

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 10-No.3 (2024) pp. 480-490
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Dynamic Malware Analysis Using a Sandbox Environment, Network Traffic

Logs, and Artificial Intelligence.

Mesut GÜVEN*

TOBB University of Economics and Technology, TR-06560 Ankara,
* Corresponding Author Email: mesuttguven@gmail.com - ORCID: 0000-0002-0957-8541

Article Info:

DOI: 10.22399/ijcesen.460

Received : 19 September 2024

Accepted : 26 September 2024

Keywords:

Artificial Intelligence

Machine Learning

Cyber Security

Malware Analysis

Sandbox

Abstract:

Dynamic malware analysis plays a pivotal role in modern cybersecurity, offering insights

into malware behavior through dynamic execution and network traffic analysis. In this

study, we present a comprehensive approach to dynamic malware analysis using a

sandbox environment and network traffic logs. Our methodology involves the extraction

of relevant features from network traffic captured in pcap files. We conducted

experiments using a virtualized Oracle VirtualBox environment, where benign and

malicious software samples were executed within a Windows virtual machine controlled

by Python scripts. For network emulation, we utilized tools from the REMnux

distribution, including InetSim and FakeDNS, to simulate realistic network interactions

during malware execution. The collected pcap data underwent preprocessing and feature

extraction to capture essential behavioral patterns and network indicators. Machine

learning and artificial intelligence models were developed to classify malware based on

these extracted features. Our findings underscore the efficacy of dynamic analysis

coupled with machine learning in detecting and classifying malware variants based on

their network behavior. This research contributes to advancing techniques for real-time

threat detection and response in cybersecurity, emphasizing the importance of dynamic

malware analysis in mitigating evolving cyber threats.

1. Introduction

Malware, short for "malicious software,"

encompasses a diverse range of programs designed

to infiltrate computer systems with harmful intent.

According to the National Institute of Standards and

Technology (NIST), malware is defined as "a

program that is inserted into a system, usually

covertly, with the intent of compromising the

confidentiality, integrity, or availability of the

victim’s data, applications, or operating system or

otherwise annoying or disrupting the victim" [1].

This definition highlights malware's primary

objectives of compromising security and disrupting

normal operations.

TechTarget further elaborates, describing malware

as "any program or file that is harmful to a computer

user," capable of stealing, encrypting, or deleting

sensitive data, altering computing functions, and

monitoring user activities without consent [2].

BullGuard underscores the intrusive nature of

malware, emphasizing its design to infiltrate and

damage computers without user consent [3].

Kaspersky notes that malware exists in various

forms, including viruses, worms, Trojans, and

spyware, each posing unique threats to system

integrity [4].

Fundamentally, malware is stealthy software

engineered to gain unauthorized access or cause

harm to computers and devices. Norton succinctly

defines it as "software that is specifically designed to

gain access or damage a computer without the

knowledge of the owner" [5]. These definitions

collectively emphasize two core traits of malware:

malicious intent and its ability to execute actions

surreptitiously, often without the user’s awareness.

Malware classification is made on several aspects

such as by type, by malicious behaviour, by

privilege, etc. Generally, there are two different

types of approach in detecting whether a software is

malicious or not. These are respectively, the static

analysis and dynamic analysis. In static analysis, the

softwaare under examination is not executed and

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

481

investigated via it's code structure. On the other

hand, in dynamic investigation method, the program

is executed inside an isolated environment called as

sandbox for logging it’s network behaviours, API

calls, and other system logs to detect the programs

malicious actions.

Form this point of view, the dynamic malware

analysis plays a crucial role in modern cybersecurity

by providing insights into the behavior of malicious

software through controlled execution environments

and comprehensive log analysis. This study focuses

on automating the analysis process, incorporating

virtualized environments to ensure the integrity of

the analysis environment and leveraging various log

types for thorough behavioral analysis.

The dataset used in this research comprises a diverse

collection of malware samples sourced from

reputable repositories such as MalwareBazaar [6].

These samples encompass a broad range of

malicious behaviors, ensuring robust testing of

detection methods. Benign software samples were

carefully selected from legitimate sources, including

licensed applications and validated Windows

Dynamic Link Libraries [7].

In the automated analysis phase, each sample

undergoes execution in a virtualized environment

using Oracle VirtualBox, ensuring a clean state for

every analysis session. This approach mitigates

contamination risks from previous analyses,

preserving the integrity of results. System and kernel

logs are captured alongside network traffic logs (in

pcap format) to capture comprehensive behavioral

indicators. Our approach also includes automatic

collection and analysis of system and kernel logs

using tools like Win32 APIs for event log retrieval

and processing. This comprehensive log analysis

provides deeper insights into malware activities

beyond network interactions, contributing to a

holistic understanding of malware behaviors [8].

