Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - ’
(IJCESEN) T

Vol. 12-No.1 (2026) pp. 354-361
http://www.ijcesen.com

————

. e
ISSN: 2149-9144
Research Article

Legacy Mainframe Application Modernization: Transformative Strategies and

Organizational Outcomes

Krantikumar Guduru*

Independent Researcher, USA

* Corresponding Author Email: reachkrantiguduru@gmail.com- ORCID: 0000-0002-5247-9950

Article Info:

DOI: 10.22399/ijcesen.4782
Received : 01 November 2025
Revised : 29 December 2025
Accepted : 10 January 2026

Keywords

Legacy Mainframe
Modernization,

Digital Transformation,
Service-Oriented Architecture,
Software Reengineering,
Enterprise Application
Architecture

Abstract:

To keep pace inthe rapidly changing business landscape, organizations are migrating
their legacy mainframe applications, which are business-critical and developed decades
ago in the COBOL, PL/I, and Assembler programming languages (on IBM mainframe
computers, such as the IBM zSeries mainframe computer). While reliable and efficient,
legacy architectures can impede an organization's ability to pivot and integrate into the
digital economy. The journey to modernization presents various paths, including
rehosting, replatforming, refactoring, and rewriting, each with its unique technical
requirements, risk profile, and organizational implications. Financial services and
insurance have the strongest evidence of success with new architectures. Improvements
in the domains of transaction processing performance, infrastructure cost, and the
ability to deliver new digital capabilities have been seen. New architectures also enable
technologies, such as Al and machine learning, microservices, and omnichannel
customer experiences, which were not possible with legacy architectures. Key success
factors include strong executive sponsorship, technical and business
stakeholder engagement, reverse engineering, and good governance that embraces the
intrinsic complexity. In particular, challenges often arise in migrating data,
rediscovering undocumented business logic, overcoming organizational inertia, and
maintaining service continuity during the transformation. This will be done through a
permanent set of modernization programs, cloud-native architectures, enterprise-grade
automated migration tooling, and composable and flexible architectural design patterns.
Organizations that succeed will reconcile the imperatives of innovation and operations
and develop cultures that foster continuous learning and adaptation. Organizational
capabilities in renewing and refreshing legacy systems have become essential for
organizations to thrive and survive in the face of digital disruption and strengthening
competition.

1. Introduction

Digital

transformation has made modernizing

existence impedes competing
global markets. [1]
Modernization goes beyond simply updating the

in fast-changing

legacy mainframe applications a top technology
agenda for enterprises. Mainframe systems, written
in COBOL, PL/l, and Assembler programming
languages decades ago and deployed on IBM
zSeries computers, remain critical to the operational
technology landscape of global businesses. These
systems, while very reliable and efficient, have
begun to impede business agility, service reuse in
cloud computing, and interoperability with the
modern IT environment. Organizations are
beginning to find it an increasing burden to keep
legacy systems running to support business-critical
processes, and many have determined that their

technology or infrastructure of a legacy system. It
involves fundamentally changing the
way organizations design, implement, and use
information systems to achieve their business goals.
Some of the factors that can complicate legacy
application migration projects include the
investments organizations have made in legacy
applications, the importance of the business
processes that legacy applications support, and the
amount of technical debt that has amassed over
decades of adding functionality and capabilities to
legacy applications. A balancing act must be found

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

around speed, quality, and cost while ensuring
uninterrupted service [2].

This move is thought to address rising operating
costs, declining supply of mainframe-focused
technical skills, and the ability to provide the
smooth digital experience today's consumers and
employees have come to expect. In addition, the
talent pool able to maintain and develop mainframe
systems is aging, and few replacements are being
hired into the niche. In addition to integrating and
consolidating legacy systems, organizations are
often looking to integrate their mainframes with
newer technologies, such as cloud and mobile, and
emerging technologies such as artificial intelligence
(Al) and machine learning (ML). This article will
discuss the many dimensions of mainframe
modernization, including strategies, outcomes, and
technology trends.

