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Abstract:  
 

This study explores the integration of demand forecasting and inventory replenishment 

strategies to enhance retail profitability. Accurate sales forecasting is essential for 

efficient inventory replenishment decisions. Both traditional ARIMA and modern neural 

network models are utilized to predict future sales. These forecasts input into an integer 

programming model that strategically manages the inventory of stores across multiple 

retail routes. The optimization model considers transportation, sales loss, supply costs, 

and inventory dynamics to maximize retail profit with daily replenishment decisions. 

This approach enables us to assess the impact of forecasting accuracy on profitability 

over a multi-period planning horizon. The study is distinctive in its dual assessment: it 

evaluates both the accuracy of forecasting methods and their direct impact on profitability 

through systematic inventory decisions. Neural network architectures exhibit a 6% lower 

mean squared error compared to ARIMA models. For longer horizon predictions, the 

performance gap grows larger; for example, there is a 60% difference in predictions 15 

days ahead. Predictions reflect 1.6% higher profits on average when neural network 

predictions and more efficient longer planning horizons of the optimization model are 

preferred. Planning 30 days ahead, optimizing with neural network predictions elicits 

2.3% higher profits compared to those attainable based on ARIMA predictions. Our 

findings illustrate how different forecasting methods can affect firm profitability by 

shaping inventory replenishment strategies. By merging mathematical optimization with 

time series forecasting, this research provides a comprehensive evaluation of how 

advanced predictive technologies can enhance retail inventory practices and improve 

profitability. 

 

1. Introduction 
 

Inventory management is critically strategic for 

businesses aiming to optimize operations amidst 

fierce market competition. In industries with limited 

profit margins, companies must focus on optimizing 

resource management to maintain competitiveness 

and profitability. A substantial portion of a firm’s 

capital is often tied to working capital, with 

inventories usually representing the largest share. 

Effective inventory management, therefore, is 

synonymous with sound financial management. 

 

Efficient capital utilization not only improves 

customer service but also enhances profitability. 

Achieving these goals involves maximizing output 

and profit margins with available capital, 

necessitating rapid capital turnover—an often 

challenging goal. Moreover, the overarching 

financial objective of maximizing firm value should 

guide inventory management systems. Traditional 

financial models primarily focus on the challenging 

task of maximizing net profits [1]; while 

increasingly adopting value maximization strategies. 

 

The primary financial objective of any firm is to 

maximize its value, and effective inventory 

management plays a crucial role in achieving this 

goal. Traditional asset management models often 

focus on maximizing book profit, yet enhancing firm 

value encompasses more than just profit figures; it 

involves careful management of all current assets 
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http://dergipark.ulakbim.gov.tr/ijcesen
mailto:burakpac@gtu.edu.tr
mailto:b.yakut2021@gtu.edu.tr


A. Burak PAÇ, Betül YAKUT / IJCESEN 10-4(2024)811-826 

 

812 

 

including receivables, inventories, and cash 

balances.  

 

In inventory management, decision-making involves 

a critical trade-off: balancing the risk of lost sales 

and reputation associated with low inventory levels 

against the costs associated. This balance is pivotal 

in corporate financial management, where the aim is 

to maintain inventory at a cost-effective minimum. 

High inventory levels tie up capital and incur costs 

related to storage, insurance, transportation, 

obsolescence, waste, and spoilage. Conversely, too 

little inventory can disrupt fulfilling demands 

effectively [2]. 

 

Inventory management is a dynamic process that 

encompasses the continuous flow of ordering, 

storing, producing, selling, and restocking goods [3]. 

Strategically, inventory serves to buffer against 

supply-demand mismatches, safeguard against 

supply failures, and minimize supply chain costs. As 

a managerial control mechanism, inventory 

management regulates the flow of goods from 

ordering to restocking, balancing inventory levels 

with market demand to minimize overall costs [4]. 

Such management is crucial since inventory ties up 

capital and incurs carrying costs, underscoring the 

need for meticulous planning and execution of when 

and how much to order and how much product to 

keep in stock via inventory strategies [5]. 

 

This study is designed to enhance the profitability of 

a retail company by optimizing its shipment 

processes from the central warehouse. To achieve 

this, it employs demand forecasting methods to 

predict product sales at retail outlets and develops an 

integer programming model aimed at maintaining 

store inventories at optimal levels. This model 

optimizes daily replenishment decisions across 

various routes that may encompass one or more 

stores. It seamlessly integrates sales demand 

forecasting with inventory replenishment 

operations, thus ensuring precise sales forecasts and 

optimal inventory management. This integration 

considers multiple factors including sales revenue 

and costs related to supply, inventory holding, sales 

loss, and transportation. Furthermore, the study 

establishes a comprehensive framework for demand 

forecasting and inventory control. Within this 

framework, traditional statistical time series 

forecasting using univariate Autoregressive 

Integrated Moving Average (ARIMA) models is 

juxtaposed against a suite of univariate neural 

network architectures. This dual approach facilitates 

a two-pronged comparison: firstly, a direct 

evaluation of the forecasting accuracy of different 

methods, and secondly, an analysis of how these 

forecasts impact firm profitability via the inventory 

replenishment strategies implemented through the 

optimization model. This methodology not only 

highlights the predictive capabilities of each 

forecasting technique but also underscores their 

practical implications on operational efficiency and 

profit maximization. 

 

The organization of the paper is as follows. Chapter 

2 presents the related literature; Chapter 3 discusses 

the optimal inventory replenishment problem and its 

integer programming model. Chapter 4 describes the 

time series modeling approach and model selection 

via prediction performance. Chapter 5 presents the 

computational results of optimization model runs 

with the demand parameters predicted via the 

selected ARIMA and neural network time series 

models. Chapter 6 concludes the study. 
 

2. Literature Review 
 

Recent advancements in inventory management 

have significantly contributed to optimization 

strategies across various industrial sectors. Specific 

challenges in inventory systems have led to the 

development of tailored strategies for managing 

different types of products. Systems for managing 

non-perishable products that integrate promotional 

strategies and quality control measures have been 

designed to optimize inventory [6]. Models 

accounting for the deterioration rates of goods have 

been developed, crucial for adapting replenishment 

policies to the characteristics of the products [7].  

Simulation models for spare parts inventory have 

been created, demonstrating significant cost and 

space savings [8]. Additionally, dynamic lot-sizing 

problems have been addressed with new heuristics 

that prove effective in finding optimal solutions 

within complex inventory scenarios [9]. 