The feature extraction phase plays a crucial role in

developing effective malware detection systems. It

begins with processing packet capture (pcap) files,

which are comprehensive logs of network traffic.

This process involves extracting a diverse set of

features from the raw network data. In our approach,

we have utilized a total of 39 features, which include

various metrics such as packet sizes, inter-arrival

times, protocol types, and traffic volume. These

features capture detailed network traffic patterns and

behaviors that may indicate malicious activities. For

instance, metrics like mean packet size, standard

deviation of packet size, and counts of TCP and UDP

packets provide insights into the nature of the traffic,

while ratios and distributions of these metrics help in

identifying anomalies.

Once these features are extracted, they serve as the

input for training machine learning and artificial

intelligence models. These models are trained to

recognize patterns and behaviors that distinguish

normal traffic from potentially malicious activities.

The training process involves learning from the

extracted features to develop a robust classification

mechanism capable of detecting both known and

novel threats.

Integrating machine learning and AI into this process

significantly enhances the accuracy and

effectiveness of malware detection. Traditional

detection methods often rely on static signatures or

heuristic rules, which can be limited in scope and

adaptability. In contrast, machine learning models

leverage the extensive feature set to continuously

learn and adapt, improving their ability to detect

sophisticated and previously unknown malware

variants. This dynamic and data-driven approach not

only boosts detection accuracy but also enhances

response capabilities in cybersecurity operations.

Within the scope of this research, we have developed

several machine learning and deep learning models

by using these network-based features. Through this

research, we aim to advance dynamic malware

analysis methodologies, emphasizing automated,

integrated approaches for real-time threat detection

and response in cybersecurity. Recent developments

in malware analysis highlight the need for adaptive

systems that not only detect new and evolving

threats but also counter evasion techniques and

obfuscation strategies. By integrating our models

with these dynamic methodologies, we strive to

enhance both detection accuracy and processing

speed, contributing to the development of resilient

cybersecurity frameworks capable of addressing the

complexity and scale of modern malware threats.

2. Related Works

In recent years, machine learning techniques have

garnered significant attention for classifying

malware and benign samples. For example,

introduced risk signals to enhance Android security,

achieving detection accuracies of 68.5% for benign

applications and 93.38% for malicious programs [9].

Similarly, evaluated several machine learning

techniques, including AdaBoost, Naive Bayes,

Decision Trees, and Support Vector Machines,

reporting that Naive Bayes could detect malware

with an accuracy of 81%. [10].

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

482

Additionally, performed static analysis using a

limited feature set and four supervised learning

techniques, demonstrating that the random forest

algorithm achieved a detection accuracy of 98.6%

with a 1.8% false positive rate [11]. Likewise, in

another study, six machine learning techniques are

assessed to identify malware based on anomalies,

utilizing feature selection techniques such as Chi-

square and information gain to optimize feature sets.

Their results indicated an impressive 99.9%

detection accuracy when using the decision tree

classifier on a custom malware dataset [12]. Lastly,

a heterogeneous deep learning framework is

proposed via combining AutoEncoders with multi-

layer Restricted Boltzmann Machines (RBMs) to

detect previously unknown malware using Windows

API calls derived from portable executable profiles

[13]. This framework consists of a two-phase

process: pre-training and fine-tuning, where both

labeled and unlabeled samples are utilized for

feature learning. The authors conducted a

comprehensive study on a large dataset from

Comodo Cloud Security Center, demonstrating that

their method outperformed traditional shallow

learning approaches, although at the cost of

increased system complexity. Notably, their work

focused exclusively on API-based features for

training the proposed method.

From the dynamic analysis perspective, a method is

proposed decompiling malware specimens into

assembly language to extract feature vectors that

encode information regarding API calls and

bytecode [14]. While this approach is intuitive, it is

particularly sensitive to obfuscation techniques and

incurs high computational costs for both

decompilation and feature extraction. In contrast, in

a study, it is suggested utilizing Q-learning for

feature selection, where features are derived from

the binary format and byte sequences [15]. Their

approach successfully reduced a feature vector from

a size of 4000 to 204 elements, although the resulting

number of features remains substantial for training

machine learning classifiers.

Further emphasizing the role of API calls, it is

proposed logging API call sequences by encoding

each API as a numerical value [16]. This sequence

was then employed to train a two-layer long short-

term memory network, achieving an impressive

accuracy of around 98%. However, this method did

not consider the argument values of the APIs, which

could expand the input space and lead to potential

misinterpretations of behavior.

