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Abstract:  
 

Dynamic malware analysis plays a pivotal role in modern cybersecurity, offering insights 

into malware behavior through dynamic execution and network traffic analysis. In this 

study, we present a comprehensive approach to dynamic malware analysis using a 

sandbox environment and network traffic logs. Our methodology involves the extraction 

of relevant features from network traffic captured in pcap files. We conducted 

experiments using a virtualized Oracle VirtualBox environment, where benign and 

malicious software samples were executed within a Windows virtual machine controlled 

by Python scripts. For network emulation, we utilized tools from the REMnux 

distribution, including InetSim and FakeDNS, to simulate realistic network interactions 

during malware execution. The collected pcap data underwent preprocessing and feature 

extraction to capture essential behavioral patterns and network indicators. Machine 

learning and artificial intelligence models were developed to classify malware based on 

these extracted features. Our findings underscore the efficacy of dynamic analysis 

coupled with machine learning in detecting and classifying malware variants based on 

their network behavior. This research contributes to advancing techniques for real-time 

threat detection and response in cybersecurity, emphasizing the importance of dynamic 

malware analysis in mitigating evolving cyber threats. 

 

1. Introduction 
 

Malware, short for "malicious software," 

encompasses a diverse range of programs designed 

to infiltrate computer systems with harmful intent. 

According to the National Institute of Standards and 

Technology (NIST), malware is defined as "a 

program that is inserted into a system, usually 

covertly, with the intent of compromising the 

confidentiality, integrity, or availability of the 

victim’s data, applications, or operating system or 

otherwise annoying or disrupting the victim" [1]. 

This definition highlights malware's primary 

objectives of compromising security and disrupting 

normal operations. 

 

TechTarget further elaborates, describing malware 

as "any program or file that is harmful to a computer 

user," capable of stealing, encrypting, or deleting 

sensitive data, altering computing functions, and 

monitoring user activities without consent [2]. 

BullGuard underscores the intrusive nature of 

malware, emphasizing its design to infiltrate and 

damage computers without user consent [3]. 

Kaspersky notes that malware exists in various 

forms, including viruses, worms, Trojans, and 

spyware, each posing unique threats to system 

integrity [4]. 

 

Fundamentally, malware is stealthy software 

engineered to gain unauthorized access or cause 

harm to computers and devices. Norton succinctly 

defines it as "software that is specifically designed to 

gain access or damage a computer without the 

knowledge of the owner" [5]. These definitions 

collectively emphasize two core traits of malware: 

malicious intent and its ability to execute actions 

surreptitiously, often without the user’s awareness. 

 

Malware classification is made on several aspects 

such as by type, by malicious behaviour, by 

privilege, etc. Generally, there are two different 

types of approach in detecting whether a software is 

malicious or not. These are respectively, the static 

analysis and dynamic analysis. In static analysis, the 

softwaare under examination is not executed and 
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investigated via it's code structure. On the other 

hand, in dynamic investigation method, the program 

is executed inside an isolated environment called as 

sandbox for logging it’s network behaviours, API 

calls, and other system logs to detect the programs 

malicious actions. 

 

Form this point of view, the dynamic malware 

analysis plays a crucial role in modern cybersecurity 

by providing insights into the behavior of malicious 

software through controlled execution environments 

and comprehensive log analysis. This study focuses 

on automating the analysis process, incorporating 

virtualized environments to ensure the integrity of 

the analysis environment and leveraging various log 

types for thorough behavioral analysis. 

 

The dataset used in this research comprises a diverse 

collection of malware samples sourced from 

reputable repositories such as MalwareBazaar [6]. 

These samples encompass a broad range of 

malicious behaviors, ensuring robust testing of 

detection methods. Benign software samples were 

carefully selected from legitimate sources, including 

licensed applications and validated Windows 

Dynamic Link Libraries [7].  

 

In the automated analysis phase, each sample 

undergoes execution in a virtualized environment 

using Oracle VirtualBox, ensuring a clean state for 

every analysis session. This approach mitigates 

contamination risks from previous analyses, 

preserving the integrity of results. System and kernel 

logs are captured alongside network traffic logs (in 

pcap format) to capture comprehensive behavioral 

indicators. Our approach also includes automatic 

collection and analysis of system and kernel logs 

using tools like Win32 APIs for event log retrieval 

and processing. This comprehensive log analysis 

provides deeper insights into malware activities 

beyond network interactions, contributing to a 

holistic understanding of malware behaviors [8]. 