 

Theoretical advancements in inventory management 

have also been significant. Two-warehouse systems 

under variable demand rates have been examined, 

focusing on the economic impacts of storage 

capacity limitations [10], and accelerated production 

and reprocessing within multi-item stock systems 

have been investigated, providing detailed models 

that guide operational decisions [11]. A multi-depot, 

multi-item model with non-instantaneous products 

has been evaluated using an optimization algorithm 

to maximize profitability [12]. Similarly, a multi-

item economic order quantity (EOQ) model under a 

vendor-managed inventory system that incorporates 

warehouse capacity and delivery constraints has 

been developed, applying ant colony optimization 

and genetic algorithms to address uncertainties in 
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demand and storage, thereby minimizing the total 

cost of the supply chain [13]. 

 

Moreover, the extension of these models to diverse 

industrial contexts illustrates their broad 

applicability and critical importance. Inventory 

management in the agricultural sector has been 

addressed to mitigate post-harvest losses, utilizing a 

multi-item specific model to calculate the EOQ for 

different rice types in India [14]. Inventory-

manufacturing scenarios in high-precision 

production systems have been explored, focusing on 

cost minimization and operational efficiency [15]. 

 

In exploring the landscape of sales forecasting, 

numerous studies have compared traditional time 

series analysis methods to modern artificial neural 

networks (ANNs). It has been underscored that 

ANNs demonstrate superior ability to capture 

dynamic, nonlinear trends and seasonal patterns over 

traditional methods such as Winters exponential 

smoothing, Box-Jenkins ARIMA model, and 

multivariate regression [16]. Additionally, the 

inadequacies of conventional forecasting techniques 

in apparel retail, particularly where variables like 

promotions and weather significantly affect demand, 

have been discussed. Research utilizing ANNs to 

forecast sales for a chain of stores in Türkiye has 

shown that incorporating diverse data inputs beyond 

historical sales aligns with a more nuanced approach 

to demand prediction [17]. 

 

The adaptability and customization possible with 

neural networks in regional and industry-specific 

applications are highlighted, with a focus on the 

footwear industry revealing the potential of neural 

networks to accommodate varied market dynamics 

[18]  and enhance the precision of sales forecasts 

[19]. In the fashion retail sector, differences in 

performance between deep learning and methods 

such as Random Forest, Decision Trees, and Support 

Vector Regression have been explored. Findings 

suggest that while deep learning is effective, it does 

not always significantly outperform traditional 

methods, pointing to the need for contextually 

optimized deployment of ANNs in sales forecasting 

[20]. 

 

Integrating forecasting methods with inventory 

management decisions remains challenging. A study 

on fast-moving consumer goods employes machine 

learning algorithms, including ANNs and Binary 

Decision Trees, to predict EOQ and assess their 

impact on key performance indicators, highlighting 

substantial improvements in "available to promise" 

and "operating cash flow" [21]. Similarly, a novel 

decision integration strategy that blends deep 

learning, support vector regression, and traditional 

time series models has demonstrated significant 

accuracy improvements in demand forecasting for a 

major retail chain in Türkiye [22]. Both studies 

underscore the potential of advanced forecasting 

techniques to not only predict sales but also 

significantly enhance inventory management and 

profitability. 

 

Explorations into the realm of vendor-managed 

inventory contracts have utilized various neural 

network models for demand forecasting. These 

studies compare the results of neural network-based 

forecasts on multiple fronts and employ multi-

criteria decision-making tools to verify these results. 

The objective is to achieve substantial savings in 

inventory costs, thereby demonstrating the direct 

impact of improved forecasting on inventory 

management and cost reduction [23]. However, 

despite these advancements, a notable gap remains 

in comprehensive studies that assess how these 

forecasting improvements affect profitability 

through systematic replenishment decisions. This 

gap highlights a crucial area for future research, 

underscoring the need for explicit inventory and 

replenishment models that employ advanced 

forecasting techniques and critically evaluate their 

impact on firm profitability, potentially 

revolutionizing inventory management practices to 

align more closely with cutting-edge predictive 

analytics. 

 

These contributions underscore the evolution of 

inventory management and demand forecasting 

through the integration of advanced mathematical 

models and innovative strategies across various 

sectors. This foundation supports the aim to refine 

these strategies further by integrating them into a 

comprehensive model that optimizes inventory 

replenishment in retail settings, enhancing 

profitability and operational efficiency. 

 

This study distinctively assesses the predictive 

performance of various neural network architectures 

alongside selected ARIMA models using real retail 

sales data. It explores their impact on optimal firm 

profits through a deterministic optimal 

replenishment model over a multi-period planning 

horizon. The research employs both ARIMA and 

neural network models for demand forecasting, 

aiming to enhance operational efficiency and 

optimize inventory management by augmenting the 

devised integer programming model with the best 

prediction model selection. By merging 

mathematical optimization with time series analysis, 

the approach not only refines the selection of 
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prediction models but also reinforces the accuracy 

and reliability of the outcomes.  

 

Fig. 1 outlines the process of predicting future sales 

and optimizing inventory replenishment decisions 

based on historical sales data from store locations. 

The process begins with the collection of historical 

sales data, crucial for training and testing prediction 

models. Typically, the last 10-20% of the data is 

reserved for testing, while the earlier portion is used 

for training. 

 

Various predictive modeling techniques can be 

employed to forecast future sales from this historical 

data. These techniques include traditional statistical 

time series methods such as SARIMA (Seasonal 

ARIMA) and exponential smoothing, as well as 

contemporary machine learning models like support 

vector machines and gradient boosting machines. 

Among all candidate methods, the most accurate 

predictors can be selected for predicting the sales 

based on their performance on test data. This 

analysis focuses on two specific classes of predictive 

models: ARIMA and neural networks. These models 

are compared not only in terms of their prediction 

accuracy but also in how effectively their sales 

forecasts can inform and improve decisions made by 

the integer programming optimization model for 

inventory replenishment. 

 

For each store and product combination, the best-

performing ARIMA model and neural network 

architecture are identified and selected. The 

evaluation of the profitability of optimized inventory 

decisions can be conducted in a live setting, 

involving daily updates to the historical data, 

running the optimization model, implementing the 

replenishment decisions prescribed by the model for 

the next day, and then observing and recording the 

resulting demand, sales, and inventory levels. 

Alternatively, a final portion of historical data can be 

reserved to simulate the prediction-optimization 

framework's profitability against actual daily 

demand, as applied here. 

 

 

 

Figure 1. Workflow of the framework: sales forecasting model selection, sales forecasting, inventory replenishment 

optimization, testing optimal decisions and forecast models based on real sales data. 
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3. The Inventory Replenishment Integer 

Programming Model 
Here, we devise an optimization model for defining 

the optimal replenishment strategy for a retail 

company. The company operates with one central 

warehouse that distributes products to several stores, 

each carrying the same set of product brands and 

models. Daily shipments can be dispatched to these 

stores via various routes, each with a specific fixed 

cost. Each route serves one or more stores. 

