. These anchor regions
function as timing-isolation boundaries that
partition lengthy cross-module paths, enabling each
computational island to achieve local timing
closure independently of the broader system.The
workflow initiates by constructing a skeleton
design that retains solely the inter-island
connectivity: anchor registers, net stubs, and virtual
partition pins that represent the routing topology of
each inter-island connection. This skeleton
undergoes global routing to establish deterministic
delays across anchor boundaries. Subsequently,
each island is individually floorplanned, placed,
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and routed in parallel through distributed
compilation. RapidStream 2.0 incorporates several
refinements relative to its predecessor, including
enhanced ILP-based island partitioning, anchor-
aware parallel placement to align island and
boundary register locations, and clock trunk
planning to preserve uniform skew throughout final
integration.  Following  island-level  routing
completion, all islands are integrated into the top-
level design via a DFX-compatible assembly
workflow that enforces regional isolation and
maintains the pre-routed inter-island connectivity.
Experimental  evaluation  using  accelerator
workloads deployed on a Xilinx Alveo U280
demonstrates 5-7x overall compilation speedup and
up to 1.3x frequency enhancement compared to a
conventional Vivado workflow, with additional
performance gains relative to RapidStream 1.0 and
floorplan-guided baseline approaches. The research
confirms that latency-insensitive  partitioning
integrated with anchor-guided routing delivers a
scalable and predictable methodology for timing
closure in contemporary adaptive FPGA-based SoC
architectures. The INSTA study by Lu et al. [37]
introduces a tool-accurate, differentiable, statistical
static timing analysis (STA) engine specifically
designed for advanced industrial physical design
flows at technology nodes as aggressive as 3 nm. In
contrast to  prior GPU-accelerated STA
methodologies that reconstruct delay models from
foundational principles and consequently exhibit
poor correlation with signoff tools, INSTA
explicitly separates delay calculation from timing
propagation. During a one-time initialization phase,
its "clones" per-arc attributes from a reference
commercial STA engine, encompassing rise/fall
delays, unateness properties, statistical parameters
(mean and sigma for POCV), and timing
constraints including multicycle paths and false
paths, together with startpoint/endpoint clock
information and  required  arrival  times.
Subsequently, the timing graph is levelized, and all
timing propagation is executed on the GPU using
custom CUDA kernels, modeling arrival times as
Gaussian random variables while maintaining Top-
K candidate arrivals per endpoint with distinct
startpoints to enable accurate common path
pessimism removal (CPPR) within a statistical
framework. The core algorithmic approach
comprises a forward kernel for OCV-aware
statistical propagation and a backward kernel for
gradient backpropagation. During the forward pass,
each pin at a specified timing level is assigned to a
CUDA thread, which aggregates parent arrivals and
arc delays while accounting for rise/fall transitions,
unateness, and common path sharing. The
traditional max operator across candidate arrivals is
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substituted with a smooth log-sum-exp formulation,
rendering endpoint slack expressions differentiable
with respect to leaf variables such as gate sizes and
cell coordinates. This enables derivation of "timing
gradients”, partial derivatives of global metrics
including worst negative slack (WNS) and total
negative slack (TNS) with respect to physical or
logical parameters, which can subsequently drive
gradient-based optimization routines. INSTA
operates in two primary modes: an evaluation
mode, wherein only delays on modified arcs are re-
annotated and the complete timing graph is re-
propagated on GPU for rapid incremental STA; and
an optimization mode, were gradients guide
transformations such as cell sizing or placement
adjustments. Experimental validation demonstrates
INSTA's performance on multiple production high-
performance designs fabricated in a foundry 3 nm
process with OCV enabled. For the largest
evaluated design (approximately 15 million pins),
INSTA achieves full-graph timing propagation in
under 0.1 seconds with endpoint slack correlation
ranging from 0.999 to 0.9999 relative to an
industry-leading signoff engine, despite relying on
cloned rather than natively implemented delay
models. When integrated as a rapid timing
evaluator within a commercial gate-sizing
workflow, it delivers approximately 25x speedup
over the reference tool's incremental timing
analysis with negligible quality loss. Building upon
this capability, the authors introduce INSTA-Size, a
gradient-based gate sizing optimizer that leverages
timing gradients to prioritize only the most
influential cells: compared to the commercial
signoff tool, it achieves up to 15 percent TNS
improvement while resizing 68 percent fewer cells.
Similarly, INSTA-Place employs timing gradients
to enhance a global placement engine, surpassing a
state-of-the-art net-weighting-based timing-driven
placer on ICCAD'15 benchmarks by up to 59.4
percent in TNS and 16.2 percent in half-perimeter
wirelength. Collectively, these results demonstrate
that a tool-accurate, GPU-accelerated,
differentiable STA engine can simultaneously
achieve near-signoff precision and order-of-
magnitude runtime improvements, thereby enabling
truly global, gradient-driven timing closure
strategies appropriate for advanced SoC integration
environments. Chen et al. [38] introduce a virtual-
path-based  timing  optimization  framework
designed to enhance timing performance during the
global placement phase of VLSI physical design.
Conventional timing-driven placement techniques
rely predominantly on net-weighting, where critical
nets receive elevated weights to influence placer
behavior. However, these approaches frequently
overlook the complex interdependencies inherent in
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complete timing paths, leading to suboptimal
optimization outcomes or unintended degradation
of non-critical paths. The proposed framework
remedies this shortcoming by modeling timing-
critical arcs (ARCs) alongside their spatial
relationships using virtual nets, thereby enabling
more holistic timing-driven placement
optimization. The methodology initiates with the
extraction of critical timing paths from static timing
analysis  (STA), which are subsequently
decomposed into individual ARCs. Each ARC
receives a criticality score calculated from several
attributes, including path slack, physical ARC
length, occurrence frequency, and Manhattan
distance. These metrics ensure that optimization
efforts concentrate on circuit regions exhibiting
both high timing sensitivity and significant spatial
influence. The algorithm further extends selected
ARCs via breadth-limited expansion to encompass
adjacent non-critical paths, thereby mitigating
potential timing regressions in neighboring logic
structures. For every chosen ARC, a two-pin virtual
net is constructed, with its associated weight
computed using a closed-form function that
accounts for ARC depth and timing sensitivity.
These virtual nets serve as guidance mechanisms
during analytical placement, promoting cell
proximity to minimize delay while preserving
reasonable wirelength. To enhance solver stability
and computational efficiency, the authors
incorporate a Jacobi diagonal preconditioner that
approximates the Hessian matrix, thereby
accelerating convergence within the analytical
placement engine. The proposed optimization
workflow was integrated into an analytical placer
and validated using ICCAD-2015 and proprietary
industrial benchmarks. Placement results were
legalized through Jezz and subsequently analyzed
using Cadence Innovus 2020.13. Relative to a
dynamic net-weighting baseline, the framework
delivered an 11.2 percent improvement in worst
negative slack (WNS) and a 15.9 percent reduction
in total negative slack (TNS), while maintaining
competitive runtime and wirelength metrics. These
outcomes underscore that path-aware optimization
introduced at early design stages can substantially
enhance timing convergence and predictability,
providing a practical methodology for addressing
sophisticated timing closure challenges in
contemporary full-chip integration flows. Lecler
and Baillieu [39] describe an application-driven
methodology for architecting and optimizing a
network-on-chip (NoC) interconnect within a
complex, DRAM-centric SoC deployed in a
handheld gaming device. The case study employs
Arteris NoC technology and advocates a layered,
top-down design flow that commences with a
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comprehensive functional specification defining
initiator/target sockets, memory maps, and protocol
translations (AXI, OCP, AHB, etc.), subsequently
augmented by a performance specification
articulated through executable traffic scenarios.
These scenarios, authored in a concise scripting
language and translated to SystemC TLM-2.0,
represent realistic system behaviors and quality-of-
service (QoS) requirements across heterogeneous
subsystems including multi-core CPUs, display
controllers, imaging blocks, modems, and
background 1/O peripherals. Early-stage cycle-
accurate "Architect View" (AV) simulations are
then employed to assess whether the interconnect
architecture satisfies bandwidth, latency, and
efficiency targets under representative operational
workloads.