Despite their utility, API call extraction can result in

massive data volumes, posing challenges for

indexing and querying. In response to this, it is

suggested monitoring overall system behavior,

asserting that detecting abnormal activities could

facilitate the identification of various malware types,

including zero-day, metamorphic, and polymorphic

threats. [17]. This aligns with the approach taken by

Dini et al. who introduced a real-time anomaly

behavior detector using directed acyclic graphs,

learning the host's execution behavior and encoding

it into a model similar to a Markov Chain [18].

In a recent work, to detect Windows malware by

executing programs in controlled environments and

logging their behavior is carried-out. The findings of

the work are open-sourced [19]. In this work, to

address this, we introduce Nebula, a Transformer-

based model that integrates diverse information from

dynamic logs. Through experiments, Nebula

outperforms state-of-the-art models in malware

detection and classification, achieving up to 12%

improvement. We also show that self-supervised

pre-training rivals fully supervised models using just

20% of the data. In another recent research, over

1,500 malicious Android applications were

examined, finding 18.31% equipped with anti-

analysis techniques. To address this, the dynamic

analyzer DOOLDA was introduced, effectively

invalidating such techniques through dynamic

instrumentation, outperforming other analyzers in

identifying and neutralizing evasive behaviors [20].

Lastly, in Android devices, frequent attackers are

aiming to steal data and push ads. While dynamic

analysis is effective at detecting Android malware,

many sandboxes like DroidBox rely on outdated

emulators, making them vulnerable to evasion. To

overcome this, DroidHook was introduced as an

automated sandbox that supports multiple Android

versions and works on real devices, providing more

precise and fine-grained results than emulator-based

tools [21].

3. Material and Methods

In this section, we provide an in-depth overview of

the proposed methodology and framework used in

our study. Our approach begins with the collection

of network logs generated from malware and benign

samples. The data set includes network traffic

captured from both malicious and benign sources.

We use a VirtualBox virtual machine running a

Windows operating system, which is connected to a

REMnux Linux environment for network emulation.

This setup allows us to simulate realistic network

conditions and capture the requisite data for analysis.

Subsequently, we extract a total of 39 features from

these network logs, focusing on parameters that are

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

483

indicative of malicious activities. This feature

extraction phase involves processing packet capture

files to identify patterns and anomalies associated

with malware. The extracted features encompass

various aspects such as protocol usage, traffic

volume, and connection patterns, which are critical

for distinguishing between benign and malicious

traffic.

Following feature extraction, we prepare the data for

model training. We apply a rigorous preprocessing

pipeline to handle missing values, scale features, and

encode categorical variables. We then use this

preprocessed data to train and evaluate several

machine learning models. The models are trained on

80% of the features, with the remaining 20%

reserved for validation to assess classification

accuracy and model performance.

The overall framework of our methodology is

illustrated in Figure 1, which provides a visual

representation of the entire process from log

collection to model evaluation. The subsequent

subsections will delve into the specifics of each

phase, including the setup of the analysis

environment, detailed feature extraction techniques,

and the training and testing of machine learning

algorithms.

Figure 1. Flowchart of the dynamic malware analysis methodology presented in this work.

3.1 Data Set

The data set used in this study comprises a

comprehensive collection of network logs derived

from both benign and malicious sources. The benign

samples were obtained from a free repository. This

repository contains a vast array of normal .NET

executable files collected from various reputable

sources. Specifically, the repository is organized into

several folders: files from the CNET website,

netwindows, files from Windows, files from

Softonic, files from SourceForge, and netexe files

from other miscellaneous sources. These benign

samples are well-documented in existing literature,

including a notable reference [7] that utilized similar

benign data for malware detection research.

For the malicious samples, we sourced data directly

from a web-based malware repository, a well-known

platform for malware analysis. The malware data set

includes a diverse range of malicious executables,

such as ELF botnets and Windows executables, each

identified by unique hash values. Examples of the

collected malware include botnets like Mirai and

Moobot, as well as tools like KMSAuto. These

samples represent various threats and are crucial for

training and evaluating the robustness of our

detection models.

In total, our data set consists of 953 benign network

logs and 1408 malware logs. This diverse and

extensive data set provides a robust foundation for

extracting features and training machine learning

models to improve malware detection accuracy.