 

The model considers both cost and revenue 

parameters that influence the decision-making 

process. These include the price of items on the 

revenue side, their supply costs, daily charges per 

inventory held, and a penalty for lost sales when 

demand exists but no inventory is available. These 

factors can vary daily or be specific to each store 

where applicable. The company aims to plan these 

replenishments under the anticipation of sales 

demand over a specified planning horizon, typically 

spanning several days or weeks. 

 

The company's objective is to maximize profit, 

which is defined as sales revenue minus the costs of 

product supply, transportation for replenishment, 

inventory holding, and lost sales. This model aims to 

determine daily whether to dispatch from any of the 

routes and if so, how to allocate delivery capacity to 

stores serviced by those routes, and the set of 

products. The goal is to ensure that the strategy 

maximizes profit by efficiently balancing revenue 

against the combined costs of replenishments, 

inventory holding, and lost sales opportunities. 

 

The indices and index sets used are as follows: 

 

(i)   𝑖 ∈ {1, … , 𝑁}: the product model indices, 

(ii)  𝑡 ∈ {1, … , 𝑇}: the days in the planning horizon, 

(iii) 𝑚 ∈ {1, … , 𝑀}: the stores in the scope of 

planning, 

(iv) 𝑟 ∈ {1, … , 𝑅}: routes that cover one or more 

stores for delivery, 

(v) 𝑀𝑟 ⊆ {1, … , 𝑀}: The set of stores covered by 

delivery route r, 

(vi) 𝑅𝑚 ⊆ {1, … , 𝑅}: The set of routes delivering to 

store m. 

The decision variables are: 

 

(i) 𝑥𝑡𝑖𝑚: The number of products of type i 

delivered to store m on day t, 

(ii) 𝑦𝑡𝑟 : Indicates whether delivery from route r 

occurs on day t, 

(iii) 𝑣𝑡𝑚𝑟: Capacity allocated to store m from 

delivery via route r on day t, 

(iv) 𝑆𝑡𝑖𝑚: Number of products i sold at store m on 

day t, 

(v)  𝐿𝑡𝑖𝑚: Number of product i sales lost due to 

stockout at store m on day t, 

(vi) 𝐼𝑡𝑖𝑚: Product i inventory at the store m at the 

end of day t. 

Parameters of the problem are: 

 

(i) ⅆ𝑡𝑖𝑚: Forecasted product i sales quantity in 

number of items at store m on day t, 

(ii) 𝑝𝑡𝑖𝑚: Sales price for a unit of product i at store 

m on day t, 

(iii) 𝑓𝑡𝑟: Fixed cost of delivery through route r on 

day t, 

(iv) 𝑐𝑡𝑖: Supply cost of a unit of product i on day t, 

(v) B: Capacity of delivery truck in number of 

items, 

(vi) ℎ𝑡𝑖𝑚: Daily inventory holding cost per item for 

product i at store m on day t, 

(vii) 𝑞𝑡𝑖𝑚: The cost per item of lost sales for 

product i at store m on day t. 

 

These parameters provide the flexibility of setting 

different cost and revenue for different product, day 

and stores as applicable to the respective parameters, 

however, in reality a restricted part of this flexibility 

is often utilized. For instance, the cost of supplying 

some items can be fixed due to a contract that covers 

a season, thus possibly the entire planning horizon. 

Then, 𝑐𝑡𝑖 = 𝑐𝑖 would be fixed for that product i. 

Similarly, sales prices and lost sales costs can be 

dependent or irrespective of the specific day or store; 

lost sales or holding costs can further be product 

independent in some settings. With the index, 

variable and parameters defined, the proposed 

integer programming model is as follows. The 

objective function is: 

 

∑ ∑ ∑ 𝑝𝑡𝑖𝑚

𝑀

𝑚=1

𝑁

𝑖=1

𝑇

𝑡=1

⋅ 𝑆𝑡𝑖𝑚 −  ∑ ∑ 𝑓𝑡𝑟 ⋅ 𝑦𝑡𝑟 

𝑅

𝑟=1

𝑇

𝑡=1

  

− ∑ ∑ ∑ 𝑐𝑡𝑖

𝑀

𝑚=1

𝑁

𝑖=1

𝑇

𝑡=1

⋅ 𝑥𝑡𝑖𝑚  

−   ∑ ∑ ∑ ℎ𝑡𝑖𝑚

𝑀

𝑚=1

𝑁

𝑖=1

𝑇

𝑡=1

⋅ 𝐼𝑡𝑖𝑚  
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− ∑ ∑ ∑ 𝑞𝑡𝑖𝑚

𝑀

𝑚=1

𝑁

𝑖=1

𝑇

𝑡=1

⋅ 𝐿𝑡𝑖𝑚 , 

                                                                                                 (1) 

maximized under constraints: 

∑ 𝑥𝑡𝑖𝑚
𝑛
𝑖=1 ≤ ∑ 𝑣𝑡𝑚𝑟 𝑟∈𝑅𝑚

 𝑡 = 1, ⋯ , 𝑇;  𝑚 = 1, … , 𝑀  (2) 

∑ 𝑣𝑡𝑚𝑟 𝑚∈𝑀𝑟
≤ 𝐵 ⋅ 𝑦𝑡𝑟  𝑡 = 1, ⋯ , 𝑇;  𝑟 = 1, … , 𝑅         (3) 

𝐼0𝑖𝑚 = 0        𝑖 = 1, ⋯ , 𝑁;      𝑚 = 1, … , 𝑀                     (4)                                                                                                                   

𝐼(𝑡−1)𝑖𝑚 + 𝑥𝑡𝑖𝑚 − 𝑆𝑡𝑖𝑚 = 𝐼𝑡𝑖𝑚   

                       𝑡 = 1, … , 𝑇;  𝑖 = 1, … , 𝑁; 𝑚 = 1, … , 𝑀    (5)         

𝑆𝑡𝑖𝑚 + 𝐿𝑡𝑖𝑚 = ⅆ𝑡𝑖𝑚        

                       𝑡 = 1, … , 𝑇; 𝑖 = 1, … , 𝑁; 𝑚 = 1, … , 𝑀     (6)         

𝑥𝑡𝑖𝑚 ∈ 𝑍+  𝑡 = 1, ⋯ , 𝑇;   𝑖 = 1, … , 𝑁;   𝑚 = 1, … , 𝑀   (7)                                                                         

𝑦𝑡𝑟 ∈ {0,1} 𝑡 = 1, … , 𝑇;  𝑟 = 1, … , 𝑅                               (8)                                                                         

𝑣𝑡𝑚𝑟 ∈ 𝑍+  𝑡 = 1, ⋯ , 𝑇;   𝑚 = 1, … , 𝑀;   𝑟 = 1, … , 𝑅  (9)                                                 

