

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 59-66
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Self-Healing RPA Systems: A Reliability-Centric Architecture for Financial

Enterprises

Ravindra Reddy Madireddy*

Independent Researcher, USA
* Corresponding Author Email: madireddy.ravindrareddy@gmail.com - ORCID: 0000-0002-5007-7811

Article Info:

DOI: 10.22399/ijcesen.4622

Received : 29 November 2025

Revised : 01 January 2026

Accepted : 02 January 2026

Keywords

Self-Healing Systems,

Robotic Process Automation,

Financial Operations Automation,

Fault-Tolerant Computing,

Autonomous Recovery Mechanisms,

Reliability Engineering

Abstract:

Financial institutions are struggling to keep their robotic process automation reliable,

even though their operational environments are constantly changing. Traditional RPA

deployments are very fragile and, as a result, are affected by changes in the interface,

variations in the infrastructure, and even changes in the data formats. Manual

intervention requirements undermine automation value propositions by extending

recovery timelines and consuming support resources. The self-healing architecture

presented addresses fundamental limitations through integrated telemetry capture,

intelligent diagnostics, adaptive recovery mechanisms, and continuous learning

capabilities. Multi-layer designs embed autonomous corrective logic directly within

RPA execution frameworks rather than relying on external monitoring systems. Real-

time telemetry streams enable pattern recognition algorithms to classify failure types

and route incidents to appropriate remediation procedures. Adaptive selector

management maintains hierarchical fallback chains spanning multiple element

identification strategies. Exception routing logic distinguishes transient faults amenable

to automated recovery from structural defects requiring human expertise. Financial

operations implementations demonstrate practical applications across payment

processing, account reconciliation, and regulatory validation workflows. Reliability

engineering principles establish observability frameworks, measuring recovery efficacy

and diagnostic accuracy. Continual learning architectures refine classification models

through feedback loops, capturing production outcomes. The architectural framework

transforms automation reliability from static design properties into dynamic operational

capabilities evolving alongside environmental changes.

1. Introduction

Financial operations processing environments

demand continuous workflow execution across

payment gateways, ledger systems, compliance

platforms, and data warehouses. Robotic process

automation has emerged as the standard mechanism

for orchestrating rule-driven activities that

previously consumed substantial human resources.

However, the inherent brittleness of conventional

RPA implementations creates operational

vulnerabilities. Interface element identifiers become

obsolete following application updates. Database

query timeouts disrupt transaction fetches.

Unexpectedly, data structures cause unhandled

exceptions. These failure modes accumulate over

time, which leads to automation reliability

degradation and thus necessitates the presence of

dedicated support teams for issue diagnosis and

manual process restarts.

Multi-system integration presents substantial

challenges for RPA deployments in financial

institutions. Workflow automation must coordinate

activities across heterogeneous application

architectures with varying response characteristics

and data formats [1]. Legacy systems introduce

additional complexity through inconsistent API

behaviors and unpredictable error responses.

Application updates occur without synchronized

notification to automation teams. Interface

modifications break existing selector logic. Data

schema evolution renders transformation rules

obsolete. The cumulative effect manifests as

progressive reliability degradation that undermines

automation value propositions.

Current RPA architectures operate under reactive

maintenance paradigms where failures trigger alerts

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

60

that queue for human review. Support engineers

must examine log files, reproduce error conditions,

and deploy corrective patches. This process extends

the mean time to recovery and reduces effective

automation uptime. The fundamental limitation lies

in the absence of autonomous corrective

capabilities within the RPA runtime environment

itself. Existing orchestration platforms provide

monitoring dashboards and exception logging, but

lack integrated intelligence to interpret failure

signals and execute remediation procedures

dynamically. Manual intervention requirements

constrain the scalability potential for enterprise

automation programs [1].

Machine learning-powered self-healing

mechanisms offer architectural alternatives to

conventional reactive maintenance models.