 

The feature extraction phase plays a crucial role in 

developing effective malware detection systems. It 

begins with processing packet capture (pcap) files, 

which are comprehensive logs of network traffic. 

This process involves extracting a diverse set of 

features from the raw network data. In our approach, 

we have utilized a total of 39 features, which include 

various metrics such as packet sizes, inter-arrival 

times, protocol types, and traffic volume. These 

features capture detailed network traffic patterns and 

behaviors that may indicate malicious activities. For 

instance, metrics like mean packet size, standard 

deviation of packet size, and counts of TCP and UDP 

packets provide insights into the nature of the traffic, 

while ratios and distributions of these metrics help in 

identifying anomalies. 

 

Once these features are extracted, they serve as the 

input for training machine learning and artificial 

intelligence models. These models are trained to 

recognize patterns and behaviors that distinguish 

normal traffic from potentially malicious activities. 

The training process involves learning from the 

extracted features to develop a robust classification 

mechanism capable of detecting both known and 

novel threats. 

 

Integrating machine learning and AI into this process 

significantly enhances the accuracy and 

effectiveness of malware detection. Traditional 

detection methods often rely on static signatures or 

heuristic rules, which can be limited in scope and 

adaptability. In contrast, machine learning models 

leverage the extensive feature set to continuously 

learn and adapt, improving their ability to detect 

sophisticated and previously unknown malware 

variants. This dynamic and data-driven approach not 

only boosts detection accuracy but also enhances 

response capabilities in cybersecurity operations.  

 

Within the scope of this research, we have developed 

several machine learning and deep learning models 

by using these network-based features. Through this 

research, we aim to advance dynamic malware 

analysis methodologies, emphasizing automated, 

integrated approaches for real-time threat detection 

and response in cybersecurity. Recent developments 

in malware analysis highlight the need for adaptive 

systems that not only detect new and evolving 

threats but also counter evasion techniques and 

obfuscation strategies. By integrating our models 

with these dynamic methodologies, we strive to 

enhance both detection accuracy and processing 

speed, contributing to the development of resilient 

cybersecurity frameworks capable of addressing the 

complexity and scale of modern malware threats. 

 

2. Related Works 
 

In recent years, machine learning techniques have 

garnered significant attention for classifying 

malware and benign samples. For example, 

introduced risk signals to enhance Android security, 

achieving detection accuracies of 68.5% for benign 

applications and 93.38% for malicious programs [9]. 

Similarly, evaluated several machine learning 

techniques, including AdaBoost, Naive Bayes, 

Decision Trees, and Support Vector Machines, 

reporting that Naive Bayes could detect malware 

with an accuracy of 81%. [10]. 
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Additionally, performed static analysis using a 

limited feature set and four supervised learning 

techniques, demonstrating that the random forest 

algorithm achieved a detection accuracy of 98.6% 

with a 1.8% false positive rate [11]. Likewise, in 

another study, six machine learning techniques are 

assessed to identify malware based on anomalies, 

utilizing feature selection techniques such as Chi-

square and information gain to optimize feature sets. 

Their results indicated an impressive 99.9% 

detection accuracy when using the decision tree 

classifier on a custom malware dataset [12]. Lastly, 

a heterogeneous deep learning framework is 

proposed via combining AutoEncoders with multi-

layer Restricted Boltzmann Machines (RBMs) to 

detect previously unknown malware using Windows 

API calls derived from portable executable profiles 

[13]. This framework consists of a two-phase 

process: pre-training and fine-tuning, where both 

labeled and unlabeled samples are utilized for 

feature learning. The authors conducted a 

comprehensive study on a large dataset from 

Comodo Cloud Security Center, demonstrating that 

their method outperformed traditional shallow 

learning approaches, although at the cost of 

increased system complexity. Notably, their work 

focused exclusively on API-based features for 

training the proposed method. 

