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Abstract:

Weed management is a critical challenge for sustainable agriculture, driving the
adoption of Smart Farming solutions that integrate the Internet of Things (IoT) and deep
learning. While significant research focuses on improving object detection algorithms,
the influence of data quality from 10T perception devices on system performance
remains underexplored. This paper presents a holistic study of an loT-aligned weed
detection framework, using the YOLOV8 model to investigate the impact of image data
quality versus quantity. We train and evaluate two identical YOLOv8n models on
contrasting datasets: a high-quality, smaller dataset (D1, n=512) and a larger, lower-
quality dataset (D2, n=5,061). Our results show a decisive advantage for data quality:
the model trained on D1 achieved a mean Average Precision (mMAP@50) of 0.90,
significantly outperforming the model trained on D2 (mMAP@50 of 0.82), alongside
higher precision (0.88 vs. 0.74). This empirical evidence underscores that for robust
loT-based detection systems, investing in high-fidelity data acquisition at the Perception
Layer is more effective than merely amassing larger volumes of data. The findings offer
a practical design principle for developing reliable and efficient smart agriculture
solutions, emphasizing the need for system-level optimization beyond algorithmic

choice.

1. Introduction

Weeds remain one of the most significant biotic
constraints to global agricultural productivity,
competing directly with crops for essential
resources [1]. Conventional management, reliant on
the broadcast application of herbicides, is
increasingly unsustainable, leading to
environmental pollution, herbicide resistance, and
unnecessary economic costs [2, 3]. There is a
pressing need for precision in weed control-a core
tenet of sustainable agriculture.The advent of Smart
Agriculture, powered by the synergy of the Internet
of Things and Artificial Intelligence, offers a
transformative pathway [4, 5]. 10T provides the
architectural framework for the digitization of
farms, deploying a network of sensors and devices
that generate real-time, high-resolution data from
the field [6, 7]. Concurrently, advances in computer
vision and deep learning provide the analytical

intelligence to interpret this visual data, automating
tasks from monitoring to identification [8, 9].A
complete smart weed detection system follows an
integrated 10T pipeline: Perception (e.g., UAV-
based image capture), Transmission, Intelligent
Processing (e.g., cloud-based deep learning model),
and Application [10, 11]. This closed-loop system
promises to convert raw field data into precise,
actionable insights [12].However, the research
focus has predominantly been on optimizing the
Processing layer, comparing model architectures
and reporting incremental gains in accuracy metrics
[13, 14]. A critical, system-level factor has been
relatively overlooked: the profound impact of the
inherent quality of data generated by the Perception
layer on the overall system's performance [15, 16].
In practice, the choice between collecting high-
fidelity imagery or a larger volume of lower-quality
data is a fundamental design decision whose
consequences are not well quantified.
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Contributions of This Work

This study addresses this gap by investigating the

data quality-quantity trade-off within a realistic

loT-aligned framework. Our contributions are
threefold:

e System  Framework: We detail the
implementation of a reproducible, end-to-end
weed detection pipeline using the state-of-the-art
YOLOv8 model within a standard IloT
workflow.

e Empirical Analysis: We conduct a controlled
experiment, training identical models on two
distinct datasets: a high-quality, smaller dataset
(D1) and a larger, lower-quality dataset (D2).

e Design Insight: We demonstrate conclusively
that superior data quality yields significantly
better detection performance (MAP@50: 0.90
vs. 0.82) than a larger volume of inferior data.
This provides an evidence-based guideline for
prioritizing Perception Layer standards in smart
farming system design.

The remainder of this paper is organized as follows:
Section 2 reviews related work. Section 3 provides
necessary background. Section 4 describes our
methodology. Section 5 presents and discusses the
experimental results. Finally, Section 6 concludes
the paper.