Automated defect detection algorithms analyze

execution telemetry to identify anomalous

behaviors before complete workflow failures occur

[2]. Predictive maintenance capabilities enable

proactive remediation of degrading system

conditions. Pattern recognition techniques classify

failure types and route incidents to appropriate

recovery procedures. The integration of intelligent

diagnostic logic directly into automation runtimes

transforms failure handling from manual processes

into autonomous system capabilities [2].

This paper addresses the reliability gap by

presenting a self-healing architecture that embeds

diagnostic intelligence and automated recovery

logic directly into the RPA execution framework.

The contribution encompasses a multi-layer design

spanning telemetry capture, anomaly detection,

decision routing, and action execution. By treating

operational failures as recoverable events rather

than terminal errors, the architecture enables

financial automation systems to sustain workflow

continuity through environmental disruptions. The

following sections detail the architectural

components, recovery mechanisms, implementation

patterns for financial processes, and reliability

engineering practices that collectively enable

autonomous healing capabilities.

2. Related Work and Methodology

Existing literature on RPA reliability predominantly

addresses reactive monitoring approaches where

human operators respond to failure alerts.

Traditional frameworks lack integrated autonomous

recovery capabilities within runtime environments.

Recent advances in fault-tolerant distributed

systems provide foundational principles for

transaction consistency and atomic commitment

protocols applicable to financial automation

contexts. Machine learning applications in

industrial fault detection demonstrate supervised

and unsupervised techniques for anomaly

classification. However, prior efforts focus

primarily on detection rather than automated

remediation execution.

The methodology introduces a multi-layer

architecture integrating four distinct functional

domains. The telemetry layer captures

comprehensive execution traces spanning bot

runtimes, target applications, and infrastructure

components. Real-time processing pipelines apply

pattern recognition algorithms to streaming event

data. The diagnostic engine employs decision trees

and ensemble classifiers trained on historical failure

repositories to categorize disruptions and

recommend resolution strategies. Adaptive

recovery mechanisms implement hierarchical

selector fallback chains combining XPath

expressions, CSS selectors, positional logic, and

computer vision techniques. Exception routing

logic applies recoverability criteria, distinguishing

transient faults from structural defects. Continual

learning frameworks incorporate production

outcomes into expanding training datasets through

experience replay and progressive neural

architectures. Financial operations validation

demonstrates practical implementations across

payment processing, reconciliation workflows, and

regulatory validation contexts. Observability

infrastructure measures autonomy levels through

behavioral analysis rather than architectural

assumptions. The framework's primary contribution

lies in embedding autonomous diagnostic

intelligence and recovery execution directly within

RPA runtimes.

3. Architectural Framework for Self-Healing

RPA

3.1 Telemetry and Event Capture Layer

The foundation of self-healing capabilities rests on

comprehensive telemetry collection across all

automation touchpoints. Every bot execution

generates temporal event streams capturing selector

resolution outcomes, response time distributions,

exception classifications, and transaction state

transitions. The telemetry layer instruments not

only the RPA runtime but also target applications,

middleware components, and data sources involved

in end-to-end workflows.

Real-time monitoring frameworks leverage

artificial intelligence algorithms to process

continuous data streams from distributed

automation environments. Convolutional neural

networks analyze temporal patterns in execution

telemetry to identify anomalous behaviors

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

61

indicative of emerging failures [3]. Recurrent

architectures maintain memory of historical

execution states to detect gradual performance

degradation. Deep learning models extract features

from raw telemetry without requiring manual

pattern specification. Edge computing deployments

enable local analysis to reduce latency in failure

detection workflows [3].

Event schemas provide a framework for storing

metadata such as process identifiers, step

sequences, resource consumption metrics, and

environmental context, like queue depths and

system loads. Time series forecasting models are

used to predict future resource requirements on the

basis of past utilization trends. Anomaly detection

algorithms are used to identify deviations from the

expected operational baselines [3]. This

instrumentation enables correlation analysis

between infrastructure conditions and failure

patterns, establishing causality rather than mere

temporal associations. Predictive analytics

capabilities transform reactive monitoring into

proactive failure prevention strategies.