 

From the dynamic analysis perspective, a method is 

proposed decompiling malware specimens into 

assembly language to extract feature vectors that 

encode information regarding API calls and 

bytecode [14]. While this approach is intuitive, it is 

particularly sensitive to obfuscation techniques and 

incurs high computational costs for both 

decompilation and feature extraction. In contrast, in 

a study, it is suggested utilizing Q-learning for 

feature selection, where features are derived from 

the binary format and byte sequences [15]. Their 

approach successfully reduced a feature vector from 

a size of 4000 to 204 elements, although the resulting 

number of features remains substantial for training 

machine learning classifiers. 

 

Further emphasizing the role of API calls, it is 

proposed logging API call sequences by encoding 

each API as a numerical value [16]. This sequence 

was then employed to train a two-layer long short-

term memory network, achieving an impressive 

accuracy of around 98%. However, this method did 

not consider the argument values of the APIs, which 

could expand the input space and lead to potential 

misinterpretations of behavior. 

 

Despite their utility, API call extraction can result in 

massive data volumes, posing challenges for 

indexing and querying. In response to this, it is 

suggested monitoring overall system behavior, 

asserting that detecting abnormal activities could 

facilitate the identification of various malware types, 

including zero-day, metamorphic, and polymorphic 

threats. [17]. This aligns with the approach taken by 

Dini et al. who introduced a real-time anomaly 

behavior detector using directed acyclic graphs, 

learning the host's execution behavior and encoding 

it into a model similar to a Markov Chain [18]. 

 

In a recent work, to detect Windows malware by 

executing programs in controlled environments and 

logging their behavior is carried-out. The findings of 

the work are open-sourced [19]. In this work, to 

address this, we introduce Nebula, a Transformer-

based model that integrates diverse information from 

dynamic logs. Through experiments, Nebula 

outperforms state-of-the-art models in malware 

detection and classification, achieving up to 12% 

improvement. We also show that self-supervised 

pre-training rivals fully supervised models using just 

20% of the data. In another recent research, over 

1,500 malicious Android applications were 

examined, finding 18.31% equipped with anti-

analysis techniques. To address this, the dynamic 

analyzer DOOLDA was introduced, effectively 

invalidating such techniques through dynamic 

instrumentation, outperforming other analyzers in 

identifying and neutralizing evasive behaviors [20]. 

Lastly, in Android devices, frequent attackers are 

aiming to steal data and push ads. While dynamic 

analysis is effective at detecting Android malware, 

many sandboxes like DroidBox rely on outdated 

emulators, making them vulnerable to evasion. To 

overcome this, DroidHook was introduced as an 

automated sandbox that supports multiple Android 

versions and works on real devices, providing more 

precise and fine-grained results than emulator-based 

tools [21]. 

 

3. Material and Methods 
 

In this section, we provide an in-depth overview of 

the proposed methodology and framework used in 

our study. Our approach begins with the collection 

of network logs generated from malware and benign 

samples. The data set includes network traffic 

captured from both malicious and benign sources. 

We use a VirtualBox virtual machine running a 

Windows operating system, which is connected to a 

REMnux Linux environment for network emulation. 

This setup allows us to simulate realistic network 

conditions and capture the requisite data for analysis. 

 

Subsequently, we extract a total of 39 features from 

these network logs, focusing on parameters that are 
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indicative of malicious activities. This feature 

extraction phase involves processing packet capture 

files to identify patterns and anomalies associated 

with malware. The extracted features encompass 

various aspects such as protocol usage, traffic 

volume, and connection patterns, which are critical 

for distinguishing between benign and malicious 

traffic. 

 

Following feature extraction, we prepare the data for 

model training. We apply a rigorous preprocessing 

pipeline to handle missing values, scale features, and 

encode categorical variables. We then use this 

preprocessed data to train and evaluate several 

machine learning models. The models are trained on 

80% of the features, with the remaining 20% 

reserved for validation to assess classification 

accuracy and model performance. 

 

The overall framework of our methodology is 

illustrated in Figure 1, which provides a visual 

representation of the entire process from log 

collection to model evaluation. The subsequent 

subsections will delve into the specifics of each 

phase, including the setup of the analysis 

environment, detailed feature extraction techniques, 

and the training and testing of machine learning 

algorithms. 

 

 
 

Figure 1. Flowchart of the dynamic malware analysis methodology presented in this work. 

