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Abstract:  
 

Weed management is a critical challenge for sustainable agriculture, driving the 

adoption of Smart Farming solutions that integrate the Internet of Things (IoT) and deep 

learning. While significant research focuses on improving object detection algorithms, 

the influence of data quality from IoT perception devices on system performance 

remains underexplored. This paper presents a holistic study of an IoT-aligned weed 

detection framework, using the YOLOv8 model to investigate the impact of image data 

quality versus quantity. We train and evaluate two identical YOLOv8n models on 

contrasting datasets: a high-quality, smaller dataset (D1, n=512) and a larger, lower-

quality dataset (D2, n=5,061). Our results show a decisive advantage for data quality: 

the model trained on D1 achieved a mean Average Precision (mAP@50) of 0.90, 

significantly outperforming the model trained on D2 (mAP@50 of 0.82), alongside 

higher precision (0.88 vs. 0.74). This empirical evidence underscores that for robust 

IoT-based detection systems, investing in high-fidelity data acquisition at the Perception 

Layer is more effective than merely amassing larger volumes of data. The findings offer 

a practical design principle for developing reliable and efficient smart agriculture 

solutions, emphasizing the need for system-level optimization beyond algorithmic 

choice. 

 

1. Introduction 
 

Weeds remain one of the most significant biotic 

constraints to global agricultural productivity, 

competing directly with crops for essential 

resources [1]. Conventional management, reliant on 

the broadcast application of herbicides, is 

increasingly unsustainable, leading to 

environmental pollution, herbicide resistance, and 

unnecessary economic costs [2, 3]. There is a 

pressing need for precision in weed control-a core 

tenet of sustainable agriculture.The advent of Smart 

Agriculture, powered by the synergy of the Internet 

of Things and Artificial Intelligence, offers a 

transformative pathway [4, 5]. IoT provides the 

architectural framework for the digitization of 

farms, deploying a network of sensors and devices 

that generate real-time, high-resolution data from 

the field [6, 7]. Concurrently, advances in computer 

vision and deep learning provide the analytical 

intelligence to interpret this visual data, automating 

tasks from monitoring to identification [8, 9].A 

complete smart weed detection system follows an 

integrated IoT pipeline: Perception (e.g., UAV-

based image capture), Transmission, Intelligent 

Processing (e.g., cloud-based deep learning model), 

and Application [10, 11]. This closed-loop system 

promises to convert raw field data into precise, 

actionable insights [12].However, the research 

focus has predominantly been on optimizing the 

Processing layer, comparing model architectures 

and reporting incremental gains in accuracy metrics 

[13, 14]. A critical, system-level factor has been 

relatively overlooked: the profound impact of the 

inherent quality of data generated by the Perception 

layer on the overall system's performance [15, 16]. 

In practice, the choice between collecting high-

fidelity imagery or a larger volume of lower-quality 

data is a fundamental design decision whose 

consequences are not well quantified. 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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Contributions of This Work 

This study addresses this gap by investigating the 

data quality-quantity trade-off within a realistic 

IoT-aligned framework. Our contributions are 

threefold: 

 System Framework: We detail the 

implementation of a reproducible, end-to-end 

weed detection pipeline using the state-of-the-art 

YOLOv8 model within a standard IoT 

workflow. 

 Empirical Analysis: We conduct a controlled 

experiment, training identical models on two 

distinct datasets: a high-quality, smaller dataset 

(D1) and a larger, lower-quality dataset (D2). 

 Design Insight: We demonstrate conclusively 

that superior data quality yields significantly 

better detection performance (mAP@50: 0.90 

vs. 0.82) than a larger volume of inferior data. 

This provides an evidence-based guideline for 

prioritizing Perception Layer standards in smart 

farming system design. 

 

The remainder of this paper is organized as follows: 

Section 2 reviews related work. Section 3 provides 

necessary background. Section 4 describes our 

methodology. Section 5 presents and discusses the 

experimental results. Finally, Section 6 concludes 

the paper. 

