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Abstract:  
 

Emergency department overcrowding poses a significant challenge in healthcare systems 

worldwide, creating significant inconveniences for both patients and staff. Although 

numerous studies have attempted to address this issue through system-level solutions 

within emergency departments, the management of patient flow prior to reaching and 

overcrowding hospitals remains unaddressed. Currently, the best practice involves 

diverting arriving ambulances to alternative hospitals when an emergency department is 

overcrowded, which introduces additional delays in patient treatment and care. Such 

chaotic circumstances in the existing process highlight the need for a solution that 

organizes patient and ambulance flow such that regional emergency departments share 

the workload fairly, based on their capacities and capabilities, while minimizing patient 

travel time to the most convenient and suitable emergency unit on the first attempt, 

ultimately reducing treatment and care time significantly. In this regard, this paper 

proposes a novel approach to direct patients and ambulances—before heading to a 

hospital—to the best and most convenient emergency department. This is achieved by 

broadcasting the status of emergency departments in the region on an hourly basis to the 

public through a mobile application. The broadcast policy, spanning the hours of the day, 

is derived using a simulation-optimization model based on travel times, patient demand, 

and emergency department process durations analyzed using real data. This study is 

unique in pioneering emergency patient flow management outside of hospitals to 

maximize patient benefits and enhance service quality broadly. The simulation-

optimization model is applied in a five-district region and three hospitals with emergency 

departments. The optimal hourly broadcast policy achieved an 11% reduction in service 

time, a 9% reduction in laboratory time, a 41% decrease in radiology time, and a 26% 

reduction in consultation times, which are significant in terms of human health. 

 

1. Introduction 
 

Due to the increasing prevalence and negative 

impact of diseases (e.g., pandemics) in health, social, 

and economic life of people, it has become crucial 

for countries to invest more in healthcare 

infrastructure and services and prioritize this field in 

government’s investment list. However, it is also 

known and expected that the budgetary resources 

required for such investments are relatively high and 

may not be met easily. This poses a significant 

challenge, especially in low-income countries. In the 

bottom 60 countries in terms of the income ranking, 

healthcare expenditures per capita reach only $15 

annually, while developed countries’ annual 

expenditures can go as high as $2000 [1]. For 

example in Türkiye, where a study is conducted and 

will be presented in this article, healthcare spending 

per capita reached $1064 in 2015, while the average 

for OECD countries was $3813 in the same year [2]. 
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The rising healthcare costs and the increasing 

shortage of high quality healthcare services due to 

inadequate investments in upgrading infrastructure 

capabilities and capacities [3], highlight the need for 

studies on healthcare operational efficiency. In this 

context, emergency departments (ED) are one of the 

most comprehensive units in the healthcare sector, 

providing 24/7 service. They are often overcrowded 

and busy for being the first point of contact when 

sudden and urgent health issues arise particularly in 

off-working hours [4]. Like many healthcare centers, 

emergency departments also experience 

overcrowding, which can lead to various 

irrecoverable problems. Insufficient numbers of 

stretchers, inadequate availability of emergency 

doctors or nurses, physical capacity limitations, and 

other resource inadequacies, as well as the 

continuous increase in emergency service demand, 

are just some main reasons behind the density 

observed in emergency departments [5]. Inefficiency 

[6] and lack of selection [7] in ambulance offloading 

operations, overcrowding in the departments where 

patients will be referred [8], the expectation of faster 

examination in the emergency department [9], the 

increasing severity of illnesses despite the lack of an 

adequate safety net of social support or insurance 

[10], increased admission rates in the emergency 

department, and changes in healthcare policies, such 

as emergency service billing, are other factors 

contributing to the increasing intensity and 

unpleasing situations in emergency departments. 

Delays in patient transfers and misdirected 

ambulances, further exacerbate complications in 

emergency department [11]. In this regard, among 

many, it is worth mentioning some of daily crises 

arising in an emergency department as follows: On 

the patient side; prolonged triage and waiting times 

result in patients leaving without receiving 

emergency medical care [12], reduced examination 

times due to high patient volumes [13], and 

combined with delayed treatments lead to a decrease 

in service quality that may create further serious 

health issues and even fatalities. On the emergency 

department side; the high workload of personnel 

limits sufficient rest periods, increased stress from 

dissatisfied patients lead to verbal and/or physical 

violence, resulting in personnel resignations [6]. 

Continuing on the emergency department side; it can 

be added that considering the human factor, fatigue, 

and overcrowded environment increase the 

likelihood of healthcare errors. In further addition, 

there is also a financial aspect to the situation; a 

study by Hoot and Aronsky (2008) [14] revealed that 

an additional day spent in the emergency department 

on average cost a hospital $6.8 million over a three-

year period. In order to find a way out to avoid or 

minimize all above negative circumstances, Sayah et 

al. (2016) [15] conducted a study and compared the 

effects of capacity expansion with system 

improvements on patient flow in a hospital setting. 

The findings revealed that improvements such as 

establishing a rapid assessment unit and training 

staff as patient partners enhanced patient 

satisfaction, reduced waiting times, and decreased 

the number of patients who left without being seen. 

Consequently, it can be said that any enhancement 

of patient flow in an emergency line has a great 

potential to improve overall service quality in a 

hospital. However, most existing studies to find 

solutions for overcrowding problem have focused 

only on improving internal patient flow efficiency 

within the boundaries of a hospital, although one of 

the root causes of the problem is external, accepting 

emergency patients irregularly delivered to the 

hospital.  