 

3.1 Data Set 

 

The data set used in this study comprises a 

comprehensive collection of network logs derived 

from both benign and malicious sources. The benign 

samples were obtained from a free repository. This 

repository contains a vast array of normal .NET 

executable files collected from various reputable 

sources. Specifically, the repository is organized into 

several folders: files from the CNET website, 

netwindows, files from Windows, files from 

Softonic, files from SourceForge, and netexe files 

from other miscellaneous sources. These benign 

samples are well-documented in existing literature, 

including a notable reference [7] that utilized similar 

benign data for malware detection research. 

 

For the malicious samples, we sourced data directly 

from a web-based malware repository, a well-known 

platform for malware analysis. The malware data set 

includes a diverse range of malicious executables, 

such as ELF botnets and Windows executables, each 

identified by unique hash values. Examples of the 

collected malware include botnets like Mirai and 

Moobot, as well as tools like KMSAuto. These 

samples represent various threats and are crucial for 

training and evaluating the robustness of our 

detection models. 

 

In total, our data set consists of 953 benign network 

logs and 1408 malware logs. This diverse and 

extensive data set provides a robust foundation for 

extracting features and training machine learning 

models to improve malware detection accuracy. 

 

3.2 Environmental Setup  

 

In this study, the environmental setup consists of a 

host machine with an Intel Core i7-8700K CPU 

running at 3.70 GHz and 16 GB of RAM, operating 

on Windows 10 Pro that is located on TOBB ETU 

Cyber Security Labarotary. To create a controlled 

environment for malware analysis, a VirtualBox 

virtual machine (VM) is utilized. Within this VM, 

both benign and malicious samples are stored and 

executed. The VM is configured to revert to a clean 

state, known as "state zero," before each sample 

execution. This state ensures that the VM starts with 

the initial conditions, free from any residual effects 

of previous executions, providing a consistent and 

isolated environment. A custom program developed 

for this work selects the appropriate folders 

containing benign and malicious samples, runs them 
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within the VM, and extracts network-based logs, 

API calls, and system logs. This setup guarantees 

that each sample's execution is analyzed in an 

environment unaffected by previous malware 

activities. To illustrate the environmental setup, 

Figure 2 is presented below.  

 

  
Figure 2. Environmental setup and log extraction 

process. 

 

3.3 Execution Process 

 

The execution process is carried out in two distinct 

stages. First, Dynamic Analysis: Each sample is 

executed within a clean state virtual machine (VM) 

to ensure isolation from previous malware actions. 

The VM is reset to a pristine "state zero" before 

every execution. A custom Python program is 

employed to run the samples, capture network traffic 

into .pcap files, and log API calls and system events. 

The logs are collected and analyzed to assess the 

behavior of each sample.   

 

Second, the log extraction and analysis: After 

sample execution, the network logs in “.pcap” 

format and system logs in “.evtx” format are 

processed to generate comprehensive reports. The 

Python code provided manages the execution 

environment, captures network packets, and extracts 

system logs, ensuring a thorough examination of the 

sample behavior. 

 

3.4 Feature Extraction 

 

In this section, we describe the 39 features extracted 

from network logs and the preprocessing steps 

applied to them. The extraction process captures 

various aspects of network behavior and 

communication patterns essential for distinguishing 

between benign and malicious activities. We also 

provide reasoning for the relevance of each feature. 

 

Number of Packets: Represents the total number of 

packets captured in the pcap file. Reasoning: A 

higher number of packets might indicate extensive 

communication or data transfer, which can be 

characteristic of both benign and malicious 

activities. 

 

Total Size: The cumulative size of all packets in the 

pcap file. Reasoning: Large total sizes could suggest 

substantial data transfer, potentially signaling data 

exfiltration or large data dumps, common in 

malicious activities. 

 

Mean Packet Size: Average size of packets. 

Reasoning: Anomalies in packet size, such as 

unusually large or small sizes, may indicate attempts 

to obfuscate traffic or unusual communication 

patterns. 

 

Standard Deviation of Packet Size: Measures 

variability in packet size. Reasoning: High 

variability might be indicative of irregular or 

malicious traffic, where traffic patterns are 

intentionally varied to evade detection. 

