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Abstract:  
 

Meeting strict timing specifications in full-chip integration is becoming increasingly 

challenging with the growing adoption of adaptive system-on-chip (SoC) architectures. 

SoCs that incorporate programmable logic, Dynamic Voltage and Frequency Scaling 

(DVFS), and heterogeneous compute instances will require more advanced analysis 

methods as they are operating within the picosecond range. Such SoCs featuring 

programmable logic as well as Dynamic Voltage and Frequency Scaling (DVFS), and 

heterogeneous compute instances will need more powerful methods to analyze than the 

picoseconds range. This paper explores the extended timing closure techniques 

explicitly applied to full-chip implementations of adaptive SoCs, including Multi-Mode 

Multi-Corner (MMMC) analysis, hierarchical abstraction, and machine learning-aided 

path optimization. The issues of the Incremental Design Verification (IDV), Clock 

Domain Crossings (CDCs), and Advanced Formal Signoff (AFS) are given special 

concerns. Real-time design feedback is integrated with the capability of AI-based 

timing anomaly detection. It also highlights the application of physical-aware timing 

ECOs (Engineering Change Orders) and accumulated P&R flows as an example of 

improved closure efficacy. By using comprehensive case studies and empirical 

measurements, it shows that the provisional tools and techniques facilitate significant 

improvement of timing convergence, accuracy, performance predictability, and 

preparation of post-silicon validation. The findings are indicative of scalable and 

adaptive timing techniques that are increasingly gaining relevance to future SoC design, 

where timing design closure will have to assimilate both the static and dynamic system 

responses. 

 

1. Introduction 
 

With the continued miniaturization of 

semiconductor processes into sub-40nm process 

nodes, SoC design integration and performance are 

hit with a major problem: How can timing closure 

be achieved across an increasingly complex, 

variable, and dynamically configurable SoC 

architecture? Adaptive SoCs possess a large 

amount of programmable logic blocks, embedded 

processors, and configurable accelerators, and have 

the ability to support Dynamic Voltage and 

Frequency Scaling (DVFS), which is temporally 

unpredictable. This complexity makes it very 

necessary to have another type of timing closure 

techniques that not only rely on the usual static 

analysis, but also cope with the very nature of these 

platforms' dynamics [1, 2]. 

Functional behavior and performance goals, power 

budgets, and manufacturability targets are difficult 

to meet unless robust timing closure is achieved in 

modern SoCs. The paper addresses and reports on a 

collection of high-end timing closure methods 

optimized to perform well in the case of adaptive 

SoC architecture. These methods are the Multi-

Mode Multi-Corner (MMMC) analysis, hierarchical 

timing schemes, AI-enhanced path identification 

and associated optimization, and clock domain 

crossing management. The exploration extends to 

physically sensitive Engineering Change Orders 

(ECOs) and sophisticated signoff capability, which 

incorporates a feedback loop and anomaly detection 

[3, 4]. The major aim of this paper is to narrow the 

gap that exists between theoretical concepts of 

timing closure and its applicability to adaptive SoC 

designs. It attempts to solve the timing variability 

presented by heterogeneous workloads, and by 

runtime reconfiguration and voltage-frequency 

scaling. Consequently, the scope of the work 

extends to foundations and timing analysis, 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com


Ujjwal Singh / IJCESEN 11-4(2025)9088-9098 

 

9089 

 

contemporary closure techniques, and the 

application of AI in the design of physical design 

flows, concluding with case studies and future 

directions in the field. 

 

2. Overview of Adaptive SoC Architectures 

Understanding the nuances of adaptive SoC 

architectures is essential to appreciating the 

challenges in timing closure. These architectures 

represent an evolution from fixed-function SoCs to 

dynamic, reconfigurable platforms that integrate 

general-purpose cores, domain-specific 

accelerators, FPGAs, and AI engines. The growing 

demand for application-specific flexibility in 

domains such as AI inference, edge computing, and 

autonomous systems has accelerated the adoption 

of adaptive designs [5, 6]. 

Unlike conventional SoCs, where timing 

constraints are pre-determined and mostly fixed, 

adaptive SoCs are dynamically controlled. DVFS 

schemes adjust operating voltages and clock 

frequencies are dynamically changed in an attempt 

to achieve the best power-performance trade-offs at 

rRuntime. In addition to that, adaptive systems also 

tend to have multiple clock domains, programmable 

logic fabrics, and even chiplet-based designs that 

all add to timing unpredictability. Such a high level 

of configurability and parallelism results in an 

exponential growth of timing scenarios. Therefore, 

numerous mode-corner combinations, clock domain 

crossings, and logic reconfigurations must be 

considered during timing analysis by a designer. 

