

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 9088-9098
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Advanced Timing Closure Techniques in Full Chip Integration of Adaptive SoCs

Ujjwal Singh*

Cornell, Ithaca, NY
* Corresponding Author Email: us62@cornell.edu- ORCID: 0000-0002-5247-1150

Article Info:

DOI: 10.22399/ijcesen.4369

Received : 01 February 2025

Accepted : 29 March 2025

Keywords

Timing Closure;

Adaptive System-on-Chip (SoC);

Static Timing Analysis (STA);

Machine Learning in EDA;

Multi-Mode Multi-Corner

(MMMC) Analysis

Abstract:

Meeting strict timing specifications in full-chip integration is becoming increasingly

challenging with the growing adoption of adaptive system-on-chip (SoC) architectures.

SoCs that incorporate programmable logic, Dynamic Voltage and Frequency Scaling

(DVFS), and heterogeneous compute instances will require more advanced analysis

methods as they are operating within the picosecond range. Such SoCs featuring

programmable logic as well as Dynamic Voltage and Frequency Scaling (DVFS), and

heterogeneous compute instances will need more powerful methods to analyze than the

picoseconds range. This paper explores the extended timing closure techniques

explicitly applied to full-chip implementations of adaptive SoCs, including Multi-Mode

Multi-Corner (MMMC) analysis, hierarchical abstraction, and machine learning-aided

path optimization. The issues of the Incremental Design Verification (IDV), Clock

Domain Crossings (CDCs), and Advanced Formal Signoff (AFS) are given special

concerns. Real-time design feedback is integrated with the capability of AI-based

timing anomaly detection. It also highlights the application of physical-aware timing

ECOs (Engineering Change Orders) and accumulated P&R flows as an example of

improved closure efficacy. By using comprehensive case studies and empirical

measurements, it shows that the provisional tools and techniques facilitate significant

improvement of timing convergence, accuracy, performance predictability, and

preparation of post-silicon validation. The findings are indicative of scalable and

adaptive timing techniques that are increasingly gaining relevance to future SoC design,

where timing design closure will have to assimilate both the static and dynamic system

responses.

1. Introduction

With the continued miniaturization of

semiconductor processes into sub-40nm process

nodes, SoC design integration and performance are

hit with a major problem: How can timing closure

be achieved across an increasingly complex,

variable, and dynamically configurable SoC

architecture? Adaptive SoCs possess a large

amount of programmable logic blocks, embedded

processors, and configurable accelerators, and have

the ability to support Dynamic Voltage and

Frequency Scaling (DVFS), which is temporally

unpredictable. This complexity makes it very

necessary to have another type of timing closure

techniques that not only rely on the usual static

analysis, but also cope with the very nature of these

platforms' dynamics [1, 2].

Functional behavior and performance goals, power

budgets, and manufacturability targets are difficult

to meet unless robust timing closure is achieved in

modern SoCs. The paper addresses and reports on a

collection of high-end timing closure methods

optimized to perform well in the case of adaptive

SoC architecture. These methods are the Multi-

Mode Multi-Corner (MMMC) analysis, hierarchical

timing schemes, AI-enhanced path identification

and associated optimization, and clock domain

crossing management. The exploration extends to

physically sensitive Engineering Change Orders

(ECOs) and sophisticated signoff capability, which

incorporates a feedback loop and anomaly detection

[3, 4]. The major aim of this paper is to narrow the

gap that exists between theoretical concepts of

timing closure and its applicability to adaptive SoC

designs. It attempts to solve the timing variability

presented by heterogeneous workloads, and by

runtime reconfiguration and voltage-frequency

scaling. Consequently, the scope of the work

extends to foundations and timing analysis,

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9089

contemporary closure techniques, and the

application of AI in the design of physical design

flows, concluding with case studies and future

directions in the field.

2. Overview of Adaptive SoC Architectures

Understanding the nuances of adaptive SoC

architectures is essential to appreciating the

challenges in timing closure. These architectures

represent an evolution from fixed-function SoCs to

dynamic, reconfigurable platforms that integrate

general-purpose cores, domain-specific

accelerators, FPGAs, and AI engines. The growing

demand for application-specific flexibility in

domains such as AI inference, edge computing, and

autonomous systems has accelerated the adoption

of adaptive designs [5, 6].

Unlike conventional SoCs, where timing

constraints are pre-determined and mostly fixed,

adaptive SoCs are dynamically controlled. DVFS

schemes adjust operating voltages and clock

frequencies are dynamically changed in an attempt

to achieve the best power-performance trade-offs at

rRuntime. In addition to that, adaptive systems also

tend to have multiple clock domains, programmable

logic fabrics, and even chiplet-based designs that

all add to timing unpredictability. Such a high level

of configurability and parallelism results in an

exponential growth of timing scenarios. Therefore,

numerous mode-corner combinations, clock domain

crossings, and logic reconfigurations must be

considered during timing analysis by a designer.

Adaptive SoCs also complicate traditional

verification flows because they have more path

permutations in terms of timing and greater

physical design interconnects [7]. The environment

of adaptive SoCs consequently creates new

requirements to timing closure approaches-

requirements that extend over worst-case static

analysis and require dynamic, hierarchical, and

machine-intelligent methodologies to characterize

the true behavior of the computing system.

3. Timing Closure Fundamentals

To fully understand the developments proposed in

this paper, it is essential to first establish the

foundational principles upon which timing closure

is based. To make sense of the developments

suggested in the present paper, it is important to

ground it in the underlying principles on which

timing closure is based. On a fundamental level,

timing closure ensures that all signal paths within a

work design meet hold-time and setup-time

demands all through the surrounding conditions of

operationing. Static Timing Analysis STA is the

older methodology of analyzing the timing paths,

assessing the delay of combinational logic in

between flip-flops without requiring simulation [8,

9].