2. Related Work 

The Internet of Things (IoT) has emerged as the 

foundational framework for modernizing 

agriculture, transitioning it from a labor-intensive 

practice to a data-driven science [6, 17]. An IoT 

system in agriculture is typically architected in 

layers: a Perception Layer comprising sensors and 

actuators; a Transport Layer for data transmission; 

a Processing Layer for cloud or edge analytics; and 

an Application Layer delivering actionable insights 

[5, 18]. This architecture enables the real-time 

monitoring of critical parameters such as soil 

moisture, micro-climate, and crop health, forming 

the basis for Precision Agriculture [7, 19]. By 

providing a closed loop from data acquisition to 

automated intervention, IoT frameworks have 

proven effective in optimizing resource use, 

particularly in irrigation and fertilization 

management [10, 20].Within this IoT ecosystem, 

weed management stands out as a high-impact 

application due to the significant economic and 

environmental costs associated with uncontrolled 

weed growth [1, 21]. The pursuit of precision weed 

control has directly driven innovation within the 

Perception Layer. The sensor paradigm has evolved 

from static soil probes to mobile imaging platforms, 

most notably Unmanned Aerial Vehicles (UAVs) 

[22, 23]. UAVs act as intelligent, mobile sensor 

nodes, capable of capturing high-resolution RGB 

and multispectral imagery over vast fields, 

providing the spatial coverage required for selective 

treatment [24, 25]. This shift from point-based to 

area-based sensing has created a paradigm where 

the primary data input for weed management is no 

longer scalar readings but high-volume visual data 

streams [26].The deluge of visual data from UAVs 

necessitated automated analysis, leading to the 

integration of Artificial Intelligence, and 

specifically deep learning, into the IoT Processing 

Layer. Early integrated systems deployed simpler 

Convolutional Neural Networks (CNNs) for image 

classification on edge devices like Raspberry Pi, 

demonstrating the feasibility of IoT-enabled weed 

identification [27]. However, for precision spraying 

or mechanical weeding, simple classification is 

insufficient; precise, real-time localization of weeds 

is required. This operational need catalyzed the 

adoption of state-of-the-art object detection models 

within the IoT pipeline. Models from the You Only 

Look Once (YOLO) family, renowned for their 

optimal speed-accuracy trade-off, have become 

particularly prevalent for this task [13, 28]. Their 

efficiency makes them suitable for near-real-time 

analysis on edge gateways or cloud servers, 

fulfilling the real-time requirement imposed by 

actionable IoT systems [29, 30]. Studies have 

successfully implemented versions from YOLOv4 

to the latest YOLOv8 for detecting weeds in crops 

such as wheat, carrots, and soybeans, often 

reporting high accuracy [31, 32, 33].Despite 

technological progress, the development of robust, 

deployable systems faces persistent challenges that 

are often systemic in nature: 

 The Data Bottleneck: Performance is 

intrinsically linked to training data. Research 

consistently highlights that dataset quality 

encompassing image resolution, lighting 

variance, and annotation precision is a critical, 

yet often undervalued, factor that can outweigh 

the benefits of larger, noisier datasets [15, 16, 

34]. Furthermore, creating large, accurately 

annotated datasets remains expensive and time-

consuming, a significant barrier to practical 

implementation [35, 36]. 

 The Generalization Gap: A model trained in 

one specific context (e.g., a particular field, crop 

stage, or lighting condition) frequently 

experiences a severe performance drop when 

deployed in a slightly different environment. 

This lack of robustness limits the scalability and 

practical utility of otherwise high-performing 

models [37, 38]. 
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 The Edge-Cloud Dichotomy: A fundamental 

design choice in IoT systems is determining 

where processing occurs. Cloud computing 

offers vast power for model training but 

introduces latency and bandwidth dependency. 

Edge processing on drones or robots minimizes 

latency but is constrained by limited 

computational resources and power [39, 40]. 

Research Gap and Position of This Work 
The literature reveals a focused 

trajectory: algorithmic refinement within the 

Processing Layer [14, 41]. While incremental 

improvements in model architecture (e.g., from 

YOLOv7 to YOLOv8) are valuable, a critical, 

system-level perspective is frequently absent. There 

is a pronounced lack of empirical studies that 

systematically isolate and evaluate the impact 

of Perception Layer attributes specifically, the 

intrinsic quality of captured image data on the 

overall performance of the IoT system. Most 

comparisons focus on model variants rather than 

data characteristics.This work addresses this gap. 