Adaptive SoCs also complicate traditional 

verification flows because they have more path 

permutations in terms of timing and greater 

physical design interconnects [7]. The environment 

of adaptive SoCs consequently creates new 

requirements to timing closure approaches- 

requirements that extend over worst-case static 

analysis and require dynamic, hierarchical, and 

machine-intelligent methodologies to characterize 

the true behavior of the computing system. 

 

3. Timing Closure Fundamentals 

To fully understand the developments proposed in 

this paper, it is essential to first establish the 

foundational principles upon which timing closure 

is based. To make sense of the developments 

suggested in the present paper, it is important to 

ground it in the underlying principles on which 

timing closure is based. On a fundamental level, 

timing closure ensures that all signal paths within a 

work design meet hold-time and setup-time 

demands all through the surrounding conditions of 

operationing. Static Timing Analysis STA is the 

older methodology of analyzing the timing paths, 

assessing the delay of combinational logic in 

between flip-flops without requiring simulation [8, 

9]. 

Since adaptive SoCs require more than one 

operating point, MMMC analysis has become a 

requirement. MMMC does not assume a single 

operating voltage or temperature or a single process 

corner, and shows a more realistic perspective of 

the timing behaviour. It produces timing reports in 

various modes (functional, scan, test) and corners 

(slow, fast, typical), and thus can help a designer to 

understand violations that may only arise in a 

specific situation. Sign-off criteria in modern flows 

include slack analysis, timing uncertainty, clock 

skew management, and derating techniques that 

model on-chip variability. Slack-based metrics such 

as WNS are essential for assessing design maturity; 

however, their interpretation should account for 

hierarchical effects, multi-mode and multi-corner 

conditions, as well as dynamic variations in modern 

adaptive systems. Metrics such as Worst Negative 

Slack (WNS), Total Negative Slack (TNS), and the 

number of timing violations per mode-corner 

combination provide key indicators for design 

readiness. However, these metrics must be 

interpreted with awareness of design hierarchy and 

dynamic conditions prevalent in adaptive 

architectures [10, 11]. These fundamentals serve as 

the building blocks for more advanced strategies. 

As the subsequent section explores, hierarchical 

and incremental closure methodologies are built 

upon the limitations of flat STA in large-scale 

adaptive SoCs. 

 

4. Advanced Timing Closure Techniques 

More conventional timing closure methods (such as 

flat STA throughout a whole SoC) are now highly 

inefficient and, in some cases, impossible to 

perform on adaptive SoCs because of their sheer 

size and configurability. Hierarchical timing 

closure methodologies are one required answer. 

Hierarchical methods simplify the complexity of 

the analysis by modeling timing properties of IP 

blocks in abstract and inter-module interface 

constraints and propagation/timing budgeting [12, 

13, 14]. Synchronization allows an effective path 

convergence through slack target allocation to 

modules or partitions in a synchronization budget 

allocation. These goals are successively improved 

on the basis of timing reports, allowing 

geographically distributed design groups to work in 

parallel. The interdependency between data-paths 

and physical proximity needs to be considered as 

partitioning strategies to reduce the inter-partition 

violations and timing loops [14]. 
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Incremental timing closure enables the top-to-

bottom approaches, supplementing the hierarchical 

approaches, which means that localized changes are 

not mandatory, but a reanalysis is conducted only 

over the entire chip. These methodologies are 

especially beneficial to streamline later Engineering 

Change Orders (ECOs), where little engineering 

changes have to be confirmed in a short time. 

Parameters such as incremental static timing 

analysis (iSTA), dynamic path pruning, and 

localized P&R tuning can be used to speedily work 

through design iterations and reduce time-to-signoff 

[15]. Together, these advanced techniques form a 

critical arsenal for navigating the complex timing 

closure landscape of adaptive SoCs. They set the 

stage for even more intelligent optimization 

strategies, as explored in the next section focused 

on machine learning and AI integration.  

While fundamental timing metrics form the basis of 

timing validation, large-scale adaptive SoCs 

necessitate more granular and modular strategies to 

manage closure complexity. This requires 

leveraging both structured abstraction and localized 

optimization. To further highlight the distinctions 

between traditional and modern closure approaches, 

the following table summarizes their comparative 

characteristics. 

The increasing reliance on modular and intelligent 

flows, as presented in Table 1, confirms the 

inadequacy of legacy timing approaches for next-

generation SoCs. These methods lay the 

groundwork for more intelligent and predictive 

closure techniques, especially those driven by 

artificial intelligence and machine learning, which 

will be addressed in the next section. 