Since adaptive SoCs require more than one

operating point, MMMC analysis has become a

requirement. MMMC does not assume a single

operating voltage or temperature or a single process

corner, and shows a more realistic perspective of

the timing behaviour. It produces timing reports in

various modes (functional, scan, test) and corners

(slow, fast, typical), and thus can help a designer to

understand violations that may only arise in a

specific situation. Sign-off criteria in modern flows

include slack analysis, timing uncertainty, clock

skew management, and derating techniques that

model on-chip variability. Slack-based metrics such

as WNS are essential for assessing design maturity;

however, their interpretation should account for

hierarchical effects, multi-mode and multi-corner

conditions, as well as dynamic variations in modern

adaptive systems. Metrics such as Worst Negative

Slack (WNS), Total Negative Slack (TNS), and the

number of timing violations per mode-corner

combination provide key indicators for design

readiness. However, these metrics must be

interpreted with awareness of design hierarchy and

dynamic conditions prevalent in adaptive

architectures [10, 11]. These fundamentals serve as

the building blocks for more advanced strategies.

As the subsequent section explores, hierarchical

and incremental closure methodologies are built

upon the limitations of flat STA in large-scale

adaptive SoCs.

4. Advanced Timing Closure Techniques

More conventional timing closure methods (such as

flat STA throughout a whole SoC) are now highly

inefficient and, in some cases, impossible to

perform on adaptive SoCs because of their sheer

size and configurability. Hierarchical timing

closure methodologies are one required answer.

Hierarchical methods simplify the complexity of

the analysis by modeling timing properties of IP

blocks in abstract and inter-module interface

constraints and propagation/timing budgeting [12,

13, 14]. Synchronization allows an effective path

convergence through slack target allocation to

modules or partitions in a synchronization budget

allocation. These goals are successively improved

on the basis of timing reports, allowing

geographically distributed design groups to work in

parallel. The interdependency between data-paths

and physical proximity needs to be considered as

partitioning strategies to reduce the inter-partition

violations and timing loops [14].

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9090

Incremental timing closure enables the top-to-

bottom approaches, supplementing the hierarchical

approaches, which means that localized changes are

not mandatory, but a reanalysis is conducted only

over the entire chip. These methodologies are

especially beneficial to streamline later Engineering

Change Orders (ECOs), where little engineering

changes have to be confirmed in a short time.

Parameters such as incremental static timing

analysis (iSTA), dynamic path pruning, and

localized P&R tuning can be used to speedily work

through design iterations and reduce time-to-signoff

[15]. Together, these advanced techniques form a

critical arsenal for navigating the complex timing

closure landscape of adaptive SoCs. They set the

stage for even more intelligent optimization

strategies, as explored in the next section focused

on machine learning and AI integration.

While fundamental timing metrics form the basis of

timing validation, large-scale adaptive SoCs

necessitate more granular and modular strategies to

manage closure complexity. This requires

leveraging both structured abstraction and localized

optimization. To further highlight the distinctions

between traditional and modern closure approaches,

the following table summarizes their comparative

characteristics.

The increasing reliance on modular and intelligent

flows, as presented in Table 1, confirms the

inadequacy of legacy timing approaches for next-

generation SoCs. These methods lay the

groundwork for more intelligent and predictive

closure techniques, especially those driven by

artificial intelligence and machine learning, which

will be addressed in the next section.

5. Machine Learning and AI in Timing

Closure

With the advent of AI-driven approaches to

Electronic Design Automation (EDA), timing

closure on adaptive SoCs has become a

fundamentally redefined concept, as demonstrated

in the figure below (Figure 1). Traditional methods,

which do not require exhaustive verification as they

are guided by deterministic rules, are inadequate in

the face of the inordinate timing variation inflicted

by multi-mode multi-corner (MMMC)

environments, DVFS, as well as programmable

logic fabrics. Data-driven optimization with

predictive machine learning can be applied across

all these variables, which greatly enhances the

efficiency and resilience of closure [16, 17].

Predictive modeling to identify critical paths is one

of the important AI uses in timing closure. Rather

than repeating the analysis of each timing path to

search exhaustively, models based on historical and

design-specific attributes can be trained to predict

which paths are likely to be/not be violated by

different conditions. Such models take advantage of

the path length, the distributions of cell types,

fanout, and spatial density of the placement to

achieve high accuracy in predicting timing

hotspots. This narrows the analysis and puts

designers in a position to focus resources on real

areas of concern [18].

AI-based ECO (Engineering Change Order)

optimization works off this predictive model by

proposing minimal logic and placement changes to

correct violations. As an example, reinforcement

learning can be utilized to run iteratively, to

determine the best possible gate-resizing or

insertion of buffers to reduce slack on critical paths.

These techniques even compare more favorably to

manual ECO closure in that by examining each past

design iteration and extrapolating changes which

offer the maximum performance benefits at the

smallest area cost or power cost, one can accurately

determine which changes are worthwhile to apply

to a design in a purely manual (which is to say, an

expert-driven) ECO process [19]. The other useful

application is timing anomaly detection. Non-

obvious timing behaviors are a common problem

with complex SoCs, as hierarchical interactions and

cross-domain effects or physical layout constraints

can cause this to be a non-obvious behavior.