3.2 Diagnostic Engine

The diagnostic engine consumes telemetry streams

through real-time processing pipelines that apply

pattern matching, statistical deviation detection, and

sequence analysis algorithms. When an automation

step fails, the engine examines recent event history

to classify the failure type. Selector mismatches

indicate UI changes. Timeouts suggest downstream

latency issues. Data validation rejections point to

format inconsistencies. Authorization failures

signal credential expiration.

Machine learning approaches address fault

detection and diagnosis challenges inherent in

complex automation ecosystems. Supervised

learning algorithms require labeled training datasets

containing historical failure instances with verified

root cause annotations [4]. Classification models

distinguish between different failure categories

based on telemetry feature vectors. Support vector

machines establish decision boundaries separating

distinct fault types in high-dimensional feature

spaces. Random forest ensembles combine multiple

decision trees to improve classification robustness

against noisy input data [4].

Unsupervised learning techniques identify novel

failure patterns absent from historical training

repositories. Clustering algorithms group similar

failure signatures without prior category

definitions. Dimensionality reduction methods

project high-dimensional telemetry into

interpretable feature spaces [4]. Semi-supervised

approaches leverage small labeled datasets

augmented with abundant unlabeled execution logs

to improve model generalization. The diagnostic

output includes not only failure categorization but

also confidence scores and recommended

remediation strategies ranked by success

probability based on past recovery outcomes.

Deep neural architectures process sequential

telemetry data to capture temporal dependencies in

failure evolution patterns. Long short-term memory

networks maintain context across extended

execution traces [4]. Attention mechanisms focus

diagnostic analysis on the most informative

telemetry segments. Transfer learning adapts

models trained on general fault detection tasks to

specific financial automation contexts with limited

domain-specific training data.

4. Intelligent Recovery Mechanisms

4.1 Adaptive Selector Management

Interface element identification represents a

primary fragility vector in RPA systems.

Applications undergo frequent updates that modify

DOM structures, CSS class assignments, and

accessibility properties without notification to

automation maintainers. The adaptive selector

management subsystem addresses this challenge

through multi-strategy element location. Rather

than relying on single identifiers, the recovery

mechanism maintains selector hierarchies with

fallback chains spanning XPath expressions, CSS

selectors, relative positioning logic, and OCR-based

text recognition.

Similarity-based localization techniques address

element identification challenges when traditional

selector strategies fail. Visual similarity metrics

compare current interface states against reference

screenshots to identify target elements despite

structural changes [5]. Textual content matching

algorithms locate elements through semantic

analysis of visible text labels and surrounding

context. Structural similarity computation analyzes

DOM tree patterns to find elements occupying

equivalent positions in modified interface

hierarchies [5].

When the primary selector fails, the system

systematically attempts alternatives while

validating element properties against expected

characteristics. Hierarchical fallback mechanisms

progress through increasingly flexible matching

criteria. Exact attribute matches provide the highest

confidence identification. Partial attribute matching

tolerates minor variations in element properties.

Positional similarity considers spatial relationships

between interface components [5]. Successful

recoveries update the selector preference ordering,

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

62

creating learning loops that optimize future

identification attempts. Machine learning models

learn from successful recovery patterns to predict

optimal selector strategies for specific application

contexts.

4.2 Exception Routing Logic

Not all failures warrant automated recovery

attempts. The routing subsystem evaluates

diagnostic outputs against predefined recoverability

criteria to determine appropriate response

pathways. Exception intelligence frameworks

classify failures into distinct typologies based on

root cause characteristics and resolution

requirements [6]. Transient network failures trigger

exponential backoff retry sequences with jitter to

avoid synchronized load spikes. Data format

mismatches invoke transformation routines that

normalize inputs according to schema definitions

maintained in the configuration repository.

Playbook-based resolution systems codify recovery

procedures for recurring failure patterns

encountered in production environments. Structured

playbooks document diagnostic steps, remediation

actions, and escalation criteria for each exception

category [6]. Real-time resolution engines execute

playbook instructions automatically when

exception patterns match predefined signatures.

Decision logic evaluates contextual factors,

including failure frequency, business impact

severity, and available recovery resources, to select

appropriate response strategies [6].

