

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 167-177
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

From Legacy to Leading Edge: AI’s Role in Modernizing Platforms

Sahil Agarwal*

Independent Researcher, USA
* Corresponding Author Email: reach.agarwalsahil@gmail.com - ORCID: 0000-0002-3337-0050

Article Info:

DOI: 10.22399/ijcesen.4716

Received : 08 November 2025

Revised : 29 December 2025

Accepted : 03 January 2026

Keywords

AI-assisted modernization,

Abstract syntax tree (AST),

CodeBERT / GraphCodeBERT,

Human-in-the-loop (HITL),

Automated refactoring

Abstract:

Legacy modernization constitutes a formidable technical and strategic challenge for

enterprises maintaining large-scale software infrastructures. Systems accumulate

complexity through decades of incremental development, resulting in tangled

dependencies, obsolete frameworks, and inconsistent application programming

interfaces. Manual migration approaches prove costly and hazardous due to dependence

on institutional knowledge that frequently disappears over time. Conventional methods

involving manual code rewriting introduce defects, prolong system unavailability, and

impede innovation cycles. Recent advances in artificial intelligence have fundamentally

altered modernization methodologies. Contemporary intelligent migration frameworks

synthesize code comprehension models, dependency graph analytics, and predictive

validation mechanisms to automate substantial portions of migration workflows.

Machine learning architectures now parse, categorize, and translate complex codebases

while maintaining high degrees of semantic integrity, though challenges remain as

language models occasionally fail to preserve complete semantic equivalence. These

enhanced systems diminish human error during transformation operations and

strengthen system dependability, facilitating modernization efforts at scales previously

deemed impractical. This article explores architectural underpinnings, operational

mechanisms, security protocols, and implementation challenges within these

frameworks, illustrating their capacity to convert legacy modernization from episodic

reconstruction initiatives into perpetual evolutionary maintenance processes.

1. Background and Rationale

1.1 Enterprise Software Modernization

Obstacles

Organizations managing extensive software

portfolios confront substantial obstacles when

addressing legacy system modernization. Enterprise

applications frequently contain extensive codebases

developed across multiple decades, incorporating

programming languages no longer actively

maintained, frameworks lacking vendor support,

and architectural approaches predating

contemporary distributed computing paradigms.

Technical debt manifests through fragile

interdependencies where modifications to

individual components trigger unexpected failures

throughout interconnected systems. Documentation

degrades progressively, becoming outdated or

absent, while original development teams transition

to different roles, eliminating access to critical

domain expertise. Conventional migration

methodologies necessitate exhaustive manual code

examination, demanding teams invest considerable

effort understanding intricate business logic and

meticulously refactoring modules while preserving

compatibility with existing integrations. Nitin

demonstrates through empirical analysis of

enterprise migration projects that these manual

approaches consume disproportionate engineering

resources while introducing systematic risks that

compound over project duration.

1.2 Drawbacks of Traditional Conversion

Methods

Traditional platform modernization initiatives

assemble specialized engineering teams to

manually examine, redesign, and reconstruct legacy

applications through labor-intensive processes.

These undertakings typically consume extended

timeframes spanning months or years for

substantial systems, representing significant

financial investments. Manual migration introduces

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sahil Agarwal / IJCESEN 12-1(2026)167-177

168

considerable hazards as developers may overlook

subtle interdependencies, misinterpret legacy

behavioral patterns, or inadvertently inject defects

during reconstruction efforts. Regression testing

emerges as a critical bottleneck, necessitating

comprehensive test coverage that often proves

nonexistent for older implementations.

Organizations frequently maintain parallel system

operations throughout migration periods, escalating

infrastructure expenditures and operational

overhead. Diggs et al. examined legacy code

modernization efforts across multiple organizations

and found that prolonged migration timelines

further complicate matters as business requirements

continue evolving, occasionally rendering target

platforms obsolete prior to project completion. In

one documented case, a financial services firm

spent eighteen months migrating a trading platform

only to discover that the target framework had been

superseded by newer alternatives, necessitating

immediate plans for another migration cycle.