𝑆𝑡𝑖𝑚 ∈ 𝑍+   𝑡 = 1, ⋯ , 𝑇;  𝑖 = 1, … , 𝑁; 𝑚 = 1, … , 𝑀   (10)         

𝐼𝑡𝑖𝑚 ∈ 𝑍+     𝑡 = 1, ⋯ , 𝑇  𝑖 = 1, … , 𝑁, 𝑚 = 1, … , 𝑀 (11)                                                                                                                                                   

𝐿𝑡𝑖𝑚 ∈ 𝑍+    𝑡 = 0, ⋯ , 𝑇  𝑖 = 1, … , 𝑁, 𝑚 = 1, … , 𝑀.(12)                                                                              

The first part of the objective function (1) represents 

the profit from product sales, the second part 

represents the total fixed cost incurred due to 

deliveries on all routes across days of the planning 

horizon, the third part represents the costs of 

supplying products, the fourth part represents the 

total holding cost of inventory at the stores 

throughout the planning horizon, and the fifth 

component is the cost incurred due to sales lost. 

 

Constraint (2) states that the total product deliveries 

to store 𝑚 on day 𝑡 cannot exceed the sum of the 

capacities allocated to store 𝑚 from all delivery 

routes serving store m on that day. Constraint (3) 

indicates that if a delivery on day 𝑡 is made from 

route 𝑟, the capacity of the truck 𝐵 will be allocated 

to stores covered by route 𝑟. If the shipment is not 

made, no delivery will occur to the stores from this 

route. Constraint (4) specifies that the initial 

inventory at stores is zero. Constraint (5) calculates 

the end-of-day inventory by subtracting the number 

of products sold from the previous day’s inventory 

plus the received products. Constraint (6) ensures 

that the sales quantity for each product and store 

does not exceed daily demand, as demand is shared 

by two non-negative integers according to this 

constraint. Constraints (5) and (6) together indicate 

that sales cannot exceed the minimum of inventory 

at hand including daily replenishments and the daily 

demand, and when the former is smaller, number of 

sales lost complements the difference. (7), (10)-(12) 

ensure that daily delivery quantities of products to 

stores, sales/lost sales amounts, and inventory levels 

at stores are non-negative integers. The allocation of 

daily delivery capacities on routes to stores are also 

non-negative integers by (9). (8) specifies that the 

decision to make a delivery on a route on a certain 

day is a binary decision. 

  

4. Sales Data Series Analysis with ARIMA 

and Artificial Neural Networks 

 
For prediction, we employ both traditional statistical 

time series models and neural network-based models 

to forecast product sales across multiple stores. The 

traditional statistical approach involves ARIMA 

models. For predicting the sales process of each store 

product combination, an ARIMA model minimizing 

the Akaike Information Criterion (AIC) is selected. 

For sales prediction with neural networks, numerous 

architectures involving recurrent, convolutional, 

dense and other specific layers are devised. The goal 

is to identify the most effective neural network 

model for each store-product combination by 

comparing the Mean Squared Error (MSE) of 

predictions by each model. MSE is a more practical 

criterion on test data prediction error, which is 

suitable since the complexity of neural networks 

involves many distinct and layer type specific 

parameters in many layers. AIC is suitable for 

ARIMA models, as these models are more structural 

in their complexity being defined by degrees of 

autoregressive, integrated and moving average 

terms. AIC balances prediction quality with 

penalties on overly complex models.  

The two approaches of prediction, ARIMA and 

neural networks are compared in this study, initially 

with respect to prediction performance in Subsection 

4.3.  These two approaches are used for predicting 

sales (ⅆ𝑡𝑖𝑚) parameters of the integer program (1)-

(12). The inventory replenishment decisions from 

solutions of (1)-(12) help explore the more broad and 

practical effects of prediction models on firm 

profitability, as discussed in Section 5. 

4.1 ARIMA Model Selection 

ARIMA models are a cornerstone in time series 

forecasting, renowned for their effectiveness in 

capturing the underlying patterns in both stationary 

and non-stationary data. ARIMA processes combine 

autoregressive terms, moving averages, and 

differencing to model complex time series behaviors 

such as consumption, pricing, investment [24] and 

demands [25] of commodities. 

 

The optimal ARIMA model, typically denoted with 

parameters (𝑝, ⅆ, 𝑞), where 𝑝 represents the number 

of autoregressive terms, 𝑞 the number of moving 

average terms, and ⅆ the degree of differencing, is 
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selected based on the minimum AIC. This criterion 

helps balance model complexity against goodness-

of-fit, aiming to minimize the AIC value to enhance 

predictive accuracy [26]. 

 

We utilize the Auto ARIMA function from the 

pmdarima package (version 2.0.4) in Python 3.10 to 

determine parameters, including the appropriate 

level of differencing. This function identifies the 

need for differencing by conducting stationarity tests 

such as the augmented Dickey-Fuller test as part of 

its process, adjusting the data as needed before 

model estimation [27]. 

 

External factors, such as weekends and holidays, 

significantly influence sales patterns. We 

incorporate these as exogenous regressors in our 

ARIMA models, aligning them with the forecast day 

to reflect the known status of these variables 

accurately. This approach acknowledges the 

dynamic influence of special events, which can be 

modeled separately as intervention events [28]. 

ARIMA models are robustly trained on historical 

sales data to forecast future demands, taking into 

account both typical sales patterns and special events 

that may disrupt these patterns. This comprehensive 

approach allows for more accurate and reliable 

forecasting, crucial for effective demand planning 

and inventory management. With the addition of the 

exogenous variable, the model is termed formally as 

ARIMAX (X-exogenous), however, in this study, 

we prefer referring as ARIMA to prediction models 

from this class. 

 

Table 1 showcases the optimal ARIMA models for 

each store-product combination, determined by the 

Auto ARIMA function to minimize the AIC.  

 

Table 1. AIC minimizing ARIMA model parameters 

(𝑝, ⅆ, 𝑞) for forecasting sales in analyzed store and 

product combinations. 

 Product 1 Product 2 Product 3 Product 4 

S
to

re
 

1
 

(1,1,1) (1,0,1) (0,1,5) (1,0,3) 

S
to

re
 

2
 

(2,1,4) (2,1,3) (1,1,2) (1,1,1) 

S
to

re
 

3
 

(2,1,3) (1,0,1) (1,0,1) (0,1,1) 

 

Common among the models is the necessity for 

differencing the series once to address non-

stationarity. While the models generally feature low 

degrees of autoregressive terms, variations are 

evident in the moving average components—

particularly for Product 3 in Store 1, which requires 

higher moving average terms. Similarly, the models 

for Product 1 in Stores 2 and 3 indicate a higher 

overall number of terms, aligning with the lowest 

AIC and suggesting a more complex model structure 

to capture the underlying patterns in the sales data.  