It is a fact that all these problems can be minimized 

if the problems are prevented from occurring at the 

beginning through directing a patient from his/her 

first location to the most convenient regional 

emergency department. 

In this regard, the subject matter study aims to 

initiate research, development, and innovation 

studies in usually overlooked area of emergency 

overcrowding problem, which is managing patient 

flow outside of emergency departments. 

The study yielded an effective decision-making 

model that can run on a mobile application 

accessible by ambulance staff to direct ambulances 

to the most convenient emergency department, by 

utilizing real data of travel times as well as capacity, 

capability and workload balance of available 

emergency departments.  

From a finite set of levels indicating emergency 

departments’ availability or crowdedness, a 

selection for public announcement of status is made 

for hour of the day is made for each emergency 

department. This information is broadcast to inform 

and direct the patient population in need of 

emergency services. Shared information is available 

for both walk-in patients and those arriving by 

ambulances, or their relatives that are in the position 

of decision making in the emergency condition. We 

seek to find the optimal daily broadcast policy 

covering the 24 hours of the day. This policy 

determines the level of availability/crowdedness 

announced for each emergency service and each 

hour of the day. Using simulation-based 

optimization, a policy that minimizes the average 

time spent in the system, including transportation 

and processes in the emergency department, from 

the onset of the patient's need for emergency care is 

determined and proposed to the patients and 

ambulances. 
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The following section of the study reviews relevant 

literature on simulation, optimization, and efficiency 

in emergency departments and healthcare services. 

In Section 3, the emergency department process flow 

adopted in the simulation model and input analysis 

of data from patients and travel durations is 

discussed. The section culminates in the presentation 

of the simulation-optimization model. In Section 4, 

the existing system operational performance and the 

simulation-optimization solution data are compared, 

and the improvements are reported. Section 5 

presents conclusions and future research directions.  

2. Literature Review 
 

Simulation is a computational modeling technique 

used to estimate and evaluate the performance of a 

modeled system within certain conditions and over a 

specified duration, representing the workflow in a 

system [16]. Simulation models are particularly 

suitable for gaining insights into changes that are 

proposed for a system but would be costly or time-

consuming to test directly. Simulation models are 

frequently utilized in many healthcare organizations 

for management [17], design, and performance 

evaluation [18]. 

A systematic review of the applications of 

simulation techniques in emergency departments 

revealed that out of 254 publications between 2000 

and 2016, 224 focused on flow processes and system 

performance in emergency departments. While the 

majority of studies concentrated on resources such 

as physicians, nurses, and beds, a limited number of 

studies examined patient behavior [19]. In a study 

that improved resource planning for increased 

efficiency, a discrete event simulation pointed out a 

48% reduction in waiting times [20]. Another study 

showed that efficient planning of patient beds had a 

greater impact on system performance than physical 

space and workforce resources [21]. 

Hussein et al. (2017) [22] used the National 

Emergency Department Overcrowding Scale 

(NEDOCS) as a measure to assess the level of 

crowding in emergency departments. NEDOCS is 

calculated based on parameters such as patient 

waiting time, the number of beds in the department, 

and the number of patients admitted to the hospital 

and emergency department. The authors aimed to 

reduce NEDOCS and patient waiting times through 

technological enhancements of medical devices and 

equipment used in the emergency department. In 

another study utilizing discrete event simulation, 

Yang et al. (2016) [23] investigated the optimal 

numbers of physicians, nurses, and laboratory 

capacity to maximize the performance of the 

emergency department. Simulation models have 

been used in studies focusing on resource 

requirements and bottleneck identification in the 

emergency service system [24], comparison of 

developed patient flow scenarios and different 

resource levels [25], determining the impact of 

resource utilization on hospital cycle times for 

emergency department patients [26], and 

determining the effect and prioritization of staff 

numbers for doctors, nurses, and registration 

personnel on cycle times [27]. Additionally, the 

impact of bed capacity on patient costs [28], 

balancing doctor waiting times and its effect on 

patient cycle times [29], and enhancing ambulance 

service speed and emergency system efficiency 

through efficient scheduling [30] are among the 

research focuses where simulation models have been 

utilized. 

A systematic review conducted by Wiler et al. 

(2011) [31] classified studies on the problem of 

emergency department crowding and intensity based 

on the analytical techniques used. According to their 

findings, mathematical formula-based models, 

regression or time series-based models, queuing 

models, and discrete event simulation models are the 

most commonly employed analytical methods in 

studies addressing emergency department 

crowding/intensity issues. 

Simulation-based optimization has been applied in 

various publications that focus on analyzing and 

solving problems related to crowding and intensity 

in emergency departments. Ahmed and Alkhamis 

(2009) [32] aimed to minimize patient waiting times 

by determining the optimal number of staff members 

using a simulation model they developed for an 

emergency department. Their study demonstrated a 

40% reduction in waiting times in the simulation 

model, with a 28% increase in the number of staff 

members. Another study utilized discrete event 

simulation to optimize the length of stay in the 

emergency department and emphasized the 

importance of the time between arrival and initial 

examination. By incorporating a personnel budget 

constraint, they were able to minimize waiting times 

[33]. In a study that addressed nurse scheduling for 

improved service efficiency, simulation modeling 

and genetic algorithms were combined to reduce 

queue lengths and increase patient satisfaction [34]. 

