Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - o ’
(IJCESEN) N

Vol. 12-No.1 (2026) pp. 167-177 —
http://www.ijcesen.com

ISSN: 2149-9144
Research Article

From Legacy to Leading Edge: AI’s Role in Modernizing Platforms

Sahil Agarwal*

Independent Researcher, USA

* Corresponding Author Email: reach.agarwalsahil@gmail.com - ORCID: 0000-0002-3337-0050

Article Info:

DOI: 10.22399/ijcesen.4716
Received : 08 November 2025
Revised : 29 December 2025
Accepted : 03 January 2026

Keywords

Al-assisted modernization,
Abstract syntax tree (AST),
CodeBERT / GraphCodeBERT,
Human-in-the-loop (HITL),
Automated refactoring

Abstract:

Legacy modernization constitutes a formidable technical and strategic challenge for
enterprises maintaining large-scale software infrastructures. Systems accumulate
complexity through decades of incremental development, resulting in tangled
dependencies, obsolete frameworks, and inconsistent application programming
interfaces. Manual migration approaches prove costly and hazardous due to dependence
on institutional knowledge that frequently disappears over time. Conventional methods
involving manual code rewriting introduce defects, prolong system unavailability, and
impede innovation cycles. Recent advances in artificial intelligence have fundamentally
altered modernization methodologies. Contemporary intelligent migration frameworks
synthesize code comprehension models, dependency graph analytics, and predictive
validation mechanisms to automate substantial portions of migration workflows.
Machine learning architectures now parse, categorize, and translate complex codebases
while maintaining high degrees of semantic integrity, though challenges remain as
language models occasionally fail to preserve complete semantic equivalence. These
enhanced systems diminish human error during transformation operations and
strengthen system dependability, facilitating modernization efforts at scales previously
deemed impractical. This article explores architectural underpinnings, operational
mechanisms, security protocols, and implementation challenges within these
frameworks, illustrating their capacity to convert legacy modernization from episodic
reconstruction initiatives into perpetual evolutionary maintenance processes.

1. Background and Rationale

methodologies necessitate exhaustive manual code
examination, demanding teams invest considerable

1.1 Enterprise Software Modernization effort understanding intricate business logic and
Obstacles meticulously refactoring modules while preserving

compatibility with existing integrations. Nitin
Organizations managing extensive software demonstrates through empirical analysis of

obstacles when

portfolios confront substantial
addressing legacy system modernization. Enterprise
applications frequently contain extensive codebases
developed across multiple decades, incorporating
programming languages no longer actively
maintained, frameworks lacking vendor support,
and architectural approaches predating
contemporary distributed computing paradigms.
Technical debt manifests through fragile
interdependencies where modifications to
individual components trigger unexpected failures
throughout interconnected systems. Documentation
degrades progressively, becoming outdated or
absent, while original development teams transition
to different roles, eliminating access to critical
domain expertise. Conventional migration

enterprise migration projects that these manual
approaches consume disproportionate engineering
resources while introducing systematic risks that
compound over project duration.

1.2 Drawbacks of Traditional Conversion
Methods

Traditional platform modernization initiatives
assemble specialized engineering teams to

manually examine, redesign, and reconstruct legacy
applications through labor-intensive processes.
These undertakings typically consume extended
timeframes spanning months or years for
substantial ~ systems, representing significant
financial investments. Manual migration introduces

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sahil Agarwal / IJCESEN 12-1(2026)167-177

considerable hazards as developers may overlook
subtle interdependencies, misinterpret legacy
behavioral patterns, or inadvertently inject defects
during reconstruction efforts. Regression testing
emerges as a critical bottleneck, necessitating
comprehensive test coverage that often proves
nonexistent for older implementations.
Organizations frequently maintain parallel system
operations throughout migration periods, escalating
infrastructure expenditures and operational
overhead. Diggs et al. examined legacy code
modernization efforts across multiple organizations
and found that prolonged migration timelines
further complicate matters as business requirements
continue evolving, occasionally rendering target
platforms obsolete prior to project completion. In
one documented case, a financial services firm
spent eighteen months migrating a trading platform
only to discover that the target framework had been
superseded by newer alternatives, necessitating
immediate plans for another migration cycle.

