

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 109-116
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Becoming a Cloud-Native Architect in the LLM Era: Skills, Tools, and Mindset

for the Next Generation

Naveen Kumar Jayakumar*

 Independent Researcher, USA
* Corresponding Author Email: naveenkumar.jayakumar@gmail.com- ORCID: 0000-0002-0047-9950

Article Info:

DOI: 10.22399/ijcesen.4694

Received : 30 October 2025

Revised : 25 December 2025

Accepted : 29 December 2025

Keywords

cloud-native architecture,

distributed systems,

container orchestration,

microservices,

infrastructure-as-code,

strategic leadership

Abstract:

Cloud-native approaches have reshaped the software architect’s role from producing

static designs to guiding decisions in complex distributed systems. In the LLM and AI

era, architects increasingly treat foundation models as production dependencies, which

introduces probabilistic behavior, new security threats [14], and operational quality

metrics beyond availability and latency. This evolution demands both deep technical

expertise, including containerized workloads, microservices, transient infrastructure,

Kubernetes orchestration, service mesh, infrastructure-as-code, observability, and

practical AI and LLM systems knowledge, including retrieval architectures and AI agent

architectures, and strong organizational capability for collaboration and strategic

decision-making. Effective practice relies on distributed-systems patterns for

consistency, fault tolerance, and resilience, and on cross-functional leadership with

product, security, and business stakeholders. Skill growth is reinforced through structured

design reviews, platform engineering work, incident response, open-source contributions,

and internal platform development. Core technologies typically include Kubernetes,

service mesh implementations, automation tooling, observability stacks, CI/CD

frameworks, and AI and LLM infrastructure for model serving, vector search or retrieval

components, and agent orchestration. Operating at the intersection of technology and

business strategy, cloud-native architects must also define and run AI quality and safety

objectives, for example factuality and hallucination reduction, robustness, privacy, and

security, supported by evaluation pipelines and governance controls [11, 12, 14, 19].

1. Introduction

Enterprise adoption of cloud-native models has

redefined the software architect from author of static

blueprints to strategic leader for distributed,

containerized, and transient systems. The shift from

monoliths to microservices, serverless functions,

and event-driven architectures demands new

approaches to scalability, resilience, and delivery

velocity [1, 17]. A second shift is underway: LLMs

are being embedded in products and internal

workflows, turning architecture into a hybrid of

deterministic services and probabilistic reasoning

components. This expands the architect’s scope to

model selection, data boundaries, and operational

quality management for AI outputs. Unlike classic

service dependencies, LLM failures can be silent,

quality can degrade without clear error signals, and

behavior can change with model updates or prompt

revisions. Architects therefore need controls for

evaluation and safe rollout of prompts, retrieval

indexes, and model versions, comparable to how

CI/CD governs code releases [12, 16].

Cloud-native platforms, such as container

orchestration, service meshes, and infrastructure-as-

code, introduce trade-offs, requiring deep

distributed-systems expertise plus the organizational

skill to drive cross-functional alignment and

strategic decisions [1, 12]. Automation is

foundational: IaC enables declarative provisioning,

consistent deployments across environments, and

fewer manual configuration errors [2]. Scalability

increasingly relies on horizontal elasticity rather

than vertical scaling typical of earlier architectures.

Containerization improves portability and

consistency, while managed containerization

services automate deployment, scaling, and lifecycle

management, helping systems remain available

despite component failures. Effective architectures

emphasize fault tolerance, observability, and rapid

iteration through continuous integration and

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

110

deployment. Architects must also manage service

communication, consistency tradeoffs, cost

tradeoffs, and failure isolation, applying patterns

such as eventual consistency, circuit breakers, and

bulkheads to improve resilience under stress [1, 12].

This framework supports senior engineers

transitioning into cloud-native architecture roles by

summarizing the critical skills, practical

development pathways, and toolsets needed to stay

effective in fast-changing environments. In AI-

enabled systems, automation must also include

guardrails, policy enforcement, and auditability to

prevent unsafe or non-compliant outputs from

propagating through business workflows.