While the majority of existing studies have focused 

on improving efficiency through changes in the 

internal workings of the emergency system, there are 

limited studies that explore alternative approaches. 

In a study by Laskowski and Mukhi (2009) [35], 

which was conducted during a period when mobile 

phones were just beginning to become widespread, 

they proposed an infrastructure based on ambulance 

redirection and utilized simulation-based 

optimization to design a system that integrates and 

publishes crowding data from emergency 



A. Burak Paç, Murat Demir, Suat Genç, Şükrü Özşahin / IJCESEN 11-2(2025)1632-1644 

 

1635 

 

departments in a region. Although the study 

mentioned sharing information about the status of 

emergency departments publicly to prevent 

overcrowding, it mainly focused on the policy of 

patient or ambulance diversion (redirecting patients 

to other emergency departments due to 

overcrowding) which has been addressed in studies 

quantifying contributors [36] or discussing potential 

solutions [37]. In these diversion studies, informing 

and directing patients at the location where their 

demand arises or considering travel times is not 

typically discussed, and redirected patients may have 

to endure additional travel times while congested 

emergency departments close their doors to patient 

admissions. 

In most studies that address overcrowding and 

intensity issues in emergency departments using 

simulation and simulation-based optimization, 

improvements have been focused on the internal 

workings and resource utilization within the 

emergency system. However, there are studies 

considering emergency departments in an area as a 

network, and pointing out the advantage of utilizing 

these facilities as a collective resource. Several key 

studies have paved the way for understanding and 

addressing overcrowding and intensity issues in EDs 

by employing network-focused strategies. For 

instance, Deo and Gurvich (2011) [38] delve into 

central decision-making on ambulance diversion to 

enhance the efficient utilization of a network of EDs. 

They employ a queuing game model between two 

EDs that aim to minimize their own waiting times, 

revealing that decentralized decision-making often 

leads to a defensive equilibrium where EDs do not 

accept diverted ambulances from each other, thereby 

exacerbating delays. Their study proposes an 

alternative coordination solution that approximates 

optimal network conditions without requiring 

precise knowledge of problem parameters, aiming 

for a more effective approach to managing 

ambulance diversion and improving overall ED 

efficiency. Ramirez-Nafarrate et al. (2012) [39] 

explore ambulance diversion policies through 

Markov Decision Policies and simulation. They 

compare no diversion to an ambulance diversion 

policy applied when all ED beds are full, and point 

out that patient waiting times can be reduced by 

diversion policies derived using the Markov 

Decision Process model. Piermarini and Roma 

(2023) [40] take a broader approach by examining 

network-wide optimization and treating EDs within 

a network as collective resources under a simulation-

optimization framework. They compare various 

ambulance redirection policies, ranging from no 

redirection with patient queuing to diversions based 

on resource availability, patient priority, or to the 

least occupied ED irrespective of distance. Their 

findings demonstrate potential in reducing waiting 

times and costs, yet they underscore that current 

ambulance diversion policies are often only enacted 

when EDs face extreme overcrowding and do not 

account for patients arriving by private means. These 

studies collectively highlight the benefits and 

challenges of considering EDs not just as individual 

entities but as parts of a larger, interconnected 

network. This shift in perspective is crucial for 

developing more comprehensive and effective 

strategies to manage patient flow and optimize 

emergency care services. 

Building on previous research that often focuses on 

ambulance diversion under specific, often extreme 

conditions, the proposed intervention in this study 

offers a comprehensive solution that addresses the 

entirety of patient flow to EDs. Unlike traditional 

approaches that respond reactively at the ED gates, 

this study harnesses mobile technology to 

proactively manage patient distribution across the 

network. By deploying a mobile application that 

provides real-time information on service times and 

crowdedness levels at various EDs, this intervention 

guides patients to facilities where they can receive 

faster care, thereby optimizing the performance on 

the entire network. Simulation-based optimization is 

used to determine the optimal times to broadcast the 

status of each ED, aiming to balance overcrowding 

and underutilization dynamically throughout the 

day. This method considers not only ambulance 

traffic but also the movement of patients arriving by 

private means, a significant source of patient flow 

that previous studies have largely overlooked. By 

integrating traffic data with real-time updates on ED 

capacities, the system directs patients to less 

crowded EDs before they even begin their journey, 

significantly reducing overall system times, 

including both travel and wait times in the ED. This 

strategy not only minimizes waiting times but also 

alleviates crowding, thereby improving service 

delivery and enhancing satisfaction for both patients 

and healthcare staff. The use of widespread mobile 

technology and centralized decision-making to 

direct demand in real-time represents a pioneering 

contribution to the field of emergency department 

efficiency, pointing out and analytically 

investigating opportunities for how emergency 

medical services can be delivered across a network 

of facilities. 

3. Methods 

 

Individuals requiring emergency care—whether 

arriving by private transport or ambulance—are 

assumed to use a mobile emergency medicine 

application. This application delivers real-time, 

hourly updates on ED congestion, assisting patients 
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or their decision-makers in selecting an ED based on 

its current availability. The route from the 

emergency location to the ED is fixed, while the 

travel pace adjusts based on traffic conditions. The 

total duration required for a patient to access 

emergency healthcare is estimated by considering 

both the travel time and the congestion within the 

ED. The system optimizes the decision regarding 

which availability levels to broadcast for each ED, 

thus enhancing ease of access by potentially guiding 

patients towards options that are both closer and less 

congested. The primary objective is to minimize the 

overall average time spent traveling and receiving 

services at the ED. A detailed simulation model of 

the ED workflow is constructed to ensure the 

accuracy of the optimization process, as elaborated 

in Subsection 3.1. Moreover, the analysis of the 

examination, consultation, laboratory testing, and 

radiology imaging processes, as well as the durations 

and travel times to the ED, are discussed in 

Subsection 3.2. 