 

5. Machine Learning and AI in Timing 

Closure 

With the advent of AI-driven approaches to 

Electronic Design Automation (EDA), timing 

closure on adaptive SoCs has become a 

fundamentally redefined concept, as demonstrated 

in the figure below (Figure 1). Traditional methods, 

which do not require exhaustive verification as they 

are guided by deterministic rules, are inadequate in 

the face of the inordinate timing variation inflicted 

by multi-mode multi-corner (MMMC) 

environments, DVFS, as well as programmable 

logic fabrics. Data-driven optimization with 

predictive machine learning can be applied across 

all these variables, which greatly enhances the 

efficiency and resilience of closure [16, 17]. 

Predictive modeling to identify critical paths is one 

of the important AI uses in timing closure. Rather 

than repeating the analysis of each timing path to 

search exhaustively, models based on historical and 

design-specific attributes can be trained to predict 

which paths are likely to be/not be violated by 

different conditions. Such models take advantage of 

the path length, the distributions of cell types, 

fanout, and spatial density of the placement to 

achieve high accuracy in predicting timing 

hotspots. This narrows the analysis and puts 

designers in a position to focus resources on real 

areas of concern [18]. 

AI-based ECO (Engineering Change Order) 

optimization works off this predictive model by 

proposing minimal logic and placement changes to 

correct violations. As an example, reinforcement 

learning can be utilized to run iteratively, to 

determine the best possible gate-resizing or 

insertion of buffers to reduce slack on critical paths. 

These techniques even compare more favorably to 

manual ECO closure in that by examining each past 

design iteration and extrapolating changes which 

offer the maximum performance benefits at the 

smallest area cost or power cost, one can accurately 

determine which changes are worthwhile to apply 

to a design in a purely manual (which is to say, an 

expert-driven) ECO process [19]. The other useful 

application is timing anomaly detection. Non-

obvious timing behaviors are a common problem 

with complex SoCs, as hierarchical interactions and 

cross-domain effects or physical layout constraints 

can cause this to be a non-obvious behavior. 

Uncertainty-aware machine-learning models for 

timing prediction can quantify confidence and 

automatically flag low-confidence paths for 

targeted re-analysis, reducing exhaustive reviews 

on large designs. In practice, the model predicts 

slack across corners and emits a confidence score 

(for example, via Bayesian regression, ensembles, 

or dropout-based uncertainty); paths whose 

predicted error bars straddle the violation threshold 

are queued for selective STA reruns. This triage 

focuses compute and engineer attention on the few 

path families most likely to be misclassified, while 

allowing high-confidence, noncritical regions to 

pass without repeated analysis. The loop then learns 

from the new STA results updating the model, 

shrinking uncertainty on similar structures, and 

steadily decreasing the volume of full rechecks over 

iterations. Integrated into signoff dashboards, this 

approach yields faster convergence, fewer false 

alarms, and clearer evidence for ECO decisions 

[20].  AI integration thus transforms timing closure 

into an adaptive, intelligent process aligned with 

the very nature of adaptive SoCs. These 

technologies augment traditional signoff flows with 

predictive analytics, resulting in shorter design 

cycles, better quality of results, and more 

deterministic convergence. As timing analysis 

grows increasingly dependent on clocking behavior 
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and synchronization strategies, the next section 

addresses how modern SoCs tackle challenges 

related to clock domain crossings, voltage scaling, 

and power gating mechanisms.  

 

6. Clocking and Synchronization Techniques 

Effective clocking strategies are essential to ensure 

data consistency, timing reliability, and power 

efficiency in adaptive SoCs, as shown in Figure 2. 

These systems typically operate across multiple 

asynchronous or mesochronous clock domains, 

each potentially governed by its own voltage-

frequency relationship due to DVFS. Consequently, 

Clock Domain Crossing (CDC) analysis becomes a 

cornerstone in timing closure validation [21, 22]. 