 

Mean Inter-arrival Time:  Average time between 

successive packets. Reasoning: Regular or irregular 

intervals between packets can provide clues about 

the nature of the communication. Consistent 

intervals may be indicative of benign, predictable 

traffic, while irregular intervals might suggest 

malicious behavior. 

 

Standard Deviation of Inter-arrival Time: 
Captures variability in the time between packets. 

Reasoning: High variability can point to unusual 

traffic patterns or communication attempts designed 

to evade detection. 

 

TCP Packet Count: Total number of TCP packets. 

Reasoning: TCP packets are often used for 

establishing reliable connections. A high count 

might indicate extensive communication or data 

transfer. 

 

UDP Packet Count: Total number of UDP packets. 

Reasoning: UDP is used for quicker, less reliable 

communication. A high count could indicate real-

time communication applications or potentially 

malicious activities using less stringent connection 

protocols. 

 

TCP Ratio: Ratio of TCP packets to the total 

number of packets. Reasoning: Provides insight into 

the proportion of reliable versus unreliable 

communication in the traffic, which can help 

differentiate between typical and anomalous 

patterns. 
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UDP Ratio: Ratio of UDP packets to the total 

number of packets. Reasoning: A higher UDP ratio 

might suggest applications that do not require 

reliable delivery, which can be characteristic of 

certain types of malicious activities. 

 

TCP Flags (syn, ack, fin, psh, urg, rst): Counts of 

specific TCP flags. Reasoning: Different flags 

represent various stages and types of TCP 

connections. Anomalies or unusual counts in these 

flags can indicate attempts to establish connections 

or communicate in non-standard ways. 

 

Unique Source Ips: Number of distinct source IP 

addresses. Reasoning: Multiple source IPs may 

suggest a distributed attack or botnet activity, while 

fewer unique IPs may indicate communication with 

a limited set of endpoints. 

 

Unique Destination IPs: Number of distinct 

destination IP addresses. Reasoning: Many 

destination IPs might indicate a wide reach, 

potentially signaling a botnet or data exfiltration 

attempt. 

 

Protocols Used: A list of protocols observed in the 

traffic. Reasoning: The variety of protocols used can 

provide insights into the types of services and 

applications involved. Malicious traffic may use 

uncommon or suspicious protocols. 

 

DNS Query Count: Number of DNS queries made. 

Reasoning: High DNS query counts can indicate 

domain generation algorithms or attempts to contact 

command-and-control servers, often used in 

malware operations. 

 

Unique Domain Count: Number of unique domains 

queried. Reasoning: A large number of unique 

domains might suggest attempts to evade detection 

or establish a connection with multiple servers. 

 

DNS Query Types: Types of DNS queries 

observed. Reasoning: Different query types can 

reveal the nature of domain lookups and potential 

malicious domain resolution patterns. 

 

Most Common TCP Port: The TCP port with the 

highest frequency of use. Reasoning: Common ports 

can indicate standard services, while deviations or 

unusual ports might suggest unconventional or 

malicious services. 

 

Most Common UDP Port: The UDP port with the 

highest frequency of use. Reasoning: Similar to TCP 

ports, this helps identify standard versus unusual 

traffic patterns. 

 

Unique TCP Ports: Number of distinct TCP ports 

used. Reasoning: The variety of ports used can 

provide insights into the complexity and diversity of 

communication, which may be higher in malicious 

traffic. 

 

Unique UDP Ports: Number of distinct UDP ports 

used. Reasoning: Helps understand the range of 

services accessed or attempted to be accessed during 

communication. 

 

Mean Entropy: Average entropy of payload data. 

Reasoning: High entropy might indicate encrypted 

or obfuscated data, which is often used to conceal 

malicious activities. 

 

Total Payload Size: Cumulative size of payload 

data in packets. Reasoning: Larger payloads can 

signify substantial data transfers, which might be 

indicative of data exfiltration attempts. 

 

Mean Payload Size: Average size of payload data. 

Reasoning: Helps understand typical data transfer 

sizes and identify deviations that may indicate 

anomalies. 

 

Standard Deviation of Payload Size: Measures 

variability in payload size. Reasoning: Variability 

can indicate irregular data transfer patterns, which 

might be a sign of malicious behavior. 

 

Minimum Payload Size: The smallest payload size 

observed. Reasoning: Identifies the smallest data 

chunks, which can be useful for understanding 

communication patterns. 