 

3.1 Workflow in the Emergency Department 

 

The flow within the emergency department is 

characterized by the collection of vital information 

obtained through direct interviews with emergency 

service personnel. The primary objective of this 

study centers around the concept of "early access to 

care." Consequently, the analysis focuses on various 

processes that occur during the duration of 

emergency department services, including the initial 

examination, testing, diagnosis, re-examination, and 

consultation. However, it does not encompass 

procedures such as admission, prescription, transfer 

to another hospital, or referral to outpatient clinics. 

These latter procedures are either included within the 

aforementioned stages (admission being considered 

within the input analysis for the initial examination) 

or are administrative tasks that follow the 

completion of actual services, primarily associated 

with the discharge process. 

The system initiates with the patient's arrival at the 

emergency department, where they enter the queue 

for the initial examination and await the attending 

emergency physician. During the initial 

examination, decisions regarding the patient's 

condition and the need for further testing and 

treatment are made. In cases where laboratory tests 

are not required but medication is deemed necessary, 

prescriptions are issued, and patients are discharged. 

Likewise, if medication is not deemed necessary, 

patients are discharged without the need for further 

intervention. If laboratory tests are requested by the 

physician, the emergency nurse collects the required 

samples for analysis, and radiology examinations are 

ordered. The emergency physician awaits the return 

of laboratory results and the availability of radiology 

examination results before reassessing the patient. 

Based on the initial examination and/or test results, 

the emergency physician may call upon specialist 

doctors from respective departments/clinics for 

consultation. The consulting doctor, who responds 

within a time frame depending on the workload of 

the respective department, collaborates with the 

emergency physician to evaluate the patient's 

condition. The completion of all testing, evaluation, 

and consultation processes is regarded as the 

culmination of the emergency service for the patient. 

Figure 1 depicts the emergency department flow as 

adopted in the simulation model utilized in this 

study. Note that laboratory, radiology, and 

consultation stages proceed in parallel; with the 

radiology requisitions by the physician, the patient is 

practically queued for radiology imaging in the 

hospital's information system. Similarly, the doctor 

may call a specialist for a consult during an initial 

examination, or a later re-examination, which is 

entered into the information system directly, starting 

the waiting time for the arrival of the specialist. 

Then, the only physical activity that might take 

several minutes is sample taking by the emergency 

department nurse, which does not interfere with 

consultation and only very minimally with the 

radiology process with a small probability. 

3.2 Data Analysis 

 

To conduct the input analysis for this study, data 

provided by the Information Technology 

Department of Ankara Numune Training and 

Research Hospital were utilized. Anonymized 

examination, testing, laboratory, consultation, and 

relevant time data of 164,579 patients who sought 

treatment at the hospital's emergency medicine unit 

between January 1 and October 31, 2018, were 

statistically analyzed. The data tables included 

records of patient entry into the emergency unit, 

consultation/diagnosis information, laboratory test 

requisitions and results, as well as radiology 

examination requisitions and result retrieval times. 

The data input for constructing the simulation model 

of the healthcare system involved analyzing various 

aspects such as inter-arrival times, durations of 

initial examination, tests, and consultation requests, 

along with the time intervals for their 

initiation/request, response, and/or result generation. 

ANOVA was used to determine if the distributions 

varied based on categories such as months of the 

year, days of the week, hours of the day, and the 

diagnosis of the patient (if available) or the type of 

laboratory test. After identifying the appropriate 

classification/grouping, distribution fitting was 

performed using the MATLAB statistical toolbox. 
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Figure 1. Flow chart of the emergency department flow 

adopted in the simulation model. 

The fit of different distribution types, including 

discrete and continuous distributions, was compared 

using histogram-probability density/distribution 

function plots and quantile-quantile (Q-Q) plots. The 

most suitable distribution among exponential, 

gamma, Weibull, and log-normal distributions was 

selected based on these analyses. The parameters of 

the selected distributions were estimated using the 

maximum likelihood method, and the probability 

density functions were plotted and compared to the 

scaled histogram of the observed data. The 

distribution with the highest compatibility in the 

obtained histogram-pdf plots was visually selected, 

and the decision regarding the appropriate 

distribution was made accordingly. For a more 

comprehensive information on analysis, including 

data cleaning, processing, visualization, and 

interpretation, refer to the study by Demir (2019) 

[41]. Travel time data was sourced from the Google 

Maps website. The travel times between five 

different locations and three emergency service 

centers were collected and analyzed for each day of 

a month (Table 1). Inter-arrival times varied based 

on the day of the week and the time of day, while the 

seasonal effect was found to be insignificant [41]. 

The exponential distribution exhibited compatibility 

when examining the durations between arrivals on 

specific days of the week and at specific hours. 

Therefore, the arrival counts for each day of the 

week at each hour were modeled with a non-

homogeneous Poisson process with varying rates. 