2. Related Work

The Internet of Things (loT) has emerged as the
foundational ~ framework  for  modernizing
agriculture, transitioning it from a labor-intensive
practice to a data-driven science [6, 17]. An loT
system in agriculture is typically architected in
layers: a Perception Layer comprising sensors and
actuators; a Transport Layer for data transmission;
a Processing Layer for cloud or edge analytics; and
an Application Layer delivering actionable insights
[5, 18]. This architecture enables the real-time
monitoring of critical parameters such as soil
moisture, micro-climate, and crop health, forming
the basis for Precision Agriculture [7, 19]. By
providing a closed loop from data acquisition to

automated intervention, loT frameworks have
proven effective in optimizing resource use,
particularly in  irrigation and fertilization

management [10, 20].Within this loT ecosystem,
weed management stands out as a high-impact
application due to the significant economic and
environmental costs associated with uncontrolled
weed growth [1, 21]. The pursuit of precision weed
control has directly driven innovation within the
Perception Layer. The sensor paradigm has evolved
from static soil probes to mobile imaging platforms,
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most notably Unmanned Aerial Vehicles (UAVS)
[22, 23]. UAVs act as intelligent, mobile sensor
nodes, capable of capturing high-resolution RGB
and multispectral imagery over vast fields,
providing the spatial coverage required for selective
treatment [24, 25]. This shift from point-based to
area-based sensing has created a paradigm where
the primary data input for weed management is no
longer scalar readings but high-volume visual data
streams [26].The deluge of visual data from UAVs
necessitated automated analysis, leading to the
integration  of  Artificial  Intelligence, and
specifically deep learning, into the 10T Processing
Layer. Early integrated systems deployed simpler
Convolutional Neural Networks (CNNs) for image
classification on edge devices like Raspberry Pi,
demonstrating the feasibility of loT-enabled weed
identification [27]. However, for precision spraying
or mechanical weeding, simple classification is
insufficient; precise, real-time localization of weeds
is required. This operational need catalyzed the
adoption of state-of-the-art object detection models
within the loT pipeline. Models from the You Only
Look Once (YOLO) family, renowned for their
optimal speed-accuracy trade-off, have become
particularly prevalent for this task [13, 28]. Their
efficiency makes them suitable for near-real-time
analysis on edge gateways or cloud servers,
fulfilling the real-time requirement imposed by
actionable loT systems [29, 30]. Studies have
successfully implemented versions from YOLOv4
to the latest YOLOVS for detecting weeds in crops
such as wheat, carrots, and soybeans, often
reporting high accuracy [31, 32, 33].Despite
technological progress, the development of robust,
deployable systems faces persistent challenges that
are often systemic in nature:

e The Data Bottleneck: Performance s
intrinsically linked to training data. Research
consistently  highlights that dataset quality
encompassing image  resolution, lighting
variance, and annotation precision is a critical,
yet often undervalued, factor that can outweigh
the benefits of larger, noisier datasets [15, 16,
34]. Furthermore, creating large, accurately
annotated datasets remains expensive and time-
consuming, a significant barrier to practical
implementation [35, 36].

e The Generalization Gap: A model trained in
one specific context (e.g., a particular field, crop
stage, or lighting condition) frequently
experiences a severe performance drop when
deployed in a slightly different environment.
This lack of robustness limits the scalability and
practical utility of otherwise high-performing
models [37, 38].
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e The Edge-Cloud Dichotomy: A fundamental
design choice in 10T systems is determining
where processing occurs. Cloud computing
offers vast power for model training but
introduces latency and bandwidth dependency.
Edge processing on drones or robots minimizes
latency but is constrained by limited
computational resources and power [39, 40].

Research Gap and Position of This Work

The literature reveals a focused
trajectory: algorithmic  refinement  within  the
Processing Layer [14, 41]. While incremental

improvements in model architecture (e.g., from
YOLOv7 to YOLOvV8) are valuable, a critical,
system-level perspective is frequently absent. There
is a pronounced lack of empirical studies that
systematically isolate and evaluate the impact
of Perception Layer attributes specifically, the
intrinsic quality of captured image data on the
overall performance of the loT system. Most
comparisons focus on model variants rather than
data characteristics.This work addresses this gap.
We position our study not merely as another
application of YOLOvV8, but as asystemic
investigation into a key 10T design parameter. By
implementing a standardized YOLOV8 pipeline
within a simulated 10T workflow and conducting a
controlled experiment comparing high-quality
versus high-quantity datasets, we provide empirical
evidence on a fundamental question: For an loT-
based weed detection system, is investing
in superior data quality at the Perception Layer a
more effective strategy than merely amassing larger
volumes of data? Our findings aim to inform the
design principles of future robust and efficient
smart farming systems.