 

Maximum Payload Size: The largest payload size 

observed. Reasoning: Provides insights into the 

largest data transfers, which might be indicative of 

significant or suspicious activities. 

 

HTTP GET Method Count: Number of HTTP 

GET requests observed. Reasoning: High counts 

might indicate extensive web data retrieval, which 

can be typical in both benign and malicious 

activities. 

 

HTTP POST Method Count: Number of HTTP 

POST requests observed. Reasoning: Indicates data 

submission activities, which could be normal or 

indicative of data exfiltration if unusually high. 

 

HTTP PUT Method Count: Number of HTTP PUT 

requests observed. Reasoning: Used for file uploads, 

which might be a part of a benign application or an 

attempt to upload malicious content. 
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HTTP DELETE Method Count: Number of HTTP 

DELETE requests observed. Reasoning: Indicates 

attempts to remove data, which could be part of 

benign or malicious activities. 

 

HTTP HEAD Method Count: Number of HTTP 

HEAD requests observed. Reasoning: Typically 

used to retrieve header information, and unusual 

frequencies might indicate probing or scanning 

activities. 

 

HTTP OPTIONS Method Count: Number of 

HTTP OPTIONS requests observed. Reasoning: 

Provides information about communication 

capabilities, and high counts might suggest 

reconnaissance activities. 

 

HTTP PATCH Method Count: Number of HTTP 

PATCH requests observed. Reasoning: Used for 

partial updates, and its presence can indicate 

modifications to resources, which could be part of an 

attack. 

 

TCP SYN Flag Count: Number of TCP packets 

with the SYN flag set. Reasoning: SYN packets 

indicate connection attempts. High counts might 

suggest scanning or connection attempts. 

 

TCP ACK Flag Count: Number of TCP packets 

with the ACK flag set. Reasoning: ACK packets 

represent acknowledgments. High counts might 

indicate ongoing communication or abnormal 

patterns. 

 

TCP FIN Flag Count: Number of TCP packets with 

the FIN flag set. Reasoning: FIN packets indicate 

connection termination. Anomalous counts could 

suggest unusual connection behaviors. 

 

TCP PSH Flag Count: Number of TCP packets 

with the PSH flag set. Reasoning: PSH packets 

indicate urgent data. High counts might be indicative 

of real-time or critical data transfers. 

 

TCP URG Flag Count: Number of TCP packets 

with the URG flag set. Reasoning: URG packets 

indicate urgent data delivery. Unusual counts can be 

a sign of attempts to prioritize specific data. 

 

3.5 Preprocessing Steps 

 

First, a scaling and normalization operation is made. 

This process is very important especially for 

machine learning algorithms that use distance 

information since they are sensitive for the range of 

the features. So, the input features such as packet 

sizes, inter-arrival times, and payload sizes are 

scaled and normalized to ensure comparability. This 

helps improve the performance of machine learning 

models by bringing all features to a similar scale. 

 

Secondly, categorical features are encoded. In this 

phase, the categorical features such as protocols and 

DNS query types are encoded into numerical values. 

This conversion is necessary for machine learning 

algorithms that require numerical input. 

 

Third, missing data or zero values in features like 

entropy or payload sizes are handled by imputing 

default values or applying statistical techniques to 

ensure data completeness and consistency.  

 

3.6 Model Training 

 

In this section, we describe the training process for 

two different models used to classify network traffic 

data: a deep learning model and a Random Forest 

model. The Random Forest model, implemented 

using scikit-learn, was chosen for its robustness and 

ability to handle imbalanced datasets through 

ensemble methods. 

 

3.6.1 Random Forest Model 

 

The Random Forest Classifier was implemented 

using scikit-learn to address the classification of 

network traffic into benign and malicious categories. 

The initial step involved loading the dataset, which 

was stored in a CSV file containing extracted 

features. The dataset included both numerical and 

categorical features, which required preprocessing to 

prepare for model training. 

 

The preprocessing pipeline used was constructed 

using the ColumnTransformer from scikit-learn. 

This pipeline standardized numerical features and 

applied one-hot encoding to categorical features. 

Numerical features were first imputed using the 

median value and then scaled using StandardScaler 

to normalize their distribution. Categorical features 

were handled by imputing missing values with 

'unknown' and then one-hot encoded to convert them 

into numerical format suitable for machine learning 

algorithms. 