 

The ARIMA model, long recognized for its 

effectiveness in modeling non-stationary time series, 

leverages past observations and random errors to 

predict future values, making it a robust tool in 

various real-world applications. However, the 

advent of increased computational power has made 

more complex deep learning architectures like Long 

Short-Term Memory (LSTM) increasingly feasible 

for handling time series data. These advanced 

models generally surpass traditional machine 

learning and statistical approaches like ARIMA in 

performance, thanks to their ability to capture and 

analyze more complex patterns and dependencies 

within the data [29]. 

 

4.2 Neural Network Architectures 

In addition to the ARIMA models, we explored a 

range of neural network architectures tailored for 

time series forecasting. These architectures aim to 

capture temporal dependencies in the data, 

particularly complex patterns that appear in longer 

span of lags. Several neural network architectures 

are considered here, and tested on the sales data for 

prediction performance. 

In the domain of time series forecasting, various 

neural network architectures have been devised to 

address the intricate patterns inherent in data 

sequences. These architectures leverage unique 

strengths of various layers to enhance prediction 

accuracy. LSTMs are pivotal for capturing 

chronological sequences, while Convolutional 

Neural Networks (CNNs) excel at identifying spatial 

dependencies by analyzing patterns across different 

features within the data. The integration of 

Bidirectional LSTMs allows the models to 

assimilate information from both past and future 

contexts, thereby enriching the understanding of data 

sequences [30]. Multi-Scale CNNs employ levels of 

filters to capture a broader spectrum of patterns, 

from minute details to overarching trends [31]. The 

introduction of dilated convolutions extends the 

receptive field while allowing for more efficient 

concurrent processing and encompassing nonlinear 

sequential patterns [32]. Inception modules within 

LSTM frameworks reduce computational 

complexities of convolutional filters, efficiently 

diversifying the feature detection before temporal 

analysis [33]. Additionally, attention mechanisms 

direct the model's focus to the most pertinent parts of 
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the data, enhancing the relevancy of predictions [34], 

although this enhancement does not guarantee better 

RNN performance compared to CNNs [35]. Dropout 

layers interspersed within these networks help in 

preventing overfitting by randomly omitting subsets 

of features during training phases. By hybridizing 

these components—connecting and layering them in 

configurations—a higher potential for dissecting and 

predicting complex temporal patterns is aimed.  

Table 2 summarizes neural network architectures 

devised for sales prediction. The table outlines each 

model’s specific layers, configurations, and the role 

of each component in the overall architecture. 

 

The comparison between ARIMA and neural 

network models allows for the identification of the 

most effective model for each store and product 

combination, based on the MSE on the test data.

Table 2. Overview of Neural Network Architectures for Sales Demand Forecasting. 

Architecture Description 

*Conv1D(64, 3)  → Conv1D(128, 3) → 

LSTM(128) → Dense(1) 

CNN + LSTM: Uses convolutional layers to capture local patterns, 

followed by an LSTM layer to capture temporal dependencies. 

Bidirectional(LSTM(128)) → 

Bidirectional(LSTM(128)) → Dense(1) 

Bidirectional LSTM: Processes sequences in both forward and 

backward directions to capture context from both sides. 

Conv1D(256, 1) → Conv1D(128, 3) → 

Conv1D(64, 5) → Concatenate() → Flatten() 

→ Dense(1) 

Multi-Scale CNN: Applies convolutional filters of different sizes 

to capture patterns at multiple scales, then concatenates outputs of 

convolutional layers, flattens and feeds into the final dense layer. 

Conv1D(64, 3) → Dropout(0.25) → 

Conv1D(128, 3) → LSTM(128) → 

Dropout(0.25) → Dense(1) 

Enhanced CNN + LSTM: Similar to the CNN + LSTM model, but 

with dropout layers added for regularization, improving the model's 

generalization capabilities. 

Bidirectional(LSTM(128)) → Dropout(0.25) → 

Bidirectional(LSTM(128)) → Dense(128) → 

Dropout(0.25) → Dense(64) → Dropout(0.25) 

→ Dense(1) 

Enhanced Bidirectional LSTM: Expands on the Bidirectional 

LSTM by incorporating dropout layers and additional dense layers 

for enhanced feature extraction and prediction. 

Conv1D(256, 1) + Conv1D(128, 3) + 

Conv1D(64, 5) → Concatenate() → Flatten() 

→ Dropout(0.25) → Dense(128) → Dense(64) 

→ Dropout(0.25) → Dense(1) 

Enhanced Multi-Scale CNN: A multi-scale CNN with dropout and 

additional dense layers to better capture and process the input data. 

Conv1D(128, 1) → Conv1D(64, 3) → 

Conv1D(128, 3) → Add() → LSTM(128) → 

Dropout(0.25) → Dense(64) → Dropout(0.25) 

→ Dense(1) 

CNN-LSTM with Residual Connections: Integrates residual 

connections to allow the model to learn more effectively, followed 

by LSTM and dense layers. 

InceptionModule(64) → LSTM(128) → 

LSTM(128) → Dropout(0.25) → Dense(64) → 

Dropout(0.25) → Dense(1) 

Inception-LSTM Hybrid: Combines an Inception-like module for 

capturing diverse patterns, with LSTM layers to model temporal 

sequences, followed by dropout and dense layers. 

Conv1D(64, 3, dilation_rate=1) → 

Conv1D(128, 3, dilation_rate=2) → 

LSTM(128) → Dropout(0.25) → Dense(64) → 

Dropout(0.25) → Dense(1) 

Dilated CNN + LSTM: Uses dilated convolutions to expand the 

receptive field, followed by LSTM and dense layers, allowing the 

model to capture broader temporal patterns. 

Conv1D(64, 3) → Bidirectional(GRU(128)) → 

Attention → Flatten() → Dense(128) → 

Dropout(0.25) → Dense(64) → Dropout(0.25) 

→ Dense(1) 

CNN-BiGRU with Attention: Combines CNN and bidirectional 

Gated Recurrent Unit (GRU) with an attention mechanism to focus 

on relevant parts of the input, followed by dense layers for 

prediction. 
*Arrows indicate order of layers, plus symbol indicates layers whose outputs are combined by a concatenation layer. Conv1D(filters, 

kernel size): 1D Convolutional Layer, where filters is the number of output filters, and kernel size is the length of the 1D convolution 

window. LSTM/GRU(units): LSTM/GRU layer with the parameter indicating number of hidden units. 

Bidirectional(LSTM/GRU(units)): A Bidirectional LSTM/GRU layer that processes input sequences in both forward and backward 

directions. Flatten(): Converts a multidimensional tensor into a single dimension. Dropout(rate): Regularization technique where a 

fraction rate of input units is set to 0 at each update during training. Concatenate(): Merges multiple layers into a single layer. 