Uncertainty-aware machine-learning models for

timing prediction can quantify confidence and

automatically flag low-confidence paths for

targeted re-analysis, reducing exhaustive reviews

on large designs. In practice, the model predicts

slack across corners and emits a confidence score

(for example, via Bayesian regression, ensembles,

or dropout-based uncertainty); paths whose

predicted error bars straddle the violation threshold

are queued for selective STA reruns. This triage

focuses compute and engineer attention on the few

path families most likely to be misclassified, while

allowing high-confidence, noncritical regions to

pass without repeated analysis. The loop then learns

from the new STA results updating the model,

shrinking uncertainty on similar structures, and

steadily decreasing the volume of full rechecks over

iterations. Integrated into signoff dashboards, this

approach yields faster convergence, fewer false

alarms, and clearer evidence for ECO decisions

[20]. AI integration thus transforms timing closure

into an adaptive, intelligent process aligned with

the very nature of adaptive SoCs. These

technologies augment traditional signoff flows with

predictive analytics, resulting in shorter design

cycles, better quality of results, and more

deterministic convergence. As timing analysis

grows increasingly dependent on clocking behavior

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9091

and synchronization strategies, the next section

addresses how modern SoCs tackle challenges

related to clock domain crossings, voltage scaling,

and power gating mechanisms.

6. Clocking and Synchronization Techniques

Effective clocking strategies are essential to ensure

data consistency, timing reliability, and power

efficiency in adaptive SoCs, as shown in Figure 2.

These systems typically operate across multiple

asynchronous or mesochronous clock domains,

each potentially governed by its own voltage-

frequency relationship due to DVFS. Consequently,

Clock Domain Crossing (CDC) analysis becomes a

cornerstone in timing closure validation [21, 22].

CDC issues arise when data transfers between

domains with non-coherent clocks. If not properly

managed, this can lead to metastability, setup or

hold violations, and data corruption. Standard

practices include synchronizer insertion, handshake

protocols, and FIFO buffering. However, adaptive

SoCs introduce runtime variability in clock

domains, necessitating dynamic CDC verification

methods [23]. Advanced static and formal CDC

tools are employed to exhaustively analyze all

possible domain interactions under varied timing

constraints. Dynamic Voltage and Frequency

Scaling adds a further layer of complexity. While

DVFS enables runtime optimization of power and

performance, it also causes fluctuations in path

delays and timing margins. Consequently, timing

analysis must address DVFS conditions not only at

the synthesis stage but also throughout runtime

closure iterations. To preserve timing integrity

under varying voltage and frequency levels,

techniques such as per-network DVFS domains,

FIFO-based resynchronizers at frequency

boundaries, and PLL-driven actuators are

employed. Timing analysis must therefore consider

DVFS corners not only during synthesis but also

during dynamic closure iterations. Some of the

major methods to meet these problems include

voltage-aware timing signoff and adaptive clock

trees with scaling buffers [24]. A similar power

reduction focus is also applied in adaptive SoCs

with the use of clock gating to reduce dynamic

power. Poorly designed gating logic or faulty

enable conditions may cause glitches or timing

failure to close. Clock-gating logic must be

properly examined by confirmation tools in all the

active modes and power domains [25].

Increasingly, these checks are being enhanced by

the ability of AI models to spot aberrant gating

patterns or to propose gating opportunities on

switching activity profiles. Physical design

correlations in adaptive SoCs, therefore, require a

multi-dimensional process spanning structural

analysis, dynamic corner evaluation, and formal

verification, which reiterates the requirement of a

tightly integrated closure process as will be

discussed later in the section on physical design

correlations.

7. Physical Design and Timing Correlation

Timing closure cannot be decoupled from physical

design. In fact, many late-stage violations emerge

not from logical constraints, but from spatial

layout-induced effects such as wire delay,

congestion, and placement irregularities. Adaptive

SoCs further complicate this interdependency

through reconfigurable fabrics and dense

heterogeneous integration, making physical-aware

timing optimization indispensable [26, 27].

Dynamic placement-aware timing optimization is

one of the commonly used steps in physical

synthesis. Timing-driven placement iteratively

searches to flatten critical paths and place

congruent cells near each other, to decrease slack

violations. In the case of adaptive designs, this

optimization is further optimized using

programmable resource awareness, where logic,

which can map to configurable regions, maintains

timing integrity under different configurations.

Fine-grained and time-sensitive routing algorithms

will supplement it by prioritizing time-sensitive

nets and crosstalk-induced delay variation [28]. A

long-time issue in the physical design space is the

trade-off between congestion and timing closure. It

is possible that dense areas can be advantageous to

timing because of shorter net lengths, but at the

threat of routing congestion, thermal hotspots, and

signal integrity degradation. On the other hand,

applying spreading logic has the effect of reducing

routability, although it might increase delay.

Adaptive closure flows to SoC have to trade-offs

between these factors, and many use machine-

learned congestion prediction models to inform

preliminary floor-planning decisions and set timing

budgets [29].

ECOs are highly significant in closure periods in

physical-aware deployment. The physical-aware

changes take into account real placement, routing,

and parasitic elements to make realistic suggestions

on possible changes. Localized buffering, gate

reordering, or re-routing means support by tools

that rely on extracted RC tracking dissimilarities.

To ensure that the new violations are not introduced

or affect the adjacent logic, such ECOs are

validated step-by-step [30]. The physical-design-

informed timing strategies significantly enhance the

closure process, making it more robust and layout-

accurate. These techniques must be embedded

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9092

within integrated tool flows that can seamlessly

propagate constraints and feedback across the

design hierarchy, which will be explored next.

Continuing from the previous discussion, the article

highlights how tool flows and methodology

integration form the connective framework that

enables all previously discussed timing closure

strategies, logical, physical, and AI-driven, to

operate cohesively in adaptive SoC environments.