CDC issues arise when data transfers between 

domains with non-coherent clocks. If not properly 

managed, this can lead to metastability, setup or 

hold violations, and data corruption. Standard 

practices include synchronizer insertion, handshake 

protocols, and FIFO buffering. However, adaptive 

SoCs introduce runtime variability in clock 

domains, necessitating dynamic CDC verification 

methods [23]. Advanced static and formal CDC 

tools are employed to exhaustively analyze all 

possible domain interactions under varied timing 

constraints. Dynamic Voltage and Frequency 

Scaling adds a further layer of complexity. While 

DVFS enables runtime optimization of power and 

performance, it also causes fluctuations in path 

delays and timing margins. Consequently, timing 

analysis must address DVFS conditions not only at 

the synthesis stage but also throughout runtime 

closure iterations. To preserve timing integrity 

under varying voltage and frequency levels, 

techniques such as per-network DVFS domains, 

FIFO-based resynchronizers at frequency 

boundaries, and PLL-driven actuators are 

employed. Timing analysis must therefore consider 

DVFS corners not only during synthesis but also 

during dynamic closure iterations. Some of the 

major methods to meet these problems include 

voltage-aware timing signoff and adaptive clock 

trees with scaling buffers [24]. A similar power 

reduction focus is also applied in adaptive SoCs 

with the use of clock gating to reduce dynamic 

power. Poorly designed gating logic or faulty 

enable conditions may cause glitches or timing 

failure to close. Clock-gating logic must be 

properly examined by confirmation tools in all the 

active modes and power domains [25]. 

Increasingly, these checks are being enhanced by 

the ability of AI models to spot aberrant gating 

patterns or to propose gating opportunities on 

switching activity profiles. Physical design 

correlations in adaptive SoCs, therefore, require a 

multi-dimensional process spanning structural 

analysis, dynamic corner evaluation, and formal 

verification, which reiterates the requirement of a 

tightly integrated closure process as will be 

discussed later in the section on physical design 

correlations. 

 

7. Physical Design and Timing Correlation 

Timing closure cannot be decoupled from physical 

design. In fact, many late-stage violations emerge 

not from logical constraints, but from spatial 

layout-induced effects such as wire delay, 

congestion, and placement irregularities. Adaptive 

SoCs further complicate this interdependency 

through reconfigurable fabrics and dense 

heterogeneous integration, making physical-aware 

timing optimization indispensable [26, 27]. 

Dynamic placement-aware timing optimization is 

one of the commonly used steps in physical 

synthesis. Timing-driven placement iteratively 

searches to flatten critical paths and place 

congruent cells near each other, to decrease slack 

violations. In the case of adaptive designs, this 

optimization is further optimized using 

programmable resource awareness, where logic, 

which can map to configurable regions, maintains 

timing integrity under different configurations. 

Fine-grained and time-sensitive routing algorithms 

will supplement it by prioritizing time-sensitive 

nets and crosstalk-induced delay variation [28]. A 

long-time issue in the physical design space is the 

trade-off between congestion and timing closure. It 

is possible that dense areas can be advantageous to 

timing because of shorter net lengths, but at the 

threat of routing congestion, thermal hotspots, and 

signal integrity degradation. On the other hand, 

applying spreading logic has the effect of reducing 

routability, although it might increase delay. 

Adaptive closure flows to SoC have to trade-offs 

between these factors, and many use machine-

learned congestion prediction models to inform 

preliminary floor-planning decisions and set timing 

budgets [29]. 

ECOs are highly significant in closure periods in 

physical-aware deployment. The physical-aware 

changes take into account real placement, routing, 

and parasitic elements to make realistic suggestions 

on possible changes. Localized buffering, gate 

reordering, or re-routing means support by tools 

that rely on extracted RC tracking dissimilarities. 

To ensure that the new violations are not introduced 

or affect the adjacent logic, such ECOs are 

validated step-by-step [30]. The physical-design-

informed timing strategies significantly enhance the 

closure process, making it more robust and layout-

accurate. These techniques must be embedded 
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within integrated tool flows that can seamlessly 

propagate constraints and feedback across the 

design hierarchy, which will be explored next. 

Continuing from the previous discussion, the article 

highlights how tool flows and methodology 

integration form the connective framework that 

enables all previously discussed timing closure 

strategies, logical, physical, and AI-driven, to 

operate cohesively in adaptive SoC environments. 

 

8. Tool Flows and Methodology Integration 

An effective timing closure methodology, when 

used in support of adaptive SoCs, will be as good as 

the tools and methodology on which it is based. 

The system-level nature of adaptive architectures 

requires flows capable of supporting hierarchical 

timing models, design iterations, and synthesis, 

placement, and signoff integration. The timing 

closure process is no longer linear, but an iterative, 

information-rich verification loop among functional 

modeling, physical design, and verification tools [1, 

2, 31]. The new industry signoff tooling is capable 

of Multi-Mode Multi-Corner (MMMC) STA 

environments that can be expanded to include 

thousands of scenarios. The tools are mandatory in 

adaptive SoCs where the logic blocks may be 

configured on the fly, and a timing analysis must be 

performed under different corner cases. Key 

capabilities are support of incremental analysis, 

hierarchical modeling, voltage-aware delay 

modeling, and in-design fix suggestion using 

physical data [3, 32, 33]. 