 

The dataset was then split into training and 

validation sets using an 80 to 20 percent split ratio, 

ensuring that the class distribution was preserved in 

both sets. To address the class imbalance problem, 

 

where the number of benign samples significantly 

exceeded the number of malware samples, the 

training set was balanced through downsampling. 
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The malware samples were resampled to match the 

number of benign samples, thus creating a balanced 

training dataset. 

 

A Pipeline was created to streamline the 

preprocessing and model training process. This 

pipeline included the preprocessing steps followed 

by the Random Forest classifier. The model was 

trained on the balanced dataset and evaluated on the 

validation set. The final accuracy of the Random 

Forest model was approximately 96.31%, 

demonstrating its effectiveness in distinguishing 

between benign and malicious network traffic. To 

illustrate working mechanism of the model, Figure 3 

is presented.  

 
Figure 3. Visualization of One Decision Tree in the random forest model. 

 

The figure visualizes a single decision tree from a 

Random Forest model, offering insights into the 

model’s decision-making process. In a Random 

Forest, multiple decision trees are trained on various 

subsets of the data, each tree making decisions based 

on different features and thresholds. The decision 

tree in the figure is structured with a root node at the 

top, branching out into internal nodes and ultimately 

leading to leaf nodes. Each internal node represents 

a decision point where the data is split based on a 

feature and a threshold value. For example, a node 

might split the data based on feature_1 <= 5, 

indicating that data points with feature_1 values less 

than or equal to 5 follow one path, while those 

greater follows another. 

As you move down the tree, each node's decision 

refines the classification, guiding the data through a 

series of splits. Leaf nodes, at the end of each path, 

provide the final classification outcome such as 

"Benign" or "Malware" based on the majority class 

of the data points that end up in that node. These leaf 

nodes also display class distribution and impurity 

measures, indicating the confidence and certainty of 

the model’s predictions for those data points. 

 

The depth of the tree and the number of splits 

illustrate the model’s complexity. Deeper trees with 

many splits can capture intricate relationships in the 

data but may risk overfitting. Conversely, simpler 

trees are generally more interpretable but might not 

capture all complexities. By analyzing the features 

and thresholds at each node, along with the class 

distribution at the leaves, we can understand how the 

Random Forest model combines the decisions from 

multiple trees to make robust and accurate 

predictions. This visualization helps us interpret 

feature importance, decision rules, and the overall 

functioning of the Random Forest classifier in 

making predictions. 

 

3.6.2 Deep Learning Model 

 

In addition to the Random Forest model, a deep 

learning model that is presented in Figure 4 was also 

trained. 

 

 
Figure 4. Representation of the deep learning model. 
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The process begins by loading the dataset from a 

specified CSV file into a Pandas DataFrame. This 

dataset contains features extracted from network 

traffic logs, with labels indicating whether each 

sample is benign or malicious. The data is 

subsequently processed to define which columns are 

categorical and which are numeric, facilitating the 

preprocessing steps that follow. 

 

A comprehensive preprocessing pipeline is 

established using ColumnTransformer. For 

numerical columns, missing values are imputed 

using the median value, followed by standard scaling 

to normalize the data, ensuring that all numeric 

features contribute equally to the model's 

performance. Categorical features are also imputed, 

with any missing values replaced by a constant. 

“unknown”, and these columns are then one-hot 

encoded to convert them into a numerical format 

suitable for the model. 

 

The dataset is split into training and validation sets, 

with 80% of the data used for training and 20% 

reserved for validation. This split is stratified based 

on the labels, ensuring that both classes are 

represented proportionally in each subset. To 

address class imbalance, the majority class is 

downsampled to match the size of the minority class.  

This step helps prevent the model from being biased 

towards the more prevalent class during training, and 

the data is shuffled to ensure randomness in the 

training process. 

 

After balancing, the training and validation data are 

preprocessed using the defined pipeline, 

transforming the features into a format suitable for 

input into the neural network. An encoder-decoder 

architecture is constructed using Keras. The model 

consists of an input layer followed by two dense 

layers with ReLU activation functions, each 

followed by a dropout layer to reduce overfitting. 

