Copyright © IJCESEN

International Journal of Computational and Experimental

MCESEN

Science and ENgineering B (e
(IJCESEN) -
Vol. 12-No.1 (2026) pp. 109-116 —
http://www.ijcesen.com -

IéSN: 2149-9144
Research Article

Becoming a Cloud-Native Architect in the LLM Era: Skills, Tools, and Mindset

for the Next Generation

Naveen Kumar Jayakumar*

Independent Researcher, USA

* Corresponding Author Email: naveenkumar.jayakumar@gmail.com- ORCID: 0000-0002-0047-9950

Article Info:

DOI: 10.22399/ijcesen.4694
Received : 30 October 2025
Revised : 25 December 2025
Accepted : 29 December 2025

Keywords

cloud-native architecture,
distributed systems,
container orchestration,
microservices,
infrastructure-as-code,
strategic leadership

Abstract:

Cloud-native approaches have reshaped the software architect’s role from producing
static designs to guiding decisions in complex distributed systems. In the LLM and Al
era, architects increasingly treat foundation models as production dependencies, which
introduces probabilistic behavior, new security threats [14], and operational quality
metrics beyond availability and latency. This evolution demands both deep technical
expertise, including containerized workloads, microservices, transient infrastructure,
Kubernetes orchestration, service mesh, infrastructure-as-code, observability, and
practical Al and LLM systems knowledge, including retrieval architectures and Al agent
architectures, and strong organizational capability for collaboration and strategic
decision-making. Effective practice relies on distributed-systems patterns for
consistency, fault tolerance, and resilience, and on cross-functional leadership with
product, security, and business stakeholders. Skill growth is reinforced through structured
design reviews, platform engineering work, incident response, open-source contributions,
and internal platform development. Core technologies typically include Kubernetes,
service mesh implementations, automation tooling, observability stacks, CI/CD
frameworks, and Al and LLM infrastructure for model serving, vector search or retrieval
components, and agent orchestration. Operating at the intersection of technology and
business strategy, cloud-native architects must also define and run Al quality and safety
objectives, for example factuality and hallucination reduction, robustness, privacy, and
security, supported by evaluation pipelines and governance controls [11, 12, 14, 19].

1. Introduction

evaluation and safe rollout of prompts, retrieval
indexes, and model versions, comparable to how
CI/CD governs code releases [12, 16].

Enterprise adoption of cloud-native models has
redefined the software architect from author of static
blueprints to strategic leader for distributed,
containerized, and transient systems. The shift from
monoliths to microservices, serverless functions,
and event-driven architectures demands new
approaches to scalability, resilience, and delivery
velocity [1, 17]. A second shift is underway: LLMs
are being embedded in products and internal
workflows, turning architecture into a hybrid of
deterministic services and probabilistic reasoning
components. This expands the architect’s scope to
model selection, data boundaries, and operational
guality management for Al outputs. Unlike classic
service dependencies, LLM failures can be silent,
quality can degrade without clear error signals, and
behavior can change with model updates or prompt
revisions. Architects therefore need controls for

Cloud-native platforms, such as container
orchestration, service meshes, and infrastructure-as-
code, introduce trade-offs, requiring deep
distributed-systems expertise plus the organizational
skill to drive cross-functional alignment and
strategic decisions [1, 12]. Automation is
foundational: 1aC enables declarative provisioning,
consistent deployments across environments, and
fewer manual configuration errors [2]. Scalability
increasingly relies on horizontal elasticity rather
than vertical scaling typical of earlier architectures.
Containerization ~ improves portability and
consistency, while managed containerization
services automate deployment, scaling, and lifecycle
management, helping systems remain available
despite component failures. Effective architectures
emphasize fault tolerance, observability, and rapid
iteration through continuous integration and

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

deployment. Architects must also manage service
communication, consistency tradeoffs, cost
tradeoffs, and failure isolation, applying patterns
such as eventual consistency, circuit breakers, and
bulkheads to improve resilience under stress [1, 12].

This framework supports senior engineers
transitioning into cloud-native architecture roles by
summarizing the critical skills, practical

development pathways, and toolsets needed to stay
effective in fast-changing environments. In Al-
enabled systems, automation must also include
guardrails, policy enforcement, and auditability to
prevent unsafe or non-compliant outputs from
propagating through business workflows.