2. Core Technical Competencies for Cloud-

Native Architecture

The basis of a successful cloud-native architecture

lies in a deep comprehension of distributed systems

concepts and their practical application within

contemporary technology stacks. Modern architects

need to showcase their ability to create systems that

address the natural issues of network splits, eventual

consistency, and service dependencies while taking

advantage of horizontal scalability and fault

isolation. Contemporary cloud-native architecture

highlights essential characteristics, such as

resilience, observability, and automation, that

constitute the foundation of successful distributed

system implementations [3]. Container orchestration

is a vital skill set, with Kubernetes acting as the

established benchmark for overseeing containerized

tasks on a large scale. Cloud-native architectures

emphasize containerization as a core design

principle, allowing applications to attain portability

across various environments while preserving

uniform runtime characteristics [3]. Architects need

to grasp not only the operational elements of cluster

management but also the architectural effects of pod

networking, service discovery, and resource

allocation methods via thorough platform

engineering techniques. Proficiency in

infrastructure-as-code has become crucial for

architects who need to connect development and

operations teams. Cloud-native systems increasingly

rely on infrastructure as code (IaC), managing and

provisioning infrastructure through machine-

readable definition files and reusable scripts, rather

than manual configuration or interactive

configuration tools [4]. Terraform, AWS

CloudFormation, AWS CDK and Azure Resource

Manager are tools that facilitate the codification of

infrastructure specifications, enabling architects to

version, test, and implement infrastructure

modifications with the same level of rigor as

application code via automated provisioning

workflows. The same rigor is now needed for

prompts, retrieval configurations, and evaluation

datasets and architects should treat them as

versioned artifacts with review, testing, and

controlled rollout. Service mesh technologies

constitute a vital area of knowledge for handling the

complexities of service-to-service communication.

Contemporary cloud-native architectures utilize

service mesh patterns to manage cross-cutting

concerns like service discovery, load balancing, and

enforcing security policies without needing changes

at the application level [9]. These platforms offer

essential functions for managing traffic and

monitoring instrumentation while ensuring loose

coupling among services via abstracted

communication layers. In AI systems, a similar

platform layer often emerges as a model gateway,

standardizing authentication, rate limits, caching,

model routing, and safety filtering, while avoiding

ad hoc direct calls to model providers across teams.

Metrics, logs, and traces are core observability

signals in cloud-native systems, so architects should

plan and instrument them early in development as

part of the monitoring strategy [18]. For LLM-

enabled flows, observability should capture prompt,

retrieval, and tool-decision traces, and apply

redaction and data minimization to reduce data

leakage risk [12]. Cloud-native observability

surpasses conventional monitoring methods by

employing distributed tracing, real-time metrics

gathering, and centralized log aggregation, offering

comprehensive insight into system performance

across microservices architectures. Architects need

to create observability frameworks that facilitate

quick incident identification and resolution, while

also aiding in ongoing performance enhancement

and capacity planning efforts. Scalability and

elasticity are essential traits of cloud-native

architectures, allowing systems to flexibly modify

resource allocation in response to varying demand

patterns [3, 18]. Contemporary cloud-native systems

utilize horizontal scaling strategies that

automatically allocate and release resources

according to workload demands, guaranteeing

efficient resource utilization while preserving

performance levels. Architects need to create

systems that enable independent scaling of

individual components, facilitating detailed resource

optimization and cost control within distributed

application collections.

2.1 LLM System Design Competencies

Cloud-native architects increasingly design systems

that combine microservices with LLM components

such as retrieval, tool execution, and policy checks.

Core competencies include retrieval-augmented

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

111

generation (ingestion, chunking, embeddings, vector

search) [14], tool calling patterns (function routing,

permissions, sandboxing), and fallback strategies

that preserve correctness when model confidence is

low. As AI agent complexity grows, developer

tooling increasingly emphasizes workflow

debugging and evaluation, treating agent behaviors

as testable artifacts that must be regression-checked

across changes in prompts, tools, retrieval, and

model versions [19].