3. Background

A typical loT system in smart agriculture is

structured in layers, each with a distinct function [5,

18]. This work aligns with a five-layer conceptual

model:

o Perception Layer: This is the physical interface
with the environment, consisting of sensors and
devices that capture data. In our context, this
layer is represented by the UAV (drone)
equipped with an RGB camera, responsible for
image acquisition.

o Network/Transport Layer: This layer handles
the communication and transmission of raw data
from the perception devices to the processing
units. While our experimental setup simulates
this transfer, real-world deployments would
utilize wireless protocols (e.g., Wi-Fi, 4G/5G,
ZigBee, BlueTooth).
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e Processing Layer: This is the "intelligence"
core where data is stored, analyzed, and
transformed into actionable information. In this
study, this layer is embodied by the cloud-based
Google Colab environment where the YOLOVS8
model is trained and executes the weed detection
algorithm on the received images.

o Application Layer: This layer presents the
results to the end-user and enables decision-
making or automated actions. Here, the output
consists of the processed images with bounding
boxes around detected weeds, which could be
delivered via a farmer's dashboard or directly to
an automated spraying system.

e Business layer: focuses on data interpretation,
decision-making, and monetization of loT
services. It transforms raw data into actionable
insights using Al and analytics, defines business
models and strategies, ensures regulatory
compliance and enhances user experience
through dashboards and applications.

This layered abstraction provides a clear framework
for understanding the flow of information and the
placement of our experimental components within a
full-scale smart farming system.

The YOLOvV8 Object Detection Model
You Only Look Once version 8 (YOLOVS),
developed by Ultralytics, is a state-of-the-art object
detection model from the YOLO family [42]. It is
designed for high speed and accuracy, making it
particularly suitable for real-time applications
common in loT and edge-computing scenarios. Its
architecture typically consists of:

e Backbone (e.g., CSPDarknet) for feature
extraction from the input image.

o Neck (e.g., a Path Aggregation Network -
PANet) for feature aggregation from
different backbone stages, crucial for
detecting objects at various scales.

e Headthat performs the final detection,
predicting bounding boxes, associated class
probabilities  (weed/background), and
objectness scores.

For this study, we employed the YOLOv8n variant,
which is the smallest and fastest in the series. This
choice is motivated by its lower computational
footprint, which aligns with potential future
deployment on resource-constrained edge devices
within an loT ecosystem, without initially
compromising on the representative power of a
modern detection framework.

4. Proposed model and methodology



Lotfi Hazzami, Samir Fenanirrt / IJCESEN 12-1(2026)67-76

Our methodology simulates a streamlined loT
pipeline for weed detection, focusing on the
Perception and Processing layers. The process,
illustrated in Figure 1, follows these stages:

Data Acquisition (Perception Layer): Image
datasets are collected, simulating the output of a
UAV-based scouting mission.

Data Preparation & Annotation: The raw
images are annotated to create ground truth for
model training.

Model Training & Processing (Processing
Layer): The annotated data is used to train the
YOLOv8n detection model in a cloud-simulated
environment (Google Colab).

Inference & Evaluation: The trained model is
evaluated on unseen data, and its predictions
(bounding boxes) are analyzed. The output
represents the actionable information that would
be delivered to the Application Layer.

To empirically study the effect of data quality
versus quantity, two distinct datasets were curated:

Dataset D1 (High Quality): Comprises 512
training images and 60 testing images of wheat
fields. This dataset is characterized by high
visual clarity, good contrast, and well-defined

weed targets against the soil and crop
background.