The exponential arrival intervals provided in Table 2 

are for the total demand of all districts and are 

disaggregated to districts based on hypothetical 

population proportions. The population ratios of the 

districts to the total population of the five regions 

which generate the overall demand were assumed to 

be 5%, 30%, 15%, 25%, and 25%. The study 

evaluated the durations required for the ED 

physician to conduct an initial examination, the ED 

nurse to collect specimens/blood, the laboratory to 

return test results, radiology technicians to conduct 

imaging, the doctor to initiate a new consultation 

call, and consultant doctors to respond to calls, to 

determine if these times varied depending on the 

patient's diagnosis or the type of test conducted. 

Patient condition/diagnosis did not significantly 

affect the time interval between patient arrival at the 

emergency department and the initial examination, 

as indicated by a one-way ANOVA test (p=0.43). 

Histogram-pdf and Q-Q plots suggest that log-

normal distributions fit best for modeling waiting 

times for the initial examination. 

Figure 2 depicts inter-arrival times during the first 

day of the week at the emergency department. The 

demand rises just before working hours, remains 

steady until midnight, and drops through the late 

night/early morning. 

For laboratory tests, eight laboratory categories were 

identified: Hematology, Biochemistry, External 

Lab, Blood Gases, Elisa, Blood Center, Hormones, 

and Culture. Each group contained different types of 

tests ("tubes"). Based on the ANOVA results, it was 

determined that the durations varied significantly for 

the test type within the Hematology and Blood 

Center groups, which led to modeling the durations 

specific to each tube within these categories. For the 

other laboratory categories, ANOVA indicated no 

significant differences among the test types, 

resulting in modeling the durations specific to the 

entire group. Detailed results for statistical tests 

between and within laboratory categories and the 

distributions selected for laboratory tests are 

presented in [41]. Multiple radiology requests can be 

made for a patient to achieve the correct diagnosis or 

treatment. Since there is no available data indicating 

a relationship between two consecutive tests 

conducted on the same patient, the tests were 

examined based on the duration of the request, 
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Figure 2. Inter-arrival times during first day of the week 

to the emergency department analyzed.  

starting from the time of examination. ANOVA tests 

demonstrated significant differences in the number 

of tests requested (p = 0) and the durations of the 

requests (p = 0.0117) based on the patient 

condition/diagnosis. Yet, except for one case, the 

average differences between diagnostic pairs for all 

values were lower than the minimum significant 

difference (MSD) [41]. Due to the lack of significant 

pairwise difference, the radiology request durations 

and numbers were analyzed regardless of the 

diagnosis. The time required for radiology result 

retrieval was found to be independent of diagnosis 

by one-way ANOVA (p = 0.58). In certain cases, 

deemed necessary by the consulting emergency 

physician, consultations are conducted for some 

patients (approximately one-fourth of the patients) 

where the opinion of a specialist in a specific field is 

sought based on the judgment of the emergency 

physician. Calls are made to the specialist in the 

relevant field, and depending on the workload of the 

specialist in their respective department, they 

respond to the call and engage in consultation with 

the emergency physician upon arrival at the 

emergency department. For most diagnostic types, a 

single consultation is performed, but multiple 

consultations are required for a few rare diagnostic 

categories. In some diagnoses that undergo multiple 

consultations, the average number of consultations 

reaches ten, and in these categories, discharge with a 

single diagnosis is rare. Geometric distribution or 

generalized negative binomial distribution has been 

preferred in studies modeling the number of 

consultations, since there is a cycle in this process: 

the emergency physician conducts an examination, 

calls a physician for consultation if deemed 

necessary, follows up with a reexamination, and 

again decides whether or not to call for another 

consult. Since the decision to call a consultant is 

modeled as a Bernoulli process, the natural 

probabilistic model for the number of consultancy 

calls is geometric or negative binomial. One-way 

independent measures ANOVA test revealed a 

significant effect of the diagnostic category on the 

number of consultations (p=0), and the differences 

between pairs are mostly significant. Therefore, the 

distributions of consultation numbers were 

examined specific to the diagnostic category. The 

parameters of the negative binomial distribution are 

determined based on the maximum likelihood 

method, where the probability parameters are set to 

be equal to the minimum number of consultations in 

the diagnostic category. One-way independent 

measures ANOVA test demonstrated a significant 

difference in the response time of the consulting 

specialist to the call and arrival at the emergency 

department based on the diagnostic category 

(p=0.025). However, due to the rarity of differences 

larger than the minimum significant difference 

(MSD) when comparing the most common 20 

diagnostic pairs, the response times of consulting 

specialists were modeled with a common 

distribution. Interarrival times for consultancy calls 

are similarly independent of patient diagnosis and fit 

an exponential distribution. Considering the 

existence of a weekly repeating pattern, the analysis  

Table 1. Minimum and maximum travel durations for 

hours of the day. 