3. Strategic Leadership and Organizational

Influence

Cloud-native architects function where technology

meets business strategy, necessitating an advanced

comprehension of how architectural choices

influence organizational goals, team interactions,

and the speed of product development. This strategic

aspect reaches well past technical design, involving

the skill to express the business benefits of

architectural investments and synchronize technical

roadmaps with changing market demands through

thorough stakeholder engagement activities. In the

AI era, stakeholder engagement expands to include

legal, privacy, risk, and customer trust functions.

Architects must define acceptable use policies, data

handling rules, and escalation paths for unsafe

outputs, and ensure AI features meet measurable

quality and safety criteria before broad rollout.

Systems thinking serves as an essential cognitive

framework for cloud-native architects, allowing

awareness of intricate interconnections among

technology selections, organizational arrangements,

and operational workflows. Decision frameworks

should cover model sourcing (hosted vs self-hosted),

tenant isolation for retrieval, data residency

constraints, and exit strategies to reduce model

vendor lock-in and revalidation costs when models

change. Technical guidance and knowledge sharing

are essential duties for senior architects, who need to

nurture the upcoming generation of cloud-native

professionals while setting architectural benchmarks

and best practices throughout engineering teams. As

technical professionals move up the organizational

ladder, the cultivation of soft skills, such as

mentoring abilities, becomes vital, with effective

leadership strongly linked to the growth of

interpersonal skills. This includes formulating

organized methods for design evaluations,

generating documentation that records technical

details and reasoning behind decisions, and

promoting environments of ongoing learning that

allow teams to adjust to advancing technologies and

practices. Collaboration skills across functions are

crucial for architects, as they need to engage

successfully with product managers, security teams,

compliance, and business stakeholders to convert

business needs into technical solutions. Soft skills

such as communication and teamwork strongly

affect leadership effectiveness and are often

underemphasized in technical careers. This

necessitates creating communication strategies that

can explain intricate technical ideas to non-technical

audiences while integrating business limitations and

goals into architectural planning methods via

systematic requirement analysis. The capability to

achieve agreement on architectural choices becomes

more crucial as systems become more complex and

the number of stakeholders rises. Architects need to

cultivate negotiation and facilitation abilities to

navigate competing priorities, resource limitations,

and differing technical viewpoints while ensuring

sustained architectural consistency and system

upkeep by utilizing thorough decision-making

frameworks.

AI-driven systems raise the need for negotiation and

clear communication because quality, safety, and

compliance trade-offs are often ambiguous and

cross-functional by nature.

4. Practical Pathways for Architectural Skill

Development

Moving from a senior engineer to a cloud-native

architect requires deliberate practice and structured

exposure to progressively more complex design

problems. Career-development guides and training

resources suggest that candidates for cloud

architecture roles must build a broad skill set that

combines deep technical knowledge with business

insight and leadership capabilities [5]. A useful way

to structure this growth is to pair theory with

recurring practice loops that resemble real

architectural work, design reviews, operational

learning, and platform delivery.

Design reviews are a particularly effective

mechanism for developing architectural judgment.

They force clarity on the true system needs, create a

venue to compare competing approaches, and make

trade-offs explicit across architectural styles. At the

same time, strategic skill development frameworks

emphasize ongoing learning in cloud-native

technologies, where organizations increasingly

adopt structured learning pathways that combine

conceptual understanding with hands-on

implementation [6]. These pathways naturally

surface the kind of decisions architects repeatedly

face in production, including API design, multi-

tenancy considerations, and operational tooling

choices.

Operational exposure is another core pathway.

Incident analysis and post-mortem evaluations teach

failure modes in distributed systems and reveal

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

112

whether resilience patterns work under real load and

real constraints. Architects who participate in

incident response and root cause analysis sharpen

troubleshooting and problem-solving skills, develop

intuition for system behavior under pressure, and

learn to identify architectural weaknesses before

they appear as production failures. Sustained

improvement here depends on repeated engagement

with operational challenges and disciplined

documentation of lessons learned.