1.3 Advent of Machine Learning Solutions

Artificial intelligence capabilities have unlocked

novel opportunities for automating substantial

segments of migration operations. Contemporary

machine learning architectures, particularly models

trained across extensive source code repositories,

demonstrate proficiency in understanding

programming language constructs, semantic

relationships, and prevalent design patterns

spanning diverse technological platforms. These

models analyze codebases at unprecedented scales,

recognizing discrete components, charting

dependencies, and recommending transformations

that maintain functional integrity while adopting

modern frameworks. Contrasting with rule-based

utilities requiring explicit programming for

individual transformation scenarios, these models

generalize from exemplar data and accommodate

variations in coding conventions, framework

utilization, and architectural patterns. This

generalization capacity enables intelligent

migration frameworks to assist with operations

previously demanding profound human expertise,

including translating business logic across

programming languages or modernizing deprecated

application programming interface invocations

toward contemporary alternatives.

1.4 Article Organization and Coverage

This examination investigates how intelligent

migration frameworks harness artificial intelligence

to revolutionize platform modernization practices.

The analysis encompasses technical architecture

foundations underlying these systems, including

integration of abstract syntax tree processing with

neural code embedding methodologies. Discussion

progresses through core operational mechanisms

enabling automated code classification,

correspondence mapping, transformation execution,

and validation procedures. The investigation

emphasizes the essential function of human

supervision in preserving quality standards and

establishing organizational confidence in these

processes. Security protocols and compliance

considerations receive comprehensive treatment,

given the sensitive nature of automated production

code modifications. Implementation challenges and

experiential insights from operational deployments

furnish practical perspectives for organizations

evaluating adoption strategies, including

documented failure cases that illuminate the

boundaries and limitations of current automation

capabilities. The concluding synthesis consolidates

these dimensions while examining the prospective

trajectory of continuous modernization facilitation.

2. Foundational Architecture and Core

Components

2.1 Integrated Analysis Infrastructure

Intelligent migration frameworks implement

sophisticated hybrid architectures merging

conventional static program analysis methodologies

with contemporary pattern recognition capabilities.

The architectural foundation commences with

parsing infrastructure, converting source code into

structured representations, and accommodating

both symbolic reasoning and machine learning

operations. This dual methodology exploits the

deterministic precision of formal methods while

capitalizing on neural network generalization

capabilities. Yang et al. demonstrate that

hierarchical AST coarsening through graph-based

learning enables more efficient program

classification while preserving essential structural

relationships. Static analysis components deliver

guaranteed assertions regarding code structure and

control flow pathways, whereas learning-based

components address ambiguous scenarios where

multiple valid transformations exist. Integration

across these layers materializes through a shared

intermediate representation processable by both

symbolic and neural subsystems.

2.2 Hierarchical Code Representation Structures

Abstract Syntax Trees function as fundamental data

structures representing source code in machine-

processable formats. An AST encodes the

Sahil Agarwal / IJCESEN 12-1(2026)167-177

169

hierarchical organization of programs, representing

language constructs including function declarations,

conditional expressions, iteration structures, and

computational operations as tree vertices. This

representation abstracts syntactic particularities

such as whitespace and commentary while

preserving semantic program meaning. Migration

frameworks exploit these structures to comprehend

function hierarchies, delineate variable scopes,

trace control flow trajectories, and identify data

dependencies. The tree structure facilitates efficient

traversal algorithms, locating specific patterns, such

as database query operations or deprecated

application programming interface instances. Yu's

work on flattening abstract syntax trees reveals that

different AST representations offer distinct trade-

offs between processing efficiency and semantic

preservation, with flattened representations

enabling faster pattern matching at the cost of some

hierarchical context. This structural examination

additionally supports cross-language migration

through common intermediate representations

translatable between source and target language

grammars.

2.3 Vector Space Code Embeddings

Beyond structural examination, intelligent

migration frameworks deploy pretrained language

models capturing semantic code properties. Models

including CodeBERT and GraphCodeBERT

undergo training across millions of code

repositories to acquire distributed representations of

programming constructs. These models project

code fragments as high-dimensional vectors

wherein semantically similar code occupies

proximate positions within embedding space. This

capability enables frameworks to quantify

functional similarity between code segments

despite divergent variable nomenclature, coding

conventions, or implementation methodologies. For

migration applications, embeddings facilitate the

discovery of functionally equivalent application

programming interfaces across disparate

frameworks, the identification of duplicate or

analogous logic suitable for consolidation, and the

detection of anti-patterns warranting refactoring

during modernization. However, embeddings can

fail in subtle ways—for instance, two functions

might have similar embeddings because they both

process lists, even though one sorts customer

records while the other filters transaction data,

leading to inappropriate mapping suggestions

during migration.

