

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 354-361
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Legacy Mainframe Application Modernization: Transformative Strategies and

Organizational Outcomes

Krantikumar Guduru*

Independent Researcher, USA
* Corresponding Author Email: reachkrantiguduru@gmail.com- ORCID: 0000-0002-5247-9950

Article Info:

DOI: 10.22399/ijcesen.4782

Received : 01 November 2025

Revised : 29 December 2025

Accepted : 10 January 2026

Keywords

Legacy Mainframe

Modernization,

Digital Transformation,

Service-Oriented Architecture,

Software Reengineering,

Enterprise Application

Architecture

Abstract:

To keep pace in the rapidly changing business landscape, organizations are migrating

their legacy mainframe applications, which are business-critical and developed decades

ago in the COBOL, PL/I, and Assembler programming languages (on IBM mainframe

computers, such as the IBM zSeries mainframe computer). While reliable and efficient,

legacy architectures can impede an organization's ability to pivot and integrate into the

digital economy. The journey to modernization presents various paths, including

rehosting, replatforming, refactoring, and rewriting, each with its unique technical

requirements, risk profile, and organizational implications. Financial services and

insurance have the strongest evidence of success with new architectures. Improvements

in the domains of transaction processing performance, infrastructure cost, and the

ability to deliver new digital capabilities have been seen. New architectures also enable

technologies, such as AI and machine learning, microservices, and omnichannel

customer experiences, which were not possible with legacy architectures. Key success

factors include strong executive sponsorship, technical and business

stakeholder engagement, reverse engineering, and good governance that embraces the

intrinsic complexity. In particular, challenges often arise in migrating data,

rediscovering undocumented business logic, overcoming organizational inertia, and

maintaining service continuity during the transformation. This will be done through a

permanent set of modernization programs, cloud-native architectures, enterprise-grade

automated migration tooling, and composable and flexible architectural design patterns.

Organizations that succeed will reconcile the imperatives of innovation and operations

and develop cultures that foster continuous learning and adaptation. Organizational

capabilities in renewing and refreshing legacy systems have become essential for

organizations to thrive and survive in the face of digital disruption and strengthening

competition.

1. Introduction

Digital transformation has made modernizing

legacy mainframe applications a top technology

agenda for enterprises. Mainframe systems, written

in COBOL, PL/I, and Assembler programming

languages decades ago and deployed on IBM

zSeries computers, remain critical to the operational

technology landscape of global businesses. These

systems, while very reliable and efficient, have

begun to impede business agility, service reuse in

cloud computing, and interoperability with the

modern IT environment. Organizations are

beginning to find it an increasing burden to keep

legacy systems running to support business-critical

processes, and many have determined that their

existence impedes competing in fast-changing

global markets. [1]

Modernization goes beyond simply updating the

technology or infrastructure of a legacy system. It

involves fundamentally changing the

way organizations design, implement, and use

information systems to achieve their business goals.

Some of the factors that can complicate legacy

application migration projects include the

investments organizations have made in legacy

applications, the importance of the business

processes that legacy applications support, and the

amount of technical debt that has amassed over

decades of adding functionality and capabilities to

legacy applications. A balancing act must be found

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

355

around speed, quality, and cost while ensuring

uninterrupted service [2].

This move is thought to address rising operating

costs, declining supply of mainframe-focused

technical skills, and the ability to provide the

smooth digital experience today's consumers and

employees have come to expect. In addition, the

talent pool able to maintain and develop mainframe

systems is aging, and few replacements are being

hired into the niche. In addition to integrating and

consolidating legacy systems, organizations are

often looking to integrate their mainframes with

newer technologies, such as cloud and mobile, and

emerging technologies such as artificial intelligence

(AI) and machine learning (ML). This article will

discuss the many dimensions of mainframe

modernization, including strategies, outcomes, and

technology trends.

2. Strategic Imperatives and Modernization

Frameworks

Cited drivers for mainframe modernization

strategies include: rising operational costs,

including license costs, hardware maintenance, and

specialist support costs, which burden organizations

running enterprise systems using mainframe

infrastructure that have been in production for

many years. Beyond the costs, legacy information

systems are often characterized by insufficient

documentation, high rigidity, and dependency on

obsolete hardware platforms, themselves becoming

cost-prohibitive [3]. More considerably, legacy

information systems often fail to provide the agility

required to respond to changes in the business

environment or to exploit new business

opportunities. They may also obstruct the

implementation of innovative business models

requiring technologies with more flexible and

scalable characteristics.