Dataset D2 (Higher Quantity, Lower
Quiality): Comprises 5,061 training

images and 241 testing images of a grass/weed
environment. While larger in volume, this
dataset exhibits lower overall image quality,
with issues such as poorer resolution, motion
blur, higher occlusion, and less optimal lighting
conditions, making the weeds more challenging
to identify.

Annotation: All images from both datasets were

annotated at the object level using the Computer
Vision Annotation Tool (CVAT). Bounding
boxes were drawn around each visible weed
instance. The annotations were exported in the
YOLO format, where each image has a
corresponding text file containing the
normalized coordinates (center_x, center_y,
width, height) for every bounding box.

Processing Layer: YOLOv8n Training and
Inference Pipeline
A standardized deep learning pipeline was
implemented using the Ultralytics library to
ensure a fair comparison, where the only
variable was the input training data.

70

Model  Configuration: The YOLOv8n model
was initialized with its default architecture. The
training hyperparameters were set as follows:
number of epochs=100, image size imgsz=640,
and a batch size determined by the framework's
auto-batching for the available GPU memory.
Crucially, data augmentation was explicitly
disabled to isolate the effect of the original
dataset quality without synthetic alterations.
Training Environment: The model was trained
from scratch (without pre-trained weights) on a
Tesla T4 GPU provided by Google Colab. The
Ultralytics YOLOvV8 framework managed the
training loop, loss calculation (based on a
combination of classification, objectness, and
bounding box regression losses), and optimizer
steps (default: SGD).

Experimental Protocol for Isolating Data Impact

The core experiment was designed as a controlled
comparison:

Two separate instances of the YOLOv8n model
were trained under identical
configurations (architecture,  hyperparameters,
training environment).

Model A was trained exclusively on Dataset
D1 (High Quality, n=512).

Model B was trained exclusively on Dataset
D2 (Higher Quantity, n=5,061).

Both models were evaluated on their respective,
unseen test sets using the same comprehensive
metrics.

This design directly tests the hypothesis that for
weed detection in an loT pipeline, the quality of
data from the Perception Layer is a more critical

performance factor than its sheer volume.

5. Evaluations and Results

Evaluation Metrics.

The models were evaluated on their respective

hold-out test sets using standard object detection
metrics:

Precision: The proportion of correctly identified
weeds among all predicted weeds (i.e., What
fraction of our alarms are correct?).

Recall: The proportion of actual weeds that
were correctly detected by the model (i.e., What
fraction of all weeds did we find?).

Mean Average Precision at loU=05
(mAP@50): The primary metric, representing
the area under the Precision-Recall curve
averaged over all classes at an Intersection-over-
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Union threshold of 50%. This single score
balances both precision and recall, providing a
holistic view of detection accuracy.

Quantitative Results and Comparative Analysis
The performance of the two models is summarized
in Table 1. The results demonstrate a clear and
significant advantage for the model trained on the
high-quality dataset D1, despite it being an order of
magnitude smaller than D2.

Table 1: Comparative performance on Dataset D1 (High
Quality) vs. Dataset D2 (High Quantity).

Dataset Trainin | Precisio | Recal | mAP@5
g n | 0
Images

D1 (High 512 0.88 0.80 0.90
Quality)

D2 (High 5,061 0.74 0.77 0.82
Quantity

)
Key Findings:

e Superior Overall Accuracy: The model
trained on D1 achieved a mAP@50 of 0.90,
substantially outperforming the model
trained on D2 (MAP@50 of 0.82). This
represents a 9.8% relative improvement in
the primary detection metric.

e Higher Precision: The precision of
the D1 model (0.88) is markedly higher
than that of the D2 model (0.74). This
indicates that the detections made by the
high-quality data model are more reliable,
resulting in fewer false positives. In a
precision agriculture context, this translates
to reduced risk of misapplying herbicides
to crops or soil.

e Comparable Recall: Recall values are
similar (0.80 vs. 0.77), suggesting both
models are reasonably adept at finding
weeds present in the images. The slight
edge for D1 indicates it misses fewer true
weed instances.