We position our study not merely as another 

application of YOLOv8, but as a systemic 

investigation into a key IoT design parameter. By 

implementing a standardized YOLOv8 pipeline 

within a simulated IoT workflow and conducting a 

controlled experiment comparing high-quality 

versus high-quantity datasets, we provide empirical 

evidence on a fundamental question: For an IoT-

based weed detection system, is investing 

in superior data quality at the Perception Layer a 

more effective strategy than merely amassing larger 

volumes of data? Our findings aim to inform the 

design principles of future robust and efficient 

smart farming systems. 

3. Background 

A typical IoT system in smart agriculture is 

structured in layers, each with a distinct function [5, 

18]. This work aligns with a five-layer conceptual 

model: 

 Perception Layer: This is the physical interface 

with the environment, consisting of sensors and 

devices that capture data. In our context, this 

layer is represented by the UAV (drone) 

equipped with an RGB camera, responsible for 

image acquisition. 

 Network/Transport Layer: This layer handles 

the communication and transmission of raw data 

from the perception devices to the processing 

units. While our experimental setup simulates 

this transfer, real-world deployments would 

utilize wireless protocols (e.g., Wi-Fi, 4G/5G, 

ZigBee, BlueTooth). 

 Processing Layer: This is the "intelligence" 

core where data is stored, analyzed, and 

transformed into actionable information. In this 

study, this layer is embodied by the cloud-based 

Google Colab environment where the YOLOv8 

model is trained and executes the weed detection 

algorithm on the received images. 

 Application Layer: This layer presents the 

results to the end-user and enables decision-

making or automated actions. Here, the output 

consists of the processed images with bounding 

boxes around detected weeds, which could be 

delivered via a farmer's dashboard or directly to 

an automated spraying system. 

 Business layer: focuses on data interpretation, 

decision-making, and monetization of IoT 

services. It transforms raw data into actionable 

insights using AI and analytics, defines business 

models and strategies, ensures regulatory 

compliance and enhances user experience 

through dashboards and applications. 

 

This layered abstraction provides a clear framework 

for understanding the flow of information and the 

placement of our experimental components within a 

full-scale smart farming system. 

 

The YOLOv8 Object Detection Model 
You Only Look Once version 8 (YOLOv8), 

developed by Ultralytics, is a state-of-the-art object 

detection model from the YOLO family [42]. It is 

designed for high speed and accuracy, making it 

particularly suitable for real-time applications 

common in IoT and edge-computing scenarios. Its 

architecture typically consists of: 

 Backbone (e.g., CSPDarknet) for feature 

extraction from the input image. 

 Neck (e.g., a Path Aggregation Network - 

PANet) for feature aggregation from 

different backbone stages, crucial for 

detecting objects at various scales. 

 Head that performs the final detection, 

predicting bounding boxes, associated class 

probabilities (weed/background), and 

objectness scores. 

 

For this study, we employed the YOLOv8n variant, 

which is the smallest and fastest in the series. This 

choice is motivated by its lower computational 

footprint, which aligns with potential future 

deployment on resource-constrained edge devices 

within an IoT ecosystem, without initially 

compromising on the representative power of a 

modern detection framework. 

4. Proposed model and methodology 
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Our methodology simulates a streamlined IoT 

pipeline for weed detection, focusing on the 

Perception and Processing layers. The process, 

illustrated in Figure 1, follows these stages: 

 Data Acquisition (Perception Layer): Image 

datasets are collected, simulating the output of a 

UAV-based scouting mission. 

 Data Preparation & Annotation: The raw 

images are annotated to create ground truth for 

model training. 

 Model Training & Processing (Processing 

Layer): The annotated data is used to train the 

YOLOv8n detection model in a cloud-simulated 

environment (Google Colab). 

 Inference & Evaluation: The trained model is 

evaluated on unseen data, and its predictions 

(bounding boxes) are analyzed. The output 

represents the actionable information that would 

be delivered to the Application Layer. 

To empirically study the effect of data quality 

versus quantity, two distinct datasets were curated: 

 Dataset D1 (High Quality): Comprises 512 

training images and 60 testing images of wheat 

fields. This dataset is characterized by high 

visual clarity, good contrast, and well-defined 

weed targets against the soil and crop 

background. 

 Dataset D2 (Higher Quantity, Lower 

Quality): Comprises 5,061 training 

images and 241 testing images of a grass/weed 

environment. While larger in volume, this 

dataset exhibits lower overall image quality, 

with issues such as poorer resolution, motion 

blur, higher occlusion, and less optimal lighting 

conditions, making the weeds more challenging 

to identify. 