8. Tool Flows and Methodology Integration

An effective timing closure methodology, when

used in support of adaptive SoCs, will be as good as

the tools and methodology on which it is based.

The system-level nature of adaptive architectures

requires flows capable of supporting hierarchical

timing models, design iterations, and synthesis,

placement, and signoff integration. The timing

closure process is no longer linear, but an iterative,

information-rich verification loop among functional

modeling, physical design, and verification tools [1,

2, 31]. The new industry signoff tooling is capable

of Multi-Mode Multi-Corner (MMMC) STA

environments that can be expanded to include

thousands of scenarios. The tools are mandatory in

adaptive SoCs where the logic blocks may be

configured on the fly, and a timing analysis must be

performed under different corner cases. Key

capabilities are support of incremental analysis,

hierarchical modeling, voltage-aware delay

modeling, and in-design fix suggestion using

physical data [3, 32, 33].

In addition to signoff, automated flow integration

becomes more and more a necessity. Flows are

automated and used to coordinate timing-motivated

synthesis, timing-driven clock tree synthesis,

physical placement, routing, and hardware ECO

application in closely synchronized steps. Timing

reports feedback is employed to automatically

make design parameter adjustments, local

optimization runs, or machine-learning-based fixes.

These looped approaches eliminate the manual

iteration in it and enable parallel design activities,

which can lead to a shorter closure. Hybrid timing

closure flows further optimize results by blending

traditional STA with formal verification and

machine learning analytics. For example, formal

methods may confirm logical correctness across all

configurations, while STA tools verify temporal

validity under worst-case process-voltage-

temperature (PVT) conditions. In parallel, AI

engines highlight suspicious timing paths or

recommend constraint refinements. This hybrid

approach enhances timing coverage and bridges

gaps between rule-based and data-driven validation

[5]. Cross-tool integration also ensures consistent

modeling across abstraction levels. Timing

constraints defined in RTL must propagate

accurately to gate-level netlists and physical

designs. Tools support this through unified timing

constraint languages, static rule checkers, and

signoff correlation engines that trace constraint

violations across stages. For adaptive SoCs with

multiple design teams and third-party IPs, such

integration is critical to maintain coherence and

timing predictability [34, 35]. Having explored the

architecture, strategies, and tools, it is now essential

to illustrate how these methodologies function in

practice. The next section presents case studies and

experimental outcomes that validate the advanced

timing closure techniques discussed.

9. Case Studies on Timing Closure

Techniques in Adaptive SoC Integration

Achieving robust timing closure in the context of

full-chip integration for adaptive SoCs necessitates

a holistic approach that spans architectural

planning, floorplanning, physical synthesis, and

high-level synthesis (HLS) optimization. Given the

inherent complexity introduced by multiple timing

domains, reconfigurable fabrics, and data-

dependent control logic, traditional flat design

flows fall short in delivering predictable

performance metrics. Recent research has

increasingly focused on innovative methodologies

that emphasize timing-aware partitioning, high-

level floorplan directives, and network-on-chip

(NoC) integration strategies to address the

intricacies of modern SoC architectures. Guo et al.

[36] introduce RapidStream 2.0, a timing-driven,

split-compilation framework engineered to expedite

FPGA implementation for large-scale latency-

insensitive accelerator designs while enhancing

timing reliability. The methodology capitalizes on

the inherent task-pipeline architecture of TAPA

dataflow designs, which comprise computational

kernels interconnected through FIFO channels. At

each FIFO boundary, the authors insert pipeline

registers positioned within constrained areas

designated as anchor regions. These anchor regions

function as timing-isolation boundaries that

partition lengthy cross-module paths, enabling each

computational island to achieve local timing

closure independently of the broader system.The

workflow initiates by constructing a skeleton

design that retains solely the inter-island

connectivity: anchor registers, net stubs, and virtual

partition pins that represent the routing topology of

each inter-island connection. This skeleton

undergoes global routing to establish deterministic

delays across anchor boundaries. Subsequently,

each island is individually floorplanned, placed,

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9093

and routed in parallel through distributed

compilation. RapidStream 2.0 incorporates several

refinements relative to its predecessor, including

enhanced ILP-based island partitioning, anchor-

aware parallel placement to align island and

boundary register locations, and clock trunk

planning to preserve uniform skew throughout final

integration. Following island-level routing

completion, all islands are integrated into the top-

level design via a DFX-compatible assembly

workflow that enforces regional isolation and

maintains the pre-routed inter-island connectivity.

Experimental evaluation using accelerator

workloads deployed on a Xilinx Alveo U280

demonstrates 5-7× overall compilation speedup and

up to 1.3× frequency enhancement compared to a

conventional Vivado workflow, with additional

performance gains relative to RapidStream 1.0 and

floorplan-guided baseline approaches. The research

confirms that latency-insensitive partitioning

integrated with anchor-guided routing delivers a

scalable and predictable methodology for timing

closure in contemporary adaptive FPGA-based SoC

architectures. The INSTA study by Lu et al. [37]

introduces a tool-accurate, differentiable, statistical

static timing analysis (STA) engine specifically

designed for advanced industrial physical design

flows at technology nodes as aggressive as 3 nm. In

contrast to prior GPU-accelerated STA

methodologies that reconstruct delay models from

foundational principles and consequently exhibit

poor correlation with signoff tools, INSTA

explicitly separates delay calculation from timing

propagation. During a one-time initialization phase,

its "clones" per-arc attributes from a reference

commercial STA engine, encompassing rise/fall

delays, unateness properties, statistical parameters

(mean and sigma for POCV), and timing

constraints including multicycle paths and false

paths, together with startpoint/endpoint clock

information and required arrival times.