 Monday Tuesday Friday Saturday Sunday 

Hour Min Max Min Max Min Max Min Max Min Max 

0:00 14 20 14 18 14 18 14 20 14 20 

1:00 14 18 12 16 12 18 14 18 14 18 

2:00 12 16 12 16 12 16 12 16 12 16 

3:00 12 16 12 16 12 16 12 16 12 16 

4:00 14 16 12 16 12 16 14 16 12 16 

5:00 12 16 12 16 12 16 12 16 12 16 

6:00 12 16 12 18 12 16 12 16 12 16 

7:00 16 24 16 24 16 24 12 18 12 18 

8:00 18 35 18 35 18 30 14 20 12 18 

9:00 16 30 18 35 16 30 14 22 12 20 

10:00 14 24 18 30 16 28 14 22 14 20 

encompassed all seven days of the week and all 24 

hours of the day. The collected data provided the 

shortest and longest travel times between two 

locations. Weekday travel times differed from those 

on weekends and outside of office hours. For 

instance, an individual departing at 8:00 AM on a 

Monday experienced a minimum travel time of 18 

minutes and a maximum of 35 minutes, while at the 
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same time on a Sunday, the travel time ranged from 

12 to 18 minutes. In the research reviewed on traffic 

durations, it is stated that the best traditional 

statistical distribution representing travel time is the 

lognormal distribution [42]. Rakha et al. (2006) [43] 

have shown through goodness-of-fit tests that the 

lognormal distribution better represents highway 

travel times. Emam and Al-Deek (2006) [44] 

compared four different travel time distributions 

(Weibull, exponential, lognormal, and normal), 

demonstrating that the most suitable statistical 

distribution is the lognormal distribution. Based on 

these views, and considering the difficulty of 

obtaining private vehicular travel times due to 

privacy reasons, we make the assumption that 

patient travel times at a certain hour of the day will 

follow lognormal distribution. Given that the 

available data consisted of the shortest and longest 

travel times, the travel times were modeled using a 

lognormal distribution to represent the range of 

travel times with a 95% probability. With the 

determination of appropriate duration distributions 

for each process, a discrete-event simulation model 

of the emergency department is constructed. This 

model incorporates various factors including the 

inter-arrival times of patients, the durations of 

processes such as initial examination, laboratory 

tests, radiology examinations, and consultations, as 

well as the staffing levels of doctors and nurses in 

each department. The simulation model facilitates 

the analysis of key performance measures, including 

waiting times, queue lengths, resource utilization, 

and patient flow patterns. However, the most 

significant aspect is its ability to calculate the mean 

total service time for patients in the emergency 

department. By simulating the ED using the 

developed model and considering different 

scenarios, we can assess the impact of routing 

emergency medicine demand to less crowded 

emergency departments. Furthermore, the 

simulation model enables the estimation of mean 

service times and travel times, thereby paving the 

way to the minimization of the overall system time 

for patients by a simulation-optimization approach. 

 

3.3 Simulation-Optimization 

The emergency system model presented in Figure 2 

is constructed in the discrete event simulation 

software ARENA, 14.0. In analyzing the process 

flow and input analysis of an emergency department, 

the focus was on the core processes and staff, as the 

ED simulation model developed would eventually 

represent various EDs across different hospitals in 

multiple locations. The model captures only the 

emergency system dynamics, accounting for three 

distinct locations, each with varying staffing levels 

and different numbers and schedules of emergency 

doctors based on the size of the services. Table 2 

details the number of emergency doctors per shift for 

each of these emergency services. 

 
Table 2. Schedules for number of doctors working in the 

shifts for the three emergency departments in the 

simulation-optimization model. 
 0-4:00 4-8 8-12 12-16 16-20 20-0:00 

ED1 5 4 6 7 8 6 

ED2 4 2 2 4 4 4 

ED3 2 2 4 4 4 2 

 

The incoming traffic is divided into five regions for 

analysis. Travel times from a designated point in a 

neighborhood (origin) to the location of an 

emergency service (destination) are provided as an 

example in Table 1. When no information is 

broadcast regarding the congestion level of 

emergencies, it is assumed that the probabilities of 

emergency requests being distributed to the 

emergency services from districts are presented in 

Table 3. 

Table 3. Probabilities for emergency department choice 

for each district during three intervals of the day. 

 D1 D2 D3 D4 D5 

ED1 (0-6) .90 .70 .60 .60 .0 

ED2 (0-6) .10 .30 .28 .26 .10 

ED3 (0-6) 0 0 .12 .14 .90 

ED1 (6-17) .80 .70 .80 .60 .0 

ED2 (6-17) .20 .30 .18 .34 .20 

ED3 (6-17) 0 0 .02 .06 .80 

ED1 (17-24) .90 .70 .75 .60 .0 

ED2 (17-24) .10 .30 .20 .24 .10 

ED3 (17-24) 0 0 .05 .16 .90 

 

The emergency mobile application provides 

information at discrete levels: the interface broadcast 

provides comprehensive information about the 

congestion level and expected service speed of each 

emergency service in one of three levels: green (G), 

yellow (Y), or red (R). Figure 3 provides an example 

of how the status of EDs would appear in the mobile 

application interface in this case with 3 EDs. The 

hourly availability condition in the three EDs in this case is 

encoded as triplets of the letters G, Y, R representing green, 

yellow and red. Each hour, one of 19 different scenarios can 

be selected for broadcast (Table 4). It is assumed that the 

application will display the same scenario to every user, 

regardless of their district. The effects of these hourly 

broadcasts, which update every hour, have not yet been 

tested in practice and are therefore evaluated hypothetically 

as follows: The GGG broadcast does not alter district 

routing probabilities. For GGY or YYR broadcasts, traffic 

directed to the busier emergency services in each district 

decreases by 20% and is redistributed equally among the 

two other emergency services. With a GGR broadcast, 

traffic to the busier service decreases by 30%, redistributing 

equally to the other services. 
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Figure 3. Illustrative example of the interface of a 

mobile application displaying the ED status broadcast. 