3.2 Environmental Setup

In this study, the environmental setup consists of a

host machine with an Intel Core i7-8700K CPU

running at 3.70 GHz and 16 GB of RAM, operating

on Windows 10 Pro that is located on TOBB ETU

Cyber Security Labarotary. To create a controlled

environment for malware analysis, a VirtualBox

virtual machine (VM) is utilized. Within this VM,

both benign and malicious samples are stored and

executed. The VM is configured to revert to a clean

state, known as "state zero," before each sample

execution. This state ensures that the VM starts with

the initial conditions, free from any residual effects

of previous executions, providing a consistent and

isolated environment. A custom program developed

for this work selects the appropriate folders

containing benign and malicious samples, runs them

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

484

within the VM, and extracts network-based logs,

API calls, and system logs. This setup guarantees

that each sample's execution is analyzed in an

environment unaffected by previous malware

activities. To illustrate the environmental setup,

Figure 2 is presented below.

Figure 2. Environmental setup and log extraction

process.

3.3 Execution Process

The execution process is carried out in two distinct

stages. First, Dynamic Analysis: Each sample is

executed within a clean state virtual machine (VM)

to ensure isolation from previous malware actions.

The VM is reset to a pristine "state zero" before

every execution. A custom Python program is

employed to run the samples, capture network traffic

into .pcap files, and log API calls and system events.

The logs are collected and analyzed to assess the

behavior of each sample.

Second, the log extraction and analysis: After

sample execution, the network logs in “.pcap”

format and system logs in “.evtx” format are

processed to generate comprehensive reports. The

Python code provided manages the execution

environment, captures network packets, and extracts

system logs, ensuring a thorough examination of the

sample behavior.

3.4 Feature Extraction

In this section, we describe the 39 features extracted

from network logs and the preprocessing steps

applied to them. The extraction process captures

various aspects of network behavior and

communication patterns essential for distinguishing

between benign and malicious activities. We also

provide reasoning for the relevance of each feature.

Number of Packets: Represents the total number of

packets captured in the pcap file. Reasoning: A

higher number of packets might indicate extensive

communication or data transfer, which can be

characteristic of both benign and malicious

activities.

Total Size: The cumulative size of all packets in the

pcap file. Reasoning: Large total sizes could suggest

substantial data transfer, potentially signaling data

exfiltration or large data dumps, common in

malicious activities.

Mean Packet Size: Average size of packets.

Reasoning: Anomalies in packet size, such as

unusually large or small sizes, may indicate attempts

to obfuscate traffic or unusual communication

patterns.

Standard Deviation of Packet Size: Measures

variability in packet size. Reasoning: High

variability might be indicative of irregular or

malicious traffic, where traffic patterns are

intentionally varied to evade detection.

Mean Inter-arrival Time: Average time between

successive packets. Reasoning: Regular or irregular

intervals between packets can provide clues about

the nature of the communication. Consistent

intervals may be indicative of benign, predictable

traffic, while irregular intervals might suggest

malicious behavior.

Standard Deviation of Inter-arrival Time:
Captures variability in the time between packets.

Reasoning: High variability can point to unusual

traffic patterns or communication attempts designed

to evade detection.

TCP Packet Count: Total number of TCP packets.

Reasoning: TCP packets are often used for

establishing reliable connections. A high count

might indicate extensive communication or data

transfer.

UDP Packet Count: Total number of UDP packets.

Reasoning: UDP is used for quicker, less reliable

communication. A high count could indicate real-

time communication applications or potentially

malicious activities using less stringent connection

protocols.

TCP Ratio: Ratio of TCP packets to the total

number of packets. Reasoning: Provides insight into

the proportion of reliable versus unreliable

communication in the traffic, which can help

differentiate between typical and anomalous

patterns.

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

485

UDP Ratio: Ratio of UDP packets to the total

number of packets. Reasoning: A higher UDP ratio

might suggest applications that do not require

reliable delivery, which can be characteristic of

certain types of malicious activities.

TCP Flags (syn, ack, fin, psh, urg, rst): Counts of

specific TCP flags. Reasoning: Different flags

represent various stages and types of TCP

connections. Anomalies or unusual counts in these

flags can indicate attempts to establish connections

or communicate in non-standard ways.

Unique Source Ips: Number of distinct source IP

addresses. Reasoning: Multiple source IPs may

suggest a distributed attack or botnet activity, while

fewer unique IPs may indicate communication with

a limited set of endpoints.

Unique Destination IPs: Number of distinct

destination IP addresses. Reasoning: Many

destination IPs might indicate a wide reach,

potentially signaling a botnet or data exfiltration

attempt.

Protocols Used: A list of protocols observed in the

traffic. Reasoning: The variety of protocols used can

provide insights into the types of services and

applications involved. Malicious traffic may use

uncommon or suspicious protocols.

DNS Query Count: Number of DNS queries made.

Reasoning: High DNS query counts can indicate

domain generation algorithms or attempts to contact

command-and-control servers, often used in

malware operations.