Architectural  exploration  advances through
multiple refinement stages. Initially, a path-based
topology is established using abstract links that
aggregate  and  distribute  traffic  classes,
incorporating explicit controls for serialization,
clock domain crossings, and DRAM scheduler port
allocation. Subsequently, buffering and ‘"rate
adaptation” mechanisms are introduced to
accommodate mismatched peak throughputs and
manage backpressure, particularly along DRAM
and display pathways. A hierarchical QoS
framework is then implemented, utilizing urgency
and hurry tags alongside bandwidth regulators to
prioritize hard real-time transactions (display,
modem) over soft real-time (imaging) and best-
effort traffic. Following this, cost optimization
reduces context depths and resource allocations
based on measured utilization metrics, while
pipeline stages are strategically inserted along
routing paths to facilitate physical timing closure
across multiple clock and power domains without
incurring excessive area or latency overhead.
Ultimately, an automated "Structure” synthesis
phase transforms the architecture into a concrete
RTL netlist comprising network interface units,
transport blocks, and clocking infrastructure,
followed by a "Verification View" (VV) that re-
executes identical scenarios on a bit- and cycle-
accurate model. The strong correlation between AV
and VV results validates that early architectural
exploration can reliably inform design decisions
regarding QoS allocation, buffering strategies, and
pipelining, while ensuring adherence to timing,
bandwidth, and integration requirements within a
full-chip SoC environment. Collectively, these case
studies underscore a pivotal trend in modern SoC
design: timing closure is no longer confined to
backend optimization stages but is a cross-
hierarchical challenge requiring early-stage design
co-optimization. The solutions explored from



Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

RapidStream’s island-based physical
implementation and anchor-register methodology to
FADO?’s co-optimization of HLS and floorplanning
demonstrate that integrating timing constraints into
upstream design processes can significantly
enhance design convergence and operational
frequency.  Furthermore, the emphasis on
architectural features such as NoC topologies and

Machine Learning and Al
in Timing Closure

& Predictions

Timing Closure

elastic dataflow partitioning points to a future
where timing closure is not only automated but also
architecturally embedded. These methodologies
affirm the value of physically aware, hierarchical,
and constraint-driven design flows as essential
enablers for successful full-chip timing closure in
adaptive SoCs.