Business agility is now dependent on response time

to regulations, changes in the competition, and

changing customer expectations for digital

interactions. Monolithic legacy mainframe

infrastructures, which depend on custom interfaces,

lack interoperability across the enterprise. As

application environments become more difficult to

maintain and as the costs of keeping old

technologies running continue to increase, each

enterprise comes to a point where decisions must be

made regarding the future of legacy IT. The legacy

rigid architectures of customary mainframe

computers are a hindrance to the use of service-

oriented architectures, cloud computing, and

microservices architectures that are now de facto

standards of contemporary application development

[3]. Another contributing factor is the difficulty of

accessing data, as large amounts of potentially

valuable information are stored in structured

hierarchical data storage systems, which cannot

support the real-time analysis and decision support

required.

Mainframe migration approaches cover a variety of

options with different technical challenges, risk

levels, and business considerations. Service-

oriented migration approaches in particular provide

a systematic approach for transforming

heavyweight monolithic legacy applications into

more service-oriented modular architectures, in line

with contemporary software engineering practices.

These approaches describe how to understand the

current functionality, how to identify individual

business functions that can be extracted and re-

implemented as services, and how to connect new

services with existing functionality to permit an

incremental migration without disruption to

business [4]. Rehosting, also known as lift and

shift, moves existing workloads to a distributed or

cloud environment with minimal changes. This

allows for fast iteration and risk reduction, as well

as the potential for reduced infrastructure and

operating costs for proprietary mainframe hardware

and software licensing.

Replatforming only makes selective changes to take

advantage of underlying platform capabilities while

still retaining the core functionality, but adding

incremental optimization. Refactoring and

rewriting, by contrast, result in an architectural

transformation of the software, e.g., moving from

monolithic architecture to microservices or

containerization and application programming

interface-driven integration patterns. However,

these approaches are generally more costly and

riskier, but provide a transformational improvement

in scalability, maintainability, and extensibility to

meet changing business needs. Undertaking one of

these migration strategies requires a careful

balancing of competing pressures, including the

complexity of the legacy solution, the amassed

technical debt, the budget and timetable, and the

risk appetite of the organization [4]. Hybrid

architectures, which make selective use of

mainframe components and incrementally

modernize discrete functions throughout the

organization, deliver the practical advantage of

continued service, incremental value, and risk

mitigation over time.

3. Empirical Evidence: Organizational

Transformations

The financial services sector provides further

evidence of the broad modernization of the

enterprise, specifically the migration of core

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

356

banking services from language-based applications

on host-based mainframe systems to cloud-native,

container-based architectures and APIs to integrate

with financial technology companies and third-

party service vendors. Banking software

reengineering methods have systematically and

logically progressed from cataloging existing

application functionality, extracting business rules

from legacy code, and realizing core functionality

in contemporary programming languages and

architectures [5]. These changes have resulted in

positive metrics in terms of reductions in the time

required for processing transactions, reduced

infrastructure costs, and reduced times for

deploying mobile banking and real-time analytical

capabilities in keeping with modern consumers'

expectations for immediate access to financial data

and services.

Modernized banking IT architectures improve the

type of financial innovations banks can deploy, the

speed with which they can react to shifting

competition in the financial sector, and evolving

customer preferences and behaviors. Even machine

learning capabilities can be added for improved

fraud detection since modern architectures can

deliver real-time information and transactions to

complete complex pattern matching more

effectively. Also, because of flexible architecture,

features that were previously unavailable due to the

constraints imposed by legacy systems can be made

available to individual consumers: dynamic

content, recommendation engines, and variable

interface. Reengineering practices applied to

banking applications are now centered on ensuring

that core business knowledge embedded in legacy

systems is retained, along with establishing

supporting architectures that are resilient and can

evolve to support further innovation. Organizations

are finding that modernization is no longer simply

migrating applications from one language to

another, but rethinking business processes and

application architectures to take advantage of

modern capabilities.