Unique Domain Count: Number of unique domains

queried. Reasoning: A large number of unique

domains might suggest attempts to evade detection

or establish a connection with multiple servers.

DNS Query Types: Types of DNS queries

observed. Reasoning: Different query types can

reveal the nature of domain lookups and potential

malicious domain resolution patterns.

Most Common TCP Port: The TCP port with the

highest frequency of use. Reasoning: Common ports

can indicate standard services, while deviations or

unusual ports might suggest unconventional or

malicious services.

Most Common UDP Port: The UDP port with the

highest frequency of use. Reasoning: Similar to TCP

ports, this helps identify standard versus unusual

traffic patterns.

Unique TCP Ports: Number of distinct TCP ports

used. Reasoning: The variety of ports used can

provide insights into the complexity and diversity of

communication, which may be higher in malicious

traffic.

Unique UDP Ports: Number of distinct UDP ports

used. Reasoning: Helps understand the range of

services accessed or attempted to be accessed during

communication.

Mean Entropy: Average entropy of payload data.

Reasoning: High entropy might indicate encrypted

or obfuscated data, which is often used to conceal

malicious activities.

Total Payload Size: Cumulative size of payload

data in packets. Reasoning: Larger payloads can

signify substantial data transfers, which might be

indicative of data exfiltration attempts.

Mean Payload Size: Average size of payload data.

Reasoning: Helps understand typical data transfer

sizes and identify deviations that may indicate

anomalies.

Standard Deviation of Payload Size: Measures

variability in payload size. Reasoning: Variability

can indicate irregular data transfer patterns, which

might be a sign of malicious behavior.

Minimum Payload Size: The smallest payload size

observed. Reasoning: Identifies the smallest data

chunks, which can be useful for understanding

communication patterns.

Maximum Payload Size: The largest payload size

observed. Reasoning: Provides insights into the

largest data transfers, which might be indicative of

significant or suspicious activities.

HTTP GET Method Count: Number of HTTP

GET requests observed. Reasoning: High counts

might indicate extensive web data retrieval, which

can be typical in both benign and malicious

activities.

HTTP POST Method Count: Number of HTTP

POST requests observed. Reasoning: Indicates data

submission activities, which could be normal or

indicative of data exfiltration if unusually high.

HTTP PUT Method Count: Number of HTTP PUT

requests observed. Reasoning: Used for file uploads,

which might be a part of a benign application or an

attempt to upload malicious content.

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

486

HTTP DELETE Method Count: Number of HTTP

DELETE requests observed. Reasoning: Indicates

attempts to remove data, which could be part of

benign or malicious activities.

HTTP HEAD Method Count: Number of HTTP

HEAD requests observed. Reasoning: Typically

used to retrieve header information, and unusual

frequencies might indicate probing or scanning

activities.

HTTP OPTIONS Method Count: Number of

HTTP OPTIONS requests observed. Reasoning:

Provides information about communication

capabilities, and high counts might suggest

reconnaissance activities.

HTTP PATCH Method Count: Number of HTTP

PATCH requests observed. Reasoning: Used for

partial updates, and its presence can indicate

modifications to resources, which could be part of an

attack.

TCP SYN Flag Count: Number of TCP packets

with the SYN flag set. Reasoning: SYN packets

indicate connection attempts. High counts might

suggest scanning or connection attempts.

TCP ACK Flag Count: Number of TCP packets

with the ACK flag set. Reasoning: ACK packets

represent acknowledgments. High counts might

indicate ongoing communication or abnormal

patterns.

TCP FIN Flag Count: Number of TCP packets with

the FIN flag set. Reasoning: FIN packets indicate

connection termination. Anomalous counts could

suggest unusual connection behaviors.

TCP PSH Flag Count: Number of TCP packets

with the PSH flag set. Reasoning: PSH packets

indicate urgent data. High counts might be indicative

of real-time or critical data transfers.

TCP URG Flag Count: Number of TCP packets

with the URG flag set. Reasoning: URG packets

indicate urgent data delivery. Unusual counts can be

a sign of attempts to prioritize specific data.

3.5 Preprocessing Steps

First, a scaling and normalization operation is made.

This process is very important especially for

machine learning algorithms that use distance

information since they are sensitive for the range of

the features. So, the input features such as packet

sizes, inter-arrival times, and payload sizes are

scaled and normalized to ensure comparability. This

helps improve the performance of machine learning

models by bringing all features to a similar scale.

Secondly, categorical features are encoded. In this

phase, the categorical features such as protocols and

DNS query types are encoded into numerical values.

This conversion is necessary for machine learning

algorithms that require numerical input.