Subsequently, the timing graph is levelized, and all

timing propagation is executed on the GPU using

custom CUDA kernels, modeling arrival times as

Gaussian random variables while maintaining Top-

K candidate arrivals per endpoint with distinct

startpoints to enable accurate common path

pessimism removal (CPPR) within a statistical

framework. The core algorithmic approach

comprises a forward kernel for OCV-aware

statistical propagation and a backward kernel for

gradient backpropagation. During the forward pass,

each pin at a specified timing level is assigned to a

CUDA thread, which aggregates parent arrivals and

arc delays while accounting for rise/fall transitions,

unateness, and common path sharing. The

traditional max operator across candidate arrivals is

substituted with a smooth log-sum-exp formulation,

rendering endpoint slack expressions differentiable

with respect to leaf variables such as gate sizes and

cell coordinates. This enables derivation of "timing

gradients", partial derivatives of global metrics

including worst negative slack (WNS) and total

negative slack (TNS) with respect to physical or

logical parameters, which can subsequently drive

gradient-based optimization routines. INSTA

operates in two primary modes: an evaluation

mode, wherein only delays on modified arcs are re-

annotated and the complete timing graph is re-

propagated on GPU for rapid incremental STA; and

an optimization mode, were gradients guide

transformations such as cell sizing or placement

adjustments. Experimental validation demonstrates

INSTA's performance on multiple production high-

performance designs fabricated in a foundry 3 nm

process with OCV enabled. For the largest

evaluated design (approximately 15 million pins),

INSTA achieves full-graph timing propagation in

under 0.1 seconds with endpoint slack correlation

ranging from 0.999 to 0.9999 relative to an

industry-leading signoff engine, despite relying on

cloned rather than natively implemented delay

models. When integrated as a rapid timing

evaluator within a commercial gate-sizing

workflow, it delivers approximately 25× speedup

over the reference tool's incremental timing

analysis with negligible quality loss. Building upon

this capability, the authors introduce INSTA-Size, a

gradient-based gate sizing optimizer that leverages

timing gradients to prioritize only the most

influential cells: compared to the commercial

signoff tool, it achieves up to 15 percent TNS

improvement while resizing 68 percent fewer cells.

Similarly, INSTA-Place employs timing gradients

to enhance a global placement engine, surpassing a

state-of-the-art net-weighting-based timing-driven

placer on ICCAD'15 benchmarks by up to 59.4

percent in TNS and 16.2 percent in half-perimeter

wirelength. Collectively, these results demonstrate

that a tool-accurate, GPU-accelerated,

differentiable STA engine can simultaneously

achieve near-signoff precision and order-of-

magnitude runtime improvements, thereby enabling

truly global, gradient-driven timing closure

strategies appropriate for advanced SoC integration

environments. Chen et al. [38] introduce a virtual-

path-based timing optimization framework

designed to enhance timing performance during the

global placement phase of VLSI physical design.

Conventional timing-driven placement techniques

rely predominantly on net-weighting, where critical

nets receive elevated weights to influence placer

behavior. However, these approaches frequently

overlook the complex interdependencies inherent in

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9094

complete timing paths, leading to suboptimal

optimization outcomes or unintended degradation

of non-critical paths. The proposed framework

remedies this shortcoming by modeling timing-

critical arcs (ARCs) alongside their spatial

relationships using virtual nets, thereby enabling

more holistic timing-driven placement

optimization. The methodology initiates with the

extraction of critical timing paths from static timing

analysis (STA), which are subsequently

decomposed into individual ARCs. Each ARC

receives a criticality score calculated from several

attributes, including path slack, physical ARC

length, occurrence frequency, and Manhattan

distance. These metrics ensure that optimization

efforts concentrate on circuit regions exhibiting

both high timing sensitivity and significant spatial

influence. The algorithm further extends selected

ARCs via breadth-limited expansion to encompass

adjacent non-critical paths, thereby mitigating

potential timing regressions in neighboring logic

structures. For every chosen ARC, a two-pin virtual

net is constructed, with its associated weight

computed using a closed-form function that

accounts for ARC depth and timing sensitivity.

These virtual nets serve as guidance mechanisms

during analytical placement, promoting cell

proximity to minimize delay while preserving

reasonable wirelength. To enhance solver stability

and computational efficiency, the authors

incorporate a Jacobi diagonal preconditioner that

approximates the Hessian matrix, thereby

accelerating convergence within the analytical

placement engine. The proposed optimization

workflow was integrated into an analytical placer

and validated using ICCAD-2015 and proprietary

industrial benchmarks. Placement results were

legalized through Jezz and subsequently analyzed

using Cadence Innovus 2020.13. Relative to a

dynamic net-weighting baseline, the framework

delivered an 11.2 percent improvement in worst

negative slack (WNS) and a 15.9 percent reduction

in total negative slack (TNS), while maintaining

competitive runtime and wirelength metrics. These

outcomes underscore that path-aware optimization

introduced at early design stages can substantially

enhance timing convergence and predictability,

providing a practical methodology for addressing

sophisticated timing closure challenges in

contemporary full-chip integration flows. Lecler

and Baillieu [39] describe an application-driven

methodology for architecting and optimizing a

network-on-chip (NoC) interconnect within a

complex, DRAM-centric SoC deployed in a

handheld gaming device. The case study employs

Arteris NoC technology and advocates a layered,

top-down design flow that commences with a

comprehensive functional specification defining

initiator/target sockets, memory maps, and protocol

translations (AXI, OCP, AHB, etc.), subsequently

augmented by a performance specification

articulated through executable traffic scenarios.