2. Strategic
Frameworks

Imperatives and Modernization

Cited drivers for mainframe modernization
strategies include: rising operational costs,
including license costs, hardware maintenance, and
specialist support costs, which burden organizations
running enterprise systems using mainframe
infrastructure that have been in production for
many Yyears. Beyond the costs, legacy information
systems are often characterized by insufficient
documentation, high rigidity, and dependency on
obsolete hardware platforms, themselves becoming
cost-prohibitive [3]. More considerably, legacy
information systems often fail to provide the agility
required to respond to changes in the business
environment or to exploit new business
opportunities. They may also obstruct the
implementation of innovative business models
requiring technologies with more flexible and
scalable characteristics.

Business agility is now dependent on response time
to regulations, changes in the competition, and
changing customer expectations for digital
interactions. Monolithic legacy = mainframe
infrastructures, which depend on custom interfaces,
lack interoperability across the enterprise. As
application environments become more difficult to
maintain and as the costs of keeping old
technologies running continue to increase, each
enterprise comes to a point where decisions must be
made regarding the future of legacy IT. The legacy
rigid architectures of customary mainframe
computers are a hindrance to the use of service-
oriented architectures, cloud computing, and
microservices architectures that are now de facto
standards of contemporary application development
[3]. Another contributing factor is the difficulty of

355

accessing data, as large amounts of potentially
valuable information are stored in structured
hierarchical data storage systems, which cannot
support the real-time analysis and decision support
required.

Mainframe migration approaches cover a variety of
options with different technical challenges, risk
levels, and business considerations. Service-
oriented migration approaches in particular provide
a systematic approach for transforming
heavyweight monolithic legacy applications into
more service-oriented modular architectures, in line
with contemporary software engineering practices.
These approaches describe how to understand the
current functionality, how to identify individual
business functions that can be extracted and re-
implemented as services, and how to connect new
services with existing functionality to permit an
incremental migration without disruption to
business [4]. Rehosting, also known as lift and
shift, moves existing workloads to a distributed or
cloud environment with minimal changes. This
allows for fast iteration and risk reduction, as well
as the potential for reduced infrastructure and
operating costs for proprietary mainframe hardware
and software licensing.

Replatforming only makes selective changes to take
advantage of underlying platform capabilities while
still retaining the core functionality, but adding
incremental ~ optimization. Refactoring and
rewriting, by contrast, result in an architectural
transformation of the software, e.g., moving from
monolithic architecture to microservices or
containerization and application programming
interface-driven integration patterns. However,
these approaches are generally more costly and
riskier, but provide a transformational improvement
in scalability, maintainability, and extensibility to
meet changing business needs. Undertaking one of
these migration strategies requires a careful
balancing of competing pressures, including the
complexity of the legacy solution, the amassed
technical debt, the budget and timetable, and the
risk appetite of the organization [4]. Hybrid
architectures, which make selective use of
mainframe components and incrementally
modernize discrete functions throughout the
organization, deliver the practical advantage of
continued service, incremental value, and risk
mitigation over time.
3. Empirical Evidence:
Transformations

Organizational

The financial services sector provides further
evidence of the broad modernization of the
enterprise, specifically the migration of core

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

banking services from language-based applications
on host-based mainframe systems to cloud-native,
container-based architectures and APIs to integrate
with financial technology companies and third-
party service vendors. Banking software
reengineering methods have systematically and
logically progressed from cataloging existing
application functionality, extracting business rules
from legacy code, and realizing core functionality
in contemporary programming languages and
architectures [5]. These changes have resulted in
positive metrics in terms of reductions in the time
required for processing transactions, reduced
infrastructure costs, and reduced times for
deploying mobile banking and real-time analytical
capabilities in keeping with modern consumers'
expectations for immediate access to financial data
and services.

Modernized banking IT architectures improve the
type of financial innovations banks can deploy, the
speed with which they can react to shifting
competition in the financial sector, and evolving
customer preferences and behaviors. Even machine
learning capabilities can be added for improved
fraud detection since modern architectures can
deliver real-time information and transactions to
complete complex pattern matching more
effectively. Also, because of flexible architecture,
features that were previously unavailable due to the
constraints imposed by legacy systems can be made
available to individual consumers: dynamic
content, recommendation engines, and variable
interface. Reengineering practices applied to
banking applications are now centered on ensuring
that core business knowledge embedded in legacy
systems is retained, along with establishing
supporting architectures that are resilient and can
evolve to support further innovation. Organizations
are finding that modernization is no longer simply
migrating applications from one language to
another, but rethinking business processes and
application architectures to take advantage of
modern capabilities.