Third, missing data or zero values in features like

entropy or payload sizes are handled by imputing

default values or applying statistical techniques to

ensure data completeness and consistency.

3.6 Model Training

In this section, we describe the training process for

two different models used to classify network traffic

data: a deep learning model and a Random Forest

model. The Random Forest model, implemented

using scikit-learn, was chosen for its robustness and

ability to handle imbalanced datasets through

ensemble methods.

3.6.1 Random Forest Model

The Random Forest Classifier was implemented

using scikit-learn to address the classification of

network traffic into benign and malicious categories.

The initial step involved loading the dataset, which

was stored in a CSV file containing extracted

features. The dataset included both numerical and

categorical features, which required preprocessing to

prepare for model training.

The preprocessing pipeline used was constructed

using the ColumnTransformer from scikit-learn.

This pipeline standardized numerical features and

applied one-hot encoding to categorical features.

Numerical features were first imputed using the

median value and then scaled using StandardScaler

to normalize their distribution. Categorical features

were handled by imputing missing values with

'unknown' and then one-hot encoded to convert them

into numerical format suitable for machine learning

algorithms.

The dataset was then split into training and

validation sets using an 80 to 20 percent split ratio,

ensuring that the class distribution was preserved in

both sets. To address the class imbalance problem,

where the number of benign samples significantly

exceeded the number of malware samples, the

training set was balanced through downsampling.

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

487

The malware samples were resampled to match the

number of benign samples, thus creating a balanced

training dataset.

A Pipeline was created to streamline the

preprocessing and model training process. This

pipeline included the preprocessing steps followed

by the Random Forest classifier. The model was

trained on the balanced dataset and evaluated on the

validation set. The final accuracy of the Random

Forest model was approximately 96.31%,

demonstrating its effectiveness in distinguishing

between benign and malicious network traffic. To

illustrate working mechanism of the model, Figure 3

is presented.

Figure 3. Visualization of One Decision Tree in the random forest model.

The figure visualizes a single decision tree from a

Random Forest model, offering insights into the

model’s decision-making process. In a Random

Forest, multiple decision trees are trained on various

subsets of the data, each tree making decisions based

on different features and thresholds. The decision

tree in the figure is structured with a root node at the

top, branching out into internal nodes and ultimately

leading to leaf nodes. Each internal node represents

a decision point where the data is split based on a

feature and a threshold value. For example, a node

might split the data based on feature_1 <= 5,

indicating that data points with feature_1 values less

than or equal to 5 follow one path, while those

greater follows another.

As you move down the tree, each node's decision

refines the classification, guiding the data through a

series of splits. Leaf nodes, at the end of each path,

provide the final classification outcome such as

"Benign" or "Malware" based on the majority class

of the data points that end up in that node. These leaf

nodes also display class distribution and impurity

measures, indicating the confidence and certainty of

the model’s predictions for those data points.

The depth of the tree and the number of splits

illustrate the model’s complexity. Deeper trees with

many splits can capture intricate relationships in the

data but may risk overfitting. Conversely, simpler

trees are generally more interpretable but might not

capture all complexities. By analyzing the features

and thresholds at each node, along with the class

distribution at the leaves, we can understand how the

Random Forest model combines the decisions from

multiple trees to make robust and accurate

predictions. This visualization helps us interpret

feature importance, decision rules, and the overall

functioning of the Random Forest classifier in

making predictions.

3.6.2 Deep Learning Model

In addition to the Random Forest model, a deep

learning model that is presented in Figure 4 was also

trained.

Figure 4. Representation of the deep learning model.

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

488

The process begins by loading the dataset from a

specified CSV file into a Pandas DataFrame. This

dataset contains features extracted from network

traffic logs, with labels indicating whether each

sample is benign or malicious. The data is

subsequently processed to define which columns are

categorical and which are numeric, facilitating the

preprocessing steps that follow.

A comprehensive preprocessing pipeline is

established using ColumnTransformer. For

numerical columns, missing values are imputed

using the median value, followed by standard scaling

to normalize the data, ensuring that all numeric

features contribute equally to the model's

performance. Categorical features are also imputed,

with any missing values replaced by a constant.

“unknown”, and these columns are then one-hot

encoded to convert them into a numerical format

suitable for the model.

The dataset is split into training and validation sets,

with 80% of the data used for training and 20%

reserved for validation. This split is stratified based

on the labels, ensuring that both classes are

represented proportionally in each subset. To

address class imbalance, the majority class is

downsampled to match the size of the minority class.

This step helps prevent the model from being biased

towards the more prevalent class during training, and

the data is shuffled to ensure randomness in the

training process.