These scenarios, authored in a concise scripting

language and translated to SystemC TLM-2.0,

represent realistic system behaviors and quality-of-

service (QoS) requirements across heterogeneous

subsystems including multi-core CPUs, display

controllers, imaging blocks, modems, and

background I/O peripherals. Early-stage cycle-

accurate "Architect View" (AV) simulations are

then employed to assess whether the interconnect

architecture satisfies bandwidth, latency, and

efficiency targets under representative operational

workloads.

Architectural exploration advances through

multiple refinement stages. Initially, a path-based

topology is established using abstract links that

aggregate and distribute traffic classes,

incorporating explicit controls for serialization,

clock domain crossings, and DRAM scheduler port

allocation. Subsequently, buffering and "rate

adaptation" mechanisms are introduced to

accommodate mismatched peak throughputs and

manage backpressure, particularly along DRAM

and display pathways. A hierarchical QoS

framework is then implemented, utilizing urgency

and hurry tags alongside bandwidth regulators to

prioritize hard real-time transactions (display,

modem) over soft real-time (imaging) and best-

effort traffic. Following this, cost optimization

reduces context depths and resource allocations

based on measured utilization metrics, while

pipeline stages are strategically inserted along

routing paths to facilitate physical timing closure

across multiple clock and power domains without

incurring excessive area or latency overhead.

Ultimately, an automated "Structure" synthesis

phase transforms the architecture into a concrete

RTL netlist comprising network interface units,

transport blocks, and clocking infrastructure,

followed by a "Verification View" (VV) that re-

executes identical scenarios on a bit- and cycle-

accurate model. The strong correlation between AV

and VV results validates that early architectural

exploration can reliably inform design decisions

regarding QoS allocation, buffering strategies, and

pipelining, while ensuring adherence to timing,

bandwidth, and integration requirements within a

full-chip SoC environment. Collectively, these case

studies underscore a pivotal trend in modern SoC

design: timing closure is no longer confined to

backend optimization stages but is a cross-

hierarchical challenge requiring early-stage design

co-optimization. The solutions explored from

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9095

RapidStream’s island-based physical

implementation and anchor-register methodology to

FADO’s co-optimization of HLS and floorplanning

demonstrate that integrating timing constraints into

upstream design processes can significantly

enhance design convergence and operational

frequency. Furthermore, the emphasis on

architectural features such as NoC topologies and

elastic dataflow partitioning points to a future

where timing closure is not only automated but also

architecturally embedded. These methodologies

affirm the value of physically aware, hierarchical,

and constraint-driven design flows as essential

enablers for successful full-chip timing closure in

adaptive SoCs.

Figure 1: A conceptual diagram illustrating how Machine Learning and AI are applied in timing closure, from timing

data and feature extraction to predictive modeling and optimization.

Table 1: Comparison Between Traditional and Advanced Timing Closure Techniques

Aspect Traditional Timing Closure Advanced Techniques for Adaptive SoCs

Analysis Scope Full-chip flat STA Hierarchical, partitioned STA

Design Abstraction Gate-level only Gate-level + IP-level black-box abstraction

Mode-Corner Handling Single or a few modes Multi-mode, multi-corner (MMMC)

Change Propagation Manual updates after logic

change

Incremental ECO support with automated

feedback

Tool Intelligence Rule-based AI/ML-guided prediction and optimization

Closure Convergence

Time

High Lower due to localized re-analysis

Constraint Management Static constraints only Dynamic, scenario-aware constraints

Physical Awareness Basic routing-based adjustments Placement-aware ECO with RC extraction

Figure 2: An overview of clocking and synchronization techniques, illustrating key concepts such as clock signals,

distribution, source synchronous communication, and clock domain crossing.

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9096

10. Challenges and Future Directions

While the techniques discussed thus far provide a

robust foundation, several emerging challenges

threaten to outpace current timing closure

capabilities. As semiconductor manufacturing

enters sub-5nm nodes and system complexity

grows with chiplet-based integration, the traditional

assumptions of timing behavior and closure

strategies begin to unravel [13].

Scaling to advanced nodes such as 5nm, 3nm, and

beyond introduces unprecedented levels of

variability. These include increased gate delay

sensitivity to voltage and temperature, higher metal

layer resistance-capacitance (RC) parasitics, and

proximity effects from neighboring devices.

Furthermore, manufacturing-induced variability,

such as line-edge roughness and random dopant

fluctuations, can significantly alter timing margins.

Closure tools must incorporate statistical and

probabilistic models to address these variations

rather than relying solely on corner-based analysis

[14]. The adoption of chiplet-based architectures

introduces a new challenge: inter-die timing

closure. Unlike monolithic SoCs, chiplets

communicate via high-speed interposers or die-to-

die links, which exhibit unique timing

characteristics including skew, latency variability,

and signal integrity issues. Timing closure in this

context must incorporate cross-chip analysis and

synchronized constraint propagation across

heterogeneous dies [15]. Additionally, adaptive

SoCs increasingly rely on software-defined

behaviors, making co-verification of hardware

timing and software execution paths critical.

Dynamic scheduling decisions, reconfiguration

events, and software-initiated power gating all

impact timing paths. This necessitates hybrid

timing verification that considers real-time software

impact, a field still in its infancy [16]. Artificial

Intelligence will continue to shape the future of

timing closure. Advanced models such as graph

neural networks (GNNs) and reinforcement

learning agents are being researched to offer more

precise path predictions, routing-aware closure

suggestions, and automated constraint tuning. The

incorporation of explainability in AI tools will also

be essential to gain trust and adoption in signoff-

critical flows [17]. Looking forward, timing closure

must evolve from a signoff step into an embedded,

continuous process throughout the design lifecycle

from RTL synthesis to post-silicon validation. This

holistic approach, underpinned by AI, hierarchical

abstraction, and physical-aware flows, represents

the direction of future SoC design methodology.