Modernization approaches can be seen in the

insurance domain, where agile- and phase-based

refactoring strategies are used to incrementally

decouple policy and claims processing from

monolithic mainframe applications into

microservices hosted in the cloud. Code translation

tools and data virtualization capabilities are also

used to allow migrations that do not require any

downtime, which can be very important for

organizations that cannot tolerate service

interruption. Pattern-based software re-engineering

consists of a collection of procedures for

recognizing, extracting, and re-implementing

software design patterns for legacy software

applications based on current guidelines for

maintainable and extensible software design. The

use of design patterns in legacy system

modernization helps software practitioners to apply

design patterns to preserve best practices and

solutions to recurring problems while modernizing

the underlying implementation technology.

Some of the other benefits of insurance industry

improvements have included shorter batch

processing cycles, less manual reconciliation, faster

agent onboarding times, and improved regulatory

compliance (via improved audit trails, flexible

reporting, and more agile business rules engines

that can be modified to reflect regulatory changes

with lower administrative effort). Modular

architectures can also result in faster product

introductions, as only the isolated modular

components of a system need to be modified, rather

than the entire system. Modular architectures

decouple risk and allow for continuous

improvement. When reengineering is needed,

modular architectures allow the use of proven

architectural elements, that is, design patterns that

are found in multiple domains and systems [6].

Organizations report that pattern-based

modernization approaches not only improve

existing production systems but also create

codebases that allow for easier maintenance and

reduce technical debt, making it easier to improve

the systems as business processes evolve.

4. Transformational Applications and

Organizational Capabilities

Modernization raises the level of intrinsic

capability by enabling interfaces, such as service-

oriented architecture (SOA), and exposes legacy

capabilities as services to other components

following defined protocols (not a proprietary

interface). By integrating with the enterprise

environment, such services break down the barriers

to the patterns previously unavailable on the

mainframe and provide the omnichannel experience

by integrating mainframe-hosted business logic

with mobile client, web client, and partner systems.

Industry standards reduce integration complexity

and help maintain integrated solutions. Enterprise

application architecture (EAA) patterns are

engineering principles to design enterprise

application integration with application separation

on presentation logic, business process

orchestration, data access, and infrastructure

services. [7] However, organizations that adopt

these architectural patterns for mainframe

functionality report that layering and explicit

interfaces ease integration and increase the

flexibility and maintainability of the overall system.

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

357

Another benefit of modernization comes from the

improved access to data, which may be trapped in

hierarchical databases or tape-based storage. With

convenient access, real-time analytics, business

intelligence tools, and analytical applications can be

used to deliver a competitive advantage through

data-driven decision making. Organizations are

using modernization to deliver predictive modeling,

automated business processes, and operational

dashboards to improve visibility into business

performance. Current enterprise application

patterns take advantage of the separation of data

store technologies from the business logic. This

allows enterprises to update their data management

strategies without meaningful changes in their

enterprise applications, and it allows enterprises to

adopt new data stores and data processing

technologies, including data lakes, real-time

streaming, and distributed analytical processing

engines, in addition to customary relational

database management systems (RDBMS).

The new architectures enable us to integrate

technologies previously isolated to non-mainframe

environments, such as machine learning algorithms,

robotic process automation, and artificial

intelligence technologies, embedded into the

business process, to achieve business impact and

performance improvement, not just operational

yardstick improvements across a functional area.

Financial institutions use advanced fraud detection

and fraud prevention systems, which use pattern

recognition in transaction flows, and allow for

greater detection accuracy and response times than

legacy systems relying on rules. Manufacturing

companies use predictive analytics for supply

chain, inventory disruption, and inventory

optimization through proprietary demand

forecasting models. Retailers leverage real-time

transactional data, shopper behavior, predictive

models, etc., to personalize the shopping experience

and gain a competitive edge. Software engineering,

as a discipline, describes systematic, disciplined

approaches to developing, testing, and maintaining

complex software systems, while focusing on

quality aspects such as reliability, performance,

security, and maintainability [8]. Organizations

using these principles to modernize business

processes and systems through technology

transformations find disciplined engineering

practices vital, particularly for large-scale, mission-

critical business systems.