After balancing, the training and validation data are

preprocessed using the defined pipeline,

transforming the features into a format suitable for

input into the neural network. An encoder-decoder

architecture is constructed using Keras. The model

consists of an input layer followed by two dense

layers with ReLU activation functions, each

followed by a dropout layer to reduce overfitting.

This section of the model compresses the input

features into a lower-dimensional representation.

The decoder mirrors the encoder structure,

expanding the learned representation back to the

output dimensions. The final layer uses a softmax

activation function to produce class probabilities for

benign and malware classifications.

The model is compiled with the Adam optimizer and

a loss function suited for multi-class classification,

the sparse categorical crossentropy, while accuracy

is tracked as a performance metric during training.

The model is trained on the processed training data

with a validation set to monitor performance,

incorporating early stopping to halt training if the

validation loss does not improve for a specified

number of epochs, thereby preventing overfitting.

After training, the model is evaluated on the

validation set to determine its accuracy, providing

insights into its performance in classifying unseen

data and reflecting its generalization capabilities.

This encoder-decoder model architecture is designed

to effectively learn from the complex patterns in

network traffic data, making it a robust solution for

malware detection tasks in cybersecurity.

4. Results and Discussions

In this study, we developed and evaluated two

algorithms: a Random Forest classifier and a deep

learning model. Both models were trained and tested

on the same dataset, adhering to an 80/20 train-

validation split.

The performance of the Random Forest model was

promising, as evidenced by the confusion matrix and

classification report. The model achieved a precision

of 0.99 for benign samples and 0.97 for malware

samples. The recall was similarly high, with values

of 0.97 and 0.99, respectively. The F1-scores for

both classes were approximately 0.98, indicating a

strong balance between precision and recall. Overall,

the Random Forest model achieved an accuracy of

98% on the validation set, demonstrating its

effectiveness in distinguishing between benign and

malware samples. The confusion matrix is presented

in table 1.

Table 1. Confusion matrix for the random forest model.
 Predicted

Benign

Predicted

Malware

Actual Benign 184 6

Actual Malware 2 188

In contrast, the deep learning model exhibited even

greater performance metrics. The classification

report for the deep learning model indicated a

precision of 0.99 for both classes, with recall values

of 0.98 for benign samples and 0.99 for malware

samples. The F1-scores for the deep learning model

were also impressive, reaching 0.98 for benign and

0.99 for malware. This model achieved an overall

accuracy of 99% on the validation set, reflecting its

capability to accurately classify the data. The

confusion matrix is presented in table 2.

Table 2. Confusion matrix for the random forest model.
 Predicted

Benign

Predicted

Malware

Actual Benign 186 4

Actual Malware 1 189

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

489

The results from both models indicate that machine

learning and deep learning approaches can

effectively classify network traffic as benign or

malicious. While the Random Forest model provided

robust performance, the deep learning model's

slightly higher accuracy and consistent precision and

recall metrics highlight its potential advantages for

complex classification tasks in cybersecurity.

Further research may explore the integration of these

models into real-time detection systems to enhance

cybersecurity measures.

5. Conclusions

In this study, we developed and evaluated two

distinct algorithms for malware detection: a Random

Forest model and a deep learning model based on an

encoder-decoder architecture. Both models were

trained and tested using the same dataset, ensuring a

fair comparison of their performance.

The random forest model demonstrated impressive

results, achieving a classification accuracy of 98%

on the validation set. The confusion matrix indicated

that the model effectively distinguished between

benign and malware samples, with high precision

and recall values for both classes. This confirms the

model's robustness in identifying malicious

activities while minimizing false positives.

In contrast, the deep learning model exhibited even

better performance, achieving an accuracy of 99%

on the same validation set. The classification report

revealed excellent precision and recall metrics,

indicating the model's capability to generalize well

across unseen data. This highlights the effectiveness

of deep learning techniques in handling complex

patterns within the dataset.

The results suggest that both algorithms are viable

options for real-time malware detection systems.

However, the deep learning model's superior

performance may make it a more suitable choice for

applications requiring higher accuracy and

reliability. Future work will focus on optimizing

these models further, exploring additional feature

extraction techniques, and conducting tests in real-

world scenarios to assess their practical applicability

in cybersecurity environments.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] National Institute of Standards and Technology. (n.d.).

Glossary of key information security terms.