1.3 Advent of Machine Learning Solutions

Artificial intelligence capabilities have unlocked
novel opportunities for automating substantial
segments of migration operations. Contemporary
machine learning architectures, particularly models
trained across extensive source code repositories,

demonstrate proficiency in understanding
programming language constructs, semantic
relationships, and prevalent design patterns

spanning diverse technological platforms. These
models analyze codebases at unprecedented scales,
recognizing discrete components, charting
dependencies, and recommending transformations
that maintain functional integrity while adopting
modern frameworks. Contrasting with rule-based
utilities requiring explicit programming for
individual transformation scenarios, these models
generalize from exemplar data and accommodate

variations in coding conventions, framework
utilization, and architectural patterns. This
generalization ~ capacity enables intelligent

migration frameworks to assist with operations
previously demanding profound human expertise,
including translating business logic across
programming languages or modernizing deprecated
application programming interface invocations
toward contemporary alternatives.

1.4 Article Organization and Coverage

This examination investigates how intelligent
migration frameworks harness artificial intelligence
to revolutionize platform modernization practices.
The analysis encompasses technical architecture

168

foundations underlying these systems, including
integration of abstract syntax tree processing with
neural code embedding methodologies. Discussion
progresses through core operational mechanisms
enabling automated code classification,
correspondence mapping, transformation execution,
and validation procedures. The investigation
emphasizes the essential function of human
supervision in preserving quality standards and
establishing organizational confidence in these
processes. Security protocols and compliance
considerations receive comprehensive treatment,
given the sensitive nature of automated production
code modifications. Implementation challenges and
experiential insights from operational deployments
furnish practical perspectives for organizations
evaluating adoption strategies, including
documented failure cases that illuminate the
boundaries and limitations of current automation
capabilities. The concluding synthesis consolidates
these dimensions while examining the prospective
trajectory of continuous modernization facilitation.
and Core

2. Foundational Architecture

Components
2.1 Integrated Analysis Infrastructure

Intelligent migration frameworks implement
sophisticated hybrid architectures merging
conventional static program analysis methodologies
with contemporary pattern recognition capabilities.
The architectural foundation commences with
parsing infrastructure, converting source code into
structured representations, and accommodating
both symbolic reasoning and machine learning
operations. This dual methodology exploits the
deterministic precision of formal methods while
capitalizing on neural network generalization

capabilities. Yang et al. demonstrate that
hierarchical AST coarsening through graph-based
learning enables more efficient program

classification while preserving essential structural
relationships. Static analysis components deliver
guaranteed assertions regarding code structure and
control flow pathways, whereas learning-based
components address ambiguous scenarios where
multiple valid transformations exist. Integration
across these layers materializes through a shared
intermediate representation processable by both
symbolic and neural subsystems.

2.2 Hierarchical Code Representation Structures
Abstract Syntax Trees function as fundamental data

structures representing source code in machine-
processable formats. An AST encodes the

Sahil Agarwal / IJCESEN 12-1(2026)167-177

hierarchical organization of programs, representing
language constructs including function declarations,
conditional expressions, iteration structures, and
computational operations as tree vertices. This
representation abstracts syntactic particularities
such as whitespace and commentary while
preserving semantic program meaning. Migration
frameworks exploit these structures to comprehend
function hierarchies, delineate variable scopes,
trace control flow trajectories, and identify data
dependencies. The tree structure facilitates efficient
traversal algorithms, locating specific patterns, such
as database query operations or deprecated
application programming interface instances. Yu's
work on flattening abstract syntax trees reveals that
different AST representations offer distinct trade-
offs between processing efficiency and semantic
preservation, with flattened representations
enabling faster pattern matching at the cost of some
hierarchical context. This structural examination
additionally supports cross-language migration
through common intermediate representations
translatable between source and target language
grammars.

2.3 Vector Space Code Embeddings

Beyond structural examination, intelligent
migration frameworks deploy pretrained language
models capturing semantic code properties. Models
including CodeBERT and GraphCodeBERT
undergo training across millions of code
repositories to acquire distributed representations of
programming constructs. These models project
code fragments as high-dimensional vectors
wherein semantically similar code occupies
proximate positions within embedding space. This
capability enables frameworks to quantify
functional similarity between code segments
despite divergent variable nomenclature, coding
conventions, or implementation methodologies. For
migration applications, embeddings facilitate the
discovery of functionally equivalent application
programming interfaces across disparate
frameworks, the identification of duplicate or
analogous logic suitable for consolidation, and the
detection of anti-patterns warranting refactoring
during modernization. However, embeddings can
fail in subtle ways—for instance, two functions
might have similar embeddings because they both
process lists, even though one sorts customer
records while the other filters transaction data,
leading to inappropriate mapping suggestions
during migration.