2.4 Relationship Mapping and Sequencing

A critical component within migration frameworks

comprises the dependency graph mapping

relationships among services, modules, libraries,

and data schemas. This directed graph

representation captures component

interdependencies, enabling frameworks to

determine safe migration sequencing. Individual

graph vertices contain comprehensive metadata,

including component runtime environments,

framework versions, ownership assignments, and

coupling intensity measurements with other

components. The graph structure enables

algorithms to identify strongly connected

components requiring concurrent migration, detect

circular dependencies necessitating careful

resolution, and locate independent modules

permitting parallel migration. Nikolov et al.

describe Google's internal migration tooling, which

leverages large-scale dependency graphs combined

with historical change data to predict migration

complexity and identify high-risk transformation

sequences before execution. For large distributed

systems, dependency graphs frequently integrate

with service mesh telemetry to incorporate runtime

invocation patterns and actual usage data,

supplementing static code analysis.

2.5 Pipeline Coordination Platforms

Enterprise-scale migration demands a robust

orchestration infrastructure managing thousands of

concurrent transformation tasks while maintaining

consistency guarantees. Contemporary intelligent

migration frameworks integrate with cloud-native

platforms, including Kubernetes for container

orchestration, Argo Workflows for defining

complex multi-stage pipelines, and Apache Airflow

for scheduling and monitoring extended migration

campaigns. These platforms furnish checkpointing

mechanisms enabling migration resumption

following failures, distributed execution

parallelizing independent transformations, and

observability features tracking progress and

surfacing issues. The orchestration layer

additionally manages resource allocation, ensuring

migration tasks avoid overwhelming production

systems, and coordinates rollback procedures when

transformations fail validation checks.

3. Operational Mechanisms and Process

Workflows

3.1 Component Categorization Automation

Migration processes initiate automated

classification of code components according to

functional roles and characteristics. Akalanka et al.

Sahil Agarwal / IJCESEN 12-1(2026)167-177

170

present an AI-powered code repository analyzer

that employs machine learning models trained on

labeled datasets from open-source repositories to

acquire recognition capabilities for common

patterns, including web request handlers, data

access layers, business logic services, utility

libraries, and configuration modules. Classification

enables frameworks to apply appropriate

transformation strategies tailored to each

component type. Stateless utility functions permit

independent migration with minimal risk, while

stateful services require careful preservation of

state management semantics. Classification models

operate on both structural representations and

learned embeddings, combining syntactic and

semantic features to achieve high accuracy even on

codebases with unconventional organization or

naming conventions. Nevertheless, classification

failures occur when organizations use non-standard

architectural patterns—one retail company's

codebase intermingled business logic with

presentation code in ways that confused the

classifier, resulting in inappropriate transformation

strategies being applied to critical checkout flow

components that required manual remediation.

3.2 Equivalence Discovery Between Platforms

Following component classification, frameworks

perform mapping between legacy constructs and

their modern equivalents. This mapping process

employs similarity search within the embedding

space to identify functionally equivalent libraries,

frameworks, or application programming interface

patterns in target platforms. When migrating from

deprecated web frameworks to contemporary

alternatives, systems search for application

programming interfaces providing similar

functionality, including request routing, session

management, or template rendering. The mapping

phase generates candidate transformations ranked

by confidence scores based on semantic similarity,

usage patterns in comparable migration projects,

and compatibility with target environments. Human

reviewers typically validate high-impact mappings

before broad codebase application. A notable

failure mode involves "false friends"—APIs with

similar names and superficially similar

functionality but critically different behavior.

During one migration from Flask to FastAPI, the

automated system confidently mapped Flask's

synchronous database session handling to FastAPI's

async patterns without recognizing that the latter

requires fundamentally different transaction

management approaches, leading to data

consistency issues that emerged only under

concurrent load testing.

3.3 Code Conversion Techniques

Actual code transformation synthesizes

deterministic rule-based rewriting with learned

translation models. Rule-based transformations

address straightforward cases where mapping

remains unambiguous, such as renaming imported

modules or updating application programming

interface signatures according to known

deprecation schedules. More complex

transformations employ tree-to-tree translation

networks learning to convert structural

representations from the source language or

framework to the target. These neural models align

corresponding nodes between source and target

structures, preserving semantic relationships while

adapting to different syntactic conventions.

Translating Python code to Go requires handling

differences in type systems, memory management,

and concurrency models. Frameworks generate

candidate transformations, validate them against

type constraints and behavioral specifications, and

select the highest-confidence option.