In addition to signoff, automated flow integration 

becomes more and more a necessity. Flows are 

automated and used to coordinate timing-motivated 

synthesis, timing-driven clock tree synthesis, 

physical placement, routing, and hardware ECO 

application in closely synchronized steps. Timing 

reports feedback is employed to automatically 

make design parameter adjustments, local 

optimization runs, or machine-learning-based fixes. 

These looped approaches eliminate the manual 

iteration in it and enable parallel design activities, 

which can lead to a shorter closure. Hybrid timing 

closure flows further optimize results by blending 

traditional STA with formal verification and 

machine learning analytics. For example, formal 

methods may confirm logical correctness across all 

configurations, while STA tools verify temporal 

validity under worst-case process-voltage-

temperature (PVT) conditions. In parallel, AI 

engines highlight suspicious timing paths or 

recommend constraint refinements. This hybrid 

approach enhances timing coverage and bridges 

gaps between rule-based and data-driven validation 

[5]. Cross-tool integration also ensures consistent 

modeling across abstraction levels. Timing 

constraints defined in RTL must propagate 

accurately to gate-level netlists and physical 

designs. Tools support this through unified timing 

constraint languages, static rule checkers, and 

signoff correlation engines that trace constraint 

violations across stages. For adaptive SoCs with 

multiple design teams and third-party IPs, such 

integration is critical to maintain coherence and 

timing predictability [34, 35]. Having explored the 

architecture, strategies, and tools, it is now essential 

to illustrate how these methodologies function in 

practice. The next section presents case studies and 

experimental outcomes that validate the advanced 

timing closure techniques discussed. 

 

9. Case Studies on Timing Closure 

Techniques in Adaptive SoC Integration 

Achieving robust timing closure in the context of 

full-chip integration for adaptive SoCs necessitates 

a holistic approach that spans architectural 

planning, floorplanning, physical synthesis, and 

high-level synthesis (HLS) optimization. Given the 

inherent complexity introduced by multiple timing 

domains, reconfigurable fabrics, and data-

dependent control logic, traditional flat design 

flows fall short in delivering predictable 

performance metrics. Recent research has 

increasingly focused on innovative methodologies 

that emphasize timing-aware partitioning, high-

level floorplan directives, and network-on-chip 

(NoC) integration strategies to address the 

intricacies of modern SoC architectures. Guo et al. 

[36] introduce RapidStream 2.0, a timing-driven, 

split-compilation framework engineered to expedite 

FPGA implementation for large-scale latency-

insensitive accelerator designs while enhancing 

timing reliability. The methodology capitalizes on 

the inherent task-pipeline architecture of TAPA 

dataflow designs, which comprise computational 

kernels interconnected through FIFO channels. At 

each FIFO boundary, the authors insert pipeline 

registers positioned within constrained areas 

designated as anchor regions. These anchor regions 

function as timing-isolation boundaries that 

partition lengthy cross-module paths, enabling each 

computational island to achieve local timing 

closure independently of the broader system.The 

workflow initiates by constructing a skeleton 

design that retains solely the inter-island 

connectivity: anchor registers, net stubs, and virtual 

partition pins that represent the routing topology of 

each inter-island connection. This skeleton 

undergoes global routing to establish deterministic 

delays across anchor boundaries. Subsequently, 

each island is individually floorplanned, placed, 
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and routed in parallel through distributed 

compilation. RapidStream 2.0 incorporates several 

refinements relative to its predecessor, including 

enhanced ILP-based island partitioning, anchor-

aware parallel placement to align island and 

boundary register locations, and clock trunk 

planning to preserve uniform skew throughout final 

integration. Following island-level routing 

completion, all islands are integrated into the top-

level design via a DFX-compatible assembly 

workflow that enforces regional isolation and 

maintains the pre-routed inter-island connectivity. 

Experimental evaluation using accelerator 

workloads deployed on a Xilinx Alveo U280 

demonstrates 5-7× overall compilation speedup and 

up to 1.3× frequency enhancement compared to a 

conventional Vivado workflow, with additional 

performance gains relative to RapidStream 1.0 and 

floorplan-guided baseline approaches. The research 

confirms that latency-insensitive partitioning 

integrated with anchor-guided routing delivers a 

scalable and predictable methodology for timing 

closure in contemporary adaptive FPGA-based SoC 

architectures. The INSTA study by Lu et al. [37] 

introduces a tool-accurate, differentiable, statistical 

static timing analysis (STA) engine specifically 

designed for advanced industrial physical design 

flows at technology nodes as aggressive as 3 nm. In 

contrast to prior GPU-accelerated STA 

methodologies that reconstruct delay models from 

foundational principles and consequently exhibit 

poor correlation with signoff tools, INSTA 

explicitly separates delay calculation from timing 

propagation. During a one-time initialization phase, 

its "clones" per-arc attributes from a reference 

commercial STA engine, encompassing rise/fall 

delays, unateness properties, statistical parameters 

(mean and sigma for POCV), and timing 

constraints including multicycle paths and false 

paths, together with startpoint/endpoint clock 

information and required arrival times. 