Dense(units, activation): Fully connected layer where units is the number of neurons and activation is the activation function. 

InceptionModule(filters): A custom module inspired by the Inception architecture, used to capture multiple types of patterns in the 

input data. Dilated Convolutions: Convolutions with holes (dilations) to increase the receptive field without losing resolution. Attention 

Mechanism: Mechanism that allows the model to focus on specific parts of the input sequence when making predictions. All models 

end with a fully connected layer -Dense(1)- for prediction of the number of sales in the following day.
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Both the ARIMA and neural network models were 

evaluated based on their ability to predict future 

sales at various horizons, specifically at +1, +5, +10, 

+15, +20, +25, and +30 days ahead. Multi-step ahead 

forecasting is necessary in this context because the 

predictions are to be used as inputs for a multi-period 

model designed for planning inventory 

replenishment. Accurate forecasts for these future 

periods are critical for informed decisions about 

stock replenishment, distribution, and managing 

inventory levels. 

 

For neural network models, multi-step ahead 

forecasting is performed by generating predictions 

iteratively over a 30-day horizon. The predictions for 

each day were fed back into the model to predict the 

subsequent days, alongside the known values of the 

special day vector. For the ARIMA model, a similar 

rolling horizon approach was used. The model was 

updated iteratively, allowing for adaptive 

predictions over the 30-day horizon. 

 

The observed trends in MSE across products with 

varying sales frequencies and volumes provide 

critical insights into the challenges of predictive 

modeling for different types of sales data. Notably, 

the variation in MSE trends between products with 

sporadic, almost binary sales patterns and those with 

consistent, higher-volume sales underscores the 

strengths and limitations of forecasting models 

under different conditions and prediction horizons. 

As an example generalizable to different neural 

network architectures and store-product 

combinations, consider the CNN+LSTM 

architecture predicting Product 2 at Store 1, which 

typically records low sales—often none or just one 

item per day. This product exhibits long periods 

without sales, punctuated by intervals of daily sales. 

In such scenarios, MSE remains relatively low, 

especially when compared to products that 

experience a broader range of daily sales volumes, 

such as Products 1, 3, and 4. Product 3, in particular, 

demonstrates extended periods without sales 

followed by bursts of high-volume sales days. These 

bursts make sales from one day somewhat predictive 

of the next, although transitions from sales to no-

sales periods significantly impact the accuracy of 

predictions, causing MSE to increase as the 

prediction horizon extends (Fig. 2). In contrast, 

Products 1 and 4 experience a wide range of sales 

volumes but without the distinct no-sales/sales 

phases observed in Products 2 and 3. Additionally, 

markers for special days consistently boost sales, 

enhancing predictability. Surprisingly, this results in 

a decrease in MSE as predictions extend further into 

the future (Fig. 2), illustrating how consistent sales 

patterns, even at higher volumes, can enhance 

forecasting accuracy. 

 
4.3 Model Evaluation and Comparison 

 

Data was collected over a period of 640 days, from 

27.12.2021 to 27.09.2023, across three stores and 

four product categories. The final 30 days of this 

period are reserved exclusively for computational 

testing of the optimization model's performance and 

are not included in the training or test datasets for the 

time series prediction models. Of the remaining 610 

days, the first 550 days are utilized as the training 

data set, while the last 30 of subsequent 60 days 

serve as the validation data set. The initial 30 days of 

prediction model testing data is reserved as lag 

sequences for sequence-based prediction models 

involving layers such as LSTM or GRU. 

 

 
Figure 2. MSE values for CNN+LSTM neural network 

model for +1, +5, +10, …, +30 day horizon predictions 

of Store 1; Products 1-4. 

 

The performance of each model is evaluated using 

MSE. This metric is calculated for each of the 

specified horizons (i.e., +1, +5, +10, +15, +20, +25, 

+30 days ahead). When evaluating the performance 

of neural network models across various prediction 

intervals, the model that consistently yields the 

lowest MSE is chosen. This method ensures that our 

forecasts extending through the planning horizon are 

based on the most accurate models available for each 

combination of store and product type. For each 

store and product type, we reviewed the MSE values 

across all available prediction horizons (e.g., +1, +5, 

+10, +15, +20, +25, +30 days ahead). The neural 

network model that recorded the lowest MSE for 

most of these prediction intervals was then selected 

as the optimal model for making forecasts. This 

strategy prioritizes overall performance across time, 

rather than exceptional performance at a single 

prediction interval. Table 3 presents the neural 

network architectures chosen to predict future sales 

for different store and product combinations. The 

Inception-LSTM Hybrid and CNN-BiGRU with 

Attention models do not appear as best model for any 
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Table 3. Artificial Neural Network architectures selected 

for forecasting sales in analyzed store and products. 

 Product 1 Product 2 Product 3 Product 4 

S
to

re
 1

 

Enhanced 

CNN + 

LSTM 

Bidirectional 

LSTM 

CNN-LSTM 

with Residual 

Connections 

CNN + 

LSTM 

S
to

re
 2

 

Dilated 

CNN + 

LSTM 

Bidirectional 

LSTM 

Dilated CNN 

+ LSTM 

CNN + 

LSTM 

S
to

re
 3

 

Bidirectional 

LSTM 

CNN + 

LSTM 

Bidirectional 

LSTM 

Enhanced 

Multi-Scale 

CNN 

 

store-product pair. These sophisticated architectures 

integrate complex structures like inception modules 

and attention mechanisms in order to model datasets 

with intricate patterns and substantial variability. 

However, when tested against the dataset comprising 

550 data points across two time series—sales and 

special days—these models are not selected due to 

their complexity potentially being disproportionate 

to the dataset size and complexity. The data, limited 

in scale and diversity, likely does not exhibit the high 

dimensional variability and the patterns that require 

extensive feature extraction capabilities that these 

models are designed to handle. For the dataset at 

hand, simpler RNN models, including their 

bidirectional versions and CNN-enhanced variants, 

proved sufficient. These models effectively capture 

the temporal dynamics without the extensive data 

requirements, computational overhead and potential 

overfitting associated with more elaborate 

architectures. This scenario underscores the 

importance of matching model complexity to data 

characteristics, where simpler models often yield 

robust performance without the complications 

introduced by more complex architectures. 

 

The comparative analysis between ARIMA and 

selected neural network models across various store 

and product combinations reveals distinct trends in 

prediction accuracy, especially between next-day 

forecasts and those over longer horizons. For Store 1 

and Store 2, ARIMA models show marginally better 

performance (i.e., lower MSE) than neural networks 

for next-day forecasts for two of the four products. 