Authentication errors activate credential refresh

procedures that interact with secrets management

infrastructure. Structural failures indicating

application logic changes bypass automated

remediation and route incident tickets to

development teams with contextual diagnostic

information. Intelligent routing distinguishes

between exceptions amenable to autonomous

resolution and those requiring human expertise [6].

This classification prevents futile recovery loops

and ensures resources focus on genuinely

resolvable conditions. Feedback mechanisms

capture resolution outcomes to refine exception

typologies and improve routing accuracy over time.

5. Implementation in Financial Operations

Transaction Processing Workflows

Payment processing automation frequently

encounters failures during gateway interactions,

clearing system communications, and ledger

updates. Self-healing architectures embed recovery

logic at each integration boundary. When payment

gateway APIs return timeout errors, the system

verifies transaction status through reconciliation

endpoints before attempting resubmission,

preventing duplicate charges.

Fault-tolerant distributed system principles govern

transaction processing reliability in financial

automation environments. Atomic commitment

protocols ensure transaction consistency across

multiple participating systems [7]. Partial failures

require coordinated recovery mechanisms that

maintain system-wide coherence. Byzantine failure

modes complicate recovery logic when subsystems

exhibit arbitrary incorrect behaviors rather than

simple crash failures [7]. Recovery algorithms must

distinguish between permanent component failures

requiring failover and transient faults amenable to

retry strategies.

Clearing system connectivity losses activates queue

persistence mechanisms that buffer transactions

locally until network paths are restored,

maintaining processing continuity without data

loss. Ledger update failures trigger compensating

transaction protocols that reverse partial entries and

re-execute complete transaction sequences

atomically. Checkpointing strategies capture

consistent global states, enabling rollback to

known-good configurations following cascading

failures [7]. Message ordering guarantees prevent

transaction sequence violations during recovery

operations. Idempotency enforcement ensures

duplicate message delivery does not compromise

financial accuracy.

5.1 Reconciliation and Validation Processes

Automated account reconciliation should be

capable of managing situations where the data

source is unavailable, changes in schema, and

variations in calculation logic. Recovery

mechanisms cache reference data with staleness

awareness, enabling reconciliation to proceed using

recently validated snapshots when source systems

become unreachable. Data-centric architectural

patterns establish unified data foundations

supporting reconciliation workflows across

heterogeneous financial systems [8].

Platform integration challenges arise from disparate

data models, inconsistent semantics, and varying

update frequencies across enterprise financial

applications. Modern architectures implement

abstraction layers that normalize data

representations and provide consistent access

interfaces regardless of underlying source system

characteristics [8]. Real-time data pipelines enable

continuous reconciliation rather than batch-oriented

overnight processes. Event-driven architectures

propagate financial state changes immediately to

dependent systems.

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

63

Schema mismatches invoke adaptive parsers that

attempt field mapping through semantic analysis of

column headers and data patterns. Data governance

frameworks establish canonical data models

defining standard representations for financial

entities across the enterprise [8]. Metadata registries

document schema relationships and transformation

logic connecting source systems to consolidated

views. When calculation discrepancies exceed

tolerance thresholds, diagnostic routines compare

algorithm versions between reconciliation bots and

source systems, flagging logic drift for manual

review while isolating affected accounts to prevent

batch failures.

Integration platforms provide orchestration

capabilities, coordinating data flows between

transaction processing systems, reconciliation

engines, and reporting applications [8]. API

management layers standardize access patterns and

enforce consistency requirements. The shift in

systems layout from standalone programs to

interconnected information-centric systems

considerably improves reconciliation reliability as it

reduces the complexity of point-to-factor

integrations.

6. Reliability Engineering and Continuous

Optimization

6.1 Monitoring Infrastructure

Sustained self-healing capability requires

observability infrastructure that exposes not only

traditional uptime metrics but also recovery success

rates, failure classification accuracy, and

remediation latency distributions. Monitoring

dashboards visualize healing efficacy through time

series displaying manual intervention frequency,

automated recovery attempt outcomes, and residual

failure categories.