3.4 Correctness Verification Procedures

Validation forms a critical safety mechanism,

ensuring transformed code preserves original

behavior. Intelligent migration frameworks employ

multiple validation strategies operating at different

granularity levels. Static validation checks type

correctness, ensures all dependencies are satisfied,

and verifies security policy maintenance. Dynamic

validation executes existing test suites against

transformed code, comparing outputs to baseline

runs against the original implementation. For code

without comprehensive tests, frameworks may

generate synthetic test cases based on inferred

specifications or employ symbolic execution to

explore possible execution paths. Coverage analysis

quantifies what percentage of transformed code has

been exercised by validation, flagging low-

coverage areas for manual inspection. Differential

testing runs both old and new implementations in

parallel production environments, monitoring for

discrepancies in behavior or performance.

However, validation itself has limitations—edge

cases involving specific input combinations, timing

dependencies, or external system states may escape

detection even with comprehensive testing regimes.

3.5 Supervised Decision Points

Despite extensive automation, human oversight

remains essential for maintaining quality and

Sahil Agarwal / IJCESEN 12-1(2026)167-177

171

building organizational trust in these processes.

Chowdhury et al. emphasize that AI-driven code

generation and transformation systems must

incorporate human validation checkpoints to

prevent security vulnerabilities and maintain code

quality standards. Engineers define transformation

boundaries, specifying which components are

eligible for automated migration versus which

require manual handling. Frameworks assign

confidence scores to each proposed transformation

based on factors including embedding similarity,

validation coverage, and historical success rates for

similar transformations. When confidence falls

below configurable thresholds, systems route

transformations to human reviewers for approval.

This supervised design allows organizations to start

with conservative automation, gradually increasing

autonomy thresholds as confidence in system

decisions grows.

3.6 Adaptive Model Refinement

Orchestration pipelines incorporate feedback

mechanisms enabling continuous improvement of

underlying models. When human reviewers

approve, modify, or reject generated

transformations, their decisions are logged as

labeled training examples. Periodically,

frameworks retrain models using this accumulated

feedback, learning organization-specific

conventions, preferred refactoring idioms, and

domain-specific patterns differing from general

open-source practices. This feedback loop

transforms migration frameworks from static tools

into adaptive systems, becoming increasingly

aligned with organizational engineering culture and

standards over time. The learning process also

helps systems avoid repeating past mistakes,

improving reliability across successive migration

campaigns.

4. Protection Mechanisms and Regulatory

Compliance

4.1 Vulnerability Introduction Risks

Automated modernization introduces unique

security challenges because systems modify critical

production code without continuous human

scrutiny. Transformation errors could inadvertently

introduce vulnerabilities, including SQL injection

flaws, buffer overflows, privilege escalation paths,

or insecure deserialization. Even semantically

correct transformations might alter security

properties, for example, by changing authentication

check ordering or modifying access control logic.

Ambati et al. investigate the security implications

of AI-generated code and document numerous

cases where code generation models produce

syntactically correct but security-flawed

implementations, including improper input

sanitization and insecure cryptographic practices.

Frameworks must incorporate security-aware

validation extending beyond functional correctness

to verify security invariant preservation. This

includes static analysis tools scanning transformed

code for known vulnerability patterns, taint analysis

tracking data flow from untrusted sources, and

formal verification of security-critical code paths.

In one documented incident, an automated

migration tool converted a legacy authentication

system to modern JWT-based authentication but

inadvertently removed rate-limiting logic that had

been embedded within the original authentication

flow, enabling brute-force attacks that had

previously been mitigated.

4.2 Regulatory Adherence Requirements

Organizations operating in regulated industries

must ensure automated transformations comply

with data protection laws, industry standards, and

internal governance policies. Compliance layers

within intelligent migration frameworks scan code

before and after transformation to detect regulated

data elements, including personally identifiable

information, payment card data, or health records.

Detection mechanisms include pattern matching

with regular expressions, entropy analysis

identifying potential secrets or credentials, and

schema validation ensuring database migrations

maintain required audit trails and access controls.

Frameworks must also generate compliance reports

documenting what changes were made, why they

were necessary, and how they preserve required

protections. These audit trails support regulatory

examinations and internal reviews.