Subsequently, the timing graph is levelized, and all 

timing propagation is executed on the GPU using 

custom CUDA kernels, modeling arrival times as 

Gaussian random variables while maintaining Top-

K candidate arrivals per endpoint with distinct 

startpoints to enable accurate common path 

pessimism removal (CPPR) within a statistical 

framework. The core algorithmic approach 

comprises a forward kernel for OCV-aware 

statistical propagation and a backward kernel for 

gradient backpropagation. During the forward pass, 

each pin at a specified timing level is assigned to a 

CUDA thread, which aggregates parent arrivals and 

arc delays while accounting for rise/fall transitions, 

unateness, and common path sharing. The 

traditional max operator across candidate arrivals is 

substituted with a smooth log-sum-exp formulation, 

rendering endpoint slack expressions differentiable 

with respect to leaf variables such as gate sizes and 

cell coordinates. This enables derivation of "timing 

gradients", partial derivatives of global metrics 

including worst negative slack (WNS) and total 

negative slack (TNS) with respect to physical or 

logical parameters, which can subsequently drive 

gradient-based optimization routines. INSTA 

operates in two primary modes: an evaluation 

mode, wherein only delays on modified arcs are re-

annotated and the complete timing graph is re-

propagated on GPU for rapid incremental STA; and 

an optimization mode, were gradients guide 

transformations such as cell sizing or placement 

adjustments. Experimental validation demonstrates 

INSTA's performance on multiple production high-

performance designs fabricated in a foundry 3 nm 

process with OCV enabled. For the largest 

evaluated design (approximately 15 million pins), 

INSTA achieves full-graph timing propagation in 

under 0.1 seconds with endpoint slack correlation 

ranging from 0.999 to 0.9999 relative to an 

industry-leading signoff engine, despite relying on 

cloned rather than natively implemented delay 

models. When integrated as a rapid timing 

evaluator within a commercial gate-sizing 

workflow, it delivers approximately 25× speedup 

over the reference tool's incremental timing 

analysis with negligible quality loss. Building upon 

this capability, the authors introduce INSTA-Size, a 

gradient-based gate sizing optimizer that leverages 

timing gradients to prioritize only the most 

influential cells: compared to the commercial 

signoff tool, it achieves up to 15 percent TNS 

improvement while resizing 68 percent fewer cells. 

Similarly, INSTA-Place employs timing gradients 

to enhance a global placement engine, surpassing a 

state-of-the-art net-weighting-based timing-driven 

placer on ICCAD'15 benchmarks by up to 59.4 

percent in TNS and 16.2 percent in half-perimeter 

wirelength. Collectively, these results demonstrate 

that a tool-accurate, GPU-accelerated, 

differentiable STA engine can simultaneously 

achieve near-signoff precision and order-of-

magnitude runtime improvements, thereby enabling 

truly global, gradient-driven timing closure 

strategies appropriate for advanced SoC integration 

environments. Chen et al. [38] introduce a virtual-

path-based timing optimization framework 

designed to enhance timing performance during the 

global placement phase of VLSI physical design. 

Conventional timing-driven placement techniques 

rely predominantly on net-weighting, where critical 

nets receive elevated weights to influence placer 

behavior. However, these approaches frequently 

overlook the complex interdependencies inherent in 
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complete timing paths, leading to suboptimal 

optimization outcomes or unintended degradation 

of non-critical paths. The proposed framework 

remedies this shortcoming by modeling timing-

critical arcs (ARCs) alongside their spatial 

relationships using virtual nets, thereby enabling 

more holistic timing-driven placement 

optimization. The methodology initiates with the 

extraction of critical timing paths from static timing 

analysis (STA), which are subsequently 

decomposed into individual ARCs. Each ARC 

receives a criticality score calculated from several 

attributes, including path slack, physical ARC 

length, occurrence frequency, and Manhattan 

distance. These metrics ensure that optimization 

efforts concentrate on circuit regions exhibiting 

both high timing sensitivity and significant spatial 

influence. The algorithm further extends selected 

ARCs via breadth-limited expansion to encompass 

adjacent non-critical paths, thereby mitigating 

potential timing regressions in neighboring logic 

structures. For every chosen ARC, a two-pin virtual 

net is constructed, with its associated weight 

computed using a closed-form function that 

accounts for ARC depth and timing sensitivity. 