Interpretation: These results provide strong
empirical evidence thatdata quality is a more
decisive factor for model performance than data
guantity within ~ this  loT-aligned  detection
framework. Investing in a smaller set of clear, well-
defined images from the Perception Layer yields a
more accurate and reliable detection system in the
Processing Layer than amassing a large volume of
lower-fidelity data.

Quialitative Analysis and Visual Observations
Visual inspection of the model predictions
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corroborates the quantitative findings.
Representative examples are shown in Figure 5 and
Figure 6 (data samples), Figure 3 and Figure 4
(detection results).

Model trained on  D1: Predictions are
characterized by high-confidence bounding boxes
that tightly fit the weed targets (Figure 3 and Figure
5). There are fewer instances of spurious detections
on background elements or crop residues.

Model trained on D2: Predictions show more
variability (Figure 4 and Figure 6). While it detects
many weeds correctly, it also exhibits a higher
frequency of false positives (marking soil clumps or
shadows as weeds) and occasionally less accurate
bounding box localization. This aligns with its
lower precision score.This qualitative difference
underscores that noise and ambiguity in the training
data lead directly to ambiguity in the model's
predictions, reducing its operational reliability. The
experiment validates a critical system-level
insight: Optimization must extend beyond the
algorithm to encompass the entire data pipeline. For
loT-based smart agriculture systems:

o Perception Layer Quality is Non-
Negotiable: Ensuring high-quality image
capture (good resolution, stable platforms,
optimal lighting) is a prerequisite for high-
performing analytics.

o Cost-Benefit of Data Curation: The
results suggest that the resource investment
required to curate a smaller, high-quality
dataset can yield a higher return in
performance than the effort expended to
collect and annotate a much larger but
poorer-quality dataset.

o Generalization vs. Specificity: While a
large, diverse dataset is the ideal for
generalization, this study shows that in its
absence, a smaller dataset of high
representative  quality for  the target
environment is a more effective starting
point for building a functional system.

6. Conclusions

This study presented a holistic investigation into a
key design parameter for loT-enabled smart weed
detection systems. Moving beyond isolated
algorithmic improvements, we framed the problem
within a layered loT architecture and conducted a
controlled experiment to evaluate the impact of
Perception Layer data quality. Our main
contributions are:
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e The development and documentation of
a reproducible, loT-aligned pipeline for
weed detection using the state-of-the-art
YOLOv8n model.

e Empirical evidence that the quality of
training data is a more critical performance
lever than its quantity. The model trained
on a smaller (n=512) but high-quality
dataset achieved a 090 mAP@50,
significantly outperforming the model
trained on a larger (n=5,061) but lower-
quality dataset (0.82 mAP@50).

e A system-level recommendation for
practitioners: prioritizing high-fidelity data
acquisition and annotation is an essential
and effective strategy for developing robust
in-field detection systems.

This work has certain limitations that point to
valuable future research directions:

e Scope of Crops and Conditions: The
study was conducted on specific field
datasets (wheat and mixed grass).
Validation across a wider variety of crops
(e.g., maize, vegetables) and more extreme
environmental conditions is necessary.

e Model Scale: The experiment used the
lightweight YOLOv8n variant. Future work
should examine if the same quality-quantity

relationship  holds for larger, more
parameter-rich models.
e Advanced Learning Techniques: To

mitigate the data quality challenge, future
work could explore semi-supervised or
self-supervised learning techniques that
leverage large amounts of unlabeled field
imagery to improve model robustness and
generalization [43].

Remarks

The convergence of 10T and Al holds immense
promise for sustainable agriculture. This research
underscores that realizing this promise requires a
system-level perspective. By demonstrating that
superior data quality from the sensor layer
decisively enhances analytical outcomes, we
provide a pragmatic guideline for building more
effective and reliable smart farming solutions. The
path forward lies in the co-design of robust sensing
platforms and intelligent processing algorithms,
ensuring that the intelligence infused into our fields
is built upon a foundation of clear and trustworthy
data.
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