AI-oriented skill development fits best when it is

treated as part of the same “design, operate,

improve” loop rather than as a separate topic

sprinkled throughout. A practical learning exercise

is to build an internal RAG service end to end,

including ingestion, indexing, access control, and

evaluation. Security and misuse testing should be

practiced explicitly through prompt-injection and

tool-misuse exercises [12, 15]. Finally, the

development workflow should shift toward

evaluation-driven development, so that every change

to a model, prompt, or retrieval component is

accompanied by regression results and rollout gates,

similar to how teams govern code releases [8, 10,

16]. These practices align AI work with the same

reliability mindset expected in mature cloud-native

systems.

Community participation and internal platform work

provide additional force multipliers for skill growth.

Contributing to open-source projects, especially

cloud-native infrastructure, exposes architects to

large-scale design constraints, collaborative

development practices, and real ecosystem trade-

offs [6]. Projects such as Kubernetes, Envoy, and

other CNCF efforts [20] show how experienced

engineers design for operability, extensibility, and

safe change in complex systems. In parallel, internal

platform engineering projects provide a high-

leverage environment for applying cloud-native

principles to real organizational needs, often

requiring security controls, automation frameworks,

and scalability patterns that closely reflect

production realities [6]. These roles also strengthen

interpersonal skills that matter for architectural

leadership, because influence is exercised through

alignment, mentorship, and cross-team coordination

rather than direct authority.

To keep AI concerns integrated with operational

readiness, architects should also run AI incident

drills and treat them as first-class postmortem topics.

Examples include hallucination spikes after a

retrieval change, silent quality regressions after a

model upgrade, or data leakage risks caused by over-

permissive tool access. When these scenarios are

practiced alongside standard distributed-systems

incidents, the overall skill-development program

becomes more coherent, and AI reliability becomes

an extension of established cloud-native engineering

discipline rather than a separate track.

5. Essential Tools and Technologies for Modern

Cloud-Native Architects

Modern cloud-native environments span a broad

toolchain, so architects need depth in foundational

platforms and practical fluency with the surrounding

ecosystem. Contemporary cloud-native applications

commonly rely on containerization, microservices,

and orchestration to achieve scalability and

resilience [3]. Kubernetes remains the dominant

orchestration layer across clouds, serving as the de

facto control plane for scheduling and operating

containerized workloads. For architects, the

competency is not limited to deploying workloads, it

also includes understanding Kubernetes extensibility

through custom resources, operators, and admission

controllers, which enable policy enforcement and

advanced automation at platform scale.

As microservices proliferate, service-to-service

communication becomes a primary operational

concern. Service mesh technologies have emerged as

key infrastructure for managing these interactions,

providing consistent traffic management, security,

and observability at service boundaries [3]. Istio

offers a broad feature set for traffic control, identity

and policy enforcement, and telemetry generation,

enabling standardized inter-service behaviors that

can improve reliability across heterogeneous

services. Lighter-weight meshes such as Linkerd are

often adopted when teams want simpler operational

overhead while still gaining uniform mTLS and

baseline traffic and telemetry capabilities.

In some environments, organizations opt for cloud-

managed service mesh offerings such as AWS App

Mesh and similar provider-specific solutions. These

reduce operational burden by shifting parts of

lifecycle management to the cloud provider, but they

can raise strategic concerns related to portability and

vendor lock-in. The same portability trade-off

appears in infrastructure provisioning.

Infrastructure-as-code turns infrastructure changes

into automated, version-controlled workflows, with

Terraform commonly used as a multi-cloud

declarative option for provisioning and managing

infrastructure consistently. Cloud-native alternatives

such as AWS CloudFormation, Azure Resource

Manager, and Google Cloud Deployment Manager

offer tighter platform integration, but can reduce

portability and require explicit consideration in

multi-cloud strategies.

Operating cloud-native systems at scale depends on

strong observability and disciplined release

processes. Observability platforms provide the

foundation for understanding system behavior,

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

113

diagnosing failures, and identifying performance

bottlenecks in distributed settings. Principles of

cloud-native architecture emphasize comprehensive

monitoring and logging for reliability and

performance [8]. In Kubernetes ecosystems,

Prometheus is widely adopted for metrics collection,

often paired with Grafana for visualization and

Alertmanager for routing and notification.