These virtual nets serve as guidance mechanisms 

during analytical placement, promoting cell 

proximity to minimize delay while preserving 

reasonable wirelength. To enhance solver stability 

and computational efficiency, the authors 

incorporate a Jacobi diagonal preconditioner that 

approximates the Hessian matrix, thereby 

accelerating convergence within the analytical 

placement engine. The proposed optimization 

workflow was integrated into an analytical placer 

and validated using ICCAD-2015 and proprietary 

industrial benchmarks. Placement results were 

legalized through Jezz and subsequently analyzed 

using Cadence Innovus 2020.13. Relative to a 

dynamic net-weighting baseline, the framework 

delivered an 11.2 percent improvement in worst 

negative slack (WNS) and a 15.9 percent reduction 

in total negative slack (TNS), while maintaining 

competitive runtime and wirelength metrics. These 

outcomes underscore that path-aware optimization 

introduced at early design stages can substantially 

enhance timing convergence and predictability, 

providing a practical methodology for addressing 

sophisticated timing closure challenges in 

contemporary full-chip integration flows. Lecler 

and Baillieu [39] describe an application-driven 

methodology for architecting and optimizing a 

network-on-chip (NoC) interconnect within a 

complex, DRAM-centric SoC deployed in a 

handheld gaming device. The case study employs 

Arteris NoC technology and advocates a layered, 

top-down design flow that commences with a 

comprehensive functional specification defining 

initiator/target sockets, memory maps, and protocol 

translations (AXI, OCP, AHB, etc.), subsequently 

augmented by a performance specification 

articulated through executable traffic scenarios. 

These scenarios, authored in a concise scripting 

language and translated to SystemC TLM-2.0, 

represent realistic system behaviors and quality-of-

service (QoS) requirements across heterogeneous 

subsystems including multi-core CPUs, display 

controllers, imaging blocks, modems, and 

background I/O peripherals. Early-stage cycle-

accurate "Architect View" (AV) simulations are 

then employed to assess whether the interconnect 

architecture satisfies bandwidth, latency, and 

efficiency targets under representative operational 

workloads. 

Architectural exploration advances through 

multiple refinement stages. Initially, a path-based 

topology is established using abstract links that 

aggregate and distribute traffic classes, 

incorporating explicit controls for serialization, 

clock domain crossings, and DRAM scheduler port 

allocation. Subsequently, buffering and "rate 

adaptation" mechanisms are introduced to 

accommodate mismatched peak throughputs and 

manage backpressure, particularly along DRAM 

and display pathways. A hierarchical QoS 

framework is then implemented, utilizing urgency 

and hurry tags alongside bandwidth regulators to 

prioritize hard real-time transactions (display, 

modem) over soft real-time (imaging) and best-

effort traffic. Following this, cost optimization 

reduces context depths and resource allocations 

based on measured utilization metrics, while 

pipeline stages are strategically inserted along 

routing paths to facilitate physical timing closure 

across multiple clock and power domains without 

incurring excessive area or latency overhead. 

Ultimately, an automated "Structure" synthesis 

phase transforms the architecture into a concrete 

RTL netlist comprising network interface units, 

transport blocks, and clocking infrastructure, 

followed by a "Verification View" (VV) that re-

executes identical scenarios on a bit- and cycle-

accurate model. The strong correlation between AV 

and VV results validates that early architectural 

exploration can reliably inform design decisions 

regarding QoS allocation, buffering strategies, and 

pipelining, while ensuring adherence to timing, 

bandwidth, and integration requirements within a 

full-chip SoC environment. Collectively, these case 

studies underscore a pivotal trend in modern SoC 

design: timing closure is no longer confined to 

backend optimization stages but is a cross-

hierarchical challenge requiring early-stage design 

co-optimization. The solutions explored from 
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RapidStream’s island-based physical 

implementation and anchor-register methodology to 

FADO’s co-optimization of HLS and floorplanning 

demonstrate that integrating timing constraints into 

upstream design processes can significantly 

enhance design convergence and operational 

frequency. Furthermore, the emphasis on 

architectural features such as NoC topologies and 

elastic dataflow partitioning points to a future 

where timing closure is not only automated but also 

architecturally embedded. These methodologies 

affirm the value of physically aware, hierarchical, 

and constraint-driven design flows as essential 

enablers for successful full-chip timing closure in 

adaptive SoCs. 