Annotation: All images from both datasets were 

annotated at the object level using the Computer 

Vision Annotation Tool (CVAT). Bounding 

boxes were drawn around each visible weed 

instance. The annotations were exported in the 

YOLO format, where each image has a 

corresponding text file containing the 

normalized coordinates (center_x, center_y, 

width, height) for every bounding box. 

 Processing Layer: YOLOv8n Training and 

Inference Pipeline 
A standardized deep learning pipeline was 

implemented using the Ultralytics library to 

ensure a fair comparison, where the only 

variable was the input training data. 

 Model Configuration: The YOLOv8n model 

was initialized with its default architecture. The 

training hyperparameters were set as follows: 

number of epochs=100, image size imgsz=640, 

and a batch size determined by the framework's 

auto-batching for the available GPU memory. 

Crucially, data augmentation was explicitly 

disabled to isolate the effect of the original 

dataset quality without synthetic alterations. 

 Training Environment: The model was trained 

from scratch (without pre-trained weights) on a 

Tesla T4 GPU provided by Google Colab. The 

Ultralytics YOLOv8 framework managed the 

training loop, loss calculation (based on a 

combination of classification, objectness, and 

bounding box regression losses), and optimizer 

steps (default: SGD). 

Experimental Protocol for Isolating Data Impact 
The core experiment was designed as a controlled 

comparison: 

 Two separate instances of the YOLOv8n model 

were trained under identical 

configurations (architecture, hyperparameters, 

training environment). 

 Model A was trained exclusively on Dataset 

D1 (High Quality, n=512). 

 Model B was trained exclusively on Dataset 

D2 (Higher Quantity, n=5,061). 

 Both models were evaluated on their respective, 

unseen test sets using the same comprehensive 

metrics. 

This design directly tests the hypothesis that for 

weed detection in an IoT pipeline, the quality of 

data from the Perception Layer is a more critical 

performance factor than its sheer volume. 

 

5. Evaluations and Results 

 

Evaluation Metrics. 

The models were evaluated on their respective 

hold-out test sets using standard object detection 

metrics: 

 Precision: The proportion of correctly identified 

weeds among all predicted weeds (i.e., What 

fraction of our alarms are correct?). 

 Recall: The proportion of actual weeds that 

were correctly detected by the model (i.e., What 

fraction of all weeds did we find?). 

 Mean Average Precision at IoU=0.5 

(mAP@50): The primary metric, representing 

the area under the Precision-Recall curve 

averaged over all classes at an Intersection-over-
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Union threshold of 50%. This single score 

balances both precision and recall, providing a 

holistic view of detection accuracy. 

Quantitative Results and Comparative Analysis 
The performance of the two models is summarized 

in Table 1. The results demonstrate a clear and 

significant advantage for the model trained on the 

high-quality dataset D1, despite it being an order of 

magnitude smaller than D2. 
 

Table 1: Comparative performance on Dataset D1 (High 

Quality) vs. Dataset D2 (High Quantity). 

Dataset Trainin

g 

Images 

Precisio

n 

Recal

l 

mAP@5

0 

D1 (High 

Quality) 

512 0.88 0.80 0.90 

D2 (High 

Quantity

) 

5,061 0.74 0.77 0.82 

Key Findings: 

 Superior Overall Accuracy: The model 

trained on D1 achieved a mAP@50 of 0.90, 

substantially outperforming the model 

trained on D2 (mAP@50 of 0.82). This 

represents a 9.8% relative improvement in 

the primary detection metric. 

 Higher Precision: The precision of 

the D1 model (0.88) is markedly higher 

than that of the D2 model (0.74). This 

indicates that the detections made by the 

high-quality data model are more reliable, 

resulting in fewer false positives. In a 

precision agriculture context, this translates 

to reduced risk of misapplying herbicides 

to crops or soil. 

 Comparable Recall: Recall values are 

similar (0.80 vs. 0.77), suggesting both 

models are reasonably adept at finding 

weeds present in the images. The slight 

edge for D1 indicates it misses fewer true 

weed instances. 

Interpretation: These results provide strong 

empirical evidence that data quality is a more 

decisive factor for model performance than data 

quantity within this IoT-aligned detection 

framework. Investing in a smaller set of clear, well-

defined images from the Perception Layer yields a 

more accurate and reliable detection system in the 

Processing Layer than amassing a large volume of 

lower-fidelity data. 