4.3 Declarative Rule Enforcement

Modern migration frameworks integrate policy-as-

code systems enforcing organizational rules about

acceptable transformations. Frameworks such as

Open Policy Agent or Cedar allow security and

compliance teams to define policies declaratively,

specifying constraints that all transformations must

satisfy. Policies might require that certain sensitive

operations always go through specific approval

workflows, that cryptographic algorithms meet

minimum strength requirements, or that data

retention rules are enforced consistently across

migrated and legacy systems. Every generated

transformation proposal must pass through the

policy engine before execution, ensuring

Sahil Agarwal / IJCESEN 12-1(2026)167-177

172

automation operates within defined guardrails.

Policy violations trigger alerts and route affected

transformations to appropriate reviewers.

4.4 Decision Traceability Requirements

For organizations to trust automated migration

processes, they need transparency into how

transformation decisions are made. Each code

modification should carry traceable metadata

linking it to its decision source, whether that source

is a deterministic rule, a neural model prediction, or

a human approval. Frameworks store intermediate

representations, including structural diffs,

embedding similarity scores, and validation results

that explain the rationale behind each

transformation. This explainability enables

reviewers to understand why systems chose

particular approaches, verify that reasoning aligns

with best practices, and identify potential issues

before they reach production. Explainability also

supports debugging when transformations produce

unexpected results, allowing engineers to trace back

through the decision chain to identify root causes.

4.5 Standards Alignment for Responsible

Practice

As these systems become more prevalent in critical

software engineering workflows, organizations are

adopting formal risk management frameworks to

govern their use. Intelligent migration frameworks

should align with standards, including the NIST

Risk Management Framework and ISO/IEC 42001,

which provide guidelines for responsible

development and deployment. These standards

emphasize principles including human oversight,

fairness, accountability, transparency, and

continuous monitoring. In the migration context,

this means maintaining human approval for high-

risk transformations, documenting model training

data and performance metrics, monitoring for drift

in model accuracy over time, and establishing clear

accountability for decisions made by automated

systems. Regular audits assess whether frameworks

continue to meet these standards as they evolve.

5. Implementation Difficulties and Operational

Insights

5.1 Excessive Automation Dependence

One of the most significant pitfalls in automated

migration involves placing excessive trust in

generated transformations without adequate

validation. Li et al. examine the robustness of

transformer-based code intelligence models and

reveal systematic vulnerabilities to code

transformations that preserve semantics for human

readers but confuse neural models, leading to

incorrect predictions and transformations. While

modern language models demonstrate impressive

capabilities in code generation and transformation,

they can produce syntactically correct code that is

semantically incorrect or subtly flawed. A model

might correctly translate the structure of a Python

function to Go but fail to account for differences in

how the two languages handle concurrent access to

shared data structures. Such errors might not be

caught by basic compilation or testing, only

manifesting as rare race conditions in production.

In a particularly costly example, an e-commerce

platform's automated migration correctly converted

inventory management logic from Java to Kotlin

but failed to preserve transaction isolation

semantics, resulting in overselling of limited-stock

items during flash sales—an issue that escaped

detection during testing because it only manifested

under specific timing conditions with concurrent

updates. Organizations must resist the temptation to

treat generated code as authoritative and instead

maintain rigorous validation processes regardless of

confidence scores reported by systems.

5.2 Training Data Misalignment Issues

Neural code models are typically trained on large

corpora of open-source repositories, which may not

represent the coding patterns, domain-specific

libraries, or architectural conventions used within

particular organizations. This training data

mismatch can cause context drift, where model

embeddings and predictions fail to capture

important nuances of target codebases. A company

might have developed proprietary frameworks or

adopted unconventional design patterns that rarely

appear in public code. When migration frameworks

encounter these patterns, their similarity searches

and transformation suggestions may be misaligned,

proposing inappropriate mappings or failing to

recognize functionally equivalent but syntactically

different implementations. Addressing context drift

requires augmenting training data with

organization-specific code samples and

continuously refining models based on feedback

from actual migration campaigns. A

telecommunications company encountered severe

context drift when their migration framework,

trained primarily on web application code,

attempted to modernize embedded systems code

with strict real-time constraints and memory

management patterns absent from typical training

data, resulting in transformations that introduced

unacceptable latency spikes in time-critical

communication protocols.