Development methods such as continuous

integration and continuous deployment replace the

waterfall model with a process that allows for faster

time to market and better alignment with business

purposes. Automated testing frameworks improve

the quality of software by enabling thorough

regression tests on every change to the code. This

reduces the cost of change, with developers

reporting moving from quarterly or annual releases

to releases as frequently as weekly or daily. With

technical modernization, the cultural changes often

prove as important as the architectural

improvements in enabling innovative mindsets and

organizational learning and expanding the reach of

the technology organization to the entire business

[8]. To create momentum for further organizational

change, modernization efforts need to show how to

balance conflicting demands and deliver business

value through diligent application of the principles

of engineering and proven practice.

5. Critical Success Determinants and

Implementation Challenges

Given this growing body of evidence,

organizational practices and approaches to the

delivery and execution of modernization initiatives

that distinguish high-performing organizations from

those that are underperforming or fail can be

defined. Providing executive sponsorship, including

the provision of planned direction, resources, and

prioritization, is particularly important for complex,

longer-term programs. Articulating business drivers

beyond technical goals can ease alignment between

technology decisions and enterprise strategy,

prevent technology-focused discussions, and

provide a vehicle for delivering value. Reverse

engineering methods provide a starting point

towards these goals. If done properly, reengineering

methods can formally document and communicate

legacy system behavior, architecture, and business

logic (often only implicitly documented in

applications themselves) [9]. Organizations that

invest time and energy to understand their existing

systems before modernization are generally much

more successful than those that do not perform

this diligence.

Collaboration of business and technical

stakeholders can clarify requirements and changes,

and post-implementation adoption can confirm the

value of modernization investments. Prioritizing

investment in legacy knowledge and modern

technology capabilities helps teams to deal with the

complexity of transition and to develop their

capabilities in concert with the system over a

transient post-migration environment. By using

domain vendors and system integrators,

organizations may face a trade-off of slower

transformation and reduced calculated capability

building, due to a limited knowledge transition and

an over-reliance on external expertise, limiting

future adaptability. Reverse engineering legacy

systems provides information about technical

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

358

implementation, as well as knowledge about

business processes, regulatory compliance, and

operational practices acquired over decades of

system use [9]. Successful modernization programs

realize that this embedded business knowledge is a

key component of modernizing, and they go

beyond technical issues like code translation or

infrastructure migration.

Transfers of data, knowledge of the business rules

behind the legacy system's code, and providing a

continuous service through the project to ensure

continuity of business activities are technical

challenges. Legacy systems have built up complex

and sometimes undocumented rules through

decades of optimization of the software code,

requiring substantial analysis and input from

experts. Resistance to organizational change, due to

the introduction of new roles, processes, and

technologies that users and line employees do not

feel ready to implement, can derail transformation

efforts even where the technical implementation is

flawless. Resistance may be minimized by

communicating intended transformation outcomes

and progress, using a phased implementation

targeting specific areas of maximum benefit with

attendant organizational disruption, and training

users and employees in the new technologies and

processes. Program comprehension techniques have

been proposed to help analysts and developers

understand complex legacy applications, such as

modeling multiple views of the operations of a

system, tracing flows, and recovering architecture

from legacy code [10]. Program comprehension

techniques are also useful when documentation is

lacking or out of date, which is often the case in

systems that have been developed over many years

by many developers.

Early pilots are often small enough to show success

without dramatic impacts to the organization during

transformation, providing confidence for future

phases of transformation and allowing

organizations to validate technical approaches and

build the implementation capabilities required for a

full migration to a target architecture. Strong

governance practices help organizations address the

trade-offs, risk management, and quality assurance

required of complex transformation programs.

Using automated code analysis, dependency

mapping, and testing tools helps eliminate manual

labor while improving accuracy and repeatability.

Performance can be analyzed both during and after

the migration for optimization opportunities.

Measuring actual versus expected benefit allows for

corrective actions to be applied. A further benefit of

applying program comprehension techniques to the

legacy code before migration is the structural

knowledge this provides. If migration activities are

undertaken with an insufficient understanding of

the existing functionality and architecture,

dependencies and interactions may only become

apparent when operational problems occur after

migration activity [10]. Organizations that invest

more time in analysis and comprehension up front

increase the chances of success and may incur

fewer post-migration defects.