2. Core Technical Competencies for Cloud-
Native Architecture

The basis of a successful cloud-native architecture
lies in a deep comprehension of distributed systems
concepts and their practical application within
contemporary technology stacks. Modern architects
need to showcase their ability to create systems that
address the natural issues of network splits, eventual
consistency, and service dependencies while taking
advantage of horizontal scalability and fault
isolation. Contemporary cloud-native architecture
highlights essential characteristics, such as
resilience, observability, and automation, that
constitute the foundation of successful distributed
system implementations [3]. Container orchestration
is a vital skill set, with Kubernetes acting as the
established benchmark for overseeing containerized
tasks on a large scale. Cloud-native architectures
emphasize containerization as a core design
principle, allowing applications to attain portability
across various environments while preserving
uniform runtime characteristics [3]. Architects need
to grasp not only the operational elements of cluster
management but also the architectural effects of pod

networking, service discovery, and resource
allocation methods via thorough platform
engineering techniques. Proficiency in

infrastructure-as-code has become crucial for
architects who need to connect development and
operations teams. Cloud-native systems increasingly
rely on infrastructure as code (laC), managing and
provisioning infrastructure through machine-
readable definition files and reusable scripts, rather
than manual configuration or interactive
configuration tools [4]. Terraform, AWS
CloudFormation, AWS CDK and Azure Resource
Manager are tools that facilitate the codification of
infrastructure specifications, enabling architects to
version, test, and implement infrastructure
modifications with the same level of rigor as
application code via automated provisioning

110

workflows. The same rigor is now needed for
prompts, retrieval configurations, and evaluation
datasets and architects should treat them as
versioned artifacts with review, testing, and
controlled rollout. Service mesh technologies
constitute a vital area of knowledge for handling the
complexities of service-to-service communication.
Contemporary cloud-native architectures utilize
service mesh patterns to manage cross-cutting
concerns like service discovery, load balancing, and
enforcing security policies without needing changes
at the application level [9]. These platforms offer
essential functions for managing traffic and
monitoring instrumentation while ensuring loose
coupling among services via abstracted
communication layers. In Al systems, a similar
platform layer often emerges as a model gateway,
standardizing authentication, rate limits, caching,
model routing, and safety filtering, while avoiding
ad hoc direct calls to model providers across teams.
Metrics, logs, and traces are core observability
signals in cloud-native systems, so architects should
plan and instrument them early in development as
part of the monitoring strategy [18]. For LLM-
enabled flows, observability should capture prompt,
retrieval, and tool-decision traces, and apply
redaction and data minimization to reduce data
leakage risk [12]. Cloud-native observability
surpasses conventional monitoring methods by
employing distributed tracing, real-time metrics
gathering, and centralized log aggregation, offering
comprehensive insight into system performance
across microservices architectures. Architects need
to create observability frameworks that facilitate
quick incident identification and resolution, while
also aiding in ongoing performance enhancement
and capacity planning efforts. Scalability and
elasticity are essential traits of cloud-native
architectures, allowing systems to flexibly modify
resource allocation in response to varying demand
patterns [3, 18]. Contemporary cloud-native systems
utilize horizontal scaling strategies that
automatically allocate and release resources
according to workload demands, guaranteeing
efficient resource utilization while preserving
performance levels. Architects need to create
systems that enable independent scaling of
individual components, facilitating detailed resource
optimization and cost control within distributed
application collections.

2.1 LLM System Design Competencies

Cloud-native architects increasingly design systems
that combine microservices with LLM components
such as retrieval, tool execution, and policy checks.
Core competencies include retrieval-augmented

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

generation (ingestion, chunking, embeddings, vector
search) [14], tool calling patterns (function routing,
permissions, sandboxing), and fallback strategies
that preserve correctness when model confidence is
low. As Al agent complexity grows, developer
tooling increasingly emphasizes workflow
debugging and evaluation, treating agent behaviors
as testable artifacts that must be regression-checked
across changes in prompts, tools, retrieval, and
model versions [19].