Commercial platforms such as Datadog, New Relic,

and Splunk provide unified observability suites with

advanced analytics, at the cost of higher spend and

potential vendor dependence.

CI/CD systems must also scale with multi-service

architectures and infrastructure complexity. Cloud-

native development practices rely on robust

pipelines that build and deliver containerized

services while automating infrastructure changes

[3]. Tools such as GitLab CI/CD, GitHub Actions,

and Jenkins support flexible pipeline definitions,

while platforms such as Argo CD and Flux

operationalize GitOps, treating Git as the source of

truth for desired application and infrastructure state.

GitOps aligns with cloud-native principles by

emphasizing declarative configuration, versioned

releases, and auditable operational control.

AI workloads introduce additional platform

requirements that are best treated as a cohesive layer

rather than scattered, service-specific additions. At

the infrastructure level, accelerator-backed

workloads often require accelerator-aware

scheduling, isolation, and cost controls,

implemented through practices such as separate

node pools, quota management, and multi-region

inference strategies. At the platform level, architects

should standardize an AI layer that includes a model

gateway (authentication, routing, caching, rate

limiting), retrieval infrastructure for indexing

pipelines and vector search [14], evaluation and

prompt management (versioning, test suites) [16],

release management controls (safe rollout and

rollback) [8], and safety controls such as policy

checks, redaction, and content filtering [10, 12].

Treating these capabilities as shared platform

services reduces duplication, improves governance,

and makes AI behaviors more testable and operable

across the organization.

5.1 AI Platform Layer Tools

Modern cloud-native platforms increasingly include

an AI layer composed of a model gateway (auth,

routing, caching, rate limits), retrieval infrastructure

(indexing pipelines and vector search) [14],

evaluation and prompt management (versioning, test

suites) [16], release management controls (safe

rollout and rollback) [8], and safety controls (policy

checks, redaction, content filters) [10, 13].

Architects should select these as platform

capabilities rather than ad hoc libraries embedded

inconsistently across services.

For agentic applications, orchestration frameworks

such as LangGraph provide a graph-based runtime

for building and operating long-running, stateful

agent workflows, including durable execution and

human-in-the-loop checkpoints, which helps

standardize and govern tool-calling loops across

teams [21].

Table 1: Cloud-Native and LLM-Era Transition Components [1, 2, 10, 12, 13, 14]
Component

Category

Traditional

Approach

Cloud-Native Approach Key Benefits

Infrastructure

Management

Manual

Configuration

Infrastructure-as-Code Consistency, Version

Control

Application Scaling Vertical Scaling Horizontal Scaling Dynamic Resource

Allocation

Deployment Strategy Monolithic

Releases

Containerized Microservices Fault Isolation, Portability

System Resilience Single Point of

Failure

Distributed Fault Tolerance High Availability

Application Behavior Deterministic

workflows

Hybrid deterministic plus

LLM reasoning

Faster iteration, richer UX,

new quality risks

Data Foundation Relational,

structured

Structured plus unstructured,

embeddings, retrieval indexes

Better answers, provenance

and access control required

Security Threats AppSec, IAM AppSec plus prompt injection,

data exfiltration via tools

Expanded threat model,

stronger governance

Table 2: Cloud-Native and LLM-Era Operational Attributes [3, 4, 8, 9, 10, 12, 16, 18]

Attribute

Category

Implementation Method Business Impact Technical

Complexity

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

114

Resilience Fault Tolerance Patterns High Availability Medium

Observability Distributed Monitoring Operational Excellence High

Automation Infrastructure-as-Code Reduced Manual Effort Medium

Scalability Horizontal Scaling Performance Optimization High

Evaluation Automated offline and online

evals

Quality stability, safer releases High

Governance Policies, audit logs, data

boundaries

Compliance, reduced risk High

Cost Controls Token budgets, caching, routing Predictable spend Medium

Table 3: Soft Skills Impact on Technical Leadership (qualitative)

Career Progression

Stage

Technical

Skills

Importance

Soft Skills

Importance

Leadership

impact

Entry Level High Medium Medium

Mid-Level High High High

Senior Leadership Medium Very High Very High

Executive Level Medium Critical Critical

Table 4: Cloud Architect Core Competency Areas [6,8,12,15]