  

 
Figure 1: A conceptual diagram illustrating how Machine Learning and AI are applied in timing closure, from timing 

data and feature extraction to predictive modeling and optimization. 

 

Table 1: Comparison Between Traditional and Advanced Timing Closure Techniques 

Aspect Traditional Timing Closure Advanced Techniques for Adaptive SoCs 

Analysis Scope Full-chip flat STA Hierarchical, partitioned STA 

Design Abstraction Gate-level only Gate-level + IP-level black-box abstraction 

Mode-Corner Handling Single or a few modes Multi-mode, multi-corner (MMMC) 

Change Propagation Manual updates after logic 

change 

Incremental ECO support with automated 

feedback 

Tool Intelligence Rule-based AI/ML-guided prediction and optimization 

Closure Convergence 

Time 

High Lower due to localized re-analysis 

Constraint Management Static constraints only Dynamic, scenario-aware constraints 

Physical Awareness Basic routing-based adjustments Placement-aware ECO with RC extraction 

  

 
Figure 2: An overview of clocking and synchronization techniques, illustrating key concepts such as clock signals, 

distribution, source synchronous communication, and clock domain crossing. 
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10. Challenges and Future Directions 

While the techniques discussed thus far provide a 

robust foundation, several emerging challenges 

threaten to outpace current timing closure 

capabilities. As semiconductor manufacturing 

enters sub-5nm nodes and system complexity 

grows with chiplet-based integration, the traditional 

assumptions of timing behavior and closure 

strategies begin to unravel [13]. 

Scaling to advanced nodes such as 5nm, 3nm, and 

beyond introduces unprecedented levels of 

variability. These include increased gate delay 

sensitivity to voltage and temperature, higher metal 

layer resistance-capacitance (RC) parasitics, and 

proximity effects from neighboring devices. 

Furthermore, manufacturing-induced variability, 

such as line-edge roughness and random dopant 

fluctuations, can significantly alter timing margins. 

Closure tools must incorporate statistical and 

probabilistic models to address these variations 

rather than relying solely on corner-based analysis 

[14]. The adoption of chiplet-based architectures 

introduces a new challenge: inter-die timing 

closure. Unlike monolithic SoCs, chiplets 

communicate via high-speed interposers or die-to-

die links, which exhibit unique timing 

characteristics including skew, latency variability, 

and signal integrity issues. Timing closure in this 

context must incorporate cross-chip analysis and 

synchronized constraint propagation across 

heterogeneous dies [15]. Additionally, adaptive 

SoCs increasingly rely on software-defined 

behaviors, making co-verification of hardware 

timing and software execution paths critical. 

Dynamic scheduling decisions, reconfiguration 

events, and software-initiated power gating all 

impact timing paths. This necessitates hybrid 

timing verification that considers real-time software 

impact, a field still in its infancy [16]. Artificial 

Intelligence will continue to shape the future of 

timing closure. Advanced models such as graph 

neural networks (GNNs) and reinforcement 

learning agents are being researched to offer more 

precise path predictions, routing-aware closure 

suggestions, and automated constraint tuning. The 

incorporation of explainability in AI tools will also 

be essential to gain trust and adoption in signoff-

critical flows [17]. Looking forward, timing closure 

must evolve from a signoff step into an embedded, 

continuous process throughout the design lifecycle 

from RTL synthesis to post-silicon validation. This 

holistic approach, underpinned by AI, hierarchical 

abstraction, and physical-aware flows, represents 

the direction of future SoC design methodology. 

 

11. Conclusion 

Adaptive SoCs represent a paradigm shift in 

semiconductor design, demanding new timing 

closure strategies that account for runtime 

variability, reconfiguration, and multidomain 

interactions. Traditional static analysis methods 

alone are inadequate for the dynamic timing 

requirements imposed by features such as DVFS, 

CDC, and programmable logic. This article has 

detailed a range of advanced timing closure 

methodologies, including hierarchical abstraction, 

incremental optimization, machine learning-

enhanced path analysis, and physical-aware ECO 

implementation. Case studies have shown 

measurable improvements in timing convergence, 

closure time, and post-silicon accuracy, reinforcing 

the necessity and effectiveness of these approaches. 

Future trends suggest a convergence of AI, physical 

modeling, and cross-domain timing methodologies 

as the industry adapts to advanced nodes and 

chiplet integration. As timing becomes increasingly 

dynamic and multifactorial, continuous innovation 

in tools, algorithms, and design methodologies will 

be critical to meet the demands of next-generation 

adaptive SoCs. 
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