Sahil Agarwal / IJCESEN 12-1(2026)167-177

173

5.3 Undetected Behavioral Changes

Even when transformations pass initial validation,

subtle behavioral differences can emerge that

constitute silent regressions. Kondratenko et al.

discuss the challenge of ensuring AI-generated or

AI-transformed code maintains non-functional

requirements, noting that traditional testing

approaches often fail to detect performance

degradation, altered resource consumption patterns,

or timing-dependent behavioral shifts. These issues

often involve non-functional properties, including

performance characteristics, resource utilization

patterns, error handling edge cases, or timing-

dependent behavior. Migrating from synchronous

to asynchronous input-output patterns might

preserve functional correctness while significantly

altering latency distributions and resource

consumption profiles. Traditional test suites

focused on functional correctness may not detect

these changes. Organizations must implement a

comprehensive monitoring system to compare

migrated systems against baselines across multiple

dimensions, including performance metrics, error

rates, resource usage, and user experience

indicators. Shadow deployments, where both old

and new implementations run in parallel with real

traffic, provide valuable data for detecting

behavioral drift before full cutover. One financial

services firm discovered through shadow

deployment that their migrated settlement system,

while functionally correct, exhibited a long-tail

latency distribution that would have violated SLA

commitments—an issue completely invisible to

their functional test suite but critical for production

operations.

5.4 Limited Reasoning Transparency

When automated transformations produce

unexpected results, engineers need tools to

understand what went wrong and why systems

made particular decisions. However, many

learning-based systems operate as black boxes,

making debugging difficult when issues arise. If a

migration framework cannot explain why it chose a

specific transformation approach, engineers waste

time reverse-engineering the decision process

instead of fixing the underlying problem. Effective

migration frameworks address this by preserving

detailed artifacts throughout the transformation

pipeline, including original and transformed

structures with alignment annotations, intermediate

embedding vectors, rule matching results, and

validation reports. These artifacts enable engineers

to trace any issue back to its source, whether that is

an incorrect model prediction, a missing rule, or an

inadequate validation strategy. One healthcare

technology company encountered a migration

failure where the automated system consistently

mishandled date arithmetic in medication

scheduling code. Only by examining preserved

decision artifacts did engineers discover that the

embedding model had incorrectly associated their

proprietary date-handling utilities with standard

library functions that had subtly different timezone

handling behavior, leading to systematic off-by-

one-hour errors for patients in certain geographic

regions.

5.5 Recovery Procedure Deficiencies

Large-scale migrations inevitably encounter

failures despite careful planning and validation.

When issues emerge in production, organizations

need reliable mechanisms to roll back

transformations quickly and safely. However,

rollback procedures can be complex when

migrations involve database schema changes,

configuration updates, and interdependent service

modifications. Migration frameworks must

implement comprehensive rollback capabilities,

including snapshotting of pre-migration state,

automated rollback procedures that reverse

transformations while maintaining data consistency,

and traffic routing mechanisms that can instantly

redirect requests back to legacy implementations.

Organizations should regularly test rollback

procedures under realistic conditions to ensure they

work correctly under pressure when actual

incidents occur. A logistics company experienced a

catastrophic migration failure when their rollback

procedure, which worked perfectly in testing, failed

in production because it hadn't accounted for in-

flight transactions during the cutover window,

resulting in lost shipment tracking updates and

several hours of system unavailability while

engineers performed manual data reconciliation.

5.6 Platform Evolution Strategies

Many organizations treat migration frameworks as

one-time tools developed for specific migration

projects and then abandoned once the projects are

complete. This approach fails to capture the full

value of intelligent migration systems, which

improve significantly through continuous use and

refinement. Successful organizations instead treat

their migration frameworks as evolving platforms

that support ongoing modernization. This means

investing in operational infrastructure to retrain

models periodically with new data, incorporating

new transformation rules as frameworks and best

Sahil Agarwal / IJCESEN 12-1(2026)167-177

174

practices evolve, conducting post-mortem analyses

after each migration cycle to identify improvement

opportunities, and building institutional knowledge

about effective migration strategies. Frameworks

become strategic assets that enable organizations to

modernize continuously rather than in disruptive

multi-year rewrites.