Retrieved September 10, 2024, from

https://csrc.nist.gov/Glossary/?term=5373

[2] TechTarget. (n.d.). Malware. Retrieved September 10,

2024, from

https://searchsecurity.techtarget.com/definition/mal

ware

[3] BullGuard. (n.d.). Malware definition, history, and

classification. Retrieved September 10, 2024, from

https://www.bullguard.com/bullguard-security-

center/pc-security/computer-threats/malware-

definition,-history-andclassification.aspx

[4] Kaspersky. (n.d.). What is malware and how to protect

against it. Retrieved September 10, 2024, from

https://www.kaspersky.com/resource-

center/preemptive-safety/what-is-malware-and-

how-to-protect-against-it

[5] Norton. (n.d.). Malware. Retrieved September 10,

2024, from https://us.norton.com/internetsecurity-

malware.html

[6] MalwareBazaar. (n.d.). Free automated malware

analysis platform. Retrieved from

https://malwarebazaar.com/

[7] Bormaa. (n.d.). Open-source benign samples.

Retrieved from https://github.com/bormaa/Benign-

NET

[8] Szor, P. (2005). The art of computer virus research

and defense. Pearson Education.

[9] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul

Potharaju, Cristina Nita-Rotaru, and Ian Molloy.

Android permissions: a perspective combining risks

and benefits. In Proceedings of the 17th ACM

symposium on Access Control Models and

Technologies, pages 13–22. ACM, 2012.

[10] Chun-Ying Huang, Yi-Ting Tsai, and Chung-Han

Hsu. Performance evaluation on permission-based

detection for android malware. In Advances in

Intelligent Systems and Applications-Volume 2,

pages 111–120. Springer, 2013.

[11] Rushabh Vyas, Xiao Luo, Nichole McFarland, and

Connie Justice (2017). Investigation of malicious

portable executable file detection on the network

https://csrc.nist.gov/Glossary/?term=5373
https://searchsecurity.techtarget.com/definition/malware
https://searchsecurity.techtarget.com/definition/malware
https://www.bullguard.com/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-andclassification.aspx
https://www.bullguard.com/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-andclassification.aspx
https://www.bullguard.com/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-andclassification.aspx
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://www.kaspersky.com/resource-center/preemptive-safety/what-is-malware-and-how-to-protect-against-it
https://us.norton.com/internetsecurity-malware.html
https://us.norton.com/internetsecurity-malware.html
https://malwarebazaar.com/
https://github.com/bormaa/Benign-NET
https://github.com/bormaa/Benign-NET

Mesut GUVEN/ IJCESEN 10-3(2024)480-490

490

using supervised learning techniques. In Integrated

Network and Service Management (IM), IFIP/IEEE

Symposium, pages 941–946. IEEE, 2017.

[12] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan

Glezer, and YaelWeiss (2012). andromaly: a

behavioral malware detection framework for

android devices. Journal of Intelligent Information

Systems, 38(1):161–190.

[13] Yanfang Ye, Lingwei Chen, Shifu Hou, William

Hardy, and Xin Li (2017). Deepam: a heterogeneous

deep learning framework for intelligent malware

detection. Knowledge and Information Systems,

pages 1–21.

[14] D. Gibert, C. Mateu, and J. Planes (2020). HYDRA:

A multimodal deep learning framework for malware

classification. Comput. Secur, 95; 101873.

[15] Z. Fang, J. Wang, J. Geng, and X. Kan (2019).

Feature selection for malware detection based on

reinforcement learning. IEEE Access,7;176177–

176187.

[16] F. O. Catak, A. F. Yazı, O. Elezaj, and J. Ahmed

(2020). Deep learning based sequential model for

malware analysis using windows exe API calls. Peer

J. Comput. Sci., 6;e285, doi: 10.7717/peerj-cs.285.

[17] C. M. Chen, G.-H. Lai, T.-C. Chang, and B. Lee

(2020). Detecting pe-infection based malware. in

Proc. Future Inf. Commun. Conf. Cham,

Switzerland: Springer, pp. 774–781.

[18] M. E. Ahmed, S. Nepal, and H. Kim (2018),

“MEDUSA: Malware detection using statistical

analysis of system’s behavior,” in Proc. IEEE 4th

Int. Conf. Collaboration Internet Comput. (CIC), pp.

272–278.

[19] Trizna, Dmitrijs et al. (2024) Nebula: Self-Attention

for Dynamic Malware Analysis. IEEE transactions

on information forensics and security, 19, DOI

10.1109/TIFS.2024.3409083

[20] Lee, Sunjun et al. (2024). Hybrid Dynamic Analysis

for Android Malware Protected by Anti-Analysis

Techniques with DOOLDA. Journal of internet

technolog, 25(2).

DOI 10.53106/160792642024032502003

[21] Cui, Yuning et al. (2023). DroidHook: a novel API-

hook based Android malware dynamic analysis

sandbox. Automated software engineering, 30(1).

DOI 10.1007/s10515-023-00378-w