Table 1: Legacy System Challenges and Migration Imperatives [1], [2]

Challenge Domain Legacy System Characteristics Modernization Imperatives

Technological

Constraints

Outdated programming languages and

platforms require specialized expertise

Transition to contemporary development

environments supporting modern integration

patterns

Operational

Complexity

Accumulated technical debt from

incremental modifications over decades

Systematic refactoring to reduce maintenance

burden and improve system flexibility

Business Agility
Inflexible architectures resisting rapid

adaptation to market changes

Implementation of modular designs enabling

swift response to competitive pressures

Integration Limitations
Proprietary interfaces are incompatible

with cloud and mobile ecosystems

Establishment of standardized protocols

facilitating seamless interoperability

Cost Pressures
Escalating licensing fees and hardware

maintenance expenses

Migration to cost-effective infrastructure

platforms with reduced operational overhead

Table 2: Modernization Strategy Framework and Selection Criteria [3], [4]

Strategy Type Implementation Approach
Technical

Complexity
Risk Profile

Organizational

Impact

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

359

Rehosting

Migration to distributed

platforms with minimal code

modification

Low to

Moderate

Lower operational

disruption

Limited immediate

capability

enhancement

Replatforming

Selective modifications

leveraging target platform

capabilities

Moderate
Balanced risk and

benefit

Incremental functional

improvements

Refactoring

Architectural transformation

toward service-oriented

patterns

High

Elevated

implementation

complexity

Substantial capability

expansion

Rewriting

Complete reimplementation

using contemporary

technologies

Very High
Maximum

transformation risk

Fundamental

architectural

reformation

Hybrid

Architecture

Progressive modernization,

maintaining selective legacy

components

Variable
Managed incremental

transition

Phased organizational

adaptation

Table 3: Sector-Specific Modernization Outcomes and Transformational Impacts [5], [6]

Industry Sector Modernization Focus
Implementation

Technique
Operational Benefits Strategic Capabilities

Financial

Services

Core banking

transaction processing

Software reengineering

with containerized

deployment

Accelerated

transaction velocity

and infrastructure cost

reduction

Enhanced fraud detection

through machine learning

integration

Insurance
Policy administration

and claims processing

Pattern-based

refactoring to

microservices

architecture

Reduced batch

processing cycles and

manual reconciliation

elimination

Rapid product

introduction and

regulatory compliance

enhancement

Banking
Customer-facing

digital services

Cloud-native

architecture with

interface

standardization

Mobile banking

deployment

acceleration

Real-time analytical

services and personalized

experiences

Insurance

Operations

Agent onboarding and

operational workflows

Automated code

translation with data

virtualization

Improved operational

efficiency and

administrative

overhead reduction

Flexible business rules

engines and transparent

audit capabilities

Table 4: Enterprise Architecture Patterns and Technological Integration [7], [8]

Architectural

Component

Design Pattern

Application

Integration

Capability

Data Management

Enhancement

Technology

Convergence

Presentation Layer

Separation of interface

logic from business

processes

Omnichannel

customer experience

delivery

Real-time dashboard

and visualization

access

Mobile and web portal

integration

Business Logic

Layer

Service-oriented

orchestration with clear

boundaries

Standardized

protocol exposure for

external consumption

Business intelligence

platform connectivity

Machine learning and

predictive analytics

incorporation

Data Access Layer
Clean separation enabling

storage evolution

Data lake and

streaming platform

integration

Elimination of

hierarchical storage

constraints

Artificial intelligence

augmentation of core

processes

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

360

Infrastructure

Services

Containerization and

microservices deployment

Continuous

integration and

deployment pipelines

Distributed analytical

engine support

Robotic process

automation and fraud

detection systems

6. Conclusion: Future Trajectories and

Strategic Implications

Legacy mainframe application modernization

should be viewed as a calculated imperative, not

merely a tactical technology opportunity. This

calculated imperative for competitive advantage

and digital transformation will continue to define

enterprise IT investments for the foreseeable future.

Furthermore, modernization delivers benefits

including cost reduction, operational performance

improvements, and expanded organizational

capabilities that go beyond mere infrastructure

transformation. Organizations can get the benefits

of this by making the right choices for their

situation, proactively addressing both technical and

organizational constraints, and exercising

disciplined value-focused delivery (including

unrelenting focus on end users) in a multi-year

transformation program. A wealth of experience

from modernization programs around the world

provides examples of how to do this and of good

practices, anti-patterns, and success factors.

Technologies such as cloud, artificial intelligence

(AI)-based automation, and architectural models

such as composability allow businesses to respond

to changing business requirements. Innovative

technology trends such as hybrid cloud, edge

computing, and low-code development are

changing how legacy applications can be

modernized in a less complex and lower-risk way

than previous generations of modernizations.