2.4 Relationship Mapping and Sequencing

169

A critical component within migration frameworks

comprises the dependency graph mapping
relationships among services, modules, libraries,
and data schemas. This directed graph
representation captures component
interdependencies, enabling frameworks to

determine safe migration sequencing. Individual
graph vertices contain comprehensive metadata,
including component runtime environments,
framework versions, ownership assignments, and
coupling intensity measurements with other
components. The graph structure enables
algorithms to identify strongly connected
components requiring concurrent migration, detect

circular dependencies necessitating careful
resolution, and locate independent modules
permitting parallel migration. Nikolov et al.

describe Google's internal migration tooling, which
leverages large-scale dependency graphs combined
with historical change data to predict migration
complexity and identify high-risk transformation
sequences before execution. For large distributed
systems, dependency graphs frequently integrate
with service mesh telemetry to incorporate runtime
invocation patterns and actual usage data,
supplementing static code analysis.

2.5 Pipeline Coordination Platforms

Enterprise-scale migration demands a robust
orchestration infrastructure managing thousands of
concurrent transformation tasks while maintaining
consistency guarantees. Contemporary intelligent
migration frameworks integrate with cloud-native
platforms, including Kubernetes for container
orchestration, Argo Workflows for defining
complex multi-stage pipelines, and Apache Airflow
for scheduling and monitoring extended migration
campaigns. These platforms furnish checkpointing
mechanisms enabling migration resumption
following failures, distributed execution
parallelizing independent transformations, and
observability features tracking progress and
surfacing issues. The orchestration layer
additionally manages resource allocation, ensuring
migration tasks avoid overwhelming production
systems, and coordinates rollback procedures when
transformations fail validation checks.

and Process

3. Operational Mechanisms

Workflows
3.1 Component Categorization Automation
Migration processes initiate automated

classification of code components according to
functional roles and characteristics. Akalanka et al.

Sahil Agarwal / IJCESEN 12-1(2026)167-177

present an Al-powered code repository analyzer
that employs machine learning models trained on
labeled datasets from open-source repositories to
acquire recognition capabilities for common
patterns, including web request handlers, data
access layers, business logic services, utility
libraries, and configuration modules. Classification
enables frameworks to apply appropriate
transformation strategies tailored to each
component type. Stateless utility functions permit
independent migration with minimal risk, while
stateful services require careful preservation of
state management semantics. Classification models
operate on both structural representations and
learned embeddings, combining syntactic and
semantic features to achieve high accuracy even on
codebases with unconventional organization or
naming conventions. Nevertheless, classification
failures occur when organizations use non-standard
architectural patterns—one retail company's
codebase intermingled business logic with
presentation code in ways that confused the
classifier, resulting in inappropriate transformation
strategies being applied to critical checkout flow
components that required manual remediation.

3.2 Equivalence Discovery Between Platforms

Following component classification, frameworks
perform mapping between legacy constructs and
their modern equivalents. This mapping process
employs similarity search within the embedding
space to identify functionally equivalent libraries,
frameworks, or application programming interface
patterns in target platforms. When migrating from
deprecated web frameworks to contemporary
alternatives, systems search for application
programming interfaces providing similar
functionality, including request routing, session
management, or template rendering. The mapping
phase generates candidate transformations ranked
by confidence scores based on semantic similarity,
usage patterns in comparable migration projects,
and compatibility with target environments. Human
reviewers typically validate high-impact mappings
before broad codebase application. A notable
failure mode involves "false friends"—APIs with
similar names and superficially similar
functionality but critically different behavior.
During one migration from Flask to FastAPI, the
automated system confidently mapped Flask's
synchronous database session handling to FastAPI's
async patterns without recognizing that the latter

requires fundamentally different transaction
management approaches, leading to data
consistency issues that emerged only under

concurrent load testing.

170

3.3 Code Conversion Techniques

Actual code transformation synthesizes
deterministic rule-based rewriting with learned
translation models. Rule-based transformations
address straightforward cases where mapping
remains unambiguous, such as renaming imported
modules or updating application programming
interface signatures according to known
deprecation schedules. More complex
transformations employ tree-to-tree translation
networks learning to convert structural
representations from the source language or
framework to the target. These neural models align
corresponding nodes between source and target
structures, preserving semantic relationships while
adapting to different syntactic conventions.
Translating Python code to Go requires handling
differences in type systems, memory management,
and concurrency models. Frameworks generate
candidate transformations, validate them against
type constraints and behavioral specifications, and
select the highest-confidence option.