11. Conclusion

Adaptive SoCs represent a paradigm shift in

semiconductor design, demanding new timing

closure strategies that account for runtime

variability, reconfiguration, and multidomain

interactions. Traditional static analysis methods

alone are inadequate for the dynamic timing

requirements imposed by features such as DVFS,

CDC, and programmable logic. This article has

detailed a range of advanced timing closure

methodologies, including hierarchical abstraction,

incremental optimization, machine learning-

enhanced path analysis, and physical-aware ECO

implementation. Case studies have shown

measurable improvements in timing convergence,

closure time, and post-silicon accuracy, reinforcing

the necessity and effectiveness of these approaches.

Future trends suggest a convergence of AI, physical

modeling, and cross-domain timing methodologies

as the industry adapts to advanced nodes and

chiplet integration. As timing becomes increasingly

dynamic and multifactorial, continuous innovation

in tools, algorithms, and design methodologies will

be critical to meet the demands of next-generation

adaptive SoCs.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

1. Sheng, D., Lin, H. R., & Tai, L. (2021). Low-

Process–Voltage–Temperature-Sensitivity Multi-

Stage Timing Monitor for System-on-Chip

Applications. Electronics, 10(13), 1587.

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9097

2. Jasmin, M., & Philomina, S. Runtime adaptive

Dynamic Voltage Frequency Scaling technique for

reducing the power consumption in Multi-

Processor System On Chip.

3. Li, B., Chen, N., Schmidt, M., Schneider, W., &

Schlichtmann, U. (2009, April). On hierarchical

statistical static timing analysis. In 2009 Design,

Automation & Test in Europe Conference &

Exhibition (pp. 1320-1325). IEEE.

4. N. Karimi and K. Chakrabarty, "Detection,

Diagnosis, and Recovery From Clock-Domain

Crossing Failures in Multiclock SoCs," in IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 9, pp.

1395-1408, Sept. 2013, doi:

10.1109/TCAD.2013.2255127.

5. Damsgaard, H. J., Grenier, A., Katare, D.,

Taufique, Z., Shakibhamedan, S., Troccoli, T., ... &

Nurmi, J. (2024). Adaptive approximate computing

in edge AI and IoT applications: A review. Journal

of Systems Architecture, 150, 103114.

6. Kalapothas, S., Flamis, G., & Kitsos, P. (2022).

Efficient edge-AI application deployment for

FPGAs. Information, 13(6), 279.

7. Reddy, K. V. UVM-BASED POWER-AWARE

VERIFICATION CLOSURE USING DYNAMIC

VOLTAGE AND FREQUENCY SCALING

(DVFS) MODELS.

8. Jain, A. M., & Blaauw, D. (2004, February).

Modeling flip flop delay dependencies in timing

analysis. In ACM/IEEE Timing Issues (TAU)

Workshop, Austin, TX.

9. Hatami, S., Abrishami, H., & Pedram, M. (2008,

May). Statistical timing analysis of flip-flops

considering codependent setup and hold times. In

Proceedings of the 18th ACM Great Lakes

symposium on VLSI (pp. 101-106).

10. Fu, C. (2023). Machine Learning Techniques for

Early Identification of Timing Critical Flip-Flops

in Digital IC Designs (Doctoral dissertation).

11. Madhuri, G. M. G., & Selvakumar, J. Machine-

Learning Techniques for Predicting Post-CTS

Worst Negative Slack.

12. Raha, A., Kim, S. K., Mathaikutty, D. A.,

Venkataramanan, G., Mohapatra, D., Sung, R., ... &

Chinya, G. N. (2021, February). Design

considerations for edge neural network

accelerators: An industry perspective. In 2021 34th

International Conference on VLSI Design and 2021

20th International Conference on Embedded

Systems (VLSID)(pp. 328-333). IEEE.

13. Li, B., Chen, N., Xu, Y., & Schlichtmann, U.

(2013). On timing model extraction and

hierarchical statistical timing analysis. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 32(3), 367-380.

14. Owen, A., & Davids, L. (2025). Timing Closure

Verification of DDR PHY Interfaces Across PVT

Corners Using Advanced STA Techniques.

15. Guo, G. (2023). Parallel and heterogeneous

computing for static timing analysis (Doctoral

dissertation, University of Illinois at Urbana-

Champaign).

16. Zhao, Z., Zhang, S., Liu, G., Feng, C., Yang, T.,

Han, A., & Wang, L. (2022). Machine-learning-

based multi-corner timing prediction for faster

timing closure. Electronics, 11(10), 1571.

17. Ganesan, S. (2025). Advanced Timing Closure

Methodologies for High-Performance Neural

Network Accelerators: A Comprehensive

Framework. Journal Of Engineering And Computer

Sciences, 4(8), 158-166.

18. Hu, J., & Kahng, A. B. (2023, October). the

inevitability of AI infusion into design closure and

signoff. In 2023 IEEE/ACM International

Conference on Computer Aided Design (ICCAD)

(pp. 1-7). IEEE.

19. Jiang, W., Chhabria, V. A., & Sapatnekar, S. S.

(2024, September). IR-aware ECO timing

optimization using reinforcement learning. In

Proceedings of the 2024 ACM/IEEE International

Symposium on Machine Learning for CAD (pp. 1-

7).

20. Xing, W. W., Wang, L., Wang, Z., Shi, Z., Xu, N.,

Cheng, Y., & Zhao, W. (2024). Multicorner Timing

Analysis Acceleration for Iterative Physical Design

of ICs. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 43(7),

2151-2162.