This suggests that ARIMA's traditional time-series 

approach is slightly more effective for products with 

stable, predictable patterns in capturing short-term 

dynamics. 

 

However, as the prediction horizon extends to +5, 

+10 days, and beyond, neural networks consistently 

outperform ARIMA models, with this advantage 

becoming particularly significant for Products 3 and 

4 (Fig. 3). Neural networks excel in modeling 

complex nonlinear relationships and interactions 

[36], a capability that grows in importance with 

longer forecast periods. They effectively handle the 

variability and trends that ARIMA models often fail 

to capture, especially in datasets with volatile or 

irregular sales patterns. 

 

This robustness of neural networks in diverse and 

challenging forecasting scenarios is evident in their 

superior performance over extended periods, as 

shown in Fig. 3. The divergence in MSE trajectories 

between the models in this figure illustrates neural 

networks' enhanced predictive capabilities for mid to 

long-range forecasting tasks. Notably, the figure 

excludes Product 3 for Store 1, as the ARIMA 

model's MSEs are disproportionately high compared 

to the more consistent scale of neural network MSEs 

for all products. Despite the high variability in 

Product 3's sales, CNN/LSTM architectures 

successfully predict sudden sales spikes, a task 

where the ARIMA model struggles due to reliance 

on historical error correlations a low number of lags 

that do not adequately anticipate such atypical sales 

spikes despite the high number of terms in the 

model. 

 

 
Figure 3. Comparison of MSEs for the selected ARIMA 

and neural networks for predicting Product 1,…,4 sales 

at Store 1. 

 
The pattern in Fig. 3 generalizes as follows. When 

averaged over 12 store-product combinations, MSE 

for the neural network with minimum MSE has 6% 

lower MSE than the best model provided by Auto 

ARIMA. This gap grows to 60% when predicting 15 

days ahead, and 74% when predicting 30 days ahead. 
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In conclusion, the selected neural network models 

demonstrate a superior ability to accurately predict 

sales for planning horizons ranging from 5 to 30 

days. This capability makes them particularly 

suitable for informing our optimization model, 

which is designed to make efficient inventory 

decisions within this timeframe. 

 

In the following section, we will explore how the 

performance of these forecasting models influences 

firm profitability through replenishment decisions 

made using the optimization model. 
 

5. Computational Results  

 
The Integer Programming model for store inventory 

replenishment optimization is coded on Python 3.10 

and solved with Gurobi 11, running on a computer 

equipped with an AMD Ryzen Threadripper 3960X 

24-Core Processor and 64 GB RAM.  

 

In our computational experiments, we utilize 

anonymized price, unit cost and sales data provided 

under a non-disclosure agreement with a 

confidential industry partner, ensuring that the 

economic parameters accurately reflect real-world 

business conditions. Additionally, route costs are 

modeled based on distance and time expenditures, 

aligning with the realities of transportation. 

Inventory holding costs and lost sales penalties are 

established based on assessments by the company's 

staff and industry experts, providing a realistic basis 

for operational simulations. Importantly, as a matter 

of firm policy, item prices and costs are fixed 

seasonally, which allows us to isolate the demand 

process and assess the impact of predictive accuracy 

on operational performance more clearly. 

 

The model utilizes a dataset spanning 640 days, with 

the final 30 days reserved specifically for jointly 

evaluating the performance of the sales prediction 

models and the inventory replenishment 

optimization. This evaluation is critical for assessing 

the profitability of the decisions derived from 

predicted sales and the optimal replenishment and 

inventory strategies as defined by the integer 

programming model equations (1)-(12). 

 

For each testing phase, a fixed planning horizon of T 

days is established. Sales predictions for these T days 

are generated using neural network (the prediction 

by selected neural network for the specific store-

product combination is abbreviated as NN in this 

section) models (alternatively, ARIMA models), 

which have been trained on data up to the first day 

of the model testing period for each store and 

product combination. The predicted sales then serve 

as the demand input for the Integer Programming 

model (1)-(12). Once the optimization problem is 

solved, the replenishment orders for the next day are 

executed according to the model's outputs (from the 

optimal solution, decisions for t=1 are executed 

daily). The actual sales for the day are accounted for 

according to initial inventory (uniformly 0 for all 

store and products), replenishment decisions from 

(1)-(12) and actual sales quantities according to the 

real data reserved for testing. 

 

On the subsequent day, the inventory status is 

updated based on the outcomes of the previous day's 

prediction-optimization activities and the actual 

sales data. This process repeats daily for 30 testing 

days: the prediction models are updated with new 

real sales data (both neural network and ARIMA are 

incrementally trained with each day’s additional 

actual sales data as would be executed in an 

overnight run for daily decisions), and the 

optimization model (1)-(12) is rerun for the next T-

day horizon with updated beginning inventory and 

new demand predictions. Thus, the cycle of daily 

sales and end-of-day inventory level computation 

continues, which depends on preceding day 

inventory status, optimal replenishment (t=1) 

decisions from (1)-(12) and actual sales data.  

 

This methodical approach allows for continuous 

evaluation of the predictive accuracy and 

optimization efficacy over a period, ensuring that 

each day's operations are informed by the most 

recent data and adjusted decisions during the 

measurement.  

 

For each planning horizon of 𝑇 ∈
{5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30} days, 

and for each of 12 store-product combinations, our 

training process involves an initial training of 100 

epochs with early stopping implemented, featuring a 

patience of 30 epochs and a minimum learning rate 

of 1e-5. Subsequently, the model undergoes 29 

updates, each followed by a re-evaluation using 

early stopping with a reduced patience of 10 epochs 

and the same minimum learning rate. After each 

training and update phase, predictions for the 

respective planning horizon are generated. These 

predictions then serve as inputs for solving the 

optimization model specified in equations (1)-(12). 

For ARIMA, each planning horizon involves 

selecting and training 12 ARIMA models by Auto 

ARIMA, followed by 29 updates of this selected 

model. Similarly, future predictions covering the 

planning horizon and optimization run for each test 

day is made after training/updates. The entire 

computational process for 360 prediction model 
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trainings/updates (12 models, 30 days, 360 

training/updates in total), and 30 solutions of (1)-

(12) for the 13 planning horizons took 33,402 

seconds for NN and 23,613 seconds for the ARIMA 

case. 

 

The computational analysis compares the 

performance of NN and ARIMA models over 

various planning horizons, focusing on their impact 

on total profit, gross profit and cost aspects. Total 

profit is calculated by deducting from the revenue all 

cost components including sales loss and operational 

costs of logistics and inventory. Gross profit 

considers only supply costs of items, thus is the 

difference of total revenue and the total cost of 

supplying the items sold. This comparison is visually 

represented in Fig. 4 and 5, which depict the trends 

in total and gross profit, and logistics, inventory and 

lost sales costs across different planning windows 

for both models. 