3. Strategic Leadership and Organizational
Influence

Cloud-native architects function where technology
meets business strategy, necessitating an advanced
comprehension of how architectural choices
influence organizational goals, team interactions,
and the speed of product development. This strategic
aspect reaches well past technical design, involving
the skill to express the business benefits of
architectural investments and synchronize technical
roadmaps with changing market demands through
thorough stakeholder engagement activities. In the
Al era, stakeholder engagement expands to include
legal, privacy, risk, and customer trust functions.
Architects must define acceptable use policies, data
handling rules, and escalation paths for unsafe
outputs, and ensure Al features meet measurable
quality and safety criteria before broad rollout.
Systems thinking serves as an essential cognitive
framework for cloud-native architects, allowing
awareness of intricate interconnections among
technology selections, organizational arrangements,
and operational workflows. Decision frameworks
should cover model sourcing (hosted vs self-hosted),
tenant isolation for retrieval, data residency
constraints, and exit strategies to reduce model
vendor lock-in and revalidation costs when models
change. Technical guidance and knowledge sharing
are essential duties for senior architects, who need to
nurture the upcoming generation of cloud-native
professionals while setting architectural benchmarks
and best practices throughout engineering teams. As
technical professionals move up the organizational
ladder, the cultivation of soft skills, such as
mentoring abilities, becomes vital, with effective
leadership strongly linked to the growth of
interpersonal skills. This includes formulating
organized methods for design evaluations,
generating documentation that records technical
details and reasoning behind decisions, and
promoting environments of ongoing learning that
allow teams to adjust to advancing technologies and
practices. Collaboration skills across functions are
crucial for architects, as they need to engage
successfully with product managers, security teams,

111

compliance, and business stakeholders to convert
business needs into technical solutions. Soft skills
such as communication and teamwork strongly
affect leadership effectiveness and are often
underemphasized in technical careers. This
necessitates creating communication strategies that
can explain intricate technical ideas to non-technical
audiences while integrating business limitations and
goals into architectural planning methods via
systematic requirement analysis. The capability to
achieve agreement on architectural choices becomes
more crucial as systems become more complex and
the number of stakeholders rises. Architects need to
cultivate negotiation and facilitation abilities to
navigate competing priorities, resource limitations,
and differing technical viewpoints while ensuring
sustained architectural consistency and system
upkeep by utilizing thorough decision-making
frameworks.

Al-driven systems raise the need for negotiation and
clear communication because quality, safety, and
compliance trade-offs are often ambiguous and
cross-functional by nature.

4. Practical Pathways for Architectural Skill
Development

Moving from a senior engineer to a cloud-native
architect requires deliberate practice and structured
exposure to progressively more complex design
problems. Career-development guides and training
resources suggest that candidates for cloud
architecture roles must build a broad skill set that
combines deep technical knowledge with business
insight and leadership capabilities [5]. A useful way
to structure this growth is to pair theory with
recurring practice loops that resemble real
architectural work, design reviews, operational
learning, and platform delivery.

Design reviews are a particularly effective
mechanism for developing architectural judgment.
They force clarity on the true system needs, create a
venue to compare competing approaches, and make
trade-offs explicit across architectural styles. At the
same time, strategic skill development frameworks
emphasize ongoing learning in cloud-native
technologies, where organizations increasingly
adopt structured learning pathways that combine
conceptual understanding with hands-on
implementation [6]. These pathways naturally
surface the kind of decisions architects repeatedly
face in production, including API design, multi-
tenancy considerations, and operational tooling
choices.

Operational exposure is another core pathway.
Incident analysis and post-mortem evaluations teach
failure modes in distributed systems and reveal

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

whether resilience patterns work under real load and
real constraints. Architects who participate in
incident response and root cause analysis sharpen
troubleshooting and problem-solving skills, develop
intuition for system behavior under pressure, and
learn to identify architectural weaknesses before
they appear as production failures. Sustained
improvement here depends on repeated engagement
with operational challenges and disciplined
documentation of lessons learned.

Al-oriented skill development fits best when it is
treated as part of the same “design, operate,
improve” loop rather than as a separate topic
sprinkled throughout. A practical learning exercise
is to build an internal RAG service end to end,
including ingestion, indexing, access control, and
evaluation. Security and misuse testing should be
practiced explicitly through prompt-injection and
tool-misuse exercises [12, 15]. Finally, the
development workflow should shift toward
evaluation-driven development, so that every change
to a model, prompt, or retrieval component is
accompanied by regression results and rollout gates,
similar to how teams govern code releases [8, 10,
16]. These practices align Al work with the same
reliability mindset expected in mature cloud-native
systems.