Table 1: Comparison of Manual versus AI-Assisted Migration Approaches [1, 2]

Migration Characteristic Manual Approach AI-Assisted Approach

Time Requirements Months to years for large systems
Weeks to months with automated

assistance

Resource Intensity High specialist team requirements Reduced team size with focused expertise

Error Introduction Risk
High due to human oversight

limitations
Lower through automated validation

Dependency Tracking Manual documentation and analysis Automated graph-based mapping

Regression Detection Manual test suite execution Automated differential testing

Scalability
Limited by available human

resources
Scales with computational infrastructure

Knowledge Preservation Dependent on team continuity Encoded in models and rules

Adaptation to Standards Requires continuous manual updates Learns from feedback and retraining

Table 2: Abstract Syntax Tree Analysis Capabilities [3, 4]

Analysis Capability Description Migration Application

Structural Parsing
Converts source code into a hierarchical

tree representation
Enables language-agnostic analysis

Scope Resolution
Identifies variable and function visibility

boundaries

Prevents naming conflicts during

transformation

Control Flow Mapping
Traces execution paths through conditional

and loop constructs

Ensures behavioral equivalence

preservation

Dependency

Identification
Locates references between code elements

Determines safe refactoring

boundaries

Pattern Recognition
Detects common coding idioms and anti-

patterns
Identifies modernization candidates

Cross-Language

Translation

Maps the constructs between the source

and target languages
Facilitates polyglot migrations

Type Inference
Derives type information from usage

context
Supports type system migration

Dead Code Detection
Identifies unreachable or unused code

segments
Eliminates obsolete functionality

Table 3: Dependency Graph Construction and Analysis Methods [5]

Graph Element Information Captured Analysis Purpose

Vertices Services, modules, libraries, schemas Represents individual migration units

Edges
Import relationships, API calls, data

flows

Maps interdependencies between

components

Vertex Metadata
Runtime versions, ownership,

coupling metrics
Prioritizes migration sequencing

Strongly Connected

Components
Circular dependency clusters

Identifies units requiring atomic

migration

Topological Ordering Dependency-respecting sequence Determines safe migration order

Independent Subgraphs Non-interacting component groups Enables parallel migration execution

Sahil Agarwal / IJCESEN 12-1(2026)167-177

175

Critical Path Analysis Longest dependency chains
Identifies migration timeline

bottlenecks

Coupling Intensity Scores
Degree of component

interdependence

Assesses migration complexity and

risk

Figure 1: Intelligent Migration Framework Operational Workflow

Table 4: Common Migration Challenges and Mitigation Strategies [9, 10]

Challenge

Category
Specific Issue Impact Mitigation Approach

Over-Automation
Uncritical acceptance of

generated code

Production defects and

silent failures

Mandatory human review

for critical paths

Context Drift

Training data mismatch

with organizational

patterns

Inappropriate

transformation

suggestions

Organization-specific

model fine-tuning

Silent Regressions
Undetected behavioral

differences

Performance

degradation and user

impact

Shadow deployment and

differential monitoring

Sahil Agarwal / IJCESEN 12-1(2026)167-177

176

Explainability Gaps
Opaque transformation

decisions

Difficult debugging and

low trust

Preserve detailed decision

artifacts

Rollback

Complexity

Difficult reversal of multi-

component changes

Extended downtime

during failures

Comprehensive checkpoint

and recovery procedures

Static Framework

Treatment

One-time tool

development mindset

Declining accuracy over

time

Continuous retraining and

rule updates

Inadequate Testing
Insufficient validation

coverage

Undetected edge case

failures

Synthetic test generation

and symbolic execution

Dependency

Conflicts

Incompatible version

requirements

Runtime failures post-

migration

Graph-based compatibility

analysis

6. Conclusions

Intelligent migration frameworks represent a

fundamental shift in how organizations approach

platform modernization, moving from periodic

disruptive rewrites to continuous evolutionary

improvement. By combining abstract syntax tree

analysis, neural code embeddings, automated

transformation mechanisms, and supervised

oversight, these frameworks enable modernization

at scales and paces that manual approaches cannot

match. The architectural foundations integrating

static analysis with machine learning provide both

the precision of formal methods and the flexibility

of learned models, handling the vast complexity of

real-world legacy systems.

The security, compliance, and governance

considerations discussed throughout this

examination underscore that automation must be

deployed responsibly. Organizations cannot simply

apply models to production code without rigorous

validation, policy enforcement, and human

oversight. The frameworks that succeed are those

that build trust gradually, starting with conservative

automation and expanding capabilities as they

demonstrate reliability. Transparency and

explainability remain essential for maintaining

confidence and enabling effective debugging when

issues arise.