Skill Category Proficiency Level

Required

Learning Priority

Technical Architecture Expert High

Business Strategy Advanced High

Leadership & Communication Advanced Medium

Security & Compliance Expert High

Automation & DevOps Advanced Medium

LLMOps & Evaluation Advanced High

AI Security & Governance Advanced High

6. Conclusions

The evolution of software architecture roles in

cloud-native contexts reflects a shift from

conventional system design toward broader strategic

leadership. Modern architects are expected to

integrate deep technical expertise with

organizational impact, and to continuously adapt to

fast-changing technology environments. Success in

cloud-native architecture depends on pairing

technical judgment with strategic insight so

architects can influence organizational direction

while keeping systems sustainable, scalable, and

operationally efficient over time.

On the technical side, cloud-native architects must

develop advanced competency in core platforms and

practices, including container orchestration, service

mesh management, infrastructure automation, and

comprehensive observability. They also need the

architectural maturity to reason about trade-offs

across reliability, security, performance, and cost,

and to design systems that scale elastically while

maintaining resilience under operational stress. The

expanding cloud-native tool landscape reinforces the

need for both depth in foundational platforms and

breadth across supporting technologies such as

Kubernetes, service mesh solutions, infrastructure-

as-code tools, observability platforms, and CI/CD

systems.

In parallel, the role demands leadership capabilities

that extend beyond implementation choices.

Effective architects drive cross-functional

collaboration, align technical decisions to business

goals, shape platform direction, and establish shared

standards that teams can implement consistently. In

the LLM era, this leadership mandate expands

further: evaluation and governance become first-

class architectural pillars alongside scalability and

observability, because quality and safety failures can

be as damaging as traditional outages [11, 13].

Architects therefore need to institutionalize practices

that keep model behavior measurable, changes

controlled, and risks managed as part of normal

delivery.

Practical skill development is best approached

through repeated exposure to real architectural work.

Structured growth paths that emphasize participation

in design reviews, platform engineering initiatives,

incident response and postmortems, and open-source

engagement create the experience base required for

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

115

mature architectural judgment. These pathways

strengthen both the technical competencies needed

to build and operate distributed systems and the

interpersonal capabilities required to lead effectively

in complex organizations.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Lee Atchison, "What You Need to Learn to Become a

Cloud-Native Architect," Cloud Native Now, 1

November 2022.

[2] Hemanthnvd, "Embracing the Cloud-Native Mindset:

Delving Deep into Infrastructure, Automation, and

Scalability with CSYE 6225," Medium, 24 April

2024. Available:

https://medium.com/@hemanthnvd/embracing-the-

cloud-native-mindset-delving-deep-into-

infrastructure-automation-and-scalability-

f4c489da1c1f

[3] Azure Architecture Center, “Cloud design patterns”

(updated July 18, 2025). Available:

https://techcommunity.microsoft.com/blog/appsona

zureblog/step-by-step-practical-guide-to-

architecting-cloud-native-applications/4057960

[4] Indika Kumara, et al., "The Do’s and Don’ts of

Infrastructure Code: a Systematic Grey Literature

Review," Information and Software Technology,

September 2021. Available:

https://www.sciencedirect.com/science/article/pii/S

0950584921000720

[5] Sneha Chugh, "How to Become a Cloud Architect:

Top 10 Skills to Master," Emeritus, 14 November

2024. Available: https://emeritus.org/blog/how-to-

become-cloud-architect/

[6] CertLibrary, "Developing a Comprehensive

Strategy for Cloud Native Skills Growth,".

Available:

https://www.certlibrary.com/blog/developing-a-

comprehensive-strategy-for-cloud-native-skills-

growth/

[7] NIST Special Publication 800-233 (2024),

“Service Mesh Proxy Models for Cloud-Native

Applications.” Available:

https://nvlpubs.nist.gov/nistpubs/SpecialPublication

s/NIST.SP.800-233.pdf

[8] Tom Grey, "5 principles for cloud-native

architecture - what it is and how to master it,"

Google Cloud, 20 June 2019. Available:

https://cloud.google.com/blog/products/application-

development/5-principles-for-cloud-native-

architecture-what-it-is-and-how-to-master-it

[9] National Institute of Standards and Technology,

“Artificial Intelligence Risk Management

Framework (AI RMF 1.0),” NIST, 26 January 2023.