Modernization approaches can be seen in the
insurance domain, where agile- and phase-based
refactoring strategies are used to incrementally
decouple policy and claims processing from
monolithic mainframe applications into
microservices hosted in the cloud. Code translation
tools and data virtualization capabilities are also
used to allow migrations that do not require any
downtime, which can be very important for
organizations that cannot tolerate service
interruption. Pattern-based software re-engineering
consists of a collection of procedures for
recognizing, extracting, and re-implementing
software design patterns for legacy software

356

applications based on current guidelines for
maintainable and extensible software design. The
use of design patterns in legacy system
modernization helps software practitioners to apply
design patterns to preserve best practices and
solutions to recurring problems while modernizing
the underlying implementation technology.

Some of the other benefits of insurance industry
improvements have included shorter batch
processing cycles, less manual reconciliation, faster
agent onboarding times, and improved regulatory
compliance (via improved audit trails, flexible
reporting, and more agile business rules engines
that can be modified to reflect regulatory changes
with lower administrative effort). Modular
architectures can also result in faster product
introductions, as only the isolated modular
components of a system need to be modified, rather
than the entire system. Modular architectures
decouple risk and allow for continuous
improvement. When reengineering is needed,
modular architectures allow the use of proven
architectural elements, that is, design patterns that
are found in multiple domains and systems [6].
Organizations report that pattern-based
modernization approaches not only improve
existing production systems but also create
codebases that allow for easier maintenance and
reduce technical debt, making it easier to improve
the systems as business processes evolve.

4. Transformational Applications and
Organizational Capabilities
Modernization raises the level of intrinsic

capability by enabling interfaces, such as service-
oriented architecture (SOA), and exposes legacy
capabilities as services to other components
following defined protocols (not a proprietary
interface). By integrating with the enterprise
environment, such services break down the barriers
to the patterns previously unavailable on the
mainframe and provide the omnichannel experience
by integrating mainframe-hosted business logic
with mobile client, web client, and partner systems.
Industry standards reduce integration complexity
and help maintain integrated solutions. Enterprise
application architecture (EAA) patterns are
engineering principles to design enterprise
application integration with application separation
on presentation logic, business process
orchestration, data access, and infrastructure
services. [7] However, organizations that adopt
these architectural patterns for mainframe
functionality report that layering and explicit
interfaces ease integration and increase the
flexibility and maintainability of the overall system.

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

Another benefit of modernization comes from the
improved access to data, which may be trapped in
hierarchical databases or tape-based storage. With
convenient access, real-time analytics, business
intelligence tools, and analytical applications can be
used to deliver a competitive advantage through
data-driven decision making. Organizations are
using modernization to deliver predictive modeling,
automated business processes, and operational
dashboards to improve visibility into business
performance. Current enterprise application
patterns take advantage of the separation of data
store technologies from the business logic. This
allows enterprises to update their data management
strategies without meaningful changes in their
enterprise applications, and it allows enterprises to
adopt new data stores and data processing
technologies, including data lakes, real-time
streaming, and distributed analytical processing
engines, in addition to customary relational
database management systems (RDBMS).

The new architectures enable us to integrate
technologies previously isolated to non-mainframe
environments, such as machine learning algorithms,
robotic process automation, and artificial
intelligence technologies, embedded into the
business process, to achieve business impact and
performance improvement, not just operational
yardstick improvements across a functional area.
Financial institutions use advanced fraud detection
and fraud prevention systems, which use pattern
recognition in transaction flows, and allow for
greater detection accuracy and response times than
legacy systems relying on rules. Manufacturing
companies use predictive analytics for supply
chain, inventory disruption, and inventory
optimization through proprietary demand
forecasting models. Retailers leverage real-time
transactional data, shopper behavior, predictive
models, etc., to personalize the shopping experience
and gain a competitive edge. Software engineering,
as a discipline, describes systematic, disciplined
approaches to developing, testing, and maintaining
complex software systems, while focusing on
quality aspects such as reliability, performance,
security, and maintainability [8]. Organizations
using these principles to modernize business
processes and systems through technology
transformations find disciplined engineering
practices vital, particularly for large-scale, mission-
critical business systems.