When a GYY or YRR broadcast is issued, 20% of 

the traffic from the busier emergency services is 

redirected to the less congested one. In the case of a 

GRR broadcast, traffic preferring the busier 

emergency services decreases by 30% and is 

directed to the less congested service. For a GYR 

broadcast, 20% of the traffic from the emergency 

service marked as Y is redirected to the G service, 

and 10% of the traffic from the R service is 

redirected to the Y service. The broadcast colors—

green, red, and yellow—do not exactly reflect the 

current state of the emergency services but rather 

represent routing decisions derived from 

optimization for faster service. Emergency requests 

do not show significant variation or seasonal effects 

throughout the year, so it would be feasible to set the 

broadcast for each hour, accounting for the hourly, 

weekday, and weekend patterns across the 168 hours 

of a week, and maintain this schedule for several 

weeks after finding the optimal solution. Each hour 

having one of the 19 broadcast options as a decision 

variable creates a vast solution space of size 19168, 

approximately 6.77×10214. However, with the 

available simulation environment and optimization 

tool, it is feasible to optimize within a smaller 

solution space of size 1924, considering different 

broadcast policies for all hours of the day. This daily 

policy is uniformly applied across all days of the 

week, sacrificing flexibility for improvements 

regarding traffic durations on different days of the 

week in exchange for reduced solution time.At each 

iteration of the heuristic search algorithm, a  

Table 4. Possible states for broadcast by the mobile 

application. G-green, Y-yellow, R-red. 

Broadcast 
# 

Combinations 
Definition 

GGG* YYY 

RRR 
1 

All emergency 

departments are in a 

similar crowding state. 

GGY  YYR 
3 (GGY, 

GYG, YGG) 

Two emergency 

departments are slightly 

more crowded compared 

to the other. 

GYY  YRR 
3 (GYY, 

YGY, YYG) 

Two emergency 

departments are slightly 

more crowded compared 

to the other. 

GGR 
3 (GGR, 

GRG, RGG) 

One emergency 

department is 

significantly more 

crowded compared to 

the others. 

GRR 
3 (GRR, 

RGR, RRG) 

Two emergency 

departments are 

significantly more 

crowded compared to 

the other. 

GYR 

6 (GYR, 

GRY, YGR, 

YRG, RGY, 

RYG) 

One emergency 

department has 

availability, one is 

slightly crowded while 

the other is significantly 

crowded. 
* While there is only one combination for YYY -all equal-, there 

are 6 combinations for GYR broadcast for pointing out availability 

in different EDs. Broadcast patterns in italic have the same relative 

effect with the one in bold in the same broadcast group, but the 

one in bold is preferred in the mobile application interface, 

signaling that at least one ED is “green”, i.e., welcoming 

admission in each hour. 

 

broadcast policy is set, and the average patient 

system time (including travel and care) is measured 

using a simulation run on the model. A broadcast 

policy consists of a choice for each hour of the day 

(broadcast choices in Table 4 form a policy as 

exampled in Table 5), thus creating a solution space 

of size 1924. 

Defining Π = {𝐺𝐺𝐺, 𝐺𝐺𝑌, 𝐺𝐺𝑅, … } with |Π| = 19 

as the set of broadcast options available each hour, 

𝑥 ∈ Π24 as a fixed policy covering the 24 hours of 

the day, and  𝑓 as the approximate evaluation of the 

mean system time for patients under policy 𝑥, the 

simulation-optimization problem can be posed as 

follows:   

𝑚𝑖𝑛
𝑥∈𝛱

𝑓(𝑥).                              (1) 

The optimization is performed using the heuristic 

simulation-optimization tool OptQuest of the 

discrete event simulation software ARENA 14.0. 

OptQuest, a powerful optimization tool developed 
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by OptTek Systems, Inc., utilizes metaheuristic 

algorithms to efficiently explore a wide range of 

potential solutions, identifying the optimal 

configurations for complex systems [45]. Although 

the heuristic optimization method and solution 

ranking and selection method are fixed, parameters 

can be adjusted for faster or more statistically 

reliable results [46]. The minimum number of 

scenarios that satisfy the ranking and selection 

criteria was set at 3, the simulation warm-up time at 

168 hours, and the simulation run time at 840 hours.  

Currently, selecting the broadcast policy for each 

hour of the day takes 15 hours on an AMD 

Threadripper 4.0 GHz processor. Given the limited 

variation in demand data over the months, a solution 

can be obtained within a reasonable time using a 

smaller solution space for 24 daily hours instead of 

a more flexible 168 weekly hours. 

4. Results and Discussion 

 

The simulation-optimization results (Table 5) 

demonstrate a 10% reduction in the mean total 

system time, including travel (Table 6). This 

improvement is primarily attributed to an 11% 

decrease in the mean service time within the ED. 

Notably, the optimal solution does not depend on a 

strategy that reduces travel durations. The optimal 

broadcast policy significantly reduces waiting times 

across laboratory, radiology, and consultation 

stages, as well as for laboratory test results (Table 6). 