21. Simons, B. (2005). An overview of clock

synchronization. Fault-Tolerant Distributed

Computing, 84-96.

22. Buckler, M., & Burleson, W. (2014, March).

Predictive synchronization for DVFS-enabled

multi-processor systems. In Fifteenth International

Symposium on Quality Electronic Design (pp. 270-

275). IEEE.

23. Rahmani, A. M., Liljeberg, P., Plosila, J., &

Tenhunen, H. (2010, May). Power and performance

optimization of voltage/frequency island-based

networks-on-chip using reconfigurable

synchronous/bi-synchronous FIFOs. In

Proceedings of the 7th ACM international

conference on Computing frontiers (pp. 267-276).

24. MARCHESE, A. (2015). A DVFS-capable

heterogeneous network-on-chip architecture for

power constrained multi-cores.

25. Yeung, P., & Mandel, E. (2015, November). Multi-

Domain Verification of Power, Clock and Reset

Domains. In Haifa Verification Conference (pp.

245-255). Cham: Springer International Publishing.

26. Ye, Y., Xu, P., Ren, L., Chen, T., Yan, H., Yu, B.,

& Shi, L. (2024). Learning-driven physically-aware

large-scale circuit gate sizing. IEEE Transactions

on Computer-Aided Design of Integrated Circuits

and Systems.

27. Bai, L., & Chen, L. (2018, October). Machine-

learning-based early-stage timing prediction in SoC

physical design. In 2018 14th IEEE International

Conference on Solid-State and Integrated Circuit

Technology (ICSICT) (pp. 1-3). IEEE.

28. P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin and B. Yu,

"DREAMPlace 4.0: Timing-driven Global

Placement with Momentum-based Net Weighting,"

2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Antwerp,

Ujjwal Singh / IJCESEN 11-4(2025)9088-9098

9098

Belgium, 2022, pp. 939-944, doi:

10.23919/DATE54114.2022.9774725.

29. Joshua, C., Garcia-Gasulla, D., Walsh, I., & Kotsis,

K. (2025). Automated Timing Closure with

Machine Learning: Case Studies and Practical

Results.

30. Chen, H. T., Chang, C. C., & Hwang, T. (2009).

Reconfigurable ECO cells for timing closure and

IR drop minimization. IEEE transactions on very

large scale integration (VLSI) systems, 18(12),

1686-1695.

31. S. Zheng, L. Zou, S. Liu, Y. Lin, B. Yu and M.

Wong, "Mitigating Distribution Shift for

Congestion Optimization in Global Placement,"

2023 60th ACM/IEEE Design Automation

Conference (DAC), San Francisco, CA, USA, 2023,

pp. 1-6, doi: 10.1109/DAC56929.2023.10247660.

32. Zuodong Zhang, Zizheng Guo, Yibo Lin, Runsheng

Wang, and Ru Huang. 2022. AVATAR: an aging-

and variation-aware dynamic timing analyzer for

application-based DVAFS. In Proceedings of the

59th ACM/IEEE Design Automation Conference

(DAC '22). Association for Computing Machinery,

New York, NY, USA, 841–846.

https://doi.org/10.1145/3489517.3530530

33. Subhendu Roy, Pavlos M. Mattheakis, Laurent

Masse-Navette, and David Z. Pan. 2014. Clock tree

resynthesis for multi-corner multi-mode timing

closure. In Proceedings of the 2014 on International

symposium on physical design (ISPD '14).

Association for Computing Machinery, New York,

NY, USA, 69–76.

https://doi.org/10.1145/2560519.2560524

34. A. B. Kahng, S. Kang, H. Lee, S. Nath and J.

Wadhwani, "Learning-based approximation of

interconnect delay and slew in signoff timing

tools," 2013 ACM/IEEE International Workshop on

System Level Interconnect Prediction (SLIP),

Austin, TX, USA, 2013, pp. 1-8, doi:

10.1109/SLIP.2013.6681682.

35. T. -W. Huang, G. Guo, C. -X. Lin and M. D. F.

Wong, "OpenTimer v2: A New Parallel

Incremental Timing Analysis Engine," in IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 40, no. 4, pp.

776-789, April 2021, doi:

10.1109/TCAD.2020.3007319.

36. Guo, L., Maidee, P., Zhou, Y., Lavin, C., Hung, E.,

Li, W., ... & Cong, J. (2023). Rapidstream 2.0:

Automated parallel implementation of latency–

insensitive FPGA designs through partial

reconfiguration. ACM Transactions on

Reconfigurable Technology and Systems, 16(4), 1-

30.

37. Y. -C. Lu, Z. Guo, K. Kunal, R. Liang and H. Ren,

"INSTA: An Ultra-Fast, Differentiable, Statistical

Static Timing Analysis Engine for Industrial

Physical Design Applications," 2025 62nd

ACM/IEEE Design Automation Conference (DAC),

San Francisco, CA, USA, 2025, pp. 1-7, doi:

10.1109/DAC63849.2025.11132858.

38. W. Chen, H. Huang, M. Wei, P. Zou and J. Chen,

"Virtual-Path-Based Timing Optimization for VLSI

Global Placement," 2022 IEEE 16th International

Conference on Solid-State & Integrated Circuit

Technology (ICSICT), Nangjing, China, 2022, pp.

1-3, doi: 10.1109/ICSICT55466.2022.9963291

39. Lecler, J. J., & Baillieu, G. (2011). Application-

driven network-on-chip architecture exploration &

refinement for a complex SoC. Design Automation

for Embedded Systems, 15(2), 133-158