Figure 1: A conceptual diagram illustrating how Machine Learning and Al are applied in timing closure, from timing
data and feature extraction to predictive modeling and optimization.

Table 1: Comparison Between Traditional and Advanced Timing Closure Techniques

Aspect

Traditional Timing Closure

Advanced Techniques for Adaptive SoCs

Analysis Scope Full-chip flat STA

Hierarchical, partitioned STA

Design Abstraction Gate-level only

Gate-level + IP-level black-box abstraction

Mode-Corner Handling |Single or a few modes

Multi-mode, multi-corner (MMMC)

Change Propagation Manual updates after

change

logic|Incremental

ECO support with automated
feedback

Tool Intelligence Rule-based

Al/ML-guided prediction and optimization

Closure Convergence|High
Time

Lower due to localized re-analysis

Constraint Management

Static constraints only

Dynamic, scenario-aware constraints

Physical Awareness

Basic routing-based adjustments

Placement-aware ECO with RC extraction

Clocking and

Synchronization
Techniques

Clock
Distribution

Clock
Domain
Crossing

Figure 2: An overview of clocking and synchronization techniques, illustrating key concepts such as clock signals,
distribution, source synchronous communication, and clock domain crossing.
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10. Challenges and Future Directions

While the techniques discussed thus far provide a
robust foundation, several emerging challenges
threaten to outpace current timing closure
capabilities. As semiconductor manufacturing
enters sub-5nm nodes and system complexity
grows with chiplet-based integration, the traditional
assumptions of timing behavior and closure
strategies begin to unravel [13].

Scaling to advanced nodes such as 5nm, 3nm, and
beyond introduces unprecedented levels of
variability. These include increased gate delay
sensitivity to voltage and temperature, higher metal
layer resistance-capacitance (RC) parasitics, and
proximity effects from neighboring devices.
Furthermore, manufacturing-induced variability,
such as line-edge roughness and random dopant
fluctuations, can significantly alter timing margins.
Closure tools must incorporate statistical and
probabilistic models to address these variations
rather than relying solely on corner-based analysis
[14]. The adoption of chiplet-based architectures
introduces a new challenge: inter-die timing

closure. Unlike monolithic SoCs, chiplets
communicate via high-speed interposers or die-to-
die links, which exhibit unique timing

characteristics including skew, latency variability,
and signal integrity issues. Timing closure in this
context must incorporate cross-chip analysis and
synchronized  constraint  propagation  across
heterogeneous dies [15]. Additionally, adaptive
SoCs increasingly rely on software-defined
behaviors, making co-verification of hardware
timing and software execution paths critical.
Dynamic scheduling decisions, reconfiguration
events, and software-initiated power gating all
impact timing paths. This necessitates hybrid
timing verification that considers real-time software
impact, a field still in its infancy [16]. Artificial
Intelligence will continue to shape the future of
timing closure. Advanced models such as graph
neural networks (GNNs) and reinforcement
learning agents are being researched to offer more
precise path predictions, routing-aware closure
suggestions, and automated constraint tuning. The
incorporation of explainability in Al tools will also
be essential to gain trust and adoption in signoff-
critical flows [17]. Looking forward, timing closure
must evolve from a signoff step into an embedded,
continuous process throughout the design lifecycle
from RTL synthesis to post-silicon validation. This
holistic approach, underpinned by Al, hierarchical
abstraction, and physical-aware flows, represents
the direction of future SoC design methodology.
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11. Conclusion

Adaptive SoCs represent a paradigm shift in
semiconductor design, demanding new timing
closure strategies that account for runtime
variability, reconfiguration, and multidomain
interactions. Traditional static analysis methods
alone are inadequate for the dynamic timing
requirements imposed by features such as DVFS,
CDC, and programmable logic. This article has
detailed a range of advanced timing closure
methodologies, including hierarchical abstraction,
incremental  optimization, machine learning-
enhanced path analysis, and physical-aware ECO
implementation. Case studies have shown
measurable improvements in timing convergence,
closure time, and post-silicon accuracy, reinforcing
the necessity and effectiveness of these approaches.
Future trends suggest a convergence of Al, physical
modeling, and cross-domain timing methodologies
as the industry adapts to advanced nodes and
chiplet integration. As timing becomes increasingly
dynamic and multifactorial, continuous innovation
in tools, algorithms, and design methodologies will
be critical to meet the demands of next-generation
adaptive SoCs.
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