Community participation and internal platform work
provide additional force multipliers for skill growth.
Contributing to open-source projects, especially
cloud-native infrastructure, exposes architects to
large-scale design constraints, collaborative
development practices, and real ecosystem trade-
offs [6]. Projects such as Kubernetes, Envoy, and
other CNCF efforts [20] show how experienced
engineers design for operability, extensibility, and
safe change in complex systems. In parallel, internal
platform engineering projects provide a high-
leverage environment for applying cloud-native
principles to real organizational needs, often
requiring security controls, automation frameworks,
and scalability patterns that closely reflect
production realities [6]. These roles also strengthen
interpersonal skills that matter for architectural
leadership, because influence is exercised through
alignment, mentorship, and cross-team coordination
rather than direct authority.

To keep Al concerns integrated with operational
readiness, architects should also run Al incident
drills and treat them as first-class postmortem topics.
Examples include hallucination spikes after a
retrieval change, silent quality regressions after a
model upgrade, or data leakage risks caused by over-
permissive tool access. When these scenarios are
practiced alongside standard distributed-systems
incidents, the overall skill-development program
becomes more coherent, and Al reliability becomes

112

an extension of established cloud-native engineering
discipline rather than a separate track.

5. Essential Tools and Technologies for Modern
Cloud-Native Architects

Modern cloud-native environments span a broad
toolchain, so architects need depth in foundational
platforms and practical fluency with the surrounding
ecosystem. Contemporary cloud-native applications
commonly rely on containerization, microservices,
and orchestration to achieve scalability and
resilience [3]. Kubernetes remains the dominant
orchestration layer across clouds, serving as the de
facto control plane for scheduling and operating
containerized workloads. For architects, the
competency is not limited to deploying workloads, it
also includes understanding Kubernetes extensibility
through custom resources, operators, and admission
controllers, which enable policy enforcement and
advanced automation at platform scale.

As microservices proliferate, service-to-service
communication becomes a primary operational
concern. Service mesh technologies have emerged as
key infrastructure for managing these interactions,
providing consistent traffic management, security,
and observability at service boundaries [3]. Istio
offers a broad feature set for traffic control, identity
and policy enforcement, and telemetry generation,
enabling standardized inter-service behaviors that
can improve reliability across heterogeneous
services. Lighter-weight meshes such as Linkerd are
often adopted when teams want simpler operational
overhead while still gaining uniform mTLS and
baseline traffic and telemetry capabilities.

In some environments, organizations opt for cloud-
managed service mesh offerings such as AWS App
Mesh and similar provider-specific solutions. These
reduce operational burden by shifting parts of
lifecycle management to the cloud provider, but they
can raise strategic concerns related to portability and
vendor lock-in. The same portability trade-off
appears in infrastructure provisioning.
Infrastructure-as-code turns infrastructure changes
into automated, version-controlled workflows, with
Terraform commonly used as a multi-cloud
declarative option for provisioning and managing
infrastructure consistently. Cloud-native alternatives
such as AWS CloudFormation, Azure Resource
Manager, and Google Cloud Deployment Manager
offer tighter platform integration, but can reduce
portability and require explicit consideration in
multi-cloud strategies.

Operating cloud-native systems at scale depends on
strong observability and disciplined release
processes. Observability platforms provide the
foundation for understanding system behavior,

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

diagnosing failures, and identifying performance
bottlenecks in distributed settings. Principles of
cloud-native architecture emphasize comprehensive
monitoring and logging for reliability and
performance [8]. In Kubernetes ecosystems,
Prometheus is widely adopted for metrics collection,
often paired with Grafana for visualization and
Alertmanager for routing and notification.
Commercial platforms such as Datadog, New Relic,
and Splunk provide unified observability suites with
advanced analytics, at the cost of higher spend and
potential vendor dependence.

CI/CD systems must also scale with multi-service
architectures and infrastructure complexity. Cloud-
native development practices rely on robust
pipelines that build and deliver containerized
services while automating infrastructure changes
[3]. Tools such as GitLab CI/CD, GitHub Actions,
and Jenkins support flexible pipeline definitions,
while platforms such as Argo CD and Flux
operationalize GitOps, treating Git as the source of
truth for desired application and infrastructure state.
GitOps aligns with cloud-native principles by
emphasizing declarative configuration, versioned
releases, and auditable operational control.