Organizations also seem to agree that

modernization is now less a project to complete

than a continuous program of improvement that is

driven by technological progress and business

imperatives that occur through changes in the

competitive environment and customer demands.

This program-based frame for technology

management marks a shift away from the more

common project-based frame. They believe

information systems must continuously evolve.

Success in the future will depend on a portfolio of

planned perspectives that balance the innovation of

new products, services, and processes against the

reliability of operations, the use of new technology

against the disruptive impact of change, an

innovative, learning, and adaptive culture, and the

ability to modernize and transform core capabilities

in a rapidly changing, digitally disrupted world.

Furthermore, the principle of avoiding or

eliminating technical debt should not only apply to

existing mainframes, but organizations should seek

to establish architectural principles, governance

processes, and organizational capabilities to ensure

that modern system development does not incur the

technical debt seen in existing mainframe

modernization efforts. The lessons suggest that

systems should be built as modular, standardized,

and well-documented to avoid repeating this cycle.

While the paper deals with transitioning from the

mainframe, the conclusions offer a framework for

dealing with complexity and risk in digital

transformation, and for capturing value from

planned technology investments in an enterprise

portfolio for competitive advantage in the digital

market.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Everton de Vargas Agilar, et al., "A Systematic

Mapping Study on Legacy System Modernization,"

ksiresearch. [Online]. Available:

https://ksiresearch.org/seke/seke16paper/seke16pap

er_59.pdf

[2] Maryam Razavian, Patricia Lago, "A lean and mean

strategy for migration to services," ACM Digital

Library. 2012, pp. 61-68. [Online]. Available:

https://dl.acm.org/doi/10.1145/2361999.2362009

https://ksiresearch.org/seke/seke16paper/seke16paper_59.pdf
https://ksiresearch.org/seke/seke16paper/seke16paper_59.pdf
https://dl.acm.org/doi/10.1145/2361999.2362009

Krantikumar Guduru / IJCESEN 12-1(2026)354-361

361

[3] J. Bisbal, et al., "Legacy information systems: issues

and directions," IEEE, 1999. [Online]. Available:

https://ieeexplore.ieee.org/document/795108

[4] G. Lewis, et al., "Service-Oriented Migration and

Reuse Technique (SMART)," IEEE, 2005,

[Online]. Available:

https://ieeexplore.ieee.org/document/1691651

[5] Wim De Pauw, "Execution patterns in object-

oriented visualization," ACM Digital Library,

[Online]. Available:

https://dl.acm.org/doi/10.5555/1268009.1268025

[6] Harry Sneed, "Planning the reengineering of legacy

systems," IEEE, 1995. [Online]. Available:

https://www.researchgate.net/publication/3247037_

Planning_the_reengineering_of_legacy_systems

[7] Erich Gamma, et al., "Design Patterns: Abstraction

and Reuse of Object-Oriented Design," [Online].

Available:

https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-

patterns.pdf

[8] Martin Fowler, “Patterns of Enterprise Application

Architecture.” 2002, O'Reilly Media, [Online].

Available:

https://www.oreilly.com/library/view/patterns-of-

enterprise/0321127420/

[9] Michigan Technological University, "What is

Software Engineering?" [Online]. Available:

https://www.mtu.edu/cs/undergraduate/software/wh

at/

[10] Jukka Viljamaa, "Reverse engineering framework

reuse interfaces," ACM Digital Library, 2003.

[Online]. Available:

https://dl.acm.org/doi/abs/10.1145/949952.940101

https://ieeexplore.ieee.org/document/795108
https://ieeexplore.ieee.org/document/1691651
https://dl.acm.org/doi/10.5555/1268009.1268025
https://www.researchgate.net/publication/3247037_Planning_the_reengineering_of_legacy_systems
https://www.researchgate.net/publication/3247037_Planning_the_reengineering_of_legacy_systems
https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-patterns.pdf
https://cseweb.ucsd.edu/~wgg/CSE210/ecoop93-patterns.pdf
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.mtu.edu/cs/undergraduate/software/what/
https://www.mtu.edu/cs/undergraduate/software/what/
https://dl.acm.org/doi/abs/10.1145/949952.940101