Measuring autonomy levels in self-healing systems

requires objective frameworks based on observable

behavioral characteristics rather than architectural

assumptions. Autonomy assessment methodologies

evaluate system capabilities across multiple

dimensions, including decision-making

independence, environmental adaptation, and self-

maintenance proficiency [9]. Observable behaviors

provide empirical evidence of autonomous

operation. Action selection without human

guidance demonstrates decision autonomy.

Environmental response patterns reveal adaptation

capabilities. Self-correction behaviors indicate

maintenance autonomy [9].

Alert thresholds trigger when recovery success

rates degrade, indicating either environmental

changes requiring selector updates or new failure

modes absent from diagnostic training data.

Behavioral monitoring captures system responses to

failure conditions across temporal sequences.

Autonomy metrics quantify the degree to which

systems operate independently during disruption

scenarios [9]. Performance degradation patterns

signal when autonomous capabilities require

enhancement through additional training data or

refined decision logic.

6.2 Iterative Learning Framework

The architecture incorporates feedback loops that

capture recovery outcome data for continuous

model refinement. Successful automated

remediations update precedent libraries that inform

future diagnostic recommendations. Recovery

failures generate training samples that enhance

classification models and expand remediation

strategy repositories. Continual learning

frameworks address the challenge of maintaining

model performance as operational environments

evolve [10].

Industrial applications confront concept drift

phenomena where data distributions shift gradually

due to changing business processes, system

upgrades, and external market conditions. Static

models trained on historical data exhibit degrading

accuracy when confronted with novel patterns

absent from original training sets [10]. Catastrophic

forgetting occurs when neural networks lose

previously acquired knowledge upon training with

new data samples. Continual learning architectures

mitigate this limitation through memory replay

mechanisms and dynamic network expansion

strategies [10].

Periodic analysis identifies failure pattern clusters

that suggest systemic issues requiring architectural

modifications rather than tactical recovery logic.

This iterative improvement cycle ensures self-

healing capabilities evolve in tandem with

operational environment changes. Experience

replay buffers maintain representative samples from

historical failure distributions to prevent knowledge

erosion during model updates [10]. Elastic weight

consolidation techniques protect important neural

network parameters corresponding to previously

learned failure patterns. Progressive neural

architectures dynamically allocate additional

capacity for emerging failure categories while

preserving existing classification capabilities [10].

Task-specific adaptation layers enable specialized

handling of distinct failure contexts without

requiring complete model retraining.

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

64

Table 1. Architectural Components of Self-Healing RPA Framework: Telemetry Capture and Diagnostic Processing

Elements [3, 4].

Component Function Key Capabilities

Telemetry Layer
Event stream

capture

Selector resolution tracking, response time monitoring, exception

classification, transaction state logging

Event Schema
Metadata

management

Process identifiers, step sequences, resource metrics, queue depths,

system loads

Diagnostic

Engine

Failure

classification

Pattern matching, statistical deviation detection, sequence analysis,

confidence scoring

Processing

Pipeline

Real-time

analysis

Convolutional neural networks for temporal patterns, recurrent

architectures for historical states

Classification

Logic

Root cause

determination

Decision trees distinguishing selector mismatches, timeouts,

validation failures, and authorization errors

Table 2. Recovery Mechanism Strategies and Implementation Approaches, Adaptive Selector Management and

Exception Routing Frameworks [5, 6].

Recovery Strategy Application Context Operational Characteristics

Hierarchical

Selectors

Interface element

identification

XPath expressions, CSS selectors, relative positioning, and

OCR-based recognition

Similarity-Based

Localization

Dynamic interface

adaptation

Visual similarity metrics, textual content matching, and

structural similarity computation

Exponential Backoff
Transient network

failures

Progressive retry intervals with random jitter, preventing

synchronized load spikes

Schema

Normalization

Data format

mismatches

Transformation routines supporting regional formats, encoding

variations, and currency symbols

Credential Refresh
Authentication

failures

Token renewal workflows interacting with secrets

management infrastructure

Incident Escalation Structural defects
Automated ticket generation with diagnostic context for

development teams

Table 3. Financial Operations Implementation Patterns Transaction Processing and Reconciliation Automation

Scenarios [7, 8].