Al workloads introduce additional platform
requirements that are best treated as a cohesive layer
rather than scattered, service-specific additions. At

the infrastructure level, accelerator-backed
workloads often require accelerator-aware
scheduling, isolation, and cost controls,

implemented through practices such as separate
node pools, quota management, and multi-region
inference strategies. At the platform level, architects

should standardize an Al layer that includes a model
gateway (authentication, routing, caching, rate
limiting), retrieval infrastructure for indexing
pipelines and vector search [14], evaluation and
prompt management (versioning, test suites) [16],
release management controls (safe rollout and
rollback) [8], and safety controls such as policy
checks, redaction, and content filtering [10, 12].
Treating these capabilities as shared platform
services reduces duplication, improves governance,
and makes Al behaviors more testable and operable
across the organization.

5.1 Al Platform Layer Tools

Modern cloud-native platforms increasingly include
an Al layer composed of a model gateway (auth,
routing, caching, rate limits), retrieval infrastructure
(indexing pipelines and vector search) [14],
evaluation and prompt management (versioning, test
suites) [16], release management controls (safe
rollout and rollback) [8], and safety controls (policy
checks, redaction, content filters) [10, 13].
Architects should select these as platform
capabilities rather than ad hoc libraries embedded
inconsistently across services.

For agentic applications, orchestration frameworks
such as LangGraph provide a graph-based runtime
for building and operating long-running, stateful
agent workflows, including durable execution and
human-in-the-loop checkpoints, which helps
standardize and govern tool-calling loops across
teams [21].

Table 1: Cloud-Native and LLM-Era Transition Components [1, 2, 10, 12, 13, 14]

Component Traditional Cloud-Native Approach Key Benefits
Category Approach

Infrastructure Manual Infrastructure-as-Code Consistency, Version

Management Configuration Control

Application Scaling Vertical Scaling Horizontal Scaling Dynamic Resource

Allocation

Deployment Strategy | Monolithic Containerized Microservices | Fault Isolation, Portability
Releases

System Resilience Single Point of | Distributed Fault Tolerance High Availability
Failure

Application Behavior | Deterministic Hybrid deterministic plus | Faster iteration, richer UX,
workflows LLM reasoning new quality risks

Data Foundation Relational, Structured plus unstructured, | Better answers, provenance
structured embeddings, retrieval indexes | and access control required

Security Threats AppSec, IAM AppSec plus prompt injection, | Expanded threat model,

data exfiltration via tools

stronger governance

Table 2: Cloud-Native and LLM-Era Operational Attributes [3, 4, 8, 9, 10, 12, 16, 18]

Attribute
Category

Implementation Method

Technical
Complexity

Business Impact

113

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

Resilience Fault Tolerance Patterns High Awvailability Medium
Observability | Distributed Monitoring Operational Excellence High
Automation Infrastructure-as-Code Reduced Manual Effort Medium
Scalability Horizontal Scaling Performance Optimization High
Evaluation Automated offline and online | Quality stability, safer releases | High
evals
Governance Policies, audit logs, data | Compliance, reduced risk High
boundaries
Cost Controls | Token budgets, caching, routing | Predictable spend Medium
Table 3: Soft Skills Impact on Technical Leadership (qualitative)
Career Progression Technical Soft Skills Leadership
Stage Skills Importance impact
Importance
Entry Level High Medium Medium
Mid-Level High High High
Senior Leadership Medium Very High Very High
Executive Level Medium Critical Critical

Table 4: Cloud Architect Core Competency Areas [6,8,12,15]

Skill Category Proficiency Level Learning Priority
Required
Technical Architecture Expert High
Business Strategy Advanced High
Leadership & Communication Advanced Medium
Security & Compliance Expert High
Automation & DevOps Advanced Medium
LLMOps & Evaluation Advanced High
Al Security & Governance Advanced High

6. Conclusions

The evolution of software architecture roles in
cloud-native contexts reflects a shift from
conventional system design toward broader strategic
leadership. Modern architects are expected to
integrate deep technical expertise with
organizational impact, and to continuously adapt to
fast-changing technology environments. Success in
cloud-native architecture depends on pairing
technical judgment with strategic insight so
architects can influence organizational direction
while keeping systems sustainable, scalable, and
operationally efficient over time.