3.4 Correctness Verification Procedures

Validation forms a critical safety mechanism,
ensuring transformed code preserves original
behavior. Intelligent migration frameworks employ
multiple validation strategies operating at different
granularity levels. Static validation checks type
correctness, ensures all dependencies are satisfied,
and verifies security policy maintenance. Dynamic
validation executes existing test suites against
transformed code, comparing outputs to baseline
runs against the original implementation. For code
without comprehensive tests, frameworks may
generate synthetic test cases based on inferred
specifications or employ symbolic execution to
explore possible execution paths. Coverage analysis
quantifies what percentage of transformed code has
been exercised by validation, flagging low-
coverage areas for manual inspection. Differential
testing runs both old and new implementations in
parallel production environments, monitoring for
discrepancies in behavior or performance.
However, validation itself has limitations—edge
cases involving specific input combinations, timing
dependencies, or external system states may escape
detection even with comprehensive testing regimes.

3.5 Supervised Decision Points

Despite extensive automation, human oversight
remains essential for maintaining quality and

Sahil Agarwal / IJCESEN 12-1(2026)167-177

building organizational trust in these processes.
Chowdhury et al. emphasize that Al-driven code
generation and transformation systems must
incorporate human validation checkpoints to
prevent security vulnerabilities and maintain code
quality standards. Engineers define transformation
boundaries, specifying which components are
eligible for automated migration versus which
require manual handling. Frameworks assign
confidence scores to each proposed transformation
based on factors including embedding similarity,
validation coverage, and historical success rates for
similar transformations. When confidence falls
below configurable thresholds, systems route
transformations to human reviewers for approval.
This supervised design allows organizations to start
with conservative automation, gradually increasing
autonomy thresholds as confidence in system
decisions grows.

3.6 Adaptive Model Refinement

Orchestration pipelines incorporate feedback
mechanisms enabling continuous improvement of

underlying models. When human reviewers
approve, modify, or reject generated
transformations, their decisions are logged as
labeled training examples. Periodically,

frameworks retrain models using this accumulated
feedback, learning organization-specific
conventions, preferred refactoring idioms, and
domain-specific patterns differing from general
open-source practices. This feedback loop
transforms migration frameworks from static tools
into adaptive systems, becoming increasingly
aligned with organizational engineering culture and
standards over time. The learning process also
helps systems avoid repeating past mistakes,
improving reliability across successive migration
campaigns.

4. Protection Mechanisms
Compliance

and Regulatory

4.1 Vulnerability Introduction Risks

Automated modernization introduces unique
security challenges because systems modify critical
production code without continuous human
scrutiny. Transformation errors could inadvertently
introduce vulnerabilities, including SQL injection
flaws, buffer overflows, privilege escalation paths,
or insecure deserialization. Even semantically
correct transformations might alter security
properties, for example, by changing authentication
check ordering or modifying access control logic.
Ambati et al. investigate the security implications

171

of Al-generated code and document numerous
cases where code generation models produce
syntactically ~ correct but security-flawed
implementations, including improper input
sanitization and insecure cryptographic practices.
Frameworks must incorporate security-aware
validation extending beyond functional correctness
to verify security invariant preservation. This
includes static analysis tools scanning transformed
code for known vulnerability patterns, taint analysis
tracking data flow from untrusted sources, and
formal verification of security-critical code paths.
In one documented incident, an automated
migration tool converted a legacy authentication
system to modern JWT-based authentication but
inadvertently removed rate-limiting logic that had
been embedded within the original authentication
flow, enabling brute-force attacks that had
previously been mitigated.

4.2 Regulatory Adherence Requirements

Organizations operating in regulated industries
must ensure automated transformations comply
with data protection laws, industry standards, and
internal governance policies. Compliance layers
within intelligent migration frameworks scan code
before and after transformation to detect regulated
data elements, including personally identifiable
information, payment card data, or health records.
Detection mechanisms include pattern matching
with regular expressions, entropy analysis
identifying potential secrets or credentials, and
schema validation ensuring database migrations
maintain required audit trails and access controls.
Frameworks must also generate compliance reports
documenting what changes were made, why they
were necessary, and how they preserve required
protections. These audit trails support regulatory
examinations and internal reviews.

4.3 Declarative Rule Enforcement

Modern migration frameworks integrate policy-as-
code systems enforcing organizational rules about
acceptable transformations. Frameworks such as
Open Policy Agent or Cedar allow security and
compliance teams to define policies declaratively,
specifying constraints that all transformations must
satisfy. Policies might require that certain sensitive
operations always go through specific approval
workflows, that cryptographic algorithms meet
minimum strength requirements, or that data
retention rules are enforced consistently across
migrated and legacy systems. Every generated
transformation proposal must pass through the
policy engine before execution, ensuring

Sahil Agarwal / IJCESEN 12-1(2026)167-177

automation operates within defined guardrails.
Policy violations trigger alerts and route affected
transformations to appropriate reviewers.