Development methods such as continuous
integration and continuous deployment replace the
waterfall model with a process that allows for faster
time to market and better alignment with business
purposes. Automated testing frameworks improve
the quality of software by enabling thorough

357

regression tests on every change to the code. This
reduces the cost of change, with developers
reporting moving from quarterly or annual releases
to releases as frequently as weekly or daily. With
technical modernization, the cultural changes often
prove as important as the architectural
improvements in enabling innovative mindsets and
organizational learning and expanding the reach of
the technology organization to the entire business
[8]. To create momentum for further organizational
change, modernization efforts need to show how to
balance conflicting demands and deliver business
value through diligent application of the principles
of engineering and proven practice.

5. Critical Success Determinants and
Implementation Challenges
Given this growing body of evidence,

organizational practices and approaches to the
delivery and execution of modernization initiatives
that distinguish high-performing organizations from
those that are underperforming or fail can be
defined. Providing executive sponsorship, including
the provision of planned direction, resources, and
prioritization, is particularly important for complex,
longer-term programs. Articulating business drivers
beyond technical goals can ease alignment between
technology decisions and enterprise strategy,
prevent technology-focused discussions, and
provide a vehicle for delivering value. Reverse
engineering methods provide a starting point
towards these goals. If done properly, reengineering
methods can formally document and communicate
legacy system behavior, architecture, and business
logic (often only implicitly documented in
applications themselves) [9]. Organizations that
invest time and energy to understand their existing
systems before modernization are generally much
more successful than those that do not perform
this diligence.

Collaboration of business and technical
stakeholders can clarify requirements and changes,
and post-implementation adoption can confirm the
value of modernization investments. Prioritizing
investment in legacy knowledge and modern
technology capabilities helps teams to deal with the
complexity of transition and to develop their
capabilities in concert with the system over a
transient post-migration environment. By using
domain vendors and system integrators,
organizations may face a trade-off of slower
transformation and reduced calculated capability
building, due to a limited knowledge transition and
an over-reliance on external expertise, limiting
future adaptability. Reverse engineering legacy
systems provides information about technical

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

implementation, as well as knowledge about
business processes, regulatory compliance, and
operational practices acquired over decades of
system use [9]. Successful modernization programs
realize that this embedded business knowledge is a
key component of modernizing, and they go
beyond technical issues like code translation or
infrastructure migration.

Transfers of data, knowledge of the business rules
behind the legacy system's code, and providing a
continuous service through the project to ensure
continuity of business activities are technical
challenges. Legacy systems have built up complex
and sometimes undocumented rules through
decades of optimization of the software code,
requiring substantial analysis and input from
experts. Resistance to organizational change, due to
the introduction of new roles, processes, and
technologies that users and line employees do not
feel ready to implement, can derail transformation
efforts even where the technical implementation is
flawless. Resistance may be minimized by
communicating intended transformation outcomes
and progress, using a phased implementation
targeting specific areas of maximum benefit with
attendant organizational disruption, and training
users and employees in the new technologies and
processes. Program comprehension techniques have
been proposed to help analysts and developers
understand complex legacy applications, such as
modeling multiple views of the operations of a
system, tracing flows, and recovering architecture
from legacy code [10]. Program comprehension

techniques are also useful when documentation is
lacking or out of date, which is often the case in
systems that have been developed over many years
by many developers.

Early pilots are often small enough to show success
without dramatic impacts to the organization during
transformation, providing confidence for future
phases of transformation and allowing
organizations to validate technical approaches and
build the implementation capabilities required for a
full migration to a target architecture. Strong
governance practices help organizations address the
trade-offs, risk management, and quality assurance
required of complex transformation programs.
Using automated code analysis, dependency
mapping, and testing tools helps eliminate manual
labor while improving accuracy and repeatability.
Performance can be analyzed both during and after
the migration for optimization opportunities.
Measuring actual versus expected benefit allows for
corrective actions to be applied. A further benefit of
applying program comprehension techniques to the
legacy code before migration is the structural
knowledge this provides. If migration activities are
undertaken with an insufficient understanding of
the existing functionality and architecture,
dependencies and interactions may only become
apparent when operational problems occur after
migration activity [10]. Organizations that invest
more time in analysis and comprehension up front
increase the chances of success and may incur
fewer post-migration defects.