 

 

 
Figure 4. Total profit and gross profit of the company 

over 30 days of applying optimal replenishment 

decisions based on NN and ARIMA predictions. 

 

NN exhibited significant improvements in total 

profit, especially at the longer planning windows of 

13-30 days, achieving total profits ranging from 

544,230 Turkish Liras (TL) to 609,650 TL. In 

shorter planning horizons (5-7 days), however, these 

models incur high logistics costs (Fig. 5) due to 

frequent replenishment orders (Fig. 6). This early 

inefficiency is mitigated by a 15-day planning 

horizon, where costs balance out with less frequent 

replenishments and higher inventory levels. 

Notably, neural networks are adept at anticipating 

sudden increases and long-term trends in order 

amounts, optimizing supply chain dynamics over 

longer horizons with higher sales levels (Fig. 4, 

gross profit) lower inventory and lost sales costs 

(Fig. 5). 

 

Neural networks particularly demonstrate a 

capability to maintain sales levels without a reducing 

trend, indicating their effectiveness in capturing high 

future sales potential in long-range forecasts. In 

contrast, ARIMA models, despite predicting trends, 

exhibit fluctuations in their ability to match the sales 

levels required for optimal profitability in extended 

forecasts. ARIMA models are slower to adapt to 

sudden market changes, often resulting in delayed 

responses to sharp increases in sales. Predicted sales 

levels tend to underestimate actual demand in longer 

horizons, affecting overall profitability (Fig. 5). For 

all planning horizons, this adds up to 0.9% lower 

profits when using ARIMA models. When 

restricting to longer horizon planning (T>13), which 

avoids inefficient frequent replenishments for both 

prediction methods, prediction using neural 

networks elicits 1.6% higher profits on average, 

when optimal decisions from (1)-(12) is applied on 

historical sales data. The difference is approximately 

2.3% when NN with T=30 is compared to ARIMA 

with T=9, where both attain their respective highest 

total profits. 

 

 
Figure 5. Total logistics, inventory holding and lost 

sales costs over 30 days of optimal replenishment 

decisions based on NN and ARIMA predictions. Lost 

sales cost figures are scaled up tenfold for visibility. 

 

ARIMA models struggle relatively more with cost 

efficiency, less so for logistics costs, but particularly 

in managing lost sales and inventory in longer 

planning horizons. 

 

Both models primarily utilize the route serving all 

three stores throughout the planning periods. In 

longer windows, strategies include occasional 

utilization of routes serving a single or two stores to 

rebalance inventory against prolonged demand 
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periods. The anticipation of demand surges by NN 

and short planning horizons result in an increased 

frequency of 13 three-stores replenishments in 30 

days (Fig. 6) reflecting as high delivery costs and 

reduced profit for NN with 𝑇 = 5.  In shorter 

horizons, frequent replenishment strategies result in 

higher logistics costs, particularly for NN. This 

pattern gradually improves as the planning horizon 

is extended, with both models showing better cost 

management with less frequent replenishments. 

 

Replenishment frequencies from the store 

perspective align with the dispatching route 

perspective, as predominantly all stores are served in 

the same day (Fig. 7, bars). As expected, a reduction 

in delivery frequencies and an increase in inventory 

levels coincide with an increase in the number of 

products per delivery (Fig. 7, dashed line plots). 

Given that delivery methods incur fixed charges, 

optimizing the number of products per delivery 

emerges as a crucial component of cost-saving 

strategies in longer planning horizons, effectively 

reducing the per-item logistics cost. 

 

 
Figure 6. Number of times routes serving to a single store, two and three stores is used throughout the 30 test days as 

per the optimal replenishment decisions based on NN and ARIMA predictions. 

 

 

 
Figure 7. Average frequency of delivery to stores in rate 

of deliveries per day (bars), and the average number of 

items delivered to a store per delivery (dashed lines). 

 

6. Conclusions 

 
This study highlights the critical importance of 

selecting an appropriate prediction method that 

aligns with the characteristics of the data at hand. By 

comparing traditional statistical time series methods 

with advanced deep learning architectures, we have 

demonstrated the substantial benefits of integrating 

predictive models with optimization tools to enhance 

practical applicability in inventory management. 

 

Better predictions improve the performance of 

optimized decisions. This is empirically validated by 

applying decisions derived from the prediction-

optimization framework against historical real data, 

where the performance is assessed in the context of 

real-world operational flows. Such empirical 

assessments are vital for industrial applications that 

rely on the accuracy of these predictions to make 

informed decisions that directly impact the financial 

health and operational efficiency of organizations. 

 

Moreover, the study delves into the integration of 

sophisticated forecasting methods with inventory 

management decisions, illustrating how 

enhancements in forecasting with neural network 

architectures can be leveraged to refine 

replenishment strategies that improve firm 

profitability. This integration is particularly valuable 

in demonstrating how optimized inventory 

management, driven by precise demand forecasts, 

contributes to cost savings and improved service 

levels. 
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The framework presented here, as summarized in 

Fig. 1, provides a foundation for predicting sales and 

optimizing inventory management that can be 

adapted to a variety of settings beyond the 

computational case considered. An application 

should start with a thorough determination of which 

items and locations require the collection of 

historical sales data. This is crucial as the demand 

dynamics might differ significantly across products 

and markets. Unlike the seasonally fixed supply 

costs and retail prices in the case presented, some 

settings may require the forecasting of future prices 

and other cost parameters dynamically. This is 

particularly relevant where costs and prices fluctuate 

due to market conditions, regulatory changes, or 

external economic factors. Parameter definitions in 

(1)-(12) are flexible and allow for such variability. 

Modifications to the integer programming model 

(1)-(12) may be necessary to accommodate specific 

characteristics of the inventory being managed. For 

instance, scenarios involving multiple warehouses or 

more complex configurations of facilities would 

require adjustments to index, variable, and 

constraint definitions. Similarly, dealing with 

perishable items would necessitate extensions to the 

model to account for varying shelf 

lives and different regulatory requirements; possibly 

involving stochastic parameters and chance 

constraints. With the necessary adaptations, the 

prediction-optimization framework remains 

effective across different sectors and retail models. 

While this study considers univariate forecasting 

models, future research could explore the potential 

of multivariate modeling. This could include 

VARMA models on the statistical side and 

multivariate deep neural networks on the deep 

learning side. Additionally, there is a promising 

avenue for extending this with stochastic modeling. 

The readily available probabilistic error models from 

statistical time series can be paralleled with model-

specific error modeling for neural network 

predictions. Such advancements could further 

enhance the robustness and reliability of forecasting 

models, thereby supporting more dynamic and 

responsive inventory management strategies. 
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