4.4 Decision Traceability Requirements

For organizations to trust automated migration
processes, they need transparency into how
transformation decisions are made. Each code
modification should carry traceable metadata
linking it to its decision source, whether that source
is a deterministic rule, a neural model prediction, or
a human approval. Frameworks store intermediate
representations, including structural diffs,
embedding similarity scores, and validation results
that explain the rationale behind each
transformation. This explainability enables
reviewers to understand why systems chose
particular approaches, verify that reasoning aligns
with best practices, and identify potential issues
before they reach production. Explainability also
supports debugging when transformations produce
unexpected results, allowing engineers to trace back
through the decision chain to identify root causes.

45 Standards
Practice

Alignment for Responsible

As these systems become more prevalent in critical
software engineering workflows, organizations are
adopting formal risk management frameworks to
govern their use. Intelligent migration frameworks
should align with standards, including the NIST
Risk Management Framework and ISO/IEC 42001,
which provide guidelines for responsible
development and deployment. These standards
emphasize principles including human oversight,
fairness, accountability, transparency, and
continuous monitoring. In the migration context,
this means maintaining human approval for high-
risk transformations, documenting model training
data and performance metrics, monitoring for drift
in model accuracy over time, and establishing clear
accountability for decisions made by automated
systems. Regular audits assess whether frameworks
continue to meet these standards as they evolve.

5. Implementation Difficulties and Operational
Insights

5.1 Excessive Automation Dependence

One of the most significant pitfalls in automated
migration involves placing excessive trust in
generated transformations without adequate
validation. Li et al. examine the robustness of
transformer-based code intelligence models and
reveal systematic vulnerabilities to code
transformations that preserve semantics for human

172

readers but confuse neural models, leading to
incorrect predictions and transformations. While
modern language models demonstrate impressive
capabilities in code generation and transformation,
they can produce syntactically correct code that is
semantically incorrect or subtly flawed. A model
might correctly translate the structure of a Python
function to Go but fail to account for differences in
how the two languages handle concurrent access to
shared data structures. Such errors might not be
caught by basic compilation or testing, only
manifesting as rare race conditions in production.
In a particularly costly example, an e-commerce
platform's automated migration correctly converted
inventory management logic from Java to Kotlin
but failed to preserve transaction isolation
semantics, resulting in overselling of limited-stock
items during flash sales—an issue that escaped
detection during testing because it only manifested
under specific timing conditions with concurrent
updates. Organizations must resist the temptation to
treat generated code as authoritative and instead
maintain rigorous validation processes regardless of
confidence scores reported by systems.

5.2 Training Data Misalignment Issues

Neural code models are typically trained on large
corpora of open-source repositories, which may not
represent the coding patterns, domain-specific
libraries, or architectural conventions used within
particular organizations. This training data
mismatch can cause context drift, where model
embeddings and predictions fail to capture
important nuances of target codebases. A company
might have developed proprietary frameworks or
adopted unconventional design patterns that rarely
appear in public code. When migration frameworks
encounter these patterns, their similarity searches
and transformation suggestions may be misaligned,
proposing inappropriate mappings or failing to
recognize functionally equivalent but syntactically
different implementations. Addressing context drift
requires augmenting training data with
organization-specific code samples and
continuously refining models based on feedback
from actual migration campaigns. A
telecommunications company encountered severe
context drift when their migration framework,
trained primarily on web application code,
attempted to modernize embedded systems code
with strict real-time constraints and memory
management patterns absent from typical training
data, resulting in transformations that introduced
unacceptable latency spikes in time-critical
communication protocols.

Sahil Agarwal / IJCESEN 12-1(2026)167-177

5.3 Undetected Behavioral Changes

Even when transformations pass initial validation,
subtle behavioral differences can emerge that
constitute silent regressions. Kondratenko et al.
discuss the challenge of ensuring Al-generated or
Al-transformed code maintains non-functional
requirements, noting that traditional testing
approaches often fail to detect performance
degradation, altered resource consumption patterns,
or timing-dependent behavioral shifts. These issues
often involve non-functional properties, including
performance characteristics, resource utilization
patterns, error handling edge cases, or timing-
dependent behavior. Migrating from synchronous
to asynchronous input-output patterns might
preserve functional correctness while significantly
altering latency distributions and resource
consumption profiles. Traditional test suites
focused on functional correctness may not detect
these changes. Organizations must implement a
comprehensive monitoring system to compare
migrated systems against baselines across multiple
dimensions, including performance metrics, error
rates, resource usage, and user experience
indicators. Shadow deployments, where both old
and new implementations run in parallel with real
traffic, provide valuable data for detecting
behavioral drift before full cutover. One financial
services firm discovered through shadow
deployment that their migrated settlement system,
while functionally correct, exhibited a long-tail
latency distribution that would have violated SLA
commitments—an issue completely invisible to
their functional test suite but critical for production
operations.