Table 1: Legacy System Challenges and Migration Imperatives [1], [2]

Challenge Domain

Legacy System Characteristics

Modernization Imperatives

Technological
Constraints

Outdated programming languages and
platforms require specialized expertise

Transition to contemporary development
environments supporting modern integration
patterns

Operational
Complexity

Accumulated technical debt from
incremental modifications over decades

Systematic refactoring to reduce maintenance
burden and improve system flexibility

Business Agility

Inflexible architectures resisting rapid
adaptation to market changes

Implementation of modular designs enabling
swift response to competitive pressures

Integration Limitations

Proprietary interfaces are incompatible
with cloud and mobile ecosystems

Establishment of standardized protocols
facilitating seamless interoperability

Cost Pressures

Escalating licensing fees and hardware
maintenance expenses

Migration to cost-effective infrastructure
platforms with reduced operational overhead

Table 2: Modernization Strategy Framework and Selection Criteria [3], [4]

Strategy Type | Implementation Approach

Technical
Complexity

Organizational

Risk Profile
Impact

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

Migration to distributed . Limited immediate
. . o Low to Lower operational .
Rehosting platforms with minimal code . . capability
e Moderate disruption
modification enhancement
. Select!ve modifications Balanced risk and |Incremental functional
Replatforming leveraging target platform Moderate - ;
A benefit improvements
capabilities
Acrchitectural transformation Elevated . .
. - Substantial capability
Refactoring toward service-oriented High implementation :
- expansion
patterns complexity
Complete reimplementation . Fundamental
- - . Maximum .
Rewriting using contemporary Very High S architectural
) transformation risk -
technologies reformation
Hybrid Prc_ngre_ss_lve mode_r nization, . Managed incremental |Phased organizational
A maintaining selective legacy Variable o .
Architecture transition adaptation
components

Table 3: Sector-Specific Modernization Outcomes and Transformational Impacts [5], [6]

Industry Sector

Modernization Focus

Implementation
Technique

Operational Benefits

Strategic Capabilities

Software reengineering

Accelerated

Enhanced fraud detection

Financial Core banking . 2 transaction velocity . .
. . . with containerized . through machine learning
Services transaction processing and infrastructure cost . .
deployment . integration
reduction
Pattern-based Reduced batch Rapid product
Insurance Policy administration refactoring to processing cycles and introduction and
and claims processing microservices manual reconciliation| regulatory compliance
architecture elimination enhancement
. Clgud-natlvg Mobile banking Real-time analytical
. Customer-facing architecture with . .
Banking L - . deployment services and personalized
digital services interface . .
e acceleration experiences
standardization
. Automated code Impr0_/e_d operational Flexible business rules
Insurance Agent onboarding and . . efficiency and :
. . translation with data A engines and transparent
Operations | operational workflows administrative

virtualization

overhead reduction

audit capabilities

Table 4: Enterprise Architecture Patterns and Technological Integration [7], [8]

Architectural Design Pattern Integration Data Management Technology
Component Application Capability Enhancement Convergence
Separation of interface Omnichannel Real-time dashboard

Presentation Layer

Processes

logic from business

delivery

customer experience

and visualization
access

Mobile and web portal
integration

Service-oriented

Standardized

Business Logic
Layer

orchestration with clear
boundaries

protocol exposure for
external consumption

Business intelligence
platform connectivity

Machine learning and
predictive analytics
incorporation

Data Access Layer

Clean separation enabling

storage evolution

Data lake and
streaming platform
integration

Elimination of
hierarchical storage
constraints

Artificial intelligence
augmentation of core
processes

359

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

Containerization and
microservices deployment]