Qualitative Analysis and Visual Observations 
Visual inspection of the model predictions 

corroborates the quantitative findings. 

Representative examples are shown in Figure 5 and 

Figure 6 (data samples), Figure 3 and Figure 4  

(detection results). 

Model trained on D1: Predictions are 

characterized by high-confidence bounding boxes 

that tightly fit the weed targets (Figure 3 and Figure 

5). There are fewer instances of spurious detections 

on background elements or crop residues. 

Model trained on D2: Predictions show more 

variability (Figure 4 and Figure 6). While it detects 

many weeds correctly, it also exhibits a higher 

frequency of false positives (marking soil clumps or 

shadows as weeds) and occasionally less accurate 

bounding box localization. This aligns with its 

lower precision score.This qualitative difference 

underscores that noise and ambiguity in the training 

data lead directly to ambiguity in the model's 

predictions, reducing its operational reliability.The 

experiment validates a critical system-level 

insight: Optimization must extend beyond the 

algorithm to encompass the entire data pipeline. For 

IoT-based smart agriculture systems: 

 Perception Layer Quality is Non-

Negotiable: Ensuring high-quality image 

capture (good resolution, stable platforms, 

optimal lighting) is a prerequisite for high-

performing analytics. 

 Cost-Benefit of Data Curation: The 

results suggest that the resource investment 

required to curate a smaller, high-quality 

dataset can yield a higher return in 

performance than the effort expended to 

collect and annotate a much larger but 

poorer-quality dataset. 

 Generalization vs. Specificity: While a 

large, diverse dataset is the ideal for 

generalization, this study shows that in its 

absence, a smaller dataset of high 

representative quality for the target 

environment is a more effective starting 

point for building a functional system. 

 

6. Conclusions 

 
This study presented a holistic investigation into a 

key design parameter for IoT-enabled smart weed 

detection systems. Moving beyond isolated 

algorithmic improvements, we framed the problem 

within a layered IoT architecture and conducted a 

controlled experiment to evaluate the impact of 

Perception Layer data quality. Our main 

contributions are: 
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Figure 1 The IOT architecture model 

 

 
Figure 2. The Model Architecture 

 
Figure 3. Evaluation Metrics for Data set 1 
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Figure 4.  Evaluation Metrics for Data set 2 

 
Figure 5. Prediction results for data set 1 

 

 
Figure 6.  Prediction results for Data set 2 
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 The development and documentation of 

a reproducible, IoT-aligned pipeline for 

weed detection using the state-of-the-art 

YOLOv8n model. 

 Empirical evidence that the quality of 

training data is a more critical performance 

lever than its quantity. The model trained 

on a smaller (n=512) but high-quality 

dataset achieved a 0.90 mAP@50, 

significantly outperforming the model 

trained on a larger (n=5,061) but lower-

quality dataset (0.82 mAP@50). 

 A system-level recommendation for 

practitioners: prioritizing high-fidelity data 

acquisition and annotation is an essential 

and effective strategy for developing robust 

in-field detection systems. 

This work has certain limitations that point to 

valuable future research directions: 

 Scope of Crops and Conditions: The 

study was conducted on specific field 

datasets (wheat and mixed grass). 

Validation across a wider variety of crops 

(e.g., maize, vegetables) and more extreme 

environmental conditions is necessary. 

 Model Scale: The experiment used the 

lightweight YOLOv8n variant. Future work 

should examine if the same quality-quantity 

relationship holds for larger, more 

parameter-rich models. 

 Advanced Learning Techniques: To 

mitigate the data quality challenge, future 

work could explore semi-supervised or 

self-supervised learning techniques that 

leverage large amounts of unlabeled field 

imagery to improve model robustness and 

generalization [43]. 

Remarks 
The convergence of IoT and AI holds immense 

promise for sustainable agriculture. This research 

underscores that realizing this promise requires a 

system-level perspective. By demonstrating that 

superior data quality from the sensor layer 

decisively enhances analytical outcomes, we 

provide a pragmatic guideline for building more 

effective and reliable smart farming solutions. The 

path forward lies in the co-design of robust sensing 

platforms and intelligent processing algorithms, 

ensuring that the intelligence infused into our fields 

is built upon a foundation of clear and trustworthy 

data. 
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