5.4 Limited Reasoning Transparency

When automated transformations produce
unexpected results, engineers need tools to
understand what went wrong and why systems
made particular decisions. However, many
learning-based systems operate as black boxes,
making debugging difficult when issues arise. If a
migration framework cannot explain why it chose a
specific transformation approach, engineers waste
time reverse-engineering the decision process
instead of fixing the underlying problem. Effective
migration frameworks address this by preserving
detailed artifacts throughout the transformation
pipeline, including original and transformed
structures with alignment annotations, intermediate
embedding vectors, rule matching results, and
validation reports. These artifacts enable engineers
to trace any issue back to its source, whether that is

173

an incorrect model prediction, a missing rule, or an
inadequate validation strategy. One healthcare
technology company encountered a migration
failure where the automated system consistently
mishandled date arithmetic in medication
scheduling code. Only by examining preserved
decision artifacts did engineers discover that the
embedding model had incorrectly associated their
proprietary date-handling utilities with standard
library functions that had subtly different timezone
handling behavior, leading to systematic off-by-
one-hour errors for patients in certain geographic
regions.

5.5 Recovery Procedure Deficiencies

Large-scale migrations inevitably encounter
failures despite careful planning and validation.
When issues emerge in production, organizations
need reliable mechanisms to roll back
transformations quickly and safely. However,
rollback procedures can be complex when
migrations involve database schema changes,
configuration updates, and interdependent service
modifications. ~ Migration frameworks must
implement comprehensive rollback capabilities,
including snapshotting of pre-migration state,
automated rollback procedures that reverse
transformations while maintaining data consistency,
and traffic routing mechanisms that can instantly
redirect requests back to legacy implementations.
Organizations should regularly test rollback
procedures under realistic conditions to ensure they
work correctly under pressure when actual
incidents occur. A logistics company experienced a
catastrophic migration failure when their rollback
procedure, which worked perfectly in testing, failed
in production because it hadn't accounted for in-
flight transactions during the cutover window,
resulting in lost shipment tracking updates and
several hours of system unavailability while
engineers performed manual data reconciliation.

5.6 Platform Evolution Strategies

Many organizations treat migration frameworks as
one-time tools developed for specific migration
projects and then abandoned once the projects are
complete. This approach fails to capture the full
value of intelligent migration systems, which
improve significantly through continuous use and
refinement. Successful organizations instead treat
their migration frameworks as evolving platforms
that support ongoing modernization. This means
investing in operational infrastructure to retrain
models periodically with new data, incorporating
new transformation rules as frameworks and best

Sahil Agarwal / IJCESEN 12-1(2026)167-177

become strategic assets that enable organizations to

practices evolve, conducting post-mortem analyses
modernize continuously rather than in disruptive

after each migration cycle to identify improvement

opportunities, and building institutional knowledge

about effective migration strategies. Frameworks

multi-year rewrites.

Table 1: Comparison of Manual versus Al-Assisted Migration Approaches [1, 2]

Migration Characteristic

Manual Approach

Al-Assisted Approach

Time Requirements

Months to years for large systems

Weeks to months with automated
assistance

Resource Intensity

High specialist team requirements Re

duced team size with focused expertise

Error Introduction Risk

High due to human oversight
limitations

Lower through automated validation

Dependency Tracking

Manual documentation and analysis

Automated graph-based mapping

Regression Detection

Manual test suite execution

Automated differential testing

Scalability

Limited by available human
resources

Scales with computational infrastructure

Knowledge Preservation

Dependent on team continuity

Encoded in models and rules

Adaptation to Standards

Requires continuous manual updates

Learns from feedback and retraining

Table 2: Abstract Syntax Tree Analysis Capabilities [3, 4]