Infrastructure
Services

Continuous
integration and
deployment pipelines

Robotic process
automation and fraud
detection systems

Distributed analytical
engine support

6. Conclusion: Future Trajectories and
Strategic Implications

Legacy mainframe application modernization
should be viewed as a calculated imperative, not
merely a tactical technology opportunity. This
calculated imperative for competitive advantage
and digital transformation will continue to define
enterprise IT investments for the foreseeable future.
Furthermore, modernization delivers benefits
including cost reduction, operational performance
improvements, and expanded organizational
capabilities that go beyond mere infrastructure
transformation. Organizations can get the benefits
of this by making the right choices for their
situation, proactively addressing both technical and
organizational constraints, and exercising
disciplined value-focused delivery (including
unrelenting focus on end users) in a multi-year
transformation program. A wealth of experience
from modernization programs around the world
provides examples of how to do this and of good
practices, anti-patterns, and success factors.
Technologies such as cloud, artificial intelligence
(Al)-based automation, and architectural models
such as composability allow businesses to respond
to changing business requirements. Innovative
technology trends such as hybrid cloud, edge
computing, and low-code development are
changing how legacy applications can be
modernized in a less complex and lower-risk way
than previous generations of modernizations.
Organizations also seem to agree that
modernization is now less a project to complete
than a continuous program of improvement that is
driven by technological progress and business
imperatives that occur through changes in the
competitive environment and customer demands.
This program-based frame for technology
management marks a shift away from the more
common project-based frame. They believe
information systems must continuously evolve.
Success in the future will depend on a portfolio of
planned perspectives that balance the innovation of
new products, services, and processes against the
reliability of operations, the use of new technology
against the disruptive impact of change, an
innovative, learning, and adaptive culture, and the
ability to modernize and transform core capabilities
in a rapidly changing, digitally disrupted world.
Furthermore, the principle of avoiding or

360

eliminating technical debt should not only apply to
existing mainframes, but organizations should seek
to establish architectural principles, governance
processes, and organizational capabilities to ensure
that modern system development does not incur the
technical debt seen in existing mainframe
modernization efforts. The lessons suggest that
systems should be built as modular, standardized,
and well-documented to avoid repeating this cycle.
While the paper deals with transitioning from the
mainframe, the conclusions offer a framework for
dealing with complexity and risk in digital
transformation, and for capturing value from
planned technology investments in an enterprise
portfolio for competitive advantage in the digital
market.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

o Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1] Everton de Vargas Agilar, et al., "A Systematic
Mapping Study on Legacy System Modernization,"
ksiresearch. [Online]. Available:
https://ksiresearch.org/seke/sekel6paper/sekel6pap
er_59.pdf

[2] Maryam Razavian, Patricia Lago, "A lean and mean
strategy for migration to services,” ACM Digital
Library. 2012, pp. 61-68. [Online]. Available:
https://dl.acm.org/doi/10.1145/2361999.2362009

https://ksiresearch.org/seke/seke16paper/seke16paper_59.pdf
https://ksiresearch.org/seke/seke16paper/seke16paper_59.pdf
https://dl.acm.org/doi/10.1145/2361999.2362009

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

[3] J. Bishal, et al., "Legacy information systems: issues
and directions,” IEEE, 1999. [Online]. Available:
https://ieeexplore.ieee.org/document/795108

[4] G. Lewis, et al., "Service-Oriented Migration and
Reuse Technique (SMART)," IEEE, 2005,
[Online]. Available:
https://ieeexplore.ieee.org/document/1691651

[5] Wim De Pauw, "Execution patterns in object-
oriented visualization,” ACM Digital Library,
[Online]. Available:
https://dl.acm.org/doi/10.5555/1268009.1268025

[6] Harry Sneed, "Planning the reengineering of legacy
systems,” IEEE, 1995. [Online]. Available:
https://www.researchgate.net/publication/3247037
Planning_the_reengineering_of legacy systems

[7] Erich Gamma, et al., "Design Patterns: Abstraction
and Reuse of Object-Oriented Design," [Online].
Available:
https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-
patterns.pdf

[8] Martin Fowler, “Patterns of Enterprise Application
Architecture.” 2002, O'Reilly Media, [Online].
Available:
https://www.oreilly.com/library/view/patterns-of-
enterprise/0321127420/

[9] Michigan Technological University, "What is
Software Engineering?" [Online]. Available:
https://www.mtu.edu/cs/undergraduate/software/wh
at/

[10] Jukka Viljamaa, "Reverse engineering framework
reuse interfaces,” ACM Digital Library, 2003.
[Online]. Available:
https://dl.acm.org/doi/abs/10.1145/949952.940101

361

https://ieeexplore.ieee.org/document/795108
https://ieeexplore.ieee.org/document/1691651
https://dl.acm.org/doi/10.5555/1268009.1268025
https://www.researchgate.net/publication/3247037_Planning_the_reengineering_of_legacy_systems
https://www.researchgate.net/publication/3247037_Planning_the_reengineering_of_legacy_systems
https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-patterns.pdf
https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-patterns.pdf
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.mtu.edu/cs/undergraduate/software/what/
https://www.mtu.edu/cs/undergraduate/software/what/
https://dl.acm.org/doi/abs/10.1145/949952.940101