Available: https://doi.org/10.6028/NIST.AI.100-1

[10] C. Autio, R. Schwartz, J. Nadeau, K. Grama, A.

Hsiang, H. Nguyen, and K. Roberts, “Artificial

Intelligence Risk Management Framework:

Generative Artificial Intelligence Profile,” NIST,

July 2024. Available:

https://doi.org/10.6028/NIST.AI.600-1

[11] ISO/IEC, “Information technology, Artificial

intelligence, Guidance on risk management

(ISO/IEC 23894:2023),” ISO/IEC, 6 February 2023.

Available:

https://webstore.iec.ch/en/publication/82914

[12] OWASP Foundation, “OWASP Top 10 for Large

Language Model Applications, 2025,” OWASP, 18

November 2024. Available:

https://owasp.org/www-project-top-10-for-large-

language-model-applications/assets/PDF/OWASP-

Top-10-for-LLMs-v2025.pdf

[13] Werner Vogels (Amazon CTO), “Return of The

Frugal Architect(s)” (Dec 5, 2024, All Things

Distributed) Available:

https://www.allthingsdistributed.com/2024/11/retur

n-of-the-frugal-architect.html

[14] Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al.,

“Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks,” Advances in Neural

Information Processing Systems (NeurIPS 2020),

2020. Available:

https://papers.nips.cc/paper/2020/hash/6b49323020

5f780e1bc26945df7481e5-Abstract.html

[15] Jun Yan, Vikas Yadav, Shiyang Li, et al.,

“Backdooring Instruction-Tuned Large Language

Models with Virtual Prompt Injection,” Proceedings

of NAACL-HLT 2024 (Volume 1: Long Papers),

June 2024. Available:

https://aclanthology.org/2024.naacl-long.337/

[16] Percy Liang, Rishi Bommasani, Tony Lee, et al.,

“Holistic Evaluation of Language Models,”

Transactions on Machine Learning Research, 2023.

Available:

https://openreview.net/forum?id=iO4LZibEqW

[17] CNCF Authors, “Level 1, Build,” Cloud Native

Maturity Model, last modified Sep. 25, 2025.

[Online]. Available:

https://maturitymodel.cncf.io/level-1/

https://doi.org/10.1109/MM.2003.1196112
https://doi.org/10.1109/MM.2003.1196112
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://emeritus.org/blog/how-to-become-cloud-architect/
https://emeritus.org/blog/how-to-become-cloud-architect/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-233.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-233.pdf
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.600-1
https://webstore.iec.ch/en/publication/82914
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://www.allthingsdistributed.com/2024/11/return-of-the-frugal-architect.html
https://www.allthingsdistributed.com/2024/11/return-of-the-frugal-architect.html
https://papers.nips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://papers.nips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/2024.naacl-long.337/
https://openreview.net/forum?id=iO4LZibEqW
https://maturitymodel.cncf.io/level-1/

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

116

[18] Google Cloud, “Ensure operational readiness and

performance using CloudOps.”

https://docs.cloud.google.com/architecture/framew

ork/operational-excellence/operational-readiness-

and-performance-using-cloudops

[19] Victor Dibia, et al., “AutoGen Studio: A No-Code

Developer Tool for Building and Debugging Multi-

Agent Systems,” arXiv, 2024. Available:

https://arxiv.org/abs/2408.15247

[20] Cloud Native Landscape, “Application Definition &

Image Build,” Available: https://landscape.cncf.io/

[21] Langchain Docs, “LangGraph overview.”

https://docs.langchain.com/oss/python/langgraph/o

verview

https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://arxiv.org/abs/2408.15247
https://landscape.cncf.io/
https://docs.langchain.com/oss/python/langgraph/overview
https://docs.langchain.com/oss/python/langgraph/overview