Analysis Capability

Description

Migration Application

Structural Parsing

Converts source code into a hierarchical
tree representation

Enables language-agnostic analysis

Scope Resolution

Identifies variable and function visibility
boundaries

Prevents naming conflicts during
transformation

Control Flow Mapping

Traces execution paths through conditional
and loop constructs

Ensures behavioral equivalence
preservation

Dependency
Identification

Locates references between code elements

Determines safe refactoring
boundaries

Pattern Recognition

Detects common coding idioms and anti-
patterns

ldentifies modernization candidates

Cross-Language
Translation

Maps the constructs between the source
and target languages

Facilitates polyglot migrations

Type Inference

Derives type information from usage
context

Supports type system migration

Dead Code Detection

Identifies unreachable or unused code
segments

Eliminates obsolete functionality

Table 3: Dependency Graph Construction and Analysis Methods [5]

Graph Element

Information Captured

Analysis Purpose

Vertices Services, modules, libraries, schemas | Represents individual migration units
Edoes Import relationships, API calls, data Maps interdependencies between
g flows components

Vertex Metadata

Runtime versions, ownership,
coupling metrics

Prioritizes migration sequencing

Strongly Connected
Components

Circular dependency clusters

Identifies units requiring atomic
migration

Topological Ordering

Dependency-respecting sequence

Determines safe migration order

Independent Subgraphs

Non-interacting component groups

Enables parallel migration execution

174

Critical Path Analysis

Sahil Agarwal / IJCESEN 12-1(2026)167-177

Longest dependency chains

Identifies migration timeline
bottlenecks

Coupling Intensity Scores

Degree of component
interdependence

Assesses migration complexity and

risk

Legacy Source Codebase l

\

AST and Dapcnden:y Graph Builder]

/

[CodeBERT or GraphCodeBERT Embedding Engine l

L4

r Automated Mapping and Transformation Rules: Claude Rules Module j

I

N?gln
&

Confidence
Threshold Check

Automated Validation and Shadow Dqﬂoy-\gnt

v

Low

2

I Human Review and Feedback]

v

Predictive Risk Analyzer and Rollback Controller I

I Feedback into Retrai-ﬁqg P’.pcf'me l

x

I

[Continuous Lcarning and Model Updote

]

\

I Deployment to Modernized System I

Figure 1: Intelligent Migration Framework Operational Workflow

Table 4: Common Migration Challenges and Mitigation Strategies [9, 10]

Challenge
Category

Specific Issue

Impact

Mitigation Approach

Over-Automation

Uncritical acceptance of
generated code

silent failures

Production defects and

Mandatory human review
for critical paths

Context Drift

Training data mismatch
with organizational
patterns

Inappropriate
transformation
suggestions

Organization-specific
model fine-tuning

Silent Regressions

Undetected behavioral
differences

Performance

impact

degradation and user

Shadow deployment and
differential monitoring

175

Sahil Agarwal / IJCESEN 12-1(2026)167-177

Explainability Gaps Opagque transformation

Difficult debugging and

Preserve detailed decision

low trust artifacts

decisions
Rollback Difficult reversal of multi-
Complexity component changes

Extended downtime

Comprehensive checkpoint

during failures and recovery procedures

One-time tool
development mindset

Static Framework
Treatment

Declining accuracy over

Continuous retraining and

time rule updates

Inadequate Testing Insufficient validation

Undetected edge case

Synthetic test generation

failures and symbolic execution

coverage
Dependency Incompatible version
Conflicts requirements

Runtime failures post-

Graph-based compatibility
analysis

migration

6. Conclusions

Intelligent migration frameworks represent a
fundamental shift in how organizations approach
platform modernization, moving from periodic
disruptive rewrites to continuous evolutionary
improvement. By combining abstract syntax tree
analysis, neural code embeddings, automated
transformation mechanisms, and supervised
oversight, these frameworks enable modernization
at scales and paces that manual approaches cannot
match. The architectural foundations integrating
static analysis with machine learning provide both
the precision of formal methods and the flexibility
of learned models, handling the vast complexity of
real-world legacy systems.

The security, compliance, and governance
considerations discussed throughout this
examination underscore that automation must be
deployed responsibly. Organizations cannot simply
apply models to production code without rigorous
validation, policy enforcement, and human
oversight. The frameworks that succeed are those
that build trust gradually, starting with conservative
automation and expanding capabilities as they
demonstrate reliability. ~ Transparency and
explainability remain essential for maintaining
confidence and enabling effective debugging when
issues arise.

The challenges and lessons learned from early
deployments provide valuable guidance for
organizations embarking on their own automated
modernization journeys. Over-reliance on
automation, context drift, silent regressions, and
inadequate rollback mechanisms represent real risks
that must be actively managed. The documented
failure cases—from embedding-based mapping
errors causing data consistency issues, to semantic
equivalence failures resulting in business logic
errors, to edge case blindness producing production
incidents—illustrate that these systems, while
powerful, are not infallible. However, these
challenges are surmountable through careful system
design, comprehensive validation strategies,

176

continuous learning from operational experience,
and appropriate human oversight at critical decision
points.