This section of the model compresses the input 

features into a lower-dimensional representation. 

The decoder mirrors the encoder structure, 

expanding the learned representation back to the 

output dimensions. The final layer uses a softmax 

activation function to produce class probabilities for 

benign and malware classifications. 

 

The model is compiled with the Adam optimizer and 

a loss function suited for multi-class classification, 

the sparse categorical crossentropy, while accuracy 

is tracked as a performance metric during training. 

The model is trained on the processed training data 

with a validation set to monitor performance, 

incorporating early stopping to halt training if the 

validation loss does not improve for a specified 

number of epochs, thereby preventing overfitting. 

 

After training, the model is evaluated on the 

validation set to determine its accuracy, providing 

insights into its performance in classifying unseen 

data and reflecting its generalization capabilities. 

This encoder-decoder model architecture is designed 

to effectively learn from the complex patterns in 

network traffic data, making it a robust solution for 

malware detection tasks in cybersecurity. 

 

4. Results and Discussions 
 

In this study, we developed and evaluated two 

algorithms: a Random Forest classifier and a deep 

learning model. Both models were trained and tested 

on the same dataset, adhering to an 80/20 train-

validation split. 

 

The performance of the Random Forest model was 

promising, as evidenced by the confusion matrix and 

classification report. The model achieved a precision 

of 0.99 for benign samples and 0.97 for malware 

samples. The recall was similarly high, with values 

of 0.97 and 0.99, respectively. The F1-scores for 

both classes were approximately 0.98, indicating a 

strong balance between precision and recall. Overall, 

the Random Forest model achieved an accuracy of 

98% on the validation set, demonstrating its 

effectiveness in distinguishing between benign and 

malware samples. The confusion matrix is presented 

in table 1.  
 
Table 1. Confusion matrix for the random forest model. 
 Predicted  

Benign 

Predicted  

Malware 

Actual Benign 184 6 

Actual Malware 2 188 

 

In contrast, the deep learning model exhibited even 

greater performance metrics. The classification 

report for the deep learning model indicated a 

precision of 0.99 for both classes, with recall values 

of 0.98 for benign samples and 0.99 for malware 

samples. The F1-scores for the deep learning model 

were also impressive, reaching 0.98 for benign and 

0.99 for malware. This model achieved an overall 

accuracy of 99% on the validation set, reflecting its 

capability to accurately classify the data. The 

confusion matrix is presented in table 2.  
 
Table 2. Confusion matrix for the random forest model. 
 Predicted  

Benign 

Predicted  

Malware 

Actual Benign 186 4 

Actual Malware 1 189 
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The results from both models indicate that machine 

learning and deep learning approaches can 

effectively classify network traffic as benign or 

malicious. While the Random Forest model provided 

robust performance, the deep learning model's 

slightly higher accuracy and consistent precision and 

recall metrics highlight its potential advantages for 

complex classification tasks in cybersecurity. 

Further research may explore the integration of these 

models into real-time detection systems to enhance 

cybersecurity measures. 

 

5. Conclusions 
 

In this study, we developed and evaluated two 

distinct algorithms for malware detection: a Random 

Forest model and a deep learning model based on an 

encoder-decoder architecture. Both models were 

trained and tested using the same dataset, ensuring a 

fair comparison of their performance. 

 

The random forest model demonstrated impressive 

results, achieving a classification accuracy of 98% 

on the validation set. The confusion matrix indicated 

that the model effectively distinguished between 

benign and malware samples, with high precision 

and recall values for both classes. This confirms the 

model's robustness in identifying malicious 

activities while minimizing false positives. 

 

In contrast, the deep learning model exhibited even 

better performance, achieving an accuracy of 99% 

on the same validation set. The classification report 

revealed excellent precision and recall metrics, 

indicating the model's capability to generalize well 

across unseen data. This highlights the effectiveness 

of deep learning techniques in handling complex 

patterns within the dataset. 

 

The results suggest that both algorithms are viable 

options for real-time malware detection systems. 

However, the deep learning model's superior 

performance may make it a more suitable choice for 

applications requiring higher accuracy and 

reliability. Future work will focus on optimizing 

these models further, exploring additional feature 

extraction techniques, and conducting tests in real-

world scenarios to assess their practical applicability 

in cybersecurity environments. 
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