On the technical side, cloud-native architects must
develop advanced competency in core platforms and
practices, including container orchestration, service
mesh management, infrastructure automation, and
comprehensive observability. They also need the
architectural maturity to reason about trade-offs
across reliability, security, performance, and cost,
and to design systems that scale elastically while
maintaining resilience under operational stress. The
expanding cloud-native tool landscape reinforces the
need for both depth in foundational platforms and

114

breadth across supporting technologies such as
Kubernetes, service mesh solutions, infrastructure-
as-code tools, observability platforms, and CI/CD
systems.

In parallel, the role demands leadership capabilities
that extend beyond implementation choices.
Effective architects drive cross-functional
collaboration, align technical decisions to business
goals, shape platform direction, and establish shared
standards that teams can implement consistently. In
the LLM era, this leadership mandate expands
further: evaluation and governance become first-
class architectural pillars alongside scalability and
observability, because quality and safety failures can
be as damaging as traditional outages [11, 13].
Architects therefore need to institutionalize practices
that keep model behavior measurable, changes
controlled, and risks managed as part of normal
delivery.

Practical skill development is best approached
through repeated exposure to real architectural work.
Structured growth paths that emphasize participation
in design reviews, platform engineering initiatives,
incident response and postmortems, and open-source
engagement create the experience base required for

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

mature architectural judgment. These pathways
strengthen both the technical competencies needed
to build and operate distributed systems and the
interpersonal capabilities required to lead effectively
in complex organizations.

Author Statements:

e Ethical approval: The conducted research is not
related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial interests
or personal relationships that could have
appeared to influence the work reported in this
paper

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

e Funding information: The authors declare that
there is no funding to be acknowledged.

o Data availability statement: The data that
support the findings of this study are available on
request from the corresponding author. The data
are not publicly available due to privacy or
ethical restrictions.

References

[1] Lee Atchison, "What You Need to Learn to Become a
Cloud-Native Architect,” Cloud Native Now, 1
November 2022.

[2] Hemanthnvd, "Embracing the Cloud-Native Mindset:
Delving Deep into Infrastructure, Automation, and
Scalability with CSYE 6225," Medium, 24 April
2024. Available:
https://medium.com/@hemanthnvd/embracing-the-
cloud-native-mindset-delving-deep-into-
infrastructure-automation-and-scalability-

f4c489dalclf
[3] Azure Architecture Center, “Cloud design patterns”
(updated July 18, 2025). Available:

https://techcommunity.microsoft.com/blog/appsona
zureblog/step-by-step-practical-guide-to-
architecting-cloud-native-applications/4057960

[4] Indika Kumara, et al., "The Do’s and Don’ts of
Infrastructure Code: a Systematic Grey Literature
Review," Information and Software Technology,

September 2021. Available:
https://www.sciencedirect.com/science/article/pii/S
0950584921000720

[5] Sneha Chugh, "How to Become a Cloud Architect:
Top 10 Skills to Master," Emeritus, 14 November
2024. Awvailable: https://emeritus.org/blog/how-to-
become-cloud-architect/

[6] CertLibrary, "Developing a Comprehensive
Strategy for Cloud Native Skills Growth,".
Available:

115

https://www.certlibrary.com/blog/developing-a-
comprehensive-strategy-for-cloud-native-skills-
growth/
[71 NIST Special Publication 800-233 (2024),
“Service Mesh Proxy Models for Cloud-Native
Applications.” Available:
https://nvipubs.nist.gov/nistpubs/SpecialPublication
s/NIST.SP.800-233.pdf
[8] Tom Grey, "5 principles for cloud-native
architecture - what it is and how to master it,"
Google Cloud, 20 June 2019. Available:
https://cloud.google.com/blog/products/application-
development/5-principles-for-cloud-native-
architecture-what-it-is-and-how-to-master-it
[9] National Institute of Standards and Technology,
“Artificial Intelligence Risk ~ Management
Framework (Al RMF 1.0),” NIST, 26 January 2023.
Available: https://doi.org/10.6028/NIST.Al.100-1
[10] C. Autio, R. Schwartz, J. Nadeau, K. Grama, A.
Hsiang, H. Nguyen, and K. Roberts, “Artificial
Intelligence Risk Management Framework:
Generative Artificial Intelligence Profile,” NIST,
July 2024, Available:
https://doi.org/10.6028/NIST.AI.600-1
ISO/IEC, “Information technology, Artificial
intelligence, Guidance on risk management
(ISO/IEC 23894:2023),” ISO/IEC, 6 February 2023.
Available:
https://webstore.iec.ch/en/publication/82914
[12] OWASP Foundation, “OWASP Top 10 for Large
Language Model Applications, 2025,” OWASP, 18
November 2024. Available:
https://owasp.org/www-project-top-10-for-large-
language-model-applications/assets/PDF/OWASP-
Top-10-for-LLMs-v2025.pdf
Werner Vogels (Amazon CTO), “Return of The
Frugal Architect(s)” (Dec 5, 2024, All Things
Distributed) Available:
https://www.allthingsdistributed.com/2024/11/retur
n-of-the-frugal-architect.html
[14] Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al.,
“Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” Advances in Neural
Information Processing Systems (NeurlPS 2020),
2020. Available:
https://papers.nips.cc/paper/2020/hash/6b49323020
5f780e1bc26945df7481e5-Abstract.html
[15] Jun Yan, Vikas Yadav, Shiyang Li, et al,
“Backdooring Instruction-Tuned Large Language
Models with Virtual Prompt Injection,” Proceedings
of NAACL-HLT 2024 (Volume 1: Long Papers),
June 2024. Available:
https://aclanthology.org/2024.naacl-long.337/
Percy Liang, Rishi Bommasani, Tony Lee, et al.,
“Holistic Evaluation of Language Models,”
Transactions on Machine Learning Research, 2023.
Available:
https://openreview.net/forum?id=i04LZibEqW
CNCF Authors, “Level 1, Build,” Cloud Native
Maturity Model, last modified Sep. 25, 2025.
[Online]. Available:
https://maturitymodel.cncf.io/level-1/

[11]

[13]

[16]

[17]

https://doi.org/10.1109/MM.2003.1196112
https://doi.org/10.1109/MM.2003.1196112
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://medium.com/@hemanthnvd/embracing-the-cloud-native-mindset-delving-deep-into-infrastructure-automation-and-scalability-f4c489da1c1f
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://techcommunity.microsoft.com/blog/appsonazureblog/step-by-step-practical-guide-to-architecting-cloud-native-applications/4057960
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://emeritus.org/blog/how-to-become-cloud-architect/
https://emeritus.org/blog/how-to-become-cloud-architect/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://www.certlibrary.com/blog/developing-a-comprehensive-strategy-for-cloud-native-skills-growth/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-233.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-233.pdf
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.600-1
https://webstore.iec.ch/en/publication/82914
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://www.allthingsdistributed.com/2024/11/return-of-the-frugal-architect.html
https://www.allthingsdistributed.com/2024/11/return-of-the-frugal-architect.html
https://papers.nips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://papers.nips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/2024.naacl-long.337/
https://openreview.net/forum?id=iO4LZibEqW
https://maturitymodel.cncf.io/level-1/

Naveen Kumar Jayakumar / IJCESEN 12-1(2026)109-116

[18] Google Cloud, “Ensure operational readiness and
performance using CloudOps.”
https://docs.cloud.google.com/architecture/framew
ork/operational-excellence/operational-readiness-
and-performance-using-cloudops

[19] Victor Dibia, et al., “AutoGen Studio: A No-Code
Developer Tool for Building and Debugging Multi-
Agent Systems,” arXiv, 2024. Available:
https://arxiv.org/abs/2408.15247

[20] Cloud Native Landscape, “Application Definition &
Image Build,” Available: https://landscape.cncf.io/

[21] Langchain Docs, “LangGraph overview.”
https://docs.langchain.com/oss/python/langgraph/o
verview

116

https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://docs.cloud.google.com/architecture/framework/operational-excellence/operational-readiness-and-performance-using-cloudops
https://arxiv.org/abs/2408.15247
https://landscape.cncf.io/
https://docs.langchain.com/oss/python/langgraph/overview
https://docs.langchain.com/oss/python/langgraph/overview