Looking forward, intelligent migration frameworks
will continue to evolve in sophistication and
capability. Future systems will likely incorporate
generative agents that can simulate migration
impact before execution, synthesize detailed
migration plans, generate formal proofs of
behavioral equivalence, and evaluate infrastructure
cost trade-offs across alternative approaches.
Integration with reinforcement learning may enable
dynamic optimization of migration sequencing
strategies that minimize business risk while
maximizing transformation velocity. As these
capabilities mature, the boundary between
migration and normal software evolution will blur,
with systems continuously refactoring and
modernizing themselves in response to emerging
technologies and changing requirements.

The ultimate vision is an ecosystem where technical
debt no longer accumulates inexorably but is
instead managed through continuous automated
remediation. In such an environment, organizations
can adopt new technologies and platforms
opportunistically without the dread of massive
migration projects. Software systems remain
perpetually modern, maintainable, and aligned with
contemporary best practices. This transformation
from periodic painful rewrites to seamless
continuous evolution represents one of the most
significant advances in software engineering
practice enabled by artificial intelligence.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

Sahil Agarwal / IJCESEN 12-1(2026)167-177

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

o Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1] Vikram Nitin, "Using Al to Automate the
Modernization of Legacy Software Applications,”
in 2024 39th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 29
November 2024. Available:
https://ieeexplore.ieee.org/document/10764808

[2] Colin Diggs, et al., "Leveraging LLMs for Legacy
Code Modernization: Evaluation of LLM-
Generated Documentation,” in 2025 IEEE/ACM
International Workshop on Large Language Models
for Code (LLM4Code), 12 June 2025. Available:
https://ieeexplore.ieee.org/document/11028228

[3] Yizu Yang, et al., "Hierarchical Abstract Syntax Tree
Representation Learning Based on Graph
Coarsening for Program Classification," in 2023
8th International Conference on Data Science in
Cyberspace (DSC), 08 January 2024. Available:
https://ieeexplore.ieee.org/document/10381405

[4] Yijun Yu, "fAST: Flattening Abstract Syntax Trees
for Efficiency,” in 2019 IEEE/ACM 4lst
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 19
August 2019. Available:
https://ieeexplore.ieee.org/document/8802796

[5] Stoyan Nikolov, et al., "How is Google Using Al for
Internal Code Migrations?" in 2025 IEEE/ACM

47th International Conference on Software
Engineering: Software Engineering in Practice
(ICSE-SEIP), 20 August 2025. Available:

https://ieeexplore.ieee.org/document/11121699

[6] Isuru Akalanka, et al., "Al-Powered Integrated Code
Repository Analyzer for Efficient Developer
Workflow,"” in 2025 International Research
Conference on Smart Computing and Systems
Engineering (SCSE), 13 June 2025. Available:
https://ieeexplore.ieee.org/document/11031000

[7] Md Naseef-Ur-Rahman Chowdhury, et al., "Al-
Driven Secure Coding: Revolutionizing Source
Code Defense," in 2024 International Conference
on Signal Processing and Advanced Research in
Computing (SPARC), 10 January 2025. Available:
https://ieeexplore.ieee.org/document/10828840

[8] Sri Haritha Ambati, et al., "Navigating (in)Security
of Al-Generated Code," in 2024 IEEE International
Conference on Cyber Security and Resilience

177

(CSR), 24 September 2024. Available:
https://ieeexplore.ieee.org/document/10679468

[9] Yaoxian Li, et al., "Understanding the Robustness of
Transformer-Based Code Intelligence via Code
Transformation: Challenges and Opportunities,” in
IEEE Transactions on Neural Networks and
Learning Systems, 16 January 2025. Available:
https://ieeexplore.ieee.org/document/10843180

[10] Yuriy Kondratenko, et al.,, "Tendencies and
Challenges of Artificial Intelligence in Modern
Software Engineering,” in IEEE Access, 21
December 2023. Available:
https://ieeexplore.ieee.org/document/10348800

https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/10764808
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/11028228
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/10381405
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/8802796
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11121699
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/11031000
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10828840
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10679468
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10843180
https://ieeexplore.ieee.org/document/10348800
https://ieeexplore.ieee.org/document/10348800
https://ieeexplore.ieee.org/document/10348800