Financial Process Failure Scenarios Self-Healing Response

Payment Gateway

Integration

Timeout errors,

connectivity loss

Transaction status verification, duplicate charge prevention,

and idempotency enforcement

Clearing System

Communication
Network disruptions

Queue persistence with durable storage, circuit breaker

patterns, and controlled replay mechanisms

Ledger Updates
Partial transaction

failures

Compensating transaction protocols, two-phase commit

coordination, saga pattern implementation

Account

Reconciliation

Data source

unavailability

Reference data caching with staleness tracking, time-to-live

metadata management

Schema Evolution

Handling

Field mapping

inconsistencies

Natural language processing for column analysis, type

inference from sample values

Calculation

Validation

Algorithm version

drift

Version control integration, discrepancy threshold

monitoring, and affected account isolation

Table 4. Continuous Optimization Framework Components, Monitoring Infrastructure, and Iterative Learning

Mechanisms [9, 10].

Framework

Element
Measurement Focus Optimization Technique

Observability

Infrastructure

Recovery success rates,

classification accuracy

Multi-threshold escalation policies, anomaly detection

algorithms, and service level tracking

Behavioral

Monitoring
Autonomy level assessment

Decision-making independence, environmental

adaptation, and self-maintenance proficiency

Feedback Loops Recovery outcome capture
Precedent library updates, training sample generation, and

model refinement cycles

Continual

Learning
Concept drift mitigation

Experience replay buffers, elastic weight consolidation,

progressive neural architectures

Pattern Clustering Systemic issue identification
Failure mode taxonomy expansion, architectural

modification triggers

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

65

Transfer Learning Domain adaptation
Model reuse across automation contexts, accelerated

capability development

7. Conclusions

The architectural framework presented establishes

practical pathways for financial institutions seeking

to enhance automation reliability through

autonomous healing capabilities. Traditional RPA

deployments remain vulnerable to environmental

perturbations absent integrated diagnostic and

recovery logic. Interface volatility, infrastructure

fluctuations, and data evolution create operational

fragility requiring manual intervention. Self-healing

architectures go beyond the matter of fixed

automation logic and changing operational

contexts. Smartness incorporated in the systems

enables them to detect anomalies, figure out root

causes, and execute the corrective actions without

the help of a human. Finance processes, in

particular, are made to be very efficient with this

kind of system as they experience less downtime,

and their workflow continuity improves. Payment

processing workflows maintain transactional

integrity through verification protocols, preventing

duplicate charges. Reconciliation systems adapt to

data source unavailability and schema evolution

through intelligent caching and adaptive parsing.

Reliability engineering practices establish

comprehensive observability spanning traditional

uptime metrics alongside recovery success rates

and diagnostic accuracy measurements. Continuous

learning frameworks ensure capabilities evolve

through feedback loops capturing production

outcomes. Machine learning models refine

classification logic and expand remediation strategy

repositories over time. Future advancements will

enhance diagnostic intelligence through broader

failure taxonomies and cross-process coordination

mechanisms. Standardized reliability metrics will

enable objective automation maturity comparisons

across organizations. As financial automation

scales in complexity, self-healing capabilities

transition from competitive advantages to

operational necessities. Sustained service quality

and regulatory compliance increasingly depend on

autonomous recovery mechanisms maintaining

workflow continuity despite environmental

disruptions.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Shashank Pasupuleti, "Robotic Process Automation

for Enhancing Workflow Automation in Multi-

System Environments," Journal of Advances in

Developmental Research (IJAIDR), 2024. [Online].

Available:

https://www.ijaidr.com/papers/2024/1/1134.pdf

[2] Jay Patel and Harshal Shah, "SOFTWARE

ENGINEERING REVOLUTIONIZED BY

MACHINE LEARNING-POWERED SELF-

HEALING SYSTEMS," IRJEAS, 2021. [Online].