The simulation-optimization solution achieves an 

approximate 9% reduction in mean laboratory time, 

with more substantial reductions of 41% and 26% 

observed in radiology and consultation system times, 

respectively. Comparing service times between the 

current setup and the proposed (approximate) 

optimal solution reveals that redirection to 

Emergency 2 occurs during two extended periods: 

from 1 AM to 10 AM and from 2 PM until the end 

of the day. This strategy effectively balances the 

lower crowding levels at Emergency 2, consequently 

reducing the average system time (Table 5).  

Table 5. The best solution obtained by the simulation-

optimization run. 

Hour Broadcast Hour Broadcast Hour Broadcast 

0-1:00 GRG 8-9:00 YGG 16-17:00 GGR 

1-2:00 YGR 9-10:00 YGG 17-18:00 GGY 

2-3:00 YGR 10-11:00 GYG 18-19:00 GGY 

3-4:00 RRG 11-12:00 GYG 19-20:00 GGY 

4-5:00 GRY 12-13:00 GYG 20-21:00 GGR 

5-6:00 RGR 13-14:00 YYG 21-22:00 GGR 

6-7:00 RGR 14-15:00 YGY 22-23:00 YGY 

7-8:00 RGR 15-16:00 GGR 23-0:00 YGY 

Furthermore, this approach yields an unintended 

benefit not originally included in the objective 

function of this study: the utilization rates of 

physicians are more evenly distributed. The 

simulation-optimization solution shows that 

physicians at ED 1, who previously had almost no 

idle time, experience about a 5% reduction in busy 

levels. Similarly, physicians at ED 3 see a slight 

decrease in workload, while ED 2 absorbs additional 

duties, enhancing the overall balance of physician 

loads (Table 7). 

Table 6. Average time of patients in travel, laboratory, 

radiology, consultation stages, the total time in the 

emergency department and total times in the system 

including travel, in hours. 
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No Broadcast 
0.28 4.99 1.07 2.84 6.3 6.59 

Simulation-

Optimization 0.28 4.56 0.63 2.11 5.6 5.91 

 

The redirection to ED 2 has notably decreased 

congestion, as reflected in reduced waiting times for 

initial examinations, result assessment/consultation 

calls, and consultation queues at ED 1 and ED 3 

(Table 8). Given its higher capacity (Table 2), ED 1 

received more focus for improvements. Although the 

instantaneous occupancy rates of doctors at ED 2 

have equilibrated with those at the other two 

facilities (Table 7), the already brief waiting times at 

ED 2 have slightly increased. Despite this relative 

increase, the overall enhancements across the system 

have led to significant reductions in average system 

times, encompassing both emergency service and 

traffic times for all emergency departments. 

Table 7. Utilization rates of emergency department 

physicians. 
 Utilization Rates of Physicians 

 ED1 ED2 ED3 

No Broadcast 0.986 0.816 0.958 

Simulation-Optimization 0.939 0.920 0.947 

 

Statistical analysis using t-tests on independent 

measurements (with different random variables 

generated for each run) confirmed that the total 

system time, combining traffic and emergency 

service durations, under the optimal solution (M = 

5.92, SD = 0.17) is significantly shorter than the 

current setup (M = 6.59, SD = 0.55), t(58) = 6.33, p 

< .05, two-tailed, 95% CI [0.46, 0.88]. This 
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improvement holds true solely for emergency 

service times as well: independent t-tests show that 

emergency times under the optimal solution (M = 

5.64, SD = 0.17) are significantly shorter than those 

in the current situation (M = 6.31, SD = 0.55), t(58) 

= 6.37, p < .05, two-tailed, 95% CI [0.46, 0.88]. 

Table 8. Waiting times in queues for accessing an 

emergency physician for tasks 

  
Initial Examination 

ED1 ED2 ED3 

No Broadcast (min) 71.64 12.46 78.64 

Simulation-Optimization (min) 25.89 26.84 53.22 

  

Assessment 

ED1 ED2 ED3 

No Broadcast (min) 78.18 10.09 81.05 

Simulation-Optimization (min) 30.94 24.83 55.73 

  

Consultation 

ED1 ED2 ED3 

No Broadcast (min) 77.98 9.45 72.76 

Simulation-Optimization (min) 30.91 23.93 51.91 

 

5. Conclusion 

 

This study presents a novel approach for directing 

emergency department demand by minimizing the 

total system time experienced by patients. By 

leveraging a mobile application and considering 

patient location and ED availability, a simulation-

optimization model, which guides patients to the 

most appropriate location, is proposed, thereby 

reducing travel time and optimizing health care 

service delivery.The novelty of this study lies in 

devising a mobile application that provides real-time 

information on the availability and crowdedness 

levels of various emergency departments in each 

city. This allows patients to make informed 

decisions about which ED to visit, improving patient 

distribution across the ED network. The findings 

highlight the substantial benefits of systematically 

redirecting patient demand to balance crowding 

levels across multiple emergency departments 

within a city or region. The results additionally 

demonstrate significant improvements in overall 

system performance, including reduced travel and 

service times, more balanced workloads among 

health care providers, and enhanced patient 

satisfaction. 

The implementation of this model can lead to better 

resource utilization and a more resilient and 

responsive emergency care network. These 

managerial insights underscore the importance of 

integrating real-time data and advanced optimization 

techniques to achieve efficient and effective 

emergency department operations. The promising 

results suggest that adopting such innovative 

solutions by health care decision and policy makers 

can significantly enhance the quality and efficiency 

of emergency medical services, offering a scalable 

model for broader application in various health care 

systems. 
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