The challenges and lessons learned from early

deployments provide valuable guidance for

organizations embarking on their own automated

modernization journeys. Over-reliance on

automation, context drift, silent regressions, and

inadequate rollback mechanisms represent real risks

that must be actively managed. The documented

failure cases—from embedding-based mapping

errors causing data consistency issues, to semantic

equivalence failures resulting in business logic

errors, to edge case blindness producing production

incidents—illustrate that these systems, while

powerful, are not infallible. However, these

challenges are surmountable through careful system

design, comprehensive validation strategies,

continuous learning from operational experience,

and appropriate human oversight at critical decision

points.

Looking forward, intelligent migration frameworks

will continue to evolve in sophistication and

capability. Future systems will likely incorporate

generative agents that can simulate migration

impact before execution, synthesize detailed

migration plans, generate formal proofs of

behavioral equivalence, and evaluate infrastructure

cost trade-offs across alternative approaches.

Integration with reinforcement learning may enable

dynamic optimization of migration sequencing

strategies that minimize business risk while

maximizing transformation velocity. As these

capabilities mature, the boundary between

migration and normal software evolution will blur,

with systems continuously refactoring and

modernizing themselves in response to emerging

technologies and changing requirements.

The ultimate vision is an ecosystem where technical

debt no longer accumulates inexorably but is

instead managed through continuous automated

remediation. In such an environment, organizations

can adopt new technologies and platforms

opportunistically without the dread of massive

migration projects. Software systems remain

perpetually modern, maintainable, and aligned with

contemporary best practices. This transformation

from periodic painful rewrites to seamless

continuous evolution represents one of the most

significant advances in software engineering

practice enabled by artificial intelligence.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

Sahil Agarwal / IJCESEN 12-1(2026)167-177

177

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Vikram Nitin, "Using AI to Automate the

Modernization of Legacy Software Applications,"

in 2024 39th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 29

November 2024. Available:

https://ieeexplore.ieee.org/document/10764808

[2] Colin Diggs, et al., "Leveraging LLMs for Legacy

Code Modernization: Evaluation of LLM-

Generated Documentation," in 2025 IEEE/ACM

International Workshop on Large Language Models

for Code (LLM4Code), 12 June 2025. Available:

https://ieeexplore.ieee.org/document/11028228

[3] Yizu Yang, et al., "Hierarchical Abstract Syntax Tree

Representation Learning Based on Graph

Coarsening for Program Classification," in 2023

8th International Conference on Data Science in

Cyberspace (DSC), 08 January 2024. Available:

https://ieeexplore.ieee.org/document/10381405

[4] Yijun Yu, "fAST: Flattening Abstract Syntax Trees

for Efficiency," in 2019 IEEE/ACM 41st

International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion), 19

August 2019. Available:

https://ieeexplore.ieee.org/document/8802796

[5] Stoyan Nikolov, et al., "How is Google Using AI for

Internal Code Migrations?" in 2025 IEEE/ACM

47th International Conference on Software

Engineering: Software Engineering in Practice

(ICSE-SEIP), 20 August 2025. Available:

https://ieeexplore.ieee.org/document/11121699

[6] Isuru Akalanka, et al., "AI-Powered Integrated Code

Repository Analyzer for Efficient Developer

Workflow," in 2025 International Research

Conference on Smart Computing and Systems

Engineering (SCSE), 13 June 2025. Available:

https://ieeexplore.ieee.org/document/11031000

[7] Md Naseef-Ur-Rahman Chowdhury, et al., "AI-

Driven Secure Coding: Revolutionizing Source

Code Defense," in 2024 International Conference

on Signal Processing and Advanced Research in

Computing (SPARC), 10 January 2025. Available:

https://ieeexplore.ieee.org/document/10828840

[8] Sri Haritha Ambati, et al., "Navigating (in)Security

of AI-Generated Code," in 2024 IEEE International

Conference on Cyber Security and Resilience

(CSR), 24 September 2024. Available:

https://ieeexplore.ieee.org/document/10679468

[9] Yaoxian Li, et al., "Understanding the Robustness of

Transformer-Based Code Intelligence via Code

Transformation: Challenges and Opportunities," in

IEEE Transactions on Neural Networks and

Learning Systems, 16 January 2025. Available:

https://ieeexplore.ieee.org/document/10843180

[10] Yuriy Kondratenko, et al., "Tendencies and

Challenges of Artificial Intelligence in Modern

Software Engineering," in IEEE Access, 21

December 2023. Available:

https://ieeexplore.ieee.org/document/10348800

https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10348800
https://ieeexplore.ieee.org/document/10348800
https://ieeexplore.ieee.org/document/10348800