Available: https://www.irjeas.org/wp-

content/uploads/admin/volume9/V9I1/IRJEAS04V

9I101210321000008.pdf

[3] WILLIAM VILLEGAS-CH et al., "Toward

Intelligent Monitoring in IoT: AI Applications for

Real-Time Analysis and Prediction," IEEE Access,

2024. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumb

er=10471529

[4] Angelos Angelopoulos et al., "Tackling Faults in the

Industry 4.0 Era—A Survey of Machine-Learning

Solutions and Key Aspects," MDPI, 2020.

[Online]. Available: https://www.mdpi.com/1424-

8220/20/1/109

[5] MICHEL NASS et al., "Similarity-based Web

Element Localization for Robust Test Automation,"

ACM, 2023. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3571855

[6] Ashish Patil et al., "Exception Intelligence in High-

Risk and High-Velocity Supply Chains: Typology,

Playbooks, and Real-Time Resolution Systems,"

Journal of Advances in Developmental Research

(IJAIDR), 2025. [Online]. Available:

https://www.ijaidr.com/papers/2025/2/1475.pdf

[7] Flavin Cristian, "Understanding Fault-Tolerant

Distributed Systems," Communications of the

ACM, 1991. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/102792.102801

[8] Nilima James Rodrigues, "Transforming enterprise

finance with data-centric architectures and platform

integration," World Journal of Advanced

https://www.ijaidr.com/papers/2024/1/1134.pdf
https://ieeexplore.ieee.org/document/9583421
https://ieeexplore.ieee.org/document/9583421
https://www.irjeas.org/wp-content/uploads/admin/volume9/V9I1/IRJEAS04V9I101210321000008.pdf
https://www.irjeas.org/wp-content/uploads/admin/volume9/V9I1/IRJEAS04V9I101210321000008.pdf
https://ieeexplore.ieee.org/document/9178634
https://ieeexplore.ieee.org/document/9178634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10471529
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10471529
https://ieeexplore.ieee.org/document/9721483
https://ieeexplore.ieee.org/document/9721483
https://www.mdpi.com/1424-8220/20/1/109
https://dl.acm.org/doi/pdf/10.1145/3571855
https://www.ijaidr.com/papers/2025/2/1475.pdf
https://dl.acm.org/doi/pdf/10.1145/102792.102801

Ravindra Reddy Madireddy / IJCESEN 12-1(2026)59-66

66

Engineering Technology and Sciences, 2025.

[Online]. Available:

https://www.researchgate.net/profile/Nilima-

Rodrigues/publication/392764243

[9] Jason M. Pittman, "A MEASURE FOR LEVEL OF

AUTONOMY BASED ON OBSERVABLE

SYSTEM BEHAVIOR," arXiv, 2024. [Online].

Available: https://arxiv.org/pdf/2407.14975

[10] Jibinraj Antony et al., "Adapting to Changes: A

Novel Framework for Continual Machine Learning

in Industrial Applications," J Grid Computing,

2024. [Online]. Available:

https://link.springer.com/content/pdf/10.1007/s107

23-024-09785-z.pdf

https://www.researchgate.net/profile/Nilima-Rodrigues/publication/392764243_Transforming_Enterprise_Finance_with_Data-Centric_Architectures_and_Platform_Integration/links/6851db9826f43051a58141d5/Transforming-Enterprise-Finance-with-Data-Centric-Architectures-and-Platform-Integration.pdf
https://www.researchgate.net/profile/Nilima-Rodrigues/publication/392764243_Transforming_Enterprise_Finance_with_Data-Centric_Architectures_and_Platform_Integration/links/6851db9826f43051a58141d5/Transforming-Enterprise-Finance-with-Data-Centric-Architectures-and-Platform-Integration.pdf
https://ieeexplore.ieee.org/document/10156234
https://ieeexplore.ieee.org/document/10156234
https://ieeexplore.ieee.org/document/10423567
https://ieeexplore.ieee.org/document/10423567
https://link.springer.com/content/pdf/10.1007/s10723-024-09785-z.pdf
https://link.springer.com/content/pdf/10.1007/s10723-024-09785